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Abstrat. In this paper we study Banah{Finsler manifolds endowed with a spray whih have

seminegative urvature in the sense that the orresponding exponential funtion has a surjetive

expansive di�erential in every point. In this ontext we generalize the lassial theorem of Cartan{

Hadamard, saying that the exponential funtion is a overing map. We apply this to symmetri

spaes and thus obtain riteria for Banah{Lie groups with an involution to have a polar deompo-

sition. Typial examples of symmetri Finsler manifolds with seminegative urvature are bounded

symmetri domains and symmetri ones endowed with their natural Finsler struture whih in

general is not Riemannian.

Introdution

Let M = G=K be a �nite-dimensional non-ompat Riemannian symmetri spae, where K is

the group of �xed points of an involution � on G . Then G has a polar deomposition in the

sense that the deomposition g = k + p of its Lie algebra into the eigenspaes of the involution

d�(1) leads to a di�eomorphism

K � p! G; (k; x) 7! k expx

(f. [Hel78℄). One enounters a similar situation for the group G := GL(H) of invertible

ontinuous linear operators on a omplex Hilbert spae H . Here K = U(H) is the unitary

group of H and p = Herm(H) is the spae of bounded hermitian operators on H . The

polar deomposition of this group an be used to dedue similar results for a variety of in�nite-

dimensional analogs of the lassial groups (f. [dlH72℄, [dlH83℄).

On the level of Riemannian manifolds, the polar deomposition of G is essentially the

same as the statement that the exponential map Exp: p ! G=K of the Riemannian symmetri

spae G=K is a di�eomorphism. This is a speial instane of the lassial theorem of Cartan-

Hadamard whih states that for a onneted geodesially omplete Riemannian manifold M

with seminegative urvature, for eah point p 2M the exponential map exp

p

:T

p

(M)!M is a

overing. If, in addition, M is simply onneted, then the exponential map is a di�eomorphism,

and M is alled a Cartan{Hadamard manifold. So Riemannian symmetri spaes of non-ompat

type are speial Cartan{Hadamard manifolds. In this form the result of Cartan{Hadamard has

been generalized to Riemannian manifolds (modeled over Hilbert spaes) by Grossman [Gr65℄

and MAlpin [MA65℄ (see Setion IX.3 of [La99℄ for an exposition of this result). If G=K is

a Riemannian Cartan{Hadamard manifold, then MAlpin's in�nite-dimensional version of the

Cartan{Hadamard Theorem applies, and one an derive a polar deomposition of G . The polar

deomposition of the full operator group G = GL(H) on a Hilbert spae annot be derived from

this geometri result beause the spae G=K = GL(H)=U(H) of positive operators on H is not

a Riemannian manifold. In this ase one has to work with spetral theoreti methods whih are

limited to quite speial situations. These spetral theoreti methods apply equally well to the

spae G(A)=U(A), where A is a C

�

-algebra, G(A) its group of units, and U(A) the unitary

group of A . They fail for the omplex group G whih is a natural omplexi�ation of the group
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U(Z) of isometries of a omplex Banah spae Z . A similar lass of examples are the bounded

symmetri domains in Banah spaes. They an also be written as G=K for suitable Banah

groups, but they do not arry a natural Riemannian struture.

What is ommon to all these manifolds is that they are symmetri Banah manifolds whih

are endowed with a natural G-invariant Finsler metri. On the geometri side, their ounterparts

are Banah manifolds M endowed with a Finsler metri and a spray F :TM ! TTM suh that

the Finsler metri is invariant under parallel transport along geodesi segments (see Setion I

for the de�nitions). The geometri heart of the present paper is a generalization of the Cartan{

Hadamard Theorem to suh manifolds. A key point is that the requirement that for eah point

p 2 M the exponential map exp

p

:T

p

(M) ! M is length inreasing in the sense that for eah

x 2 T

p

(M) the di�erential d exp

p

(x):T

p

(M)! T

exp

p

(x)

(M) is invertible and expansive. For the

Riemannian ase this ondition is equivalent to M having seminegative urvature, so that we

take this as the de�nition of \seminegative urvature" in the general ase.

In Setion II we �rst take a loser look at dissipative operators on a Banah spae Z . The

key result of this setion is Theorem II.6 saying that for a bounded operator A the operator �A

is dissipative if and only if s(tA) =

P

1

n=0

(tA)

n

(2n+1)!

is surjetive and expansive for all t > 0. We

also show that if Z is omplex and exp(iRA) onsists of isometries, then

sinh(A)

A

is invertible

and expansive.

In Setion III we turn to symmetri spaes in the sense of Loos. We explain how one

assoiates to a symmetri spae a spray with the same symmetries and whih is uniquely

determined by this property. In the �nite-dimensional ase this onstrution is arried out in

[Lo69℄ in the ontext of higher tangent bundles whih does not work in the Banah setting. If

the symmetri spae M an be written as G=K , where G is a Banah{Lie group and K an

open subgroup of the group of �xed points of an involution � , then we derive a riterion for a

G-invariant Finsler metri on M to lead to a manifold with seminegative urvature whih only

refers to a property of the orresponding normed symmetri Lie algebra. Using the results of

Setion II, we show that M has seminegative urvature if and only if the operators �(adx)

2

j

p

,

x 2 p , are dissipative.

In Setion IV we elaborate on riteria for symmetri Banah Lie algebras whih make it

simpler to hek that the ondition derived in Setion III is satis�ed.

Setion V ontains our main results on the existene of a polar deomposition for a

symmetri Banah{Lie group (G; �) whih also overs ases that annot be dedued from the

�nite-dimensional ase or the polar deomposition of the operator group GL(H). In partiular

it applies to the \omplexi�ation" of the group U(Z) for any Banah spae.

We onlude this paper with Setion VI whih ontains a disussion of some spei� lasses

of examples and relations to work of other people on speial types of symmetri spaes with

seminegative urvature suh as symmetri ones and the one of positive elements of a C

�

-

algebra.

It would be very interesting to understand the relations between the Finsler manifolds

of seminegative urvature disussed in this paper and general metri spaes with non-positive

urvature (f. [AB90℄, [BH99℄). For Riemannian manifolds this property is also equivalent to the

semi parallelogram law whih an be formulated for arbitrary metri spaes (see [La99, XI, x3℄).

Sine it implies that for two points there exists a unique \midpoint", there are Banah spaes not

satisfying this ondition, so that it does not seem to lead very far in the general Finsler ontext.

Nevertheless there might be interesting relations if the Finsler metri is suh that all tangent

spaes are uniformly onvex.

During the preparation of this manusript I pro�ted a lot from onversations with H. Up-

meier who guided me through [Up85℄. I also thank J. Arazy for enlightening disussions. Fur-

thermore I thank H. Upmeier and F. Haslinger for inviting me to the Erwin-Shr�odinger-Institut

and for the very pleasant and produtive stay in Vienna.

All manifolds in this paper are smooth manifolds modeled over Banah spaes. We refer to

Lang's book [La99℄ for the basi di�erential geometry of Banah manifolds.
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I. A generalization of the Cartan{Hadamard Theorem

In this setion we generalize the lassial theorem of Cartan{Hadamard to Banah{Finsler

manifolds of seminegative urvature (Theorem I.10).

De�nition I.1. Let M be a Banah manifold. A seond-order vetor �eld on M is a vetor

�eld F :TM ! TTM on TM satisfying T (�) ÆF = id

TM

, where �:TM !M is the projetion

map (f. [La99, IV, x3℄). Let s 2 R and s

TM

:TM ! TM denote the multipliation by s in

eah tangent spae. A seond order vetor �eld F on TM is alled a spray if

F (sv) = T (s

TM

)(sF (v)) for all s 2 R; v 2 TM

(f. [La99, IV, x3℄). The domain D

exp

� TM is the set of all those points v 2 T

x

(M) for whih

the maximal integral urve 

v

: J ! TM of F satis�es 1 2 J and exp

x

(v) := �(

v

(1)). Let

�: [s; t℄! X be a pieewise C

2

-urve. We write

P

t

s

(�):T

�(s)

(X)! T

�(t)

(X)

for the orresponding linear map given by parallel transport along � (f. [La99, Th. VIII.3.4℄).

Remark I.2. To visualize the onepts loally, we onsider an open subset U in the Banah

spae V . Then TU

�

=

U � V , �(x; v) = x , TTU

�

=

U � V

3

, and T (�)(x; v; u; w) = (x; u).

Therefore a seond-order vetor �eld F :TU ! TTU an be written as

F (x; v) =

�

x; v; v; f(x; v)

�

;

where f :U � V ! V is a smooth map. The spray ondition means that

(x; sv; sv; f(x; sv)) = F (x; sv) = T (s

TM

)sF (v) = T (s

TM

)

�

x; v; sv; sf(x; v)

�

= (x; sv; sv; s

2

f(x; v))

whih means that the maps f(x; �) are quadrati.

De�nition I.3. (a) (f. [Up85, Def. 12.19℄) Let M be a Banah manifold. A tangent norm

on M is a funtion b:T (M) ! R

+

whose restrition to every tangent spae T

x

(M) is a norm.

A ontinuous tangent norm b on M is alled ompatible if for eah p 2 M there exists a hart

':U ! Z (U an open neighborhood of p , Z a Banah spae) and onstants m;M > 0 with

m � b(v) � kd'(x)(v)k �M � b(v)

for all v 2 T

x

(M), x 2 U . A Finsler manifold is a pair (M; b) of a Banah manifold M and a

ompatible tangent norm b (In [Up85℄ Upmeier alls these objets normed Banah manifolds).

(b) A metri d on M is alled loally ompatible if for eah p 2M there exists a hart ':U ! Z

and onstants m;M > 0 with

m � d(x; y) � k'(x)� '(y)k �M � d(x; y)

for all x; y 2 U . A metri d is alled ompatible if it is loally ompatible and the topology

indued from the metri d oinides with the original topology. A metri Banah manifold is a

pair (M;d) of a Banah manifold M and a ompatible metri d .

() In the following we also write kvk := b(v) for v 2 T

p

(M) and p 2 M . We de�ne the length

of a pieewise C

1

-urve : J !M by the improper Riemann integral

L() :=

Z

J

k _(t)k dt =

Z

J

b( _(t)) dt 2 [0;1℄:

We obtain a metri d on M by

d(x; y) := inf



L();

where the in�mum is taken over all ontinuous pieewise C

1

-urves onneting x to y . Aording

to [Up85, Prop. 12.22℄, the metri d on M is ompatible and invariant under the group Aut(M; b)

of all di�eomorphisms ' of M with b Æ T' = b . In this sense every Finsler manifold is a metri

Banah manifold in a anonial fashion. We all (M; b) omplete if it is a omplete metri spae

with respet to the metri d .
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De�nition I.4. (a) Let F be a spray on the Finsler manifold (M; b). We all (M; b; F ) a

Finsler manifold with spray if the norm funtion b:TM ! R is invariant under parallel transport

along geodesis. If M is onneted, then two points in M an be joined by a pieewise geodesi

urve, so that b is uniquely determined by its values in a �xed tangent spae T

x

0

(M).

(b) We say that (M; b; F ) has seminegative urvature if for all p 2M and x; v 2 T

p

(M) \ D

exp

we have

kd exp

p

(x)(v)k � kvk;

and d exp

p

(x) is invertible for eah x 2 T

p

(M)\D

exp

. This means that, as an operator between

the Banah spaes T

p

(M) and T

exp

p

(x)

(M) the linear map d exp

p

(x) is invertible and its inverse

(d exp

p

(x))

�1

is a ontration.

Example I.5. (a) Let V be a Banah spae. We identify TV with V �V and de�ne a tangent

norm by b(x; v) := kvk . For every pieewise C

1

-urve : [a; b℄! V we have

k(b)� (a)k = k

Z

b

a



0

(t) dtk �

Z

b

a

k

0

(t)k dt = L();

so that d(x; y) = kx� yk is the metri determined by b . Sine V is a Banah spae, the metri

spae (Y; d) is omplete, and d is a ompatible metri on V .

Identifying TTV with TV � V

2

�

=

V

4

, we obtain the trivial spray given by F (x; v) =

(x; v; v; 0). The integral urves of this spray are given by 

(x;v)

(t) = (x + tv; v), so that the

geodesi starting in x in diretion v is given by �

x;v

(t) = x + tv . The parallel transport maps

P

t

s

(�) assoiated to a geodesi � are the identity on V , showing that (V; b; F ) is a Finsler

manifold with spray.

(b) If (M; g) is a Riemannian manifold, then M arries a anonial spray (the one orresponding

to the Levi{Civita onnetion), suh that the natural tangent norm given by b(v) = g(v; v)

1

2

is

invariant under parallel transport ([La99, Th. VIII.4.2℄).

For a Riemannian manifold (M; g) it follows from Theorem XI.3.5 in [La99℄ that it has

seminegative urvature in the usual sense if and only if the exponential map is loally metri

inreasing at every point, whih we have taken as the de�nition in the more general setup of

Finsler manifolds with sprays. For Riemannian manifolds this property is also equivalent to the

semi parallelogram law whih an be formulated for arbitrary metri spaes (see [La99, XI, x3℄).

Sine it implies that for two points there exists a unique \midpoint", there are Banah spaes

not satisfying this ondition, so that it does not seem to be useful in the Finsler ontext.

Problem I.1. For Riemannian manifolds it has been shown by MAlpin that the requirement

that d exp

p

(x) is invertible for eah x 2 T

p

(M) is redundant in De�nition I.4 above ([La99, IX,

Th. 3.7℄). Is this also true for Finsler manifolds? The proof given given in [La99℄ does not seem

to generalize to the setting of Finsler manifolds with sprays.

Problem I.2. If F is a spray on M , then the orresponding ovariant derivative D leads to

the urvature tensor

R(�; �; �) = D

�

D

�

� �D

�

D

�

� �D

[�;�℄

�

for vetor �elds � , � and � . The tensor property of R implies that for eah point p 2 M and

v; w 2M we obtain an operator R

p

(v; w):T

p

(M)! T

p

(M) suh that

R

p

(v; w)(u) = R(�; �; �)

holds for loal vetor �elds � , � , � with �(p) = v , �(p) = u and �(p) = w (f. [La99, p. 232℄).

For Riemannian manifolds endowed with the Levi-Civita onnetion one de�nes seminegative

urvature by the property that

hR

p

(u; v; u); vi � 0 for all u; v 2 T

p

(M):

In funtional analyti terms this means that the operators �R

p

(u; �; u) on T

p

(M) are dissipative

as operators on the Banah spae T

p

(M) (De�nition II.1). Is this ondition for Banah{Finsler

manifolds with spray equivalent to having seminegative urvature in the sense of De�nition I.4?
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Lemma I.6. Let f : (Y; b

Y

) ! (X; b

X

) be a C

1

-map between Finsler manifolds. Assume that

there is a onstant C > 0 suh that for all y 2 Y and w 2 T

y

(Y ) we have b

X

�

Tf(w)

�

� Cb

Y

(w):

If : [a; b℄! Y is a pieewise smooth path in Y , then L(f Æ ) � C � L():

Proof. This follows immediately from the de�nitions (f. [La99, VIII, Lemma 6.8℄).

Lemma I.7. Let a < b and : [a; b[! X be a pieewise C

1

-urve in the omplete Finsler

manifold (X; b) and assume that L() <1 . Then lim

t!b

(t) exists in X .

Proof. For eah " > 0 there exists a Æ > 0 with b� Æ > a and L( j

[b�Æ;b[

) < " . This means

that for t

1

; t

2

2 [b�Æ; b[ we have d

�

(t

1

); (t

2

)

�

� L( j

[b�Æ;b[

) < ": Thus ((t))

t2[a;b[

is a Cauhy

net in the omplete metri spae (X; d), so that x := lim

t!b

(t) exists.

Lemma I.8. Let (X; b

X

; F

X

) be a omplete Finsler manifold with spray. Then X is geodesi-

ally omplete in the sense that D

exp

= TX .

Proof. Let x 2 X and v 2 D

exp

\ T

x

(M). We onsider the maximal geodesi �: ℄� T

0

; T [!

M; t 7! exp

x

(tv), where T; T

0

2℄0;1℄ . If T =1 , then there is nothing to show. So we assume

that T <1 . Sine �

0

is a parallel vetor �eld along the urve � , we obtain

L(�) =

Z

T

0

k�

0

(t)k dt = Tkvk <1;

and therefore x

T

:= lim

t!T

�(T ) exists in X (Lemma I.7). Using [La99, VIII, Cor. 5.2℄, we now

see that the geodesi � an be extended to an open interval ontaining [0; T ℄ . This ontradits

the maximality of T and therefore proves the assertion.

Let f :X ! Y be a C

1

-map of manifolds. We say that f has the unique path lifting

property if given a point y 2 Y , a pieewise C

1

-path � in Y starting from y , and a point x 2 X

with f(x) = y , there exists a unique pieewise C

1

-path  in X with f Æ  = � starting in

x . The following theorem is a generalization of Theorem 6.9 in [La99, VIII℄ (about Riemannian

manifolds) to the setting of Finsler manifolds. It is a geometri key result in this paper.

Theorem I.9. Let (X; b

X

) a omplete Finsler manifold and (Y; b

Y

; F

Y

) be a onneted Finsler

manifold with spray. Let f :X ! Y be a loal C

1

-di�eomorphism for whih there exists a onstant

C > 0 suh that for all w 2 TX we have

b

Y

(Tf(w)) � C � b

X

(w):

Then f is surjetive, f is a overing and has the unique path lifting property, and Y is omplete.

Proof. We losely follow the proof in [La99℄ for the ase of Riemannian manifolds. The proof

is in three steps. First we show that f is surjetive and has the unique path lifting property.

Let x 2 X and y := f(x). Every point in Y an be joined to y by a pieewise C

1

-path. Let

�: [a; b℄ ! Y be suh a path joining y = �(a) with �(b). We shall prove that � an be lifted

uniquely to a path in X starting from x . This will aomplish the �rst step. Let S be the set

of elements t 2 [a; b℄ suh that � j

[0;t℄

an be lifted uniquely to a path  in X starting at x . If

a = b , there is nothing to show, so we assume that a < b . The set is not empty beause a 2 S ,

and it is open beause f is a loal di�eomorphism. Moreover, it is lear from the de�nition

that S is an interval. If b 62 S , then S = [a; s[ , where s = supS , and we have a unique lift

: [a; s[! X of � with (a) = x . Using Lemma I.6, we obtain

L(�) � L(� j

[a;s[

) = L(f Æ ) � CL():

Therefore L() <1 , and Lemma I.7 implies that x := lim

t!s

(t) exists. Using the assumption

that f maps an open neighborhood U of x di�eomorphially onto f(U), we obtain a unique

lift of  on an interval [a; s

0

℄ properly ontaining [a; s℄ . This ontradits the maximality of s ,

and we thus obtain S = [a; b℄ . This proves that f is surjetive and that it has the unique path

lifting property.
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The next step is to redue the theorem to the ase where f is a loal isometry of Finsler

manifolds. To do this, let b

�

X

:= b

Y

ÆTf be the pull-bak of the tangent norm b

Y

to X . Observe

that b

�

X

is a ompatible tangent norm on X beause f is a loal di�eomorphism. Moreover,

our assumptions imply b

�

X

� Cb

X

and therefore d

�

X

� Cd

X

for the orresponding metris on

X (Lemma I.6). We laim that X is omplete with respet to d

�

X

. So let (x

n

)

n2N

be a d

�

X

-

Cauhy sequene in X . Then it also is a Cauhy-sequene with respet to d

X

, hene onverges

to an element x 2 X , and sine the metri d

�

X

is ompatible, it follows that the metri spae

(X; d

�

X

) is omplete. Sine f is a loal di�eomorphism, the spray F

Y

:TY ! TTY an be

pulled bak to a spray F

X

:TX ! TTX on X with TTf Æ F

X

= F

Y

Æ Tf . Now the triple

(X; b

�

X

; F

X

) is a Finsler manifold with spray beause the map Tf :TX ! TY is ompatible with

the orresponding parallel transport maps. Lemma I.8 implies that D

exp

X

= TX , so that the

ompatibility of Tf with the sprays implies that

TY = imTf � D

exp

Y

and exp

Y

ÆTf = f Æ exp

X

:

As we have seen in the seond step, we may assume that f is a loal isometry of Finsler

manifolds whih is a morphism of manifolds with sprays. In the last step we show that f is a

overing. Sine (X; d

�

X

) is omplete, this will also prove that (Y; d

Y

) is omplete, and therefore

onlude the proof. Let y 2 Y . In view of [La99, Cor. 5.2℄, there exists an open ball B � T

y

(Y )

suh that exp

y

maps B di�eomorphially onto an open subset V := exp

y

(B). Let

e

V := f

�1

(V ).

For eah x 2 f

�1

(y) we put B

x

:= df(x)

�1

(B) � T

x

(X). Then V

x

:= exp

x

(B

x

) � X satis�es

f(V

x

) = f(exp

x

(B

x

)) = exp

y

(B) = V:

Sine the map f j

V

x

Æ exp

x

j

B

x

:B

x

! V oinides with exp

y

j

B

Æ df(x), we see that exp

x

j

B

x

is a

di�eomorphism onto an open subset of X beause this map is injetive and has an everywhere

regular di�erential. We laim that

e

V =

[

f(x)=y

V

x

:

In fat, let z 2

e

V . Then f(z) = exp

y

(a) 2 V for some a 2 B . Then the geodesi segment

�: [0; 1℄ ! Y; t 7! exp

y

(ta) in B has a unique lift to a geodesi segment �: [0; 1℄ ! X with

�(1) = z and f Æ � = � . This shows that x := �(0) 2 f

�1

(�(0)) = f

�1

(y), and for

b := �

0

(0) = df(x)

�1

(a) 2 B

x

� T

x

(X) we have �(t) = exp

x

(tb). In partiular, we get

z = exp

x

(b) 2 V

x

. Next we show that V

x

1

\ V

x

2

6= � implies x

1

= x

2

. So let z 2 V

x

1

\ V

x

2

.

We write z = exp

x

1

(b

1

) = exp

x

2

(b

2

) with b

1

2 B

x

1

and b

2

2 B

x

2

. Applying f yields

f(z) = exp

y

(df(x

1

):b

1

) = exp

y

(df(x

2

):b

2

) and therefore a := df(x

1

):b

1

= df(x

2

):b

2

. Now the

two geodesi segments

[0; 1℄! X; t 7! exp

x

1

(tb

1

); exp

x

2

(tb

2

)

ending in y are lifts of the same geodesi segment

[0; 1℄! Y; t 7! exp

y

(ta);

so that the uniqueness of the path lifting property yields exp

x

1

(tb

1

) = exp

x

2

(tb

2

) for all t 2 [0; 1℄,

and �nally that x

1

= x

2

. This shows that

e

V =

S

x2f

�1

(y)

V

x

is a disjoint union of open pairwise

di�eomorphi subsets, and therefore that f is a overing.

The proof of Theorem I.9 is even simpler than the one given in [La99℄ for the speial ase

of Riemannian manifolds whih makes use of geodesi onvexity properties of metri balls in M

and hene of the Gau� Lemma. A Gau� Lemma makes no sense in our setting, but fortunately

suh �ne results are not needed for the onlusions.

Theorem I.10. (Cartan{Hadamard{Grossman{MAlpin Theorem for Banah{Finsler mani-

folds) Let (M; b; F ) be a onneted geodesially omplete Finsler manifold with spray whih has

seminegative urvature. Then for eah p 2 M the exponential map exp

p

:T

p

(M) ! M is a

surjetive overing and M is omplete.
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Proof. Sine M is geodesially omplete, Exp := exp

p

is de�ned on the whole tangent

spae T

p

(M). Sine M has seminegative urvature, for eah x 2 T

p

(M) the di�erential

dExp(x):T

p

(M) ! T

Exp(x)

(M) is expansive and invertible. We endow X := T

p

(M) with

the struture (X; b

X

) of a omplete Finsler manifold as in Example I.5(a). Now the map

Exp:X !M is a loal di�eomorphism satisfying b

�

T Exp(w)

�

� kwk = b

X

(w) for all w 2 TX .

Therefore Theorem I.9 applies and shows that Exp is a surjetive overing map.

Corollary I.11. Let (M; b; F ) be a onneted Finsler manifold with spray whih has semineg-

ative urvature. Then M is omplete if and only if it is geodesially omplete.

Proof. This follows from Lemma I.8 and Theorem I.10.

We all a simply onneted omplete Finsler manifold with spray whih has seminegative

urvature a Finsler{Cartan{Hadamard manifold.

Corollary I.12. Let (M; b; F ) be a Finsler{Cartan{Hadamard manifold. Then the following

assertions hold:

(i) For eah p 2M the exponential map exp

p

:T

p

(M)!M is a di�eomorphism.

(ii) If �:R !M is a geodesi in M and x 2M , then lim

t!�1

d

�

�(t); x

�

=1:

(iii) For two points x; y 2M there exists a unique length minimizing geodesi segment �: [0; 1℄!

M with �(0) = x and �(1) = y .

Proof. (i) follows diretly from Theorem I.10.

(ii) In view of (i), we may assume that M = V is a Banah spae and that �(t) = tv for some

v 2 V . Then the metri inreasing property of the exponential funtion implies that

d

M

(�(t); x) � d

V

(tv; x) = kx� tvk ! 1

for t! �1 .

(iii) Sine exp

x

:T

x

(M)!M is surjetive, there exists a v 2 T

x

(M) with exp

x

(v) = y . We put

�(t) := exp

x

(tv) for t 2 [0; 1℄. Then � is a geodesi segment and the length inreasing property

of the exponential funtion implies that kvk = d

T

x

(M)

(0; v) � d(x; y) � L(�) = kvk; so that �

is distane minimizing. The uniqueness follows from the injetivity of exp

x

.

The tehnique used in the proof of Corollary I.12 goes bak to Hadamard ([Ha96℄) who

proved the result for surfaes. E. Cartan generalized it to �nite-dimensional Riemannian man-

ifolds (f. [Ca63℄). The generalization to in�nite-dimensional Riemannian manifolds is due to

Grossman [Gr65℄ and MAlpin MA65℄. We losely followed the exposition in [La99℄.

Problem I.3. Let (M; b; F ) be a Finsler{Cartan{Hadamard manifold.

(1) Let x 2 M and �:R !M be a geodesi. Is the funtion f :R ! R with f(t) = d(x; �(t))

2

onvex? For the Riemannian ase this follows diretly from the semi parallelogram law whih

implies that for t; s 2 R we have

d

�

x; �(

t+s

2

)

�

2

� d

�

x; �(

t+s

2

)

�

2

+

1

4

d

�

�(s); �(t)

�

�

1

2

d

�

�(s); x

�

2

+

1

2

d

�

�(t); x

�

2

:

A more diret approah is given in [La99, Th. IX.4.4℄.

(2) Does every �nite group ating by isometries on M have a �xed point? For the Riemannian

ase this an be proved by the Bruhat{Tits Fixed Point Theorem ([La99, Th. XI.3.2℄), using

the fat that (M;d) is a Bruhat-Tits spae, i.e., a omplete metri spae in whih the semi

parallelogram law holds. For suh spaes a theorem of Serre ensures that every bounded subset

is ontained in a unique losed ball of minimal radius.

These properties and those stated in Corollary I.12 are disussed in the setting of �nite-

dimensional Riemannian geometry in E. Cartan's book [Ca63℄.
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II. Some fats on operators on Banah spaes

In this setion we ollet some results on operators on Banah spaes. A key result is Theorem

II.6 saying that if A is a bounded operator on a Banah spae for whih �A

2

is dissipative, then

sinh(A)

A

is a surjetive expansion. This ondition is in partiular satis�ed if A is hermitian in the

sense that e

iRA

onsists of isometries. We use this result in Setion IV to obtain a riterion for

a normed symmetri Lie algebra to lead to a symmetri spae with seminegative urvature.

Dissipative operators

De�nition II.1. Let Z be a Banah spae. We write B(Z) for the spae of bounded operators

Z ! Z . For z 2 Z we put

F (z) := f� 2 Z

0

: k�k � 1; h�; zi = kzkg:

We all A 2 B(Z) dissipative if for eah z 2 Z there exists an � 2 F (z) with Reh�;A(z)i � 0:

We write Diss(Z) for the set of bounded dissipative operators on Z .

Sine we only deal with bounded operators, some of the results for dissipative unbounded

operators beome muh simpler. We reall them in the following theorem.

Theorem II.2. For A 2 B(Z) the following are equivalent:

(1) A is dissipative.

(2) For eah t > 0 the operator 1� tA is expansive.

(3) ke

tA

k � 1 holds for all t > 0 .

(4) Reh�;A(z)i � 0 holds for all z 2 Z , � 2 F (z) .

(5) For eah t > 0 the operator 1� tA is expansive and surjetive.

Proof. (1) () (2): holds also for unbounded operators (f. [Paz83, Th. 4.2℄).

(1) () (3): We note that for �kAk < 1 the operator 1 � �A is invertible, hene surjetive.

Therefore the assertion is a onsequene of the Lumer{Phillips Theorem (f. [Paz83, Th. 4.3℄).

(3) () (4) also follows from [Paz83, Th. 4.3℄.

(1) () (5): Sine (1) implies (2), we only have to see that 1� tA is invertible for eah t > 0,

but this follows from Spe(A)\℄0;1[= � whih is a onsequene of (3) ([Paz83, Th. 4.3℄).

Corollary II.3. If A 2 B(Z) is dissipative and Z

1

� Z a losed A-invariant subspae, then

A j

Z

1

is dissipative.

Proof. This is a diret onsequene of Theorem II.2(2).

Lemma II.4. If " > 0 and : [0; "℄! B(Z) is a C

1

-urve with (0) = 1 and k(t)k � 1 for

all t , then 

0

(0) dissipative.

Proof. Let z 2 Z and � 2 F (z). Then k(t)(z)k � kzk for all t � 0 implies that

Reh�; (t):zi � kzk = Reh�; (0):zi

and therefore Reh�; 

0

(0):zi � 0:

De�nition II.5. We onsider the entire funtion s: C ! C given by the power series

s(z) :=

1

X

n=1

z

n

(2n+ 1)!

:
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Then s(z

2

) =

sinh(z)

z

: Moreover, From [Re95, x1.3℄ we reall the produt expansion

sin z = z

1

Y

n=1

�

1�

z

2

n

2

�

2

�

; z 2 C :

The relation sinh(iz) = i sin z now leads to

sinh z

z

=

Q

1

n=1

�

1 +

z

2

n

2

�

2

�

and therefore to

s(z) =

1

Y

n=1

�

1 +

z

n

2

�

2

�

; z 2 C :

Theorem II.6. For A 2 B(Z) the following are equivalent:

(1) �A is dissipative.

(2) For eah t > 0 the operator s(tA) is expansive.

(3) For eah t > 0 the operator s(tA) is surjetive and expansive.

Proof. (1) ) (2): If �A is dissipative, then the same holds for �tA for all t > 0. Therefore

it suÆes to show that s(A) is expansive. Using the produt expansion of the funtion s , we

obtain

s(A) =

1

Y

n=1

�

1 +

A

n

2

�

2

�

(f. [Ru73, Th. 10.27℄). We use Theorem II.2 to see that eah operator 1+

A

n

2

�

2

is expansive, so

that the onvergene of the in�nite produt implies that s(A) is expansive.

(2) ) (1): We have s(z) = 0 if and only if z = �n

2

�

2

for some n 2 N . Therefore the Spetral

Mapping Theorem ([Ru73, Th. 10.28℄) implies that the operator s(tA) is invertible if ktAk < �

2

,

Pik " > 0 with "kAk < �

2

. For t 2 [0; "℄ we put (t) := s(tA)

�1

. Our assumption implies that

k(t)k � 1 for all t , so that 

0

(0) = �

1

3!

A is dissipative (Lemma II.4).

(1) ) (3): If �A is dissipative, then Spe(A)\℄ � 1; 0[= �, so that the Spetral Mapping

Theorem implies that s(A) is invertible. The same onlusion holds if we replae A by tA for

some t > 0.

(3) ) (2) is trivial.

Hermitian operators

De�nition II.7. Let Z be a omplex Banah spae. We write B(Z) for the Banah algebra

of bounded linear operators on Z and GL(Z) for its group of units. We further write

U(Z) := fg 2 GL(Z): kgk = kg

�1

k = 1g

for the group of unitary, i.e., bijetive linear isometries of Z . Aording to [Up85, Cor. 7.8℄, this

group arries a natural real Banah{Lie group struture (the topology might be �ner than the

operator norm topology) suh that its Lie algebra is given by

u(Z) = fx 2 B(Z): exp(Rx) � U(Z)g:

An operator x 2 B(Z) is alled hermitian if exp(iRx) � U(Z). We write Herm(Z) := iu(Z) for

the losed subspae of all hermitian operators on Z ([Up85, Prop. 14.29℄).

Remark II.8. Condition (4) in Theorem II.2 implies in partiular that Diss(Z) is a losed

onvex one, and Theorem II.2(3) further shows that

Diss(Z) \�Diss(Z) = iHerm(Z) = u(Z):

That u(Z) might be quite small follows from work of Berkson and Porta on the isometry

group of the Hardy spaes of the ball and the polydis in C

n

. They show that for these Banah

spaes we have u(Z) = Ri1 , so that Herm(Z) = R1 (f. [BP80℄). A related result due to

Vesentini ([Ve79℄) says that unit balls in L

1

-spaes whih are more than one-dimensional are not

homogeneous.
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Proposition II.9. Let Z be a omplex Banah spae and A 2 Herm(Z) . Then �A

2

is

dissipative and

sinhA

A

is surjetive and expansive.

Proof. If A 2 Herm(Z), then itA is dissipative for eah t 2 R (Remark II.3), so that 1� itA

is expansive by Theorem II.2(2). For t 6= 0 we now see that

1+ t

2

A

2

= (1� itA)(1+ itA)

also is expansive. Hene Theorem II.2(2) implies that �A

2

is dissipative. Now the assertion

follows from Theorem II.6.

Proposition II.10. Let Z be a Banah spae. Then we have:

(i) Spe(g) � S

1

for g 2 U(Z) .

(ii) Spe(x) � R and sup j Spe(x)j = kxk for x 2 Herm(Z) .

(iii) g(Z) := Herm(Z)+ iHerm(Z) is a losed Lie subalgebra of B(Z) and x+ iy 7! (x+ iy)

�

:=

x� iy de�nes a ontinuous involution on g(Z) .

(iv) Herm

+

(Z) := fx 2 Herm(Z): Spe(x) � R

+

= [0;1[g is a losed onvex one with interior

Herm

+

(Z) \GL(Z) = fx 2 Herm(Z): Spe(x) �℄0;1[g .

(v) The funtion ': Herm(Z)! R; x 7! sup Spe(x) is onvex and U(Z)-invariant with respet

to the onjugation ation.

(vi) ke

x

k = e

supSpe(x)

for x 2 Herm(Z) .

Proof. (i) (f. [Up85, Lemma 14.20℄) Let v 2 Z and � 2 C . Then kg:v � �vk � kg:vk �

j�jkvk = (1� j�j)kvk: We onlude that for j�j 6= 1, the operator g� �1 is injetive with losed

range. The same argument applies to the adjoint of g , showing that g � �1 is invertible.

(ii) (f. [Up85, Lemma 14.20℄) Let x 2 Herm(Z), i.e., exp(iRx) � U(Z). Then (i) implies that

for all t 2 R we have e

it Spe(x)

= Spe(e

itx

) � S

1

: Hene Spe(x) � R . For the seond assertion

we refer to [Up85, Lemma 14.30℄

(iii) [Up85, Cor. 14.36℄

(iv) [Up85, Th. 14.31℄

(v) The U(Z)-invariane of the funtion ' is lear. In view of (iii), we only have to show that

' is a onvex funtion on Herm(Z). Let

S := f� 2 B(Z)

0

: k�k = 1 = �(1)g

be the set of states of the Banah algebra B(Z). Then for eah x 2 Herm(Z) we have

S(x) = onv

�

Spe(x)

�

([Up85, Cor. 14.37℄) and therefore '(x) = sup(S(x)): As a supremum of the set S of ontinuous

linear funtions on Herm(Z), the funtion ' is onvex.

(vi) The Spetral Mapping Theorem ([Ru73, Th. 10.28℄) implies that Spe(e

x

) = e

Spe(x)

,

and hene that m := supSpe(x) satis�es e

m

� sup Spe(e

x

) � ke

x

k . It remain to see that

ke

x

k � e

m

. Replaing x by x �m1 , we may assume that m = 0, i.e., that Spe(x) � �R

+

.

We will show that this implies that x is dissipative, and hene that ke

x

k � 1 (Theorem II.2(3)).

Let z 2 Z with kzk = 1 and � 2 F (z). Then the linear funtional �:B(Z) ! C ,

�(A) = h�;A:zi satis�es k�k = 1 = �(1), i.e., � 2 S . Now �(x) � supS(x) � 0 implies that x

is dissipative.

III. Symmetri Spaes

For general Banah manifolds one does not have smooth funtions with arbitrarily small supports

(f. [KM97℄). Therefore many familiar objets from �nite-dimensional di�erential geometry whih

arise in several di�erent guises, require a more restritive approah in the in�nite-dimensional
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setting; some approahes do not really depend on the �nite dimensionality, but some orrespon-

denes simply break down or beome muh more subtle. The onept of a spray is robust in

this sense. It is entral to our disussion below beause it enodes the exponential funtion of

the underlying manifold. In this setion we disuss symmetri spaes in the sense of Loos (f.

[Lo69℄) as spaes endowed with a multipliation satisfying ertain axioms. The advantage of this

approah is that it has exellent funtorial properties, suh as the fat that the tangent bundle

of a symmetri spae has a natural struture of a symmetri spae.

The notion of a onnetion on a manifold beomes more subtle in a Banah setting (f.

[La99℄) and the same is true for the higher tangent bundles as used by Loos in [Lo69℄. Below we

explain how one assoiates to a symmetri spae a spray with the same symmetries and whih

is uniquely determined by this property. In the �nite-dimensional ase this is done by Loos in

[Lo69℄ in the ontext of higher tangent bundles. Sine parallel transport along the geodesis of

the spray is given by global symmetries, the so alled translations of the spae, it beomes quite

easy to verify whether a tangent norm on a symmetri spae is invariant under parallel transport.

To proeed further, we assume that the symmetri spae M an be written as G=K , where

G is a Banah{Lie group and K an open subgroup of the group of �xed points of an involution

� . It is a natural onjeture that this is no restrition of generality, but this is not lear (see

Problem III.1). We then derive a riterion for a G-invariant norm on M to lead to a spae of

semipositive urvature.

De�nition III.1. Let M be a smooth manifold. We say that (M;�) is a symmetri spae

(in the sense of Loos) (f. [Lo69℄) if

�:M �M !M; (x; y) 7! x � y

is a smooth map with the following properties:

(S1) x � x for all x 2M .

(S2) x � (x � y) = y for all x; y 2M .

(S3) x � (y � z) = (x � y) � (x � z) for all x; y 2M .

(S4) Every x 2M has a neighborhood U suh that x � y = y implies x = y for all y 2 U .

We want to show that eah symmetri spae M arries a anonial onnetion in the sense

of [La99℄.

Lemma III.2. If M is a symmetri spae and for x 2M we put �

x

(y) := x � y , then

d�

x

(x) = � id

T

x

(M)

:

Proof. It follows from (S2) that �

2

x

= id

M

, so that �

x

(x) = x implies that d�

x

(x) is an

involution on the Banah spae V := T

x

(M).

Let U � V be an open 0-neighborhood and suppose that ':U ! M is a hart with

'(0) = x . Sine x is a �xed point of �

x

, we may w.l.o.g. assume that �

x

(V ) = V . We onsider

the involutive smooth map f :U ! U de�ned by f(u) := '

�1

(�

x

('(u))). Then f

2

= id

U

and

A := df(0) = d'(0)

�1

d�

x

(x)d'(0) is an involution. We have to show that A = �1 . Suppose

that this is not the ase and write

V = V

+

� V

�

; V

+

= ker(A� 1); V

�

= ker(A+ 1):

We write elements of U as pairs (a; b) 2 V

+

� V

�

and onsider the funtion

G:U ! V; G(a; b) = F (a; b)� (a; b):

Then

�G

�a

(0; 0) = A j

V

+

� id

V

+

= 0 and

�G

�b

(0; 0) = A j

V

�

� id

V

�

= �2 id

V

�

:

Hene the Impliit Funtion Theorem implies that there exists a 0-neighborhood W in V

+

and

a smooth map ':W ! V

�

suh that

G(a; '(a)) = 0 for all a 2W:

Sine the zero set of G onsists of �xed points of f , and (S4) implies that 0 is an isolated �xed

point of f , we onlude that V

+

= f0g , and therefore that A = �1 .
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Proposition III.3. Let (M;�) be a symmetri spae and identify T (M�M) with TM�TM .

Then T� de�nes by

v � w := T (�)(v; w)

on the tangent bundle the struture of a symmetri spae. In eah tangent spae T

x

(M) , x 2M ,

the produt satis�es v � w = 2v � w:

Proof. (f. [Lo69, p.74℄) One has to express the properties (S1){(S3) by ommutative diagrams

to see that they are preserved by the funtor T . For (S1) we write �:M ! M �M for the

diagonal map. Then (S1) means that � Æ� = id

M

, and passing to the tangent maps leads to

T�ÆT� = id

T (M)

beause T� orresponds to the diagonal map of TM under the identi�ation

T (M �M)

�

=

TM � TM .

Condition (S2) an be written as � Æ (id��) Æ (� � id) = p

2

; where p

2

:M

2

! M is the

projetion onto the seond omponent, and likewise (S3) means that

� Æ (id��) = � Æ

�

(� Æ p

12

)� (� Æ p

13

)

�

;

where p

12

; p

23

:M

3

! M

2

are given by p

12

(x; y; z) = (x; y); p

13

(x; y; z) = (x; z): Applying T

leads to the orresponding onditions for T� .

To verify (S4), we �rst note that the projetion �:TM !M satis�es

� Æ T� = � Æ (� � �);

showing in partiular that T

x

(M) � T

x

(M) � T

x

(M) holds for eah x 2 M . For v; w 2 T

x

(M)

Lemma III.2 leads to

T�(v; w) = d�(x; x)(v; w) = d�(x; x)(v; 0) + d�(x; x)(0; w)

= d�(x; x)(v; 0) + d�

x

(x):w = d�(x; x)(v; 0) � w:

Now T�(v; v) = v yields d�(x; x)(v; 0) = 2v , and therefore v � w = T�(v; w) = 2v � w: Now

we an verify (S4). Let v 2 TM and x := �(v). Pik a neighborhood U of x 2 M suh that

x is the only �xed point of �

x

in U . If w 2 �

�1

(U) satis�es T�(v; w) = w , then we obtain

�(�(v); �(w)) = �(w), whih implies �(w) = �(v) = x . Therefore w = v � w = 2v � w implies

v = w .

For v 2 TM we write �

v

:TM ! TM for the symmetry in v given by �

v

(w) := T�(v; w) =

v � w (Proposition III.3) and Z:M ! TM for the zero setion.

Theorem III.4. The funtion

F :TM ! TTM; F (v) := �T (�

v

2

Æ Z)(v)

de�nes a spray on M .

Note that �

v

2

Æ Z:M ! TM , so that T (�

v

2

Æ Z) maps TM into TTM .

Proof. First we show that F is a vetor �eld on TM , i.e., a setion of the bundle

�

TM

:TTM ! TM . We obtain for x = �(v) the relation

�

TM

(F (v)) = �

TM

Æ T (�

v

2

Æ Z)(v) = (�

v

2

ÆZ)(�(v)) =

v

2

� Z(�(v)) = v

(Proposition III.3). This proves that �

TM

Æ F = id

TM

, so that F is a vetor �eld on TM .

Moreover,

T (�)F (v) = �T (� Æ �

v

2

Æ Z)(v) = �T (�

x

Æ � ÆZ)(v) = �T (�

x

)(v) = �d�

x

(x)(v) = v

shows that F is a seond order vetor �eld on TM (f. De�nition I.1). For the produt on TM

we have

v � w = T�(v; w) = d�

�

�(v); �(w)

�

(v; w);

showing that for s 2 R we have

(sv) � w = T�(sv; w) = d�

�

�(v); �(w)

�

(sv; w) = s(v � w)

if w = 0 in T

�(w)

(M), i.e., �

sv

Æ Z = s�

v

Æ Z for all v 2 TM . This leads to

F (sv) = �T (�

sv

2

ÆZ)(sv) = �sT (s

TM

Æ�

v

2

ÆZ)(v) = T (s

TM

)

�

�sT (�

v

2

ÆZ)(v)

�

= T (s

TM

)

�

sF (v)

�

:
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Lemma III.5. Let (M;F ) be a onneted manifold with a spray and f; g:M ! M two F -

isomorphisms for whih there exists a point x 2M with f(x) = g(x) and df(x) = dg(x) . Then

f = g .

Proof. First we note that for eah F -isomorphism f of M the tangent map Tf preserves

D

exp

, and we have f Æ exp = exp ÆTf on D

exp

. In partiular we get for v 2 T

x

(M) the relation

f(exp

x

(v)) = exp

�

df(x):v

�

;

showing that the values of f in the neighborhood exp

x

(T

x

(M)) of x are determined by f(x)

and df(x).

We onsider the subset N of all points p 2 M suh that f and g oinide on a neigh-

borhood of p . It is lear that N is open. Using the regularity of the exponential funtion

exp

p

:T

p

(M) ! M in 0, we see that

N = fp 2M : f(p) = g(p); df(p) = dg(p)g;

showing that N is losed. Moreover, x 2 N implies that N is a non-empty open and losed

subset of M , hene oinides with M .

Theorem III.6. Let (M;�) be a onneted symmetri spae and F the spray on M de�ned

in Theorem III.4. Then the following assertions hold:

(i) Aut(M;�) = Aut(M;F ) .

(ii) F is uniquely determined by the property of being invariant under all symmetries �

x

,

x 2M .

(iii) (M;F ) is geodesially omplete.

(iv) Let �:R ! M be a geodesi and all the maps �

�;s

:= �

�(

s

2

)

Æ �

�(0)

, s 2 R; translations

along � . Then these are automorphisms of (M;�) with

�

�;s

:�(t) = �(t+ s) and d�

�;s

(�(t)) = P

t+s

t

(�)

for all s; t 2 R .

Proof. (i) \�": Let ' 2 Aut(M;�), i.e., ' Æ � = � Æ (' � ') holds on M �M . Passing

to the tangent maps, we see that T' is an isomorphism of the symmetri spae (TM; T�) (f.

Proposition III.3). In partiular we have T' Æ�

v

= �

T ('):v

ÆT' on TM for eah v 2 TM . Now

we alulate

F Æ T (')(v) = �T (�

T('):v

2

Æ Z) Æ T (')(v) = �T (�

T('):v

2

Æ Z Æ ')(v)

= �T (�

T('):v

2

Æ T (') Æ Z)(v) = �T (T (') Æ �

v

2

Æ Z)(v)

= �TT (') Æ T (�

v

2

Æ Z)(v) = TT (') Æ F (v):

\�": Let ' 2 Aut(M;F ) and x 2 M . In view of the �rst part of the proof and (S3), we have

�

x

2 Aut(M;F ) for eah x 2 M . Hene ' Æ �

x

and �

'(x)

Æ ' are two F -automorphisms of M

mapping x to '(x) suh that

d(' Æ �

x

)(x) = d'(x)d�

x

(x) = �d'(x) and d(�

'(x)

Æ ')(x) = d(�

'(x)

('(x))d'(x) = �d'(x)

(Lemma III.2). Therefore Lemma III.5 implies that ' Æ�

x

= �

'(x)

Æ' holds for all x 2M . This

implies that ' 2 Aut(M;�).

(ii) (f. [Lo69, p. 84℄) Let F and

e

F be two sprays on M whih are invariant under all symmetries

�

x

, x 2M . We onsider the vetor �eld H := F �

e

F on TM .

Let x 2 M and :U ! M a hart around x whose range is �

x

-invariant, so that

�

x;U

:= 

�1

Æ �

x

j

(U)

Æ  is de�ned. We identify TU with U � V for a Banah spae V .

Then T (�

x;U

)(x; v) = (x;�v) and, more generally, T (�

x;U

)(y; w) = (�

x;U

:y; d�

x;U

(y):w). For

the seond tangent map, this leads to

TT (�

x;U

)(x; v; 0; w) = (x;�v; 0;�w):



14 Karl-Hermann Neeb

In loal oordinates we further have

F

U

(x; v) = (x; v; v; f(x)(v; v));

e

F

U

(x; v) = (x; v; v;

e

f(x)(v; v))

(f. Remark I.2), so that H

U

(x; v) = (x; v; 0; h(x)(v; v)), where h(x) 2 Sym(V

2

;V ) is a symmet-

ri bilinear map. The invariane of H

U

under �

x;U

means that H

U

ÆT (�

x;U

) = TT (�

x;U

) ÆH

U

,

and in (x; v) we thus obtain

(x;�v; 0; h(x)(v; v)) = H

U

(x;�v) = TT (�

x;U

)H

U

(x; v) = (x;�v; 0;�h(x)(v; v)):

Therefore h(x)(v; v) = �h(x)(v; v) leads to h(x)(v; v) = 0, i.e., H = 0.

(iii) (i) implies that for a geodesi segment �: ℄�"; "[!M with �(0) = x and y = �(t) the urve

� := s

y

Æ� is a geodesi sement with �

0

(t) = ��

0

(t). For t > 0 this shows that s 7! �(2t� s) is

a geodesi segment ompatible with � and de�ned on ℄2t� "; 2t+ "[ . Continuing in this fashion,

we see that � an be extended to a geodesi R ! M , showing that (M;F ) is geodesially

omplete.

(iv) In view of (iii), the maximal geodesis of M are de�ned on R . The assertion follows from

[La99, Prop. XIII.5.5℄ whose proof does also work in our ontext.

Corollary III.7. Let (M;�) be a onneted symmetri spae, F the anonial spray on M ,

and b a ompatible tangent norm on M . If b is invariant under all reetions �

x

, x 2M , then

(M; b; F ) is a Finsler manifold with spray.

Proof. We have seen in Theorem III.6(iv) that parallel transport along a geodesi � an

be desribed as a di�erential of a translation of a geodesi. Sine the invariane of b under all

reetions implies that it is invariant under all translations along geodesis, it is also invariant

under parallel transport along geodesis.

Remark III.8. In [La99℄ S. Lang uses the following de�nition of a symmetri spae M .

Let F be a spray on M and D the orresponding ovariant derivative ([La99, xVIII.2℄). A

D -symmetry in x 2 M is an involutive D -isomorphism �

x

:M ! M with �

x

(x) = x and

d�

x

(x) = � id

T

x

(M)

. The pair (M;D) is alled D -symmetri if every point x 2 M has a

D -symmetry and exp

x

:T

x

(M)!M is surjetive for eah x 2M .

As we have seen in Theorem III.4, every symmetri spae in the sense of Loos is endowed

with a natural spray F (hene with a ovariant derivative), and both strutures have the same

automorphism (Theorem III.6). The problem of Lang's de�nition is that it does not even over

all �nite-dimensional symmetri spaes beause the exponential funtion of a general symmetri

spae need not be surjetive. His motivation to use this de�nition seems to be his Lemma XIII.5.1

whih is overed by our Lemma III.5. Having generalized Lang's Lemma XIII.5.1 in this way, we

an refer below to the results derived in Ch. XIII of [La99℄.

Example III.9. (a) If G is a Banah{Lie group and � an involutive automorphism of G , then

we all (G; �) a symmetri Lie group. Let further G

�

:= fx 2 G:�:x = xg be the subgroup of

� -�xed points, and K � G

�

an open subgroup. Inspetion of the ation of � in an exponential

hart of G shows that K is a Lie subgroup of G . Furthermore the Lie algebra k of K is a losed

subalgebra of g whih is omplemented by the losed subspae p := fx 2 g: d�(1):x = �xg , so

that the quotient spae M := G=K arries the struture of a Banah manifold ([Bou90, Ch. III,

x1.6, Prop. 11℄). Let q:G ! M; g 7! gK be the quotient map. Then a natural hart around

o := �(1) is given by a restrition of the exponential map

Exp: p!M; x 7! �(exp x)

of G=K to a suitable open neighborhood of 0 in p . We de�ne a multipliation � on M by

�(gK; hK) := g�(g)

�1

�(h)K

and observe that this is well de�ned beause for k

1

; k

2

2 K we have gk

1

�(gk

1

)

�1

�(hk

2

)K =

gk

1

k

�1

1

�(g)�(h)k

2

K = g�(g)�(h)K: One easily veri�es that G ats on M by automorphism
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of this multipliation and that (S1){(S3) are veri�ed. Sine G ats transitively on M , it

suÆes to verify (S4) in the base point o . There �

o

(xK) = �(o; xK) = �(x)K implies that

d�

o

(o) = � id

T

o

(M)

; and hene that o is an isolated �xed point. This proves that (M;�) is a

symmetri spae.

To alulate the geodesis of suh a symmetri spae, we onsider the base point o and

v 2 T

o

(M)

�

=

p . The identi�ation p

�

=

T

o

(M) is obtained by the bijetion dq(1) j

p

: p! T

o

(M).

Let �:R !M be the geodesi with �(0) = o and �

0

(0) = v , and let �

t

:= �

�(

t

2

)

Æ �

�(0)

denote

the translations along � . Then

�

v

:=

d

dt

t=0

�

t

:M ! TM

is the unique Killing vetor �eld on M satisfying �

v

(o) = v and �

o

:�

v

= ��

v

(f. [La99, Th.

5.8℄). For X 2 p we onsider the vetor �eld

�

X

(p) :=

d

dt

t=0

exp(tX):p

whih is a Killing vetor �eld satisfying �

o

:�

X

= ��

X

and �

X

(o) = dq(1):X . We onlude that

for v = dq(1):X we have �

X

= �

v

, so that the geodesi � is given by

�(t) = exp(tX):o = Exp(tX):

The preeding onsiderations show that Exp = exp

o

Ædq(1) j

p

.

(b) Eah Banah{Lie group G is a symmetri spae with respet to the multipliation

�(x; y) := xy

�1

x:

This an be seen by using the onstrution under (a). The Lie group G � G ats transitively

on G by (g

1

; g

2

):x = g

1

xg

�1

2

, the stabilizer of the identity 1 is the diagonal subgroup K :=

f(g; g): g 2 Gg , and in this sense G

�

=

(G � G)=K . Moreover, K = (G � G)

�

, where � is the

ip involution on G�G given by �(x; y) = (y; x). Then the formula under (a) yields

�(x; y) = �

�

(x;1):1; (y;1):1

�

= (x;1)(1; x)(1; y):1 = xy

�1

x:

For the speial ase, where G = V is a Banah spae and the group struture is given by addition,

we simply have �(x; y) = 2x� y (f. Proposition III.3). The exponential map

Exp: p = f(X;�X):X 2 gg ! G

is given by Exp(X;�X) = exp(X) exp(X) = exp(2X), so it essentially an be identi�ed with

the exponential map exp: g! G of the Lie group G .

Problem III.1. Show that the group G := Aut(M;�) of automorphisms of a symmetri spae

(M;�) is a Banah{Lie group ating transitively on M , so that M

�

=

G=K , where K = G

p

for

a point p 2M , and K is an open subgroup of the group of �xed points in G for the involution �

on G given by �(g) := �

p

Æ g Æ�

p

. The orresponding proof for the �nite-dimensional ase given

by Loos in [Lo69℄ uses Palais' Theorem on the integrability of a �nite-dimensional Lie algebra

of omplete vetor �elds to a smooth Lie group ation. It seems to be doubtful that this line of

argumentation ould persist in the Banah setting. Nevertheless, we expet the fat to be true.

If M is simply onneted, we expet that Aut(M;�)

p

oinides with the Banah{Lie group of

automorphisms of the Banah{Lie triple struture on T

p

(M).

From now on we onsider the setting of Example III.9(a), where (G; �) denotes a onneted

symmetri Banah{Lie group and M = G=K . We want to turn M into a Finsler manifold on

whih G ats isometrially. We all a norm on a Banah spae ompatible if it de�nes the original

topology. In this sense we assume that there exists a ompatible norm on p whih is invariant

under the group Ad(K). We identify the tangent bundle T (M) of M with the assoiated bundle

T (M)

�

=

G �

K

p , where the ation of K on G � p is given by k:(g; x) = (gk

�1

;Ad(k):x). We

write [g; v℄ 2 T (M) for a tangent vetor in gK 2M . Then b

M

([g; v℄) := k[g; v℄k := kvk is well-

de�ned and de�nes a tangent norm on M whih is invariant under the ation of G on T (M)

whih is simply given by g:[g

1

; v℄ = [gg

1

; v℄ . We all (M; b

M

) a Finsler symmetri spae.
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Lemma III.10. We identify T

o

(M) with p and write �

g

:M ! M for the map x 7! g:x .

Then the derivative of Exp in x 2 p is given by

dExp(x) = d�

expx

(o)

sinh adx

adx

j

p

:

This map is invertible if and only if Spe

�

(adx)

2

j

p

�

\ f�n

2

�

2

:n 2 Ng = f0g:

Proof. (f. [Hel78, Th. IV.4.1℄) We reall that for eah x 2 g we have

d exp(x) = d�

expx

(1)

1� e

� adx

adx

;

where �

h

:G! G; g 7! hg denotes the left multipliation. Therefore we obtain for y 2 p :

dExp(x):y = dq(exp x)d exp(x):y = dq(expx)d�

exp x

(1)

1� e

� adx

adx

:y

= d�

expx

dq(1)

1� e

� adx

adx

:y = d�

expx

sinh adx

adx

:y;

beause

1� e

� adx

adx

:y =

1� osh adx

adx

:y

| {z }

2k

+

sinh adx

adx

:y

| {z }

2p

:

This proves the �rst assertion.

For z 2 C we reall the funtion s from De�nition II.5 and note that the zeros of s are the

numbers �n

2

�

2

, n 2 N . In view of

sinh adx

adx

j

p

= s((adx)

2

j

p

), the Spetral Mapping Theorem

([Ru73, Th. 10.28℄) shows that this operator is invertible if and only if the spetrum of (adx)

2

j

p

ontains no zeros of the funtion s . This ompletes the proof.

Proposition III.11. The tangent norm turns M into a Banah{Finsler manifold.

Proof. To see that the tangent norm on M is ompatible, in view of the transitivity of the

G-ation on M , it suÆes to hek this for the anonial hart about o given by the exponential

funtion. Aording to Lemma III.10, we have for x; v 2 p :

kdExp(x):vk =







sinh adx

adx

:v







=





F (x):v





;

where F : p ! B(p) is a ontinuous funtion with F (0) = 1 . Hene there exists a zero

neighborhood U of 0 in p and m;M > 0 with kF (x)

�1

k � m and kF (x)k � M for all

x 2 U . Then

mkvk � kdExp(x)(v)k �Mkvk

for all x 2 U and v 2 p proves the ompatibility of the tangent norm on M .

Proposition III.12. Endowing the Finsler symmetri spae (M; b

M

) with the anonial spray

F , we obtain a geodesially omplete Finsler manifold with spray (M; b

M

; F ) .

Proof. This is an immediate onsequene of Corollary III.7.

The following lemma is needed in the proof of Theorem III.14.

Lemma III.13. For an element a of the Banah algebra A we have:

(i) ker(e

a

� 1) =

L

n2Z

ker(a� n2�i1):

(ii) If e

a

= 1 , then a is a semisimple element with �nite spetrum and purely imaginary

eigenvalues.

Proof. (i) We only have to observe that all assumptions of [Bou90, Ch. 3., x6.4, Lemme 2℄

are satis�ed beause all zeros of the holomorphi funtion f(z) = e

z

� 1 on C are simple and

given by the set 2�iZ .

(ii) is a diret onsequene of (i).
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Theorem III.14. If M has seminegative urvature, then the exponential map Exp: p ! M

is a overing of Banah manifolds and � := fx 2 p: Expx = og is a disrete additive subgroup

of the Banah spae p with �

1

(M)

�

=

� and M

�

=

p=� .

Proof. The �rst part of the assertion follows from Theorem I.10. Let x 2 p with Expx = o ,

i.e., expx 2 K � G

�

. Then expx = �(expx) = exp(�x) implies that exp 2x = 1 . We onlude

that e

2 adx

= 1 , showing that adx is diagonalizable with �nite purely imaginary spetrum.

Hene (adx)

2

j

p

has non-positive real eigenvalues (Lemma III.13(i)). Sine Exp is regular in

every multiple of x , we onlude that (adx)

2

:p = f0g , and sine adx is diagonalizable, that

[x; p℄ = f0g . Likewise we get (adx)

2

:k � (adx):p = f0g and therefore adx:k = f0g , showing

that x 2 z(g). Let � := Exp

�1

(o). Then � � z(g) \ p is a disrete subgroup of p and for x 2 �

and y 2 p we have

Exp(x+ y) = q(exp(x + y)) = q(exp y expx) = exp y:Expx = exp y:o = Exp y:

Therefore � an be viewed as the group of dek transformations of the overing map Exp: p!M ,

so that the fat that p is simply onneted implies that �

1

(M)

�

=

� and M

�

=

p=�.

We onlude this setion by a haraterization of the ondition that translates the property

of a Finsler symmetri spae (M; b

M

; F ) to have seminegative urvature to a property of the

orresponding symmetri Lie algebra (g; d�(1)).

Proposition III.15. For a Finsler symmetri spae M

�

=

G=K , the following are equivalent:

(1) M has seminegative urvature.

(2) For eah x 2 p the operator

sinh ad x

adx

j

p

= s((adx)

2

j

p

) is surjetive and expansive.

(3) For eah x 2 p the operator

sinh ad x

adx

j

p

= s((adx)

2

j

p

) is expansive.

(4) For eah x 2 p the operator �(adx)

2

j

p

is dissipative.

Proof. This is an immediate onsequene of the formula for dExp(x) (Lemma III.10), the

de�nition of seminegative urvature (De�nition I.4), and Theorem II.6.

The following proposition overs the ase where M is a Riemannian symmetri spae in

the sense of Hilbert manifolds. If M is a Riemannian symmetri spae, then the norm on p is

de�ned by a salar produt h�; �i .

Proposition III.16. If p is a Hilbert spae and the operators (adx)

2

j

p

, x 2 p , are non-

negative hermitian, then (SNC) is satis�ed.

Proof. If A := (adx)

2

j

p

is non-negative and hermitian, then ke

�tA

k � 1 for all t > 0 follows

from the funtional alulus for hermitian operators on the Hilbert spae p . Therefore �A is

dissipative.

IV. Criteria for seminegative urvature and related onepts

In the light of Proposition III.15 and Theorem III.14, it is an important problem to �nd riteria

for a normed symmetri Lie algebra (g; �; b) whih imply (SNC) and whih an be heked in

many situations. Suh riteria will be derived in Setion IV, where we will show in partiular

that hyperboli normed symmetri Lie algebras satisfy (SNC).

De�nition IV.1. Let g be a Banah{Lie algebra, where b: g ! R denotes the norm

funtion on g , � a ontinuous linear involutive automorphism of g , g = k� p the � -eigenspae

deomposition, and assume that the norm b on p is invariant under e

ad k

. Then we all the

triple (g; �; b) a normed symmetri Lie algebra.

(a) We say that (g; �; b) satis�es (SNC) (seminegative urvature) if for eah x 2 p the operator

�(adx)

2

j

p

is dissipative. Note that this ondition depends only on the norm on p .

(b) We all (g; �; b) hyperboli if b



(x+iy) := b(x+y), x 2 k , y 2 p , de�nes a norm on g



= k+ip

whih is invariant under the group Inn(g



) := he

ad g



i of inner automorphisms of g



.
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() A normed symmetri subalgebra of (g; �; b) is a triple (g

1

; �

1

; b

1

), where g

1

is a losed � -

invariant subalgebra of g , �

1

= � j

g

1

, and b

1

= b j

g

1

.

(d) Let (g

j

; �

j

; b

j

), j = 1; 2, be two normed symmetri Lie algebras. Then g := g

1

� g

2

is

a Banah{Lie algebra with respet to b(x; y) := max(b

1

(x); b

2

(y)), the presription �(x; y) =

(�

1

(x); �

2

(y)) de�nes a ontinuous involution on g with p = p

1

� p

2

, so that we obtain the

normed symmetri Lie algebra (g; �; b). It is alled the sup diret sum of (g

j

; �

j

; b

j

) , j = 1; 2.

(e) Let (g; �; b) be a normed symmetri Lie algebra and X a ompat spae. Then C(X; g)

is a Banah{Lie algebra with respet to b

X

(f) := sup

x2X

b(f(x)). Moreover, �

X

(f)(x) :=

�(f(x)) de�nes an involution on C(X; g), whih leads to the normed symmetri Lie algebra

(C(X; g); �

X

; b

X

).

Lemma IV.2. (i) If the normed symmetri Lie algebra (g; �; b) satis�es (SNC), then every

normed symmetri subalgebra satis�es (SNC).

(ii) Sup diret sums of two normed symmetri Lie algebras with (SNC) satisfy (SNC).

(iii) If (g; �; b) satis�es (SNC) and X is a ompat spae, then (C(X; g); �

X

; b

X

) satis�es (SNC).

Proof. We use the notation of De�nition IV.1.

(i) follows diretly from Corollary II.3.

(ii) Let x = (x

1

; x

2

) 2 p = p

1

�p

2

. Then A := �(adx)

2

j

p

= A

1

�A

2

, where A

j

:= �(adx

j

)

2

j

p

j

,

j = 1; 2. For eah t > 0 the operators 1� tA

j

, j = 1; 2, are expansive, so that

k(1� tA)(y

1

; y

2

)k = max(k(1� tA

1

)(y

1

)k; k(1� tA

2

)(y

2

)k) � max(ky

1

k; ky

2

k) = k(y

1

; y

2

)k:

Now Theorem II.2(2) shows that A is dissipative, hene that g = g

1

� g

2

satis�es (SNC).

(iii) For f; g 2 C(X; p) and t > 0 we have

k(1� t(ad f)

2

)(g)k = sup

x2X

k(1� t(ad f(x))

2

)(g(x))k � sup

x2X

kg(x)k = kgk:

Again Theorem II.2(2) shows that �(ad f)

2

j

C(X;p)

is dissipative, so that C(X; g) satis�es (SNC).

With Theorem II.6 we an derive a quite handy riterion for a normed symmetri Lie algebra

(g; �; b) to satisfy (SNC). The following onept will be useful in this ontext.

De�nition IV.3. We say that a real Banah{Lie algebra g is ellipti if the norm on g is

invariant under the group Inn(g) := he

ad g

i � Aut(g) of inner automorphisms.

A �nite-dimensional Lie algebra g is ellipti with respet to some norm if and only if it is

ompat. In fat, the existene of an invariant norm for e

adg

implies that the group of inner

automorphisms is relatively ompat, whih in turn implies that g is a ompat Lie algebra. In

this ase the requirement of an invariant salar produt leads to the same lass of Lie algebras, but

in the in�nite-dimensional ontext this is di�erent. Here the requirement of an invariant salar

produt turning g into a real Hilbert spae leads to the struture of a omplex L

�

-algebra on the

omplexi�ation g

C

of g . Simple L

�

-algebras an be lassi�ed, and eah L

�

-algebra is a Hilbert

spae diret sum of simple ideals and its enter (f. [CGM90℄, and also [St99℄ for a lassi�ation

in a Lie theoreti ontext). In partiular the lassi�ation shows that Every L

�

-algebra an

be realized as a losed subalgebra of the L

�

-algebra B

2

(H) of Hilbert{Shmidt operators on a

omplex Hilbert spae H . Therefore the requirement of an invariant salar produt on g leads

to the embeddability into the Lie algebra u

2

(H) of skew-hermitian Hilbert{Shmidt operators

on a Hilbert spae H . The lass of ellipti Lie algebras is muh bigger. It ontains the algebra

u(A) of skew-hermitian elements of a C

�

-algebra A and in partiular the Lie algebra u(H) of

the full unitary group on a Hilbert spae.

Another interesting point is that �nite-dimensional onneted Lie groups with ompat Lie

algebra have a surjetive exponential funtion, so that it would be oneivable at �rst sight that

this might be true for in�nite-dimensional groups with ellipti Lie algebras as well. Unfortunately

this is false, as shown by Putnam and Winter in [PW52℄: the orthogonal group O(H) of a real

Hilbert spae is a onneted Banah{Lie group with ellipti Lie algebra, but its exponential

funtion is not surjetive.
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Lemma IV.4. If Z is a omplex Banah spae, then the Lie algebra u(Z) of the group U(Z)

of isometries of Z is ellipti.

Proof. The operator norm on u(Z) is invariant under onjugation with elements of U(Z),

hene invariant under the automorphisms e

adx

, x 2 g , whih are given by e

adx

:y = e

x

ye

�x

.

Now the assertion follows from the losedness of u(Z) in B(Z) ([Up85, Cor. 14.36℄).

Lemma IV.5. Let g be ellipti.

(i) Eah losed subalgebra of g is ellipti.

(ii) If a E g is a losed ideal, then the quotient algebra g=a is also ellipti.

Proof. (i) Let h � g be a losed subalgebra. Eah inner automorphism of h extends to an

inner automorphism of g , so that eah Inn(g)-invariant ompatible norm on g restrits to an

Inn(h)-invariant ompatible norm on h .

(ii) The norm on the quotient spae g=a is given by kx+ ak = inf

y2a

kx+ yk = dist(x; a). Sine

the norm on g and the subspae a are invariant under inner automorphisms, and eah inner

automorphism of g=a is obtained by fatorization of an inner automorphism of g , we see that

the norm on g=a is invariant under inner automorphisms.

Lemma IV.6. If Z is a Banah spae, Y � Z a losed subspae, and x 2 B(Z) with x:Y � Y

and Spe(x) � R , then Spe(x j

Y

) � Spe(x) � R .

Proof. We onsider the Banah algebra B := B(Z) and the losed subalgebra A := fb 2

B: b:Y � Y g . Sine Spe(x) = Spe

B

(x) is a ompat subset of R , it does not separate C , and

[Ru73, Th. 10.18℄ implies that Spe

A

(x) = Spe

B

(x). Further the map r:A! B(Y ); a 7! a j

Y

is

a homomorphism of Banah algebras with identity, showing that Spe(x j

Y

) = Spe

B(Z)

(r(x)) �

Spe

A

(x) for eah x 2 A . This proves the lemma.

Note that in general it is false that if an operator x 2 B(Z) preserves a losed subspae

Y , then Spe(x j

Y

) � Spe(x). A typial example is the shift operator on Z := l

2

(Z) whih

preserves Y = l

2

(N). In this ase x is unitary, but Spe(x j

Y

) is the losed unit dis (see [Ha67,

Prob. 82℄).

Lemma IV.7. Let Z be a Banah spae. If g � B(Z) and x 2 R with Spe(x) � R , then

Spe(ad

g

x) � R .

Proof. Sine Spe(x) � R , the same holds for the left and right multipliation operators

�

x

and �

x

on the Banah algebra B(Z) of all bounded operators on Z . Using [Ru73, Th.

11.23℄, we onlude that Spe

B(Z)

adx = Spe

B(Z)

(�

x

� �

x

) � R , and Lemma IV.6 shows that

Spe(ad

g

x) � R .

The following riterion is a very diret one.

Proposition IV.8. Let (g; �; b) be a normed symmetri Lie algebra. Then the Banah{Lie

algebra g



:= k+ ip is ellipti with respet to b



(x+ iy) := b(x+ y) for x 2 k , y 2 p , if and only

if (g; �; b) is hyperboli. In this ase (g; �; b) satis�es (SNC).

Proof. The �rst assertion follows from the de�nition of the hyperboliity of (g; �; b). Let

us assume that (g; �; b) is hyperboli. We extend the norm b



on g



to a ompatible norm on

g

C

= g+ ig = g



+ ig



by b(a+ ib) := max(b



(a); b



(b)) for a; b 2 g



.

Let x 2 p � ig



. Then the operator ad

g

C

x 2 B(g

C

) is hermitian, so that Theorem II.6

shows that �(ad

g

C

x)

2

is dissipative. Sine it preserves the subspae p , the operator �(adx)

2

j

p

is dissipative by Corollary II.3.

Corollary IV.9. If g = k

C

with p = ik , then (g; �; b) satis�es (SNC).

Proof. In this ase we have g



= k + ip

�

=

k � k as Lie algebras, where k orresponds to the

diagonal subalgebra of k� k and ip to the antidiagonal subspae. It is lear that our assumption

implies that the Lie algebra k� k is ellipti with respet to the norm k(x; y)k = max(b(x); b(y))

whih orresponds to the ompatible norm

e

b on g given by

e

b(x+ iy) = k(x+ y; x� y)k = max(b(x + y); b(x� y)):

In view of

e

b j

p

= b j

p

, Proposition IV.8 implies that (g; �;

e

b) and hene (g; �; b) satisfy (SNC).
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Corollary IV.10. If Z is a omplex Banah spae and g � Herm(Z)

C

is a losed real Lie-

subalgebra endowed with the involution �(x + iy) = �x + iy for x + iy 2 g , x; y 2 Herm(Z) ,

then (g; �) satis�es (SNC) with respet to the operator norm.

Proof. The Lie algebra g



= k+ ip is a losed subalgebra of the Banah{Lie algebra u(Z) on

whih the operator norm is invariant under Inn(u(Z)). Therefore Proposition IV.8 applies.

The following proposition shows that for �nite-dimensional symmetri Lie algebras or-

responding to Riemannian symmetri spaes of non-ompat type, any invariant norm satis�es

(SNC).

Proposition IV.11. Let (g; �; b) be a �nite-dimensional normed symmetri Lie algebra suh

that for eah x 2 p the operator adx is diagonalizable over R . Then it satis�es (SNC).

Proof. Sine (g; �) is a hyperboli symmetri Lie algebra in the sense of [KN96℄, Prop. 1.19 in

[Ne99b℄ shows that the onvex Inn(k)-invariant funtion f := b j

p

extends to an Inn(g



)-invariant

onvex funtion on ig



given by

f(x) = sup b

�

q(Inn(g



):x)

�

;

where q: p + ik ! p is the projetion along ik . Sine every ideal of g ontained in k splits as

a diret summand, we may assume that k does not ontain any suh non-zero ideal. Then one

easily veri�es that f is a norm on ig



whih is invariant under Inn(g



). We onlude from

Proposition IV.8 that that the symmetri Lie algebra (g; �; f) satis�es (SNC).

Remark IV.12. Proposition IV.11 implies that for any symmetri spae M := G=K orre-

sponding to (g; �) and for every G-invariant Finsler struture on M , the symmetri spae M

has seminegative urvature. Hene all the results of Setion I apply to M endowed with any

invariant Finsler struture. If M is simply onneted and the assumptions of Proposition IV.11

are satis�ed, then M

�

=

R

n

� G

1

=K

1

, where G

1

=K

1

is a Riemannian symmetri spae of non-

ompat type (f. [KN96℄), so this result deals essentially with Finsler strutures on Riemannian

symmetri spaes of non-ompat type.

V. Polar deompositions of symmetri Lie groups

In this setion we will prove a general theorem about the existene of a polar deomposition of

a symmetri Banah{Lie group (G; �) whih also overs ases that annot be dedued from the

�nite-dimensional ase or the polar deomposition of the operator group GL(H). In partiular

it will apply to the omplex group G = Aut(Z;Z) of a JB

�

-triple Z , where K = Aut(Z) is the

automorphism group of Z (f. De�nition VI.1 below).

From now on (G; �) denotes a onneted symmetri Banah{Lie group, K = G

�

, and

M := G=K as in Example III.9.

Theorem V.1. If (g; �; b) satis�es (SNC), then the polar map

m:K � p! G; (k; x) 7! k expx

is a surjetive overing map whose �bers are given by the sets f(k exp z; x � z): z 2 �g , where

� := Exp

�1

(o) � p is the fundamental group of G=K .

Proof. It is lear that m is a smooth map. First we show that its di�erential is everywhere

regular. Let �

k

denote the left-multipliation by k on G . Then m Æ (�

k

� id

p

) = �

k

Æm shows

that it suÆes to show that dm(1; x) is regular for eah x 2 p . We reall that for eah x 2 g

we have

d exp(x) = d�

expx

(1)

1� e

� adx

adx

= d�

expx

(1)

e

adx

� 1

adx

:
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Therefore

dm(1; x)(y; z) = d�

expx

(1):y+ d exp(x):z = d�

expx

(1):

�

y+

e

adx

� 1

adx

:z

�

= d�

expx

(1):F (x)(y; z);

where the map F (x) 2 B(g) has the following blok struture with respet to g = k� p :

F (x) =

�

1

osh adx�1

adx

0

sinh adx

adx

�

:

Sine

sinh adx

adx

is invertible on p , the operator F (x) is invertible, and thus dm(1; x) is invertible.

We onlude that the di�erential of m is everywhere regular.

In view of Theorem III.14, the exponential map Exp: p ! G=K is a overing whose

�bers are given by the osets of the subgroup � of the Banah spae p . We onlude that

K exp p = (exp p)K = q

�1

(Exp p) = q

�1

(G=K) = G , so that m is surjetive.

If m(k

1

; x

1

) = m(k

2

; x

2

), then

Exp(�x

1

) = q(m(k

1

; x

1

)

�1

) = q(m(k

2

; x

2

)

�1

) = Exp(�x

2

)

implies that z := x

1

� x

2

2 � (Theorem III.14). Therefore k

1

exp(x

1

) = k

2

exp(x

1

� z) =

k

2

exp(�z) exp(x

1

) leads to k

2

= k

1

exp(z) and x

2

= x

1

� z . Conversely, for z 2 �, we get

m(k exp z; x� z) = k exp z exp(x � z) = k exp z exp(�z) expx = k expx = m(k; x). This proves

the statement about the �bers of m . We onlude that the map m:K � p ! G is a overing,

and � is the orresponding group of dek transformations.

Corollary V.2. If (g; �; b) satis�es (SNC), then the spae

e

G := K � p arries a natural

struture of a Banah{Lie group suh that the polar map m:

e

G! G is a overing homomorphism.

Proof. This is standard overing theory of groups ([Bou90, Ch. III, x1.9℄).

Lemma V.3. Suppose that two elements x; y in the Lie algebra g of the Banah{Lie group G

satisfy expx = exp y , and that exp is non-singular at x . Then [x; y℄ = 0 and exp(x� y) = 1 .

Proof. (f. [HHL89, V.6.7℄) All elements exp ty , t 2 R , ommute with expx = exp y . Thus

expx = exp(ty) expx exp(�ty) = exp(e

t ad y

x)

for all t 2 R , and therefore 0 =

d

dt

j

t=0

exp(e

t ad y

x) = d exp(x):[y; x℄: Sine exp is non-singular

in x by assumption, we obtain [x; y℄ = 0. Then exp(x � y) = exp(x) exp(�y) = 1 follows.

Lemma V.4. If Z is a Banah spae, then the funtion

exp:Herm(Z)! GL(Z); x 7! e

x

is injetive.

Proof. Suppose that e

x

= e

y

for x; y 2 Herm(Z). In view of Lemma IV.7, we have

Spe(adx) � R on B(Z), so that x is a regular point for the exponential funtion. Hene

Lemma V.3 implies that exp(x � y) = 1 . Now we use Lemma III.13(ii) to see that x � y is

semisimple with Spe(x � y) = f0g whih implies that x = y .

Theorem V.5. Let Z be a omplex Banah spae and (G; �) a onneted Banah{Lie

subgroup of GL(Z) whose Lie algebra g is a onjugation invariant subalgebra of Herm(Z)

C

suh

that the omplex onjugation on u(Z)

C

indues d�(1) on g . Then the involution on g integrates

to an involution on G whose �xed point group K is onneted, and we have a di�eomorphi

polar deomposition

K � p! K exp p = G:
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Proof. First we onsider the simply onneted overing group

e

G of G with Lie algebra g .

Then the involution � on g integrates to an involution � on

e

G . In view of Corollary IV.10, the

normed symmetri Lie algebra (g; �; k � k) satis�es (SNC), so that Theorem V.1 implies that the

polar map m:

e

G

�

� p!

e

G is surjetive and its �bers are given by the group

� = fx 2 p: expx 2

e

G

�

g = fx 2 p: exp 2x = 1g:

If x 2 p satis�es exp

e

G

2x = 1 , then we obtain in partiular e

x

= 1 on Z , so that Lemma V.4

yields x = 0. Hene � = f0g shows that m is bijetive, hene a di�eomorphism. In partiular

we see that the group

e

G

�

is onneted.

Now we onsider the kernel D �

e

G of the overing map �:

e

G ! G . Let d 2 D and write

it as d = k expx with �(k) = k and x 2 p . Then �(k) = e

�x

is an isometry. The same holds

for e

x

= �(k)

�1

. Therefore Spe(e

x

) � S

1

implies that Spe(x) � iR , so that Spe(x) � R

leads to Spe(x) = f0g , so that kxk = sup j Spe(x)j = 0 (Proposition III.10(ii)). This shows

that D �

e

G

�

. Therefore the polar deomposition of

e

G fators diretly to a bijetive polar map

K � p ! G , where K = �(

e

G

�

) = hexp

G

ki is a losed onneted Lie subgroup of G . We also

see that the involution � on

e

G fators to an involution �

G

on G . For g = k expx we have

�

G

(g) = k exp(�x), showing that K = G

�

.

Corollary V.6. If Z is a omplex Banah spae and G(Z) the onneted Banah{Lie group

with Lie algebra g(Z) := u(Z)

C

orresponding to the analyti subgroup hexp g(Z)i � GL(Z) , then

G(Z) permits an antiholomorphi involution � with G(Z)

�

= U(Z)

0

, and we have a bijetive

polar map U(Z)

0

� iu(Z)! G(Z):

We onlude this setion with some general remarks onerning the relation between the

polar map and the exponential funtion of G=K .

Remark V.7. (a) The proof of Theorem V.1 shows that the polar map m is regular if and only

if

sinh(adx)

ad x

j

p

is regular for eah x 2 p . This is equivalent to the regularity of the exponential

funtion Exp of M = G=K .

(b) The polar map m is a di�eomorphism if and only if Exp is a di�eomorphism. From

K exp p = (exp p)K = �

�1

(Exp p) it follows that m is surjetive if and only if Exp is surjetive.

In view of (a), it therefore suÆes to hek that m is injetive if and only if Exp is injetive.

If Exp is injetive, then the proof of Theorem V.1 shows that m is injetive. If, onversely, m

is injetive, and Expx

1

= Expx

2

, then expx

1

2 expx

2

K implies that expx

1

= expx

2

and

therefore x

1

= x

2

.

() Suppose that M = G=K is a onneted symmetri spae suh that Exp is a di�eomorphism,

but we do not assume that G is onneted. Sine exp p is ontained in the identity omponent

G

0

� G , the open subgroup G

0

ats transitively on M . Therefore the polar map m:K�p!M

is surjetive. Moreover, (a) implies that it is regular, and the injetivity on K

0

� p implies that

it is injetive on K � p , hene a di�eomorphism.

VI. Examples and open problems

In this last setion we disuss some open problems arising in the ontext of this paper. We also

disuss some speial lasses of Finsler symmetri spaes that have already been studied in a more

restritive ontext in the literature.

Bounded symmetri domains

Before we turn to bounded symmetri domains, we have to reall some de�nitions onern-

ing Jordan triples.
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De�nition VI.1. Let Z be a vetor spae over a �eld K and (x; y; z) 7! fx; y; zg a

trilinear map. For x; y 2 Z we de�ne the operator x�y by (x�y):z := fx; y; zg and put

P (x)(y) := fx; y; xg . Then Z is said to be a Jordan triple if

(JT1) fx; y; zg = fz; y; xg and

(JT2) [a�b; x�y℄ =

�

(a�b):x

�

�y � x�

�

(b�a):y

�

holds for all a; b; x; y; z 2 Z .

(a) A real Jordan triple Z is alled hermitian if Z has a omplex struture suh that fx; y; zg

is omplex linear in x , z , and antilinear in y .

(b) A Banah{Jordan triple is a Jordan triple whih is a Banah spae and for whih the map

f�; �; �g:Z

3

! Z is ontinuous.

() A hermitian Banah{Jordan triple is a hermitian Jordan triple for whih Z is a Banah{

Jordan triple, and, in addition, for u; v 2 Z the operator u�v � v�u is ontained in the Lie

algebra of the Banah{Lie group U(Z) (f. [Up85, Def. 8.7℄). A hermitian Banah{Jordan triple

is said to be positive if Spe(u�u) � R

+

for all u 2 Z .

(d) A JB

�

-triple is a positive hermitian Banah{Jordan triple for whih ku�uk = kuk

2

holds

for all u 2 Z .

Let Z be a Banah spae and D � Z be a bounded symmetri domain, i.e., an open

onneted subset suh that for eah z 2 D there exists an involution j

z

2 Aut(D), the group of

biholomorphi mappings of D , suh that z is an isolated �xed point of j

z

. Aording to [Up85,

Th. 20.23℄ the spae Z arries the struture of a JB

�

-triple and D is biholomorphi to the open

unit ball in Z . Therefore we assume from now on that Z is a JB

�

-triple and

D = fz 2 Z: kzk < 1g:

The group G := Aut(D) arries a natural Banah{Lie group struture suh that the transitive

ation of G on D is real analyti ([Up85, Th. 13.14℄). If K � G is the stabilizer of 0 2 D , then

D

�

=

G=K , and onjugation with j

0

leads to an involution on G , showing that D is a symmetri

spae in the sense of Example III.9. The domain D arries a natural Finsler struture given by

the Carath�eodory tangent norm

b(x; v) := sup

n

jdf(x)(v)j

1� jf(x)j

2

: f 2 Hol(D;�)

o

; (x; v) 2 T (D)

�

=

D � Z;

where � � C is the open unit dis (f. [Up85, Prop. 12.23℄). The orresponding metri is the

Carath�eodory metri

d(x; y) := supfÆ(f(x); f(y)): f 2 Hol(D;�)g;

where Æ is the Poinar�e metri on � ([Up85, Cor. 12.30℄). It easily follows from the Hahn{

Banah Theorem and the Cauhy estimates on � that b(v) = kvk for v 2 T

0

(D) (f. [Up85,

Prop. 12.25℄). In this sense we identify Z with T

0

(D) as Banah spaes. Below we will show

that the symmetri Finsler manifold D has seminegative urvature.

A typial examples of a JB

�

-triple is the spae B(H

�

; H

+

) of bounded operators from the

Hilbert spae H

�

to the Hilbert spae H

+

endowed with the operator norm. The triple produt

is given by fx; y; zg =

1

2

(xy

�

z + zy

�

x). Closed subtriples of B(H

�

; H

+

) are alled JC

�

-triples.

These are also JB

�

-triples, and, more generally, every losed sub-triple of a JB

�

-triple is a

JB

�

-triple ([Up85, Cor. 20.9℄).

Example VI.2. Let Z = B(H

�

; H

+

), where H

�

are Hilbert spaes. We endow the Hilbert

spae H := H

+

�H

�

with the inde�nite hermitian form given by h(v; w) := hv

1

; w

1

i � hv

2

; w

2

i .

Then we an write D as G=K , where G � GL(H

�

�H

+

) is the pseudo-unitary group

G = U(H

�

; H

+

) = fg 2 GL(H): (8v 2 H)h(g:v; g:v) = h(v; v)g:

In fat, the group G ats transitively on D by g:z = (az + b)(z + d)

�1

, where g =

�

a b

 d

�

is

written as a (2� 2)-blok matrix aording to the deomposition H = H

+

�H

�

. The stabilizer
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G

0

of 0 2 D is the subgroup K = U(H

�

) � U(H

+

). For the involution �(g) := (g

�

)

�1

(where

g

�

denotes adjoint operator on H ), we therefore obtain K = G

�

and g = u(H

+

; H

�

) = k � p;

where k = u(H

+

)� u(H

�

) and

p =

n

�

0 X

X

�

0

�

:X 2 B(H

�

; H

+

)

o

with







�

0 X

X

�

0

�







= kXk:

Therefore g



= k + ip = u(H) is an ellipti Lie algebra where the norm on ip orresponds to

the operator norm on B(H). We onlude that in this ase (g; �; k � k) is a hyperboli normed

symmetri Lie algebra with respet to �(X) = �X

�

, hene satis�es (SNC).

Example VI.3. Let X be a ompat spae and V be a �nite-dimensional JB

�

-triple. Then

Z := C(X;V ) is a JB

�

-triple with respet to ff; g; hg(x) := ff(x); g(x); h(x)g and the norm

kfk := supfkf(x)k:x 2 Xg . In fat, for f; g; h 2 Z we have ke

i(f�f)

:hk = khk beause

ke

i(f(x)�f(x))

:h(x)k = kh(x)k holds for eah x 2 X , and likewise we obtain ke

�f�f

k � 1, whih

in turn leads to Spe(f�f) � R

+

(Proposition III.9(iii)). Moreover kff; f; fg(x)k = kf(x)k

3

([Up85, Lemma 20.8℄) and kf(x)�f(x)k = kf(x)k

2

for eah x 2 X yield kff; f; fgk = kfk

3

and

therefore kfk

2

� kf�fk � kfk

2

.

Sine V is �nite-dimensional, we an view V as p

V

, where g

V

= k

V

� p

V

is a �nite-

dimensional hyperboli normed symmetri Lie algebra. Then g := C(X; g

V

) satis�es (SNC)

(Lemma IV.2(iii)).

Theorem VI.4. If D is a bounded symmetri domain, then D is a Finsler symmetri spae

with seminegative urvature.

Proof. Let Z be the orresponding JB

�

-triple ontaining D as its open unit ball.

Aording to the Gelfand{Naimark Theorem for JB

�

-triples ([FR86℄), every JB

�

-triple

Z is isometrially isomorphi to a losed subtriple of

e

Z := B(H) �

1

C(X;V ), where H is a

Hilbert spae, X is a ompat spae and V is a �nite-dimensional JB

�

-triple (one an take

the irreduible JB

�

-triple of dimension 27). Combining Examples VI.3 and VI.4 with Lemma

IV.2(ii), we see that

e

Z an be identi�ed with

e

p in a normed symmetri Lie algebra (

e

g; e� ; b) with

(SNC), where

e

p is the (�1)-eigenspae of e� .

We put p := Z �

e

Z =

e

p and onsider the losed subspae k := fX 2 k: [X; p℄ � pg . Then

g := k � p is a losed e� -invariant subalgebra of

e

g , hene a normed symmetri Lie algebra with

(SNC) (Lemma IV.2(i)). Now the assertion follows from Propositions III.15.

Theorem VI.4 implies in partiular that the polar map of the group Aut(D) is a di�eomor-

phism. This result has also been obtain by W. Kaup (f. [Ka83, Prop. 4.6℄).

Remark VI.5. Let Z � B(H

�

; H

+

) be a JC

�

-triple. We identify Z with p for the Lie

algebra g = aut(D) of the Banah{Lie group G := Aut(D)

0

. Then the exponential funtion of

the symmetri spae D

�

=

G=K is a real di�eomorphism Exp:Z ! D . Using [Up85, Prop. 5.21,

Lemma 18.12℄, and writing jzj := (zz

�

)

1

2

2 B(H

+

), we obtain

Exp(z) =

sinh jzj

jzj

z osh

�

(z

�

z)

1

2

�

�1

=

sinh jzj

jzj

(osh jzj)

�1

z =

tanh jzj

jzj

z

(f. [Up85, p.257℄). This is a generalization of the well known formula for the unit dis.

Example VI.6. A Jordan algebra is a vetor spae Z with a ommutative (not neessarily

assoiative) multipliation (x; y) 7! xy suh that x(x

2

y) = x

2

(xy) holds for x; y 2 Z . An

involution on a omplex Jordan algebra Z is an antilinear involutive map z 7! z

�

with (zw)

�

=

w

�

z

�

for all z; w 2 Z . A JB

�

-algebra is a omplex Banah spae Z endowed with the struture

of a Jordan algebra with involution � suh that

kzwk � kzk � kwk and kfz; z; zgk= kzk

3
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for z; w 2 Z , where

fx; y; zg = (xy

�

)z + x(y

�

z)� y

�

(xz)

is the anonial Jordan triple struture on Z ([Up85, Prop. 20.35℄).

Typial examples are C

�

-algebras, where the Jordan produt is given by aÆb :=

1

2

(ab+ba).

Every losed involutive Jordan subalgebra is also a JB

�

-algebra (f. [Up85, Ex. 20.28℄).

Let Z be a JB

�

-algebra with unit element e 2 Z satisfying e

�

= e , and onsider the real

subalgebra X := fz 2 Z: z

�

= zg . Then Z

�

=

X

C

. For z 2 Z we write M

z

(x) := zx for the

multipliation operators on Z . We onsider the subset

C := fx 2 X : Spe(M

x

) �℄0;1[g:

It turns out that C is an open onvex one in X , that Z is a JB

�

-triple, and that the Cayley

transform

g:D := fz 2 Z: kzk < 1g ! C + iX; g(z) = (e+ z)(e� z)

�1

is a biholomorphi map ([Up85, Cor. 21.22℄). For z 2 Z we put P

z

(x) := fz; x; zg and onsider

the set

Aut(Z;Z) := fg 2 GL(Z): g:e invertible; (8z 2 Z)P

g:z

= gP

z

g

>

g;

where g

>

: = g

�1

P

ge

. This set is a losed subgroup of GL(Z) whih is a Banah{Lie group with

respet to the operator norm, and �(g) := (g

>

)

�1

is an involutive automorphism of Aut(Z;Z).

For every automorphism g we have g

>

= g

�1

and P

z

= P

>

z

for every invertible element z 2 Z

([Up85, Cor. 22.16℄). Similar statements hold for the subgroup Aut(X;X) � GL(X) whih

ontains Aut(X) as a losed subgroup. For the Lie algebras we have the diret deompositions

aut(X;X) = aut(X)�M

X

; where M

X

= fM

x

:x 2 Xg � B(X)

and

u(Z) = aut(Z) = aut(X)� iM

X

= aut(X)



([Up85, Prop. 22.24℄). This shows in partiular that aut(X;X)



is an ellipti Lie algebra with

respet to the operator norm, so that (aut(X;X); d�(1); k � k) is a hyperboli normed symmetri

Lie algebra (Proposition IV.8).

Let G := Aut(X;X)

0

be the identity omponent of Aut(X;X). Then Theorem V.5 implies

that G has a polar deomposition G = K exp p

�

=

K � p , where K = Aut(X)

0

and p = M

X

([Up85, Cor. 22.29℄, [Ka83℄). In view of K = fg 2 G: g:e = eg , the ation of G on X leads to

G=K

�

=

G:e = (exp p)K:e = exp(M

X

):e = e

X

= C;

where e

x

:=

P

1

n=0

x

n

n!

is the exponential funtion of the real Banah{Jordan algebra X ([Up85,

Th. 22.37℄). Therefore the open one C arries a natural struture of a Finsler symmetri spae

of seminegative urvature. Identifying p with X by the map M

x

7!M

x

:e = x , the exponential

funtion of C is given by

Exp:X ! C; x 7! e

x

:

The Finsler struture on C is given by b(e

x

; v) = ke

�M

x

:vk; and the geodesi : [0; 1℄! C

with (0) = e

x

, (1) = e

y

and 

0

(0) = e

M

x

:z satis�es (t) = e

M

x

e

tz

: Its length is given

by L() = b(e

x

; 

0

(0)) = kzk , and we have e

z

= e

�M

x

e

y

. The fat that C has seminegative

urvature implies that Exp:X ! C is expansive, so that

(6:1) kzk = d

C

(e

x

; e

y

) � d

X

(x; y) = kx� yk:

Below we explain how (6.1) is related to the inequality

(6:2) ke

x+y

k � ke

M

x

:e

y

k
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for x; y 2 X . Sine eah operator M

x

on X extends to a hermitian operator on the Banah

spae Z = X

C

, we have

r

+

(x) := log ke

M

x

k = sup Spe(M

x

) = infft > 0: te� x 2 Cg

(f. [Up85, Lemma 21.12℄). Moreover, M

x

:e = x yields kxk = kM

x

k = max(r

+

(x); r

+

(�x)).

(a) Now we show that (6.1) implies (6.2). Replaing x by �x in (6.1) leads to

kx+ yk � k log(e

M

x

e

y

)k

for all x; y 2 X . Let z 2 X with e

z

= e

M

x

e

y

. If z 2 C , then this leads diretly to

r

+

(x + y) � kx+ yk � kzk = r

+

(z)

and therefore to ke

x+y

k � ke

z

k . To deal with the general ase, we �rst replae x and y by

x

n

:= x+ne and y

n

:= y+ne for n 2 N . Then z

n

= z+2ne is positive for n suÆiently large.

Hene

ke

x+y

k = e

�2n

ke

x

n

+y

n

k � e

�2n

ke

z

n

k = ke

z

k:

(b) We show that (6.2) also diretly implies (6.1): First we note that (6.2) is equivalent to

ke

y�x

k � ke

�M

x

:e

y

k for all x; y 2 X . Let z 2 X with e

z

= e

�M

x

e

y

. Then ke

y�x

k � ke

z

k leads

to r

+

(y � x) � r

+

(z). Replaing x and y by �x and �y , then e

�z

= (e

z

)

�1

= e

M

x

:e

�y

leads

to

r

+

(x � y) � log ke

M

x

:e

�y

k = log ke

�z

k = r

+

(�z):

Putting these two inequalities together, we �nd

ky � xk = max(r

+

(y � x); r

+

(x� y)) � max(r

+

(z); r

+

(�z)) = kzk;

and this is a reformulation of the length inreasing property of the exponential funtion whih

therefore follows from (6.2).

Example VI.7. A speial ase of the situation disussed in Example VI.6 arises if Z = A is a

unital C

�

-algebra. Then it is a JB

�

-algebra with respet to aÆ b =

1

2

(ab+ ba). Let G := G(A)

0

be the identity omponent of the group G(A) of units of A . Then �(g) := (g

�

)

�1

turns G into

a symmetri Lie group with Lie algebra g = A (viewed as a Banah{Lie algebra). In this ase

K = G

�

oinides with the unitary group U(A) = fa 2 A: a

�

a = aa

�

= 1g of A and

G=K

�

=

A

+

:= fgg

�

: g 2 Gg

is the open one of positive invertible operators in A . The Finsler geometry of A

+

has been stud-

ied extensively by Corah, Porta and Reht (see in partiular [CPR92℄, [CPR93℄ and [CPR94℄).

As a speial example of the situation in Example VI.6, we see that A

+

has seminegative urva-

ture.

The multipliation operator M

x

on the real Jordan algebra X = A

s

is given by M

x

=

1

2

(L

x

+R

x

), where L

x

(y) = xy and R

x

(y) = yx . Therefore e

M

x

:a = e

1

2

L

x

e

1

2

R

x

:a = e

x

2

ae

x

2

, and

(6.2) leads to Segal's inequality

ke

x+y

k � ke

x

2

e

y

e

x

2

k

for x; y 2 A

s

(f. [RS78, Th. X.57℄ for a version of this inequality for semibounded selfadjoint

operators on a Hilbert spae). For an extensive disussion of this type of inequalities we refer

to Thompson's paper [Th71℄. In [CPR92℄ it is shown that this inequality is equivalent to the

length-inreasing property of the exponential for the Finsler metri on A

+

.

Apart from Segal's inequality there are muh more interesting onvexity properties of the

Finsler metri on A

+

. We refer to [CPR93℄ for more details. To mention a few others:

(1) the distane funtions d(x; �(t)), where � is a geodesi, are onvex,

(2) the geodesi balls in A

+

are onvex subsets of A , and

(3) eah positive funtional ' 2 A

?

+

on A yields by restrition a geodesially onvex funtion on

A

+

.

Do these properties generalize to the setting of Example VI.6?
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Example VI.8. As a onsequene of Proposition IV.11, every �nite-dimensional Riemannian

symmetri spae M of non-ompat type endowed with an invariant Finsler struture has

seminegative urvature. A partiular lass of examples with natural Finsler strutures whih

are not Riemannian have been studied by Y. Lim in [Lim99a-℄. He onsiders �nite-dimensional

symmetri ones 
. Sine suh a one an be identi�ed with the one C of positive elements

in a eulidean Jordan algebra X (f. [FK94℄), and for eah eulidean Jordan algebra X the

omplexi�ation is a JB

�

-algebra, this situation is overed by the disussion in Example VI.6.

Lim studies in partiular properties of the mid-point operation on 
 whih assigns to two

points a and b the mid-point a℄b of the geodesi segment onneting both. As a onsequene,

he obtains the inequality (6.2) whih, as we have seen in Example VI.6, is losely related to the

fat that C is a symmetri spae with seminegative urvature ([Lim99a, Cor. 11℄). In [Lim99℄

Lim gives various desriptions of the metri on 
 assoiated to the Finsler struture given by

the spetral norm. In partiular he shows that onformal ontrations of the one 
 at by

ontrations with respet to the Finsler metri.

More problems

Problem VI.1. Let Z be a omplex Banah spae.

(a) Is the subgroup G(Z) := hexpHerm(Z)

C

i � GL(Z) losed? Even though we have the

holomorphi inlusion map G(Z) ,! GL(Z), it is not lear whether the image is losed.

(b) We have seen in Corollary V.6 that the symmetri spae G(Z)=U(Z) is a Finsler symmetri

spae with seminegative urvature, so that Exp:Herm(Z) ! G(Z)=U(Z) is a di�eomorphism.

Moreover, U(Z) = G(Z)

�

holds for an antiholomorphi involution � on G(Z), so that the map

G(Z)=U(Z)! exp

�

Herm(Z)

�

� G; gU(Z) 7! g�(g)

�1

is a di�eomorphism mapping Exp(x) to exp(2x). In the speial ase where Z is a Hilbert

spae the range of this map is the one of positive invertible operators on Z . Is there a similar

desription for a general Banah spae? Sine the Banah spae Herm(Z) ontains the open

one 
:= fx 2 Herm(Z): Spe(x) �℄0;1[g , it is natural to ask whether exp

�

Herm(Z)

�

�

Herm(Z). If this is the ase, then the ontinuity property of the spetrum (f. [Ru73℄) implies

that exp

�

Herm(Z)

�

� 
. The ation of G(Z) on exp

�

Herm(Z)

�

is given by g:a = ga�(g)

�1

,

so a related question is whether the ation of G(Z) on B(Z) given by this formula preserves

the spae Herm(Z). In�nitesimally this leads to the question whether for x; a 2 Herm(Z) the

antiommutator [x; a℄

+

= xa + ax is ontained in Herm(Z). Using polarization, this would

follow if for eah a 2 Herm(Z) we have a

2

2 Herm(Z).

Problem VI.2. (A Banah analog of omplex redutive groups) Let G be an ellipti Lie group.

Does G have a universal omplexi�ation G

C

with a polar deomposition G

C

= G exp(ig)? The

groups G

C

would be natural analogs of the �nite-dimensional omplex redutive groups. For

a detailed disussion of the problems involved with omplexi�ations of Banah{Lie groups we

refer to [Gl99℄.

(a) If G is a Lie subgroup of the group U(Z) of surjetive isometries of a omplex Banah spae

(this means that its Lie algebra g is a losed subalgebra of u(Z)), then Corollary V.6 provides

a omplex group G

C

with a polar deomposition whih is obtained from the analyti subgroup

hexp g

C

i � GL(Z). It is easy to see that this group is universal as a omplexi�ation of G . In

fat, if �:G ! H is a morphism of G to a omplex Banah{Lie group, then the di�erential

of � leads to a omplex linear ontinuous homomorphism g

C

! h and thus to a holomorphi

homomorphism e�

C

:

e

G

C

! H , where

e

G

C

is the universal overing group. Sine

e

G

C

also has

a di�eomorphi polar deomposition

e

G exp(ig), we see that e�

C

fators through a holomorphi

homomorphism �

C

:G

C

! H .

(b) Let G be an ellipti Lie group and �:G! H a homomorphism to a omplex group suh that

d�(1) has losed range. Then the group B := �(G) is an ellipti Lie subgroup of H , and the
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same arguments as in (a) show that B has a universal omplexi�ation B

C

with a di�eomorphi

polar deomposition B

C

= B exp(ib). We onlude that eah � fators through a morphism

G! B

C

, where B

C

is a omplexi�ation of an ellipti Lie group B with a polar deomposition.

() Let a E g denote the intersetion of all kernels of di�erentials d�(1) of homomorphism

�:G ! H into omplex Lie groups. Then a is a losed ideal of g , so that we an form the

quotient algebra b := g=a whih is ellipti (Lemma IV.5). One would like to show that b

C

is

enlargeable in the sense that it is the Lie algebra of a simply onneted omplex Banah{Lie

group B

C

. Then B

C

has a polar deomposition B

C

= B exp(ib). If the group G is simply

onneted, then we have a natural homomorphism G ! B leading to a morphism �:G ! B

C

whih an be shown, as in (a), to be a universal omplexi�ation.

Now suppose that G is not simply onneted and that

e

G is its universal overing. Then

eah homomorphism �:G! H into a omplex group lifts to a homomorphism e�:

e

G! H whih

in turn fators through

e

�:

e

G! B

C

with a holomorphi homomorphism :B

C

! H . Aording

to the onstrution of b , the intersetion of the Lie algebras of all kernels of suh homomorphisms

B

C

! H is trivial. Does this imply (in this speial ontext) that D :=

T



ker  is disrete?

(d) It is oneivable that there is a more diret argument whih would use the biinvariant Finsler

struture on G to onstrut a faithful Banah representation of G . Maybe an appropriate spae

of ontinuous funtions on G will do.

Problem VI.3. Let (g; �; b) be a normed symmetri Lie algebra. Find good riteria for the

Lie algebra g



= k+ ip to be ellipti in the sense that on ig



= p+ ik exists an Inn(g



)-invariant

norm extending the given one on p .

Suppose that k�k is an Inn(g



)-invariant norm on ig



whih is invariant under the antilinear

extension of �� to g

C

. Then x 2 ig



implies that kx

p

k = k

1

2

(x � �:x)k � kxk: For x; y 2 p we

therefore obtain

kyk � k(e

ad ix

:y)

p

k = k os(adx):yk:

We onlude that k os(adx) j

p

k � 1 holds for eah x 2 p . Does this ondition, onversely,

imply that k � k extends to an Inn(g



)-invariant norm on ig



? Is this equivalent to the operator

(adx)

2

j

p

being dissipative?

Problem VI.4. Let D be the open unit ball in he JB

�

-triple Z (a bounded symmetri

domain). Is it possible to show diretly, without referene to the Gelfand{Naimark Theorem for

JB

�

-triples that for eah x 2 p the operator

sinh adx

adx

is invertible and expansive? Maybe a good

strategy to attak this problem is to see whether the Lie algebra g



= k + ip is ellipti with

respet to a suitable norm. Writing an element of p as a vetor �eld X

u

(z) = (u� fz; u; zg)

�

�z

,

we have [X

u

; X

w

℄ = 2X

v�u�u�v

and [X

u

; [X

u

; [X

w

℄℄℄ = 2X

fu;v;ug�fu;u;vg

; so that (adX

u

)

2

j

p

orresponds on Z to the operator �u�u+ P

u

: Is this operator dissipative for eah u 2 Z ?
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