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Abstract. In this paper we study Banach-Finsler manifolds endowed with a spray which have
seminegative curvature in the sense that the corresponding exponential function has a surjective
expansive differential in every point. In this context we generalize the classical theorem of Cartan—
Hadamard, saying that the exponential function is a covering map. We apply this to symmetric
spaces and thus obtain criteria for Banach-Lie groups with an involution to have a polar decompo-
sition. Typical examples of symmetric Finsler manifolds with seminegative curvature are bounded
symmetric domains and symmetric cones endowed with their natural Finsler structure which in
general is not Riemannian.

Introduction

Let M = G/K be a finite-dimensional non-compact Riemannian symmetric space, where K is
the group of fixed points of an involution ¢ on G. Then G has a polar decomposition in the
sense that the decomposition g = € + p of its Lie algebra into the eigenspaces of the involution
do(1) leads to a diffeomorphism

Kxp—G, (kz)—kexpu

(cf. [Hel78]). One encounters a similar situation for the group G := GL(H) of invertible
continuous linear operators on a complex Hilbert space H. Here K = U(H) is the unitary
group of H and p = Herm(H) is the space of bounded hermitian operators on H. The
polar decomposition of this group can be used to deduce similar results for a variety of infinite-
dimensional analogs of the classical groups (cf. [dIH72], [dIH83]).

On the level of Riemannian manifolds, the polar decomposition of G is essentially the
same as the statement that the exponential map Exp:p — G/K of the Riemannian symmetric
space G/K is a diffeomorphism. This is a special instance of the classical theorem of Cartan-
Hadamard which states that for a connected geodesically complete Riemannian manifold M
with seminegative curvature, for each point p € M the exponential map exp,,: Tj,(M) — M is a
covering. If, in addition, M is simply connected, then the exponential map is a diffeomorphism,
and M is called a Cartan—Hadamard manifold. So Riemannian symmetric spaces of non-compact
type are special Cartan—Hadamard manifolds. In this form the result of Cartan—Hadamard has
been generalized to Riemannian manifolds (modeled over Hilbert spaces) by Grossman [Gr65]
and McAlpin [McA65] (see Section IX.3 of [La99] for an exposition of this result). If G/K is
a Riemannian Cartan—Hadamard manifold, then McAlpin’s infinite-dimensional version of the
Cartan—Hadamard Theorem applies, and one can derive a polar decomposition of G. The polar
decomposition of the full operator group G = GL(H) on a Hilbert space cannot be derived from
this geometric result because the space G/K = GL(H)/ U(H) of positive operators on H is not
a Riemannian manifold. In this case one has to work with spectral theoretic methods which are
limited to quite special situations. These spectral theoretic methods apply equally well to the
space G(A)/U(A), where A is a C*-algebra, G(A) its group of units, and U(A) the unitary
group of A. They fail for the complex group G which is a natural complexification of the group
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U(Z) of isometries of a complex Banach space Z. A similar class of examples are the bounded
symmetric domains in Banach spaces. They can also be written as G/K for suitable Banach
groups, but they do not carry a natural Riemannian structure.

What is common to all these manifolds is that they are symmetric Banach manifolds which
are endowed with a natural G-invariant Finsler metric. On the geometric side, their counterparts
are Banach manifolds M endowed with a Finsler metric and a spray F:TM — TT M such that
the Finsler metric is invariant under parallel transport along geodesic segments (see Section I
for the definitions). The geometric heart of the present paper is a generalization of the Cartan—
Hadamard Theorem to such manifolds. A key point is that the requirement that for each point
p € M the exponential map exp,:T,(M) — M is length increasing in the sense that for each
@ € Tp(M) the differential dexp,(2):Tp(M) — Texp, (2)(M) is invertible and expansive. For the
Riemannian case this condition is equivalent to 3/ having seminegative curvature, so that we
take this as the definition of “seminegative curvature” in the general case.

In Section IT we first take a closer look at dissipative operators on a Banach space Z. The
key result of this section is Theorem 11.6 say%n[;g that for a bounded operator A the operator —A

00 tA)"

is dissipative if and only if s(tA) = >~ (2n—+)1), is surjective and expansive for all ¢ > 0. We
sinh(A

also show that if Z is complex and exp(iRA) cousists of isometries, then + is invertible
and expansive.

In Section III we turn to symmetric spaces in the sense of Loos. We explain how one
associates to a symmetric space a spray with the same symmetries and which is uniquely
determined by this property. In the finite-dimensional case this construction is carried out in
[Lo69] in the context of higher tangent bundles which does not work in the Banach setting. If
the symmetric space M can be written as G/K, where G is a Banach-Lie group and K an
open subgroup of the group of fixed points of an involution ¢, then we derive a criterion for a
G -invariant Finsler metric on M to lead to a manifold with seminegative curvature which only
refers to a property of the corresponding normed symmetric Lie algebra. Using the results of
Section II, we show that M has seminegative curvature if and only if the operators —(ad z)? Iy s
T € p, are dissipative.

In Section IV we elaborate on criteria for symmetric Banach Lie algebras which make it
simpler to check that the condition derived in Section III is satisfied.

Section V contains our main results on the existence of a polar decomposition for a
symmetric Banach—Lie group (G,o) which also covers cases that cannot be deduced from the
finite-dimensional case or the polar decomposition of the operator group GL(H). In particular
it applies to the “complexification” of the group U(Z) for any Banach space.

We conclude this paper with Section VI which contains a discussion of some specific classes
of examples and relations to work of other people on special types of symmetric spaces with
seminegative curvature such as symmetric cones and the cone of positive elements of a C*-
algebra.

It would be very interesting to understand the relations between the Finsler manifolds
of seminegative curvature discussed in this paper and general metric spaces with non-positive
curvature (cf. [AB90], [BH99]). For Riemannian manifolds this property is also equivalent to the
semi parallelogram law which can be formulated for arbitrary metric spaces (see [La99, XI, §3]).
Since it implies that for two points there exists a unique “midpoint”, there are Banach spaces not
satisfying this condition, so that it does not seem to lead very far in the general Finsler context.
Nevertheless there might be interesting relations if the Finsler metric is such that all tangent
spaces are uniformly convex.

During the preparation of this manuscript I profited a lot from conversations with H. Up-
meier who guided me through [Up85]. I also thank J. Arazy for enlightening discussions. Fur-
thermore I thank H. Upmeier and F. Haslinger for inviting me to the Erwin-Schrédinger-Institut
and for the very pleasant and productive stay in Vienna.

All manifolds in this paper are smooth manifolds modeled over Banach spaces. We refer to
Lang’s book [La99] for the basic differential geometry of Banach manifolds.
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I. A generalization of the Cartan—-Hadamard Theorem

In this section we generalize the classical theorem of Cartan—Hadamard to Banach-Finsler
manifolds of seminegative curvature (Theorem 1.10).

Definition I.1. Let M be a Banach manifold. A second-order vector field on M is a vector
field F:TM — TTM on TM satistying T' (7)o F' = idyps, where m: TM — M is the projection
map (cf. [La99, IV, §3]). Let s € R and spp:TM — TM denote the multiplication by s in
each tangent space. A second order vector field F' on T'M is called a spray if

F(sv) =T (srm)(sF(v)) forall seRwveTM

(cf. [La99, IV, §3]). The domain Deyp, € T'M is the set of all those points v € T,(M) for which
the maximal integral curve 7,:J — TM of F satisfies 1 € J and exp,(v) := 7(y,(1)). Let
a:[s,t] = X be a piecewise C?-curve. We write

Pt(a>: Ta(s) (X) - Ta(t) (X)

s

for the corresponding linear map given by parallel transport along a (cf. [La99, Th. VII1.3.4]).m

Remark 1.2. To visualize the concepts locally, we consider an open subset U in the Banach
space V. Then TU 2 U x V, w(x,v) =z, TTU =2 U x V3, and T(7)(z,v,u,w) = (z,u).
Therefore a second-order vector field F:TU — TTU can be written as
F(JJ,U) = (.T,U,U,f(w,v)),
where f:U xV — V is a smooth map. The spray condition means that
(z, sv, sv, f(x,sv)) = F(x,sv) = T(sram)sF(v) = T(STM)(w,v, sv, sf(ac,v))
= (x, sv, sv, 8% f(x,v))

which means that the maps f(z,-) are quadratic. [

Definition I.3.  (a) (cf. [Up85, Def. 12.19]) Let M be a Banach manifold. A tangent norm
on M is a function b:T(M) — RT whose restriction to every tangent space T, (M) is a norm.
A continuous tangent norm b on M is called compatible if for each p € M there exists a chart
©:U — Z (U an open neighborhood of p, Z a Banach space) and constants m, M > 0 with

m - b(v) < |lde(x) ()|l < M - b(v)
for all v € T,(M), x € U. A Finsler manifold is a pair (M,b) of a Banach manifold M and a
compatible tangent norm b (In [Up85] Upmeier calls these objects normed Banach manifolds).

(b) A metric d on M is called locally compatible if for each p € M there exists a chart p:U — Z
and constants m, M > 0 with

m-d(z,y) < [le(x) — oWl < M -d(z,y)
for all z,y € U. A metric d is called compatible if it is locally compatible and the topology
induced from the metric d coincides with the original topology. A metric Banach manifold is a
pair (M,d) of a Banach manifold M and a compatible metric d.
(¢) In the following we also write ||v|| := b(v) for v € T,(M) and p € M. We define the length
of a piecewise C'-curve v:J — M by the improper Riemann integral

L(y) = /J ()l dt = /J b(3(1)) dt € [0, 00].

We obtain a metric d on M by

d(w,y) := infy L(y),
where the infimum is taken over all continuous piecewise C'* -curves connecting x to y. According
to [Up85, Prop. 12.22], the metric d on M is compatible and invariant under the group Aut(M,b)
of all diffeomorphisms ¢ of M with bo Ty = b. In this sense every Finsler manifold is a metric
Banach manifold in a canonical fashion. We call (M,b) complete if it is a complete metric space
with respect to the metric d. [ ]
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Definition I.4. (a) Let F' be a spray on the Finsler manifold (M,b). We call (M,b,F) a
Finsler manifold with spray if the norm function b: TM — R is invariant under parallel transport
along geodesics. If M is connected, then two points in M can be joined by a piecewise geodesic
curve, so that b is uniquely determined by its values in a fixed tangent space T, (M).
(b) We say that (M,b, F') has seminegative curvature if for all p € M and z,v € T,(M) N Dexp
we have

lld exp,, (z)(v)[| = [v]l,

and dexp,(z) is invertible for each € T),(M) NDexp . This means that, as an operator between
the Banach spaces Tj,(M) and Texp (2)(M) the linear map dexp,(z) is invertible and its inverse

(dexp,(x))~"! is a contraction. n

Example I.5. (a) Let V' be a Banach space. We identify TV with V' xV and define a tangent
norm by b(z,v) := |jv||. For every piecewise C!-curve v:[a,b] — V we have

b b
h®) = 1@ = | / V(1) dt]| < / I Wlldt = L(3),

so that d(xz,y) = ||x — y|| is the metric determined by b. Since V is a Banach space, the metric
space (Y,d) is complete, and d is a compatible metric on V.

Identifying TTV with TV x V2 = V% we obtain the trivial spray given by F(z,v) =
(z,v,v,0). The integral curves of this spray are given by ;. (t) = (2 + tv,v), so that the
geodesic starting in z in direction v is given by «y ,(t) = & + tv. The parallel transport maps
Pl(a) associated to a geodesic « are the identity on V', showing that (V,b, F) is a Finsler
manifold with spray.

(b) If (M, g) is a Riemannian manifold, then M carries a canonical spray (the one corresponding
to the Levi-Civita connection), such that the natural tangent norm given by b(v) = g(v,v)? is
invariant under parallel transport ([La99, Th. VIIL.4.2]).

For a Riemannian manifold (M,g) it follows from Theorem XI.3.5 in [La99] that it has
seminegative curvature in the usual sense if and only if the exponential map is locally metric
increasing at every point, which we have taken as the definition in the more general setup of
Finsler manifolds with sprays. For Riemannian manifolds this property is also equivalent to the
semi parallelogram law which can be formulated for arbitrary metric spaces (see [La99, XI, §3]).
Since it implies that for two points there exists a unique “midpoint”, there are Banach spaces
not satisfying this condition, so that it does not seem to be useful in the Finsler context. ]

Problem I.1. For Riemannian manifolds it has been shown by McAlpin that the requirement
that dexp,(x) is invertible for each x € T},(M) is redundant in Definition 1.4 above ([La99, IX,
Th. 3.7]). Is this also true for Finsler manifolds? The proof given given in [La99] does not seem
to generalize to the setting of Finsler manifolds with sprays. ]

Problem 1.2. If F is a spray on M, then the corresponding covariant derivative D leads to
the curvature tensor

R(&n,C) = DeDyC = DyDeC = Dig ¢
for vector fields &, n and (. The tensor property of R implies that for each point p € M and
v,w € M we obtain an operator Ry(v,w):T,(M) — T,(M) such that

RP(”? w)(u) = R(€7 777 C)

holds for local vector fields &, i, ¢ with &£(p) = v, n(p) =u and {(p) = w (cf. [La99, p. 232]).
For Riemannian manifolds endowed with the Levi-Civita connection one defines seminegative
curvature by the property that

(Rp(u,v,u),v) >0 forall w,veT,(M).

In functional analytic terms this means that the operators —R,(u, -, u) on T,(M) are dissipative
as operators on the Banach space T,(M) (Definition II.1). Is this condition for Banach-Finsler
manifolds with spray equivalent to having seminegative curvature in the sense of Definition 1.47m
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Lemma 1.6. Let f:(Y,by) — (X,bx) be a C'-map between Finsler manifolds. Assume that
there is a constant C' > 0 such that for all y € Y and w € T, (Y) we have bx (T f(w)) > Cby (w).
If v:[a,b] = Y is a piecewise smooth path in Y, then L(fov) > C - L(v).

Proof.  This follows immediately from the definitions (cf. [La99, VIII, Lemma 6.8]). m

Lemma 1.7. Let a < b and v:[a,b[— X be a piecewise C*-curve in the complete Finsler
manifold (X,0) and assume that L(y) < co. Then lim;_,; y(t) exists in X .

Proof. For each ¢ > 0 there exists a § > 0 with b —6 > a and L(7y|j—s[) < . This means
that for #1,2, € [b—6,b[ we have d(y(t1),7(t2)) < L(v|p—s,) < € Thus (v(£))se[a,p[ is @ Cauchy
net in the complete metric space (X,d), so that x := lim;_,; y(t) exists. u

Lemma I.8. Let (X,bx,Fx) be a complete Finsler manifold with spray. Then X is geodesi-
cally complete in the sense that Dey, = TX .

Proof. Let z € X and v € Dexp N T, (M). We consider the maximal geodesic 5:] — T, T[—
M,t — exp,(tv), where T,T" €]0,00]. If T' = 0o, then there is nothing to show. So we assume
that T < co. Since (' is a parallel vector field along the curve S, we obtain

T
L(g) = / 18 @)l dt = Tjo]| < oo,

and therefore xp := lim; .7 B(T) exists in X (Lemma I.7). Using [La99, VIII, Cor. 5.2], we now
see that the geodesic # can be extended to an open interval containing [0,7]. This contradicts
the maximality of 7" and therefore proves the assertion. ]

Let f:X — Y be a C'-map of manifolds. We say that f has the unique path lifting
property if given a point y € Y, a piecewise C'-path « in Y starting from y, and a point € X
with f(x) = y, there exists a unique piecewise C'-path v in X with f oy = « starting in
x. The following theorem is a generalization of Theorem 6.9 in [La99, VIII] (about Riemannian
manifolds) to the setting of Finsler manifolds. It is a geometric key result in this paper.

Theorem 1.9.  Let (X,bx) a complete Finsler manifold and (Y, by, Fy) be a connected Finsler
manifold with spray. Let f: X —Y be alocal C* -diffeomorphism for which there exists a constant
C > 0 such that for all w € TX we have

by (Tf(w)) 2 C - bx (w).

Then f is surjective, f is a covering and has the unique path lifting property, and Y is complete.

Proof. We closely follow the proof in [La99] for the case of Riemannian manifolds. The proof
is in three steps. First we show that f is surjective and has the unique path lifting property.
Let x € X and y := f(z). Every point in Y can be joined to y by a piecewise C'-path. Let
a:[a,b] = Y be such a path joining y = a(a) with a(b). We shall prove that o can be lifted
uniquely to a path in X starting from z. This will accomplish the first step. Let S be the set
of elements ¢ € [a, b] such that ap can be lifted uniquely to a path v in X starting at z. If
a = b, there is nothing to show, so we assume that a < b. The set is not empty because a € S,
and it is open because f is a local diffeomorphism. Moreover, it is clear from the definition
that S is an interval. If b ¢ S, then S = [a,s[, where s = sup S, and we have a unique lift
v:[a,s[= X of a with y(a) = . Using Lemma 1.6, we obtain

L(e) 2 L(afa,sp) = L(f o) =2 CL(7).

Therefore L(y) < oo, and Lemma 1.7 implies that o := lim;_,s v(¢) exists. Using the assumption
that f maps an open neighborhood U of z diffeomorphically onto f(U), we obtain a unique
lift of v on an interval [a,s'] properly containing [a,s]. This contradicts the maximality of s,
and we thus obtain S = [a,b]. This proves that f is surjective and that it has the unique path
lifting property.
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The next step is to reduce the theorem to the case where f is a local isometry of Finsler
manifolds. To do this, let b% := by oT f be the pull-back of the tangent norm by to X. Observe
that b% is a compatible tangent norm on X because f is a local diffeomorphism. Moreover,
our assumptions imply b% > Cbx and therefore d% > Cdx for the corresponding metrics on
X (Lemma I.6). We claim that X is complete with respect to d% . So let (z,)nen be a d%-
Cauchy sequence in X . Then it also is a Cauchy-sequence with respect to dx , hence converges
to an element z € X, and since the metric d% is compatible, it follows that the metric space
(X,d%) is complete. Since f is a local diffeomorphism, the spray Fy:TY — TTY can be
pulled back to a spray Fx:TX — TTX on X with TTfo Fx = Fy oTf. Now the triple
(X, b%, Fx) is a Finsler manifold with spray because the map T'f:TX — TY is compatible with
the corresponding parallel transport maps. Lemma I.8 implies that Dexp, = T'X, so that the
compatibility of T f with the sprays implies that

TY =imTf C Dexp, and expyolf= foexpy.

As we have seen in the second step, we may assume that f is a local isometry of Finsler
manifolds which is a morphism of manifolds with sprays. In the last step we show that f is a
covering. Since (X,d%) is complete, this will also prove that (Y,dy) is complete, and therefore
conclude the proof. Let y € Y. In view of [La99, Cor. 5.2], there exists an open ball B C T, (Y)
such that exp, maps B diffeomorphically onto an open subset V' := exp, (B). Let V= o).
For each x € f~1(y) we put B, := df(x)~*(B) C T,(X). Then V, :=exp,(B,) C X satisfies

f(Ve) = flexp,(B.)) = exp,(B) = V.

Since the map f v, oexp, |p,: B, — V coincides with exp, |p o df (z), we see that exp,|p, is a
diffeomorphism onto an open subset of X because this map is injective and has an everywhere
regular differential. We claim that
v=|J V.
£(

z)=y

In fact, let z € V. Then f(z) = exp,(a) € V for some a € B. Then the geodesic segment
a:[0,1] — Y,t = exp,(ta) in B has a unique lift to a geodesic segment 3:[0,1] — X with
B(1) = z and fo B = a. This shows that = := B(0) € f(a(0)) = f(y), and for
b= B(0) = df(z)"*(a) € B, C T,(X) we have B(t) = exp,(th). In particular, we get
z = exp,(b) € V. Next we show that V,, NV, # O implies &1 = z2. Solet z € V,, NV,
We write z = exp,, (b1) = exp,,(b2) with by € B, and by € B,,. Applying f yields
f(z) = exp,(df (x1).b1) = exp,(df (z2).b2) and therefore a := df(z1).by = df (z2).b2. Now the
two geodesic segments
[07 1] - X7 i expzl (tb1>7 expzz (th)

ending in y are lifts of the same geodesic segment
[0,1] = Y, t+ exp,(ta),

so that the uniqueness of the path lifting property yields exp,, (tb1) = exp,, (tb2) for all ¢ € [0,1],

and finally that z; = x2. This shows that V= Uzef—l(y) V., is a disjoint union of open pairwise
diffeomorphic subsets, and therefore that f is a covering. ]

The proof of Theorem 1.9 is even simpler than the one given in [La99] for the special case
of Riemannian manifolds which makes use of geodesic convexity properties of metric balls in M
and hence of the Gaul Lemma. A Gaufl Lemma makes no sense in our setting, but fortunately
such fine results are not needed for the conclusions.

Theorem I.10.  (Cartan-Hadamard-Grossman—-McAlpin Theorem for Banach—Finsler mani-
folds) Let (M,b,F) be a connected geodesically complete Finsler manifold with spray which has
seminegative curvature. Then for each p € M the exponential map expp:Tp(M) - M is a
surjective covering and M is complete.
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Proof. Since M is geodesically complete, Exp := exp, is defined on the whole tangent
space Tp(M). Since M has seminegative curvature, for each z € T,(M) the differential
dExp(x): Tp(M) — Texp(z)(M) is expansive and invertible. We endow X := T),(M) with
the structure (X,bx) of a complete Finsler manifold as in Example I1.5(a). Now the map
Exp: X — M is a local diffeomorphism satisfying b(T Exp(w)) > ||w|| = bx (w) for all w € TX .
Therefore Theorem 1.9 applies and shows that Exp is a surjective covering map. u

Corollary 1.11.  Let (M,b, F) be a connected Finsler manifold with spray which has semineg-
ative curvature. Then M is complete if and only if it is geodesically complete.

Proof. This follows from Lemma I.8 and Theorem I1.10. [ ]

We call a simply connected complete Finsler manifold with spray which has seminegative
curvature a Finsler—Cartan—Hadamard manifold.

Corollary 1.12.  Let (M,b,F) be a Finsler—Cartan—-Hadamard manifold. Then the following

assertions hold:

(i) For each p € M the exponential map expp:Tp(M) — M is a diffeomorphism.

(i) If iR — M is a geodesic in M and x € M, then lims_,+o d(a(t),:z:) = 0.

(iii) For two points x,y € M there exists a unique length minimizing geodesic segment a:[0,1] —
M with a(0) =2 and a(l) =y.

Proof. (i) follows directly from Theorem I.10.

(ii) In view of (i), we may assume that M =V is a Banach space and that a(t) = tv for some
v € V. Then the metric increasing property of the exponential function implies that

dy(a(t),z) > dy (tv,x) = ||z — tv]] =

for t - £o0.

(iii) Since exp,:TH(M) — M is surjective, there exists a v € T,(M) with exp,(v) =y. We put
a(t) :=exp,(tv) for ¢t € [0,1]. Then « is a geodesic segment and the length increasing property
of the exponential function implies that ||v]| = dr, () (0,v) < d(z,y) < L(a) = [|v]|, so that «
is distance minimizing. The uniqueness follows from the injectivity of exp, . ]

The technique used in the proof of Corollary 1.12 goes back to Hadamard ([Ha96]) who
proved the result for surfaces. E. Cartan generalized it to finite-dimensional Riemannian man-
ifolds (cf. [Ca63]). The generalization to infinite-dimensional Riemannian manifolds is due to
Grossman [Gr65] and McAlpin McA65]. We closely followed the exposition in [La99].

Problem 1.3. Let (M,b, F) be a Finsler—Cartan-Hadamard manifold.

(1) Let x € M and a:R — M be a geodesic. Is the function f:R — R with f(¢t) = d(=, a(t))?
convex? For the Riemannian case this follows directly from the semi parallelogram law which
implies that for t,s € R we have

A more direct approach is given in [La99, Th. IX.4.4].
(2) Does every finite group acting by isometries on M have a fixed point? For the Riemannian
case this can be proved by the Bruhat-Tits Fixed Point Theorem ([La99, Th. XI.3.2]), using
the fact that (M,d) is a Bruhat-Tits space, i.e., a complete metric space in which the semi
parallelogram law holds. For such spaces a theorem of Serre ensures that every bounded subset
is contained in a unique closed ball of minimal radius.

These properties and those stated in Corollary 1.12 are discussed in the setting of finite-
dimensional Riemannian geometry in E. Cartan’s book [Ca63]. u
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II. Some facts on operators on Banach spaces

In this section we collect some results on operators on Banach spaces. A key result is Theorem

I1.6 saying that if A is a bounded operator on a Banach space for which —A? is dissipative, then

% is a surjective expansion. This condition is in particular satisfied if A is hermitian in the

sense that e®4 consists of isometries. We use this result in Section IV to obtain a criterion for
a normed symmetric Lie algebra to lead to a symmetric space with seminegative curvature.

Dissipative operators

Definition I1.1.  Let Z be a Banach space. We write B(Z) for the space of bounded operators
Z — 7. For z € Z we put

F(z) :={a € Z"|lal < 1,{a,2) = ||z]|}.

We call A € B(Z) dissipative if for each z € Z there exists an « € F(z) with Re(wa, A(z)) < 0.
We write Diss(Z) for the set of bounded dissipative operators on Z. [

Since we only deal with bounded operators, some of the results for dissipative unbounded
operators become much simpler. We recall them in the following theorem.

Theorem I1.2.  For A € B(Z) the following are equivalent:

(1) A is dissipative.

(2) For each t > 0 the operator 1 —tA is expansive.

(3) ||t <1 holds for all t > 0.

(4) Re{a, A(z)) <0 holds for all z€ Z, a € F(z).

(5) For each t > 0 the operator 1 —tA is expansive and surjective.

Proof. (1) < (2): holds also for unbounded operators (cf. [Paz83, Th. 4.2]).

(1) <= (3): We note that for A||A|| < 1 the operator 1 — AA is invertible, hence surjective.
Therefore the assertion is a consequene of the Lumer—Phillips Theorem (cf. [Paz83, Th. 4.3]).
(3) <= (4) also follows from [Paz83, Th. 4.3].

(1) <= (5): Since (1) implies (2), we only have to see that 1 — ¢tA is invertible for each t > 0,
but this follows from Spec(A)N]0, co[= @ which is a consequence of (3) ([Paz83, Th. 4.3]). =

Corollary I1.3. If A € B(Z) is dissipative and Z, C Z a closed A-invariant subspace, then
Aly, ts dissipative.

Proof. This is a direct consequence of Theorem I1.2(2). ]
Lemma I1.4. If ¢ >0 and 7:[0,¢] = B(Z) is a C*-curve with v(0) =1 and ||[y(t)|| < 1 for
oll t, then v'(0) dissipative.

Proof. Let z € Z and a € F(z). Then ||y(¢)(2)|| < ||z|| for all £ > 0 implies that

Re{a, (t).2) < [|z]| = Re{e, 7(0).2)
and therefore Re(w,'(0).2) <0. ]

Definition I1.5. We consider the entire function s:C — C given by the power series

n

S(Z) = Z m

n=1



A Cartan—-Hadamard Theorem for Banach—Finsler Manifolds 9

Then s(z%) = %ﬁl Moreover, From [Re95, §1.3] we recall the product expansion
. = 22
smz:zl_[l(l—m), zeC.
n=

The relation sinh(iz) = isinz now leads to 22z = [T, <1 + ni—;) and therefore to

o0

s(z)zH(l%—nQZﬂ), zeC. [

n=1

Theorem I1.6. For A € B(Z) the following are equivalent:

(1) —A is dissipative.

(2) For each t > 0 the operator s(tA) is expansive.

(3) For each t > 0 the operator s(tA) is surjective and expansive.

Proof. (1) = (2): If —A is dissipative, then the same holds for —tA for all ¢ > 0. Therefore
it suffices to show that s(A) is expansive. Using the product expansion of the function s, we

obtain
i A
s(4) = H (1 + n2772)

n=1

(cf. [Ru73, Th. 10.27]). We use Theorem II.2 to see that each operator 1+ # is expansive, so
that the convergence of the infinite product implies that s(A) is expansive.

(2) = (1): We have s(z) =0 if and only if 2 = —n?x? for some n € N. Therefore the Spectral
Mapping Theorem ([Ru73, Th. 10.28]) implies that the operator s(tA) is invertible if ||tA|| < 72,
Pick € > 0 with ¢||A|| < #%. For t € [0,¢] we put y(t) := s(tA)~!. Our assumption implies that
lv(®)]] < 1 for all ¢, so that 7'(0) = —3; A is dissipative (Lemma 11.4).

(1) = (3): If —A is dissipative, then Spec(4)N] — 00,0[= @, so that the Spectral Mapping
Theorem implies that s(A4) is invertible. The same conclusion holds if we replace A by tA for
some t > 0.

(3) = (2) is trivial. [

Hermitian operators

Definition I1.7. Let Z be a complex Banach space. We write B(Z) for the Banach algebra
of bounded linear operators on Z and GL(Z) for its group of units. We further write

U(Z) ={g € GL(Z):llgll =1lg~" I = 1}

for the group of unitary, i.e., bijective linear isometries of Z. According to [Up85, Cor. 7.8], this
group carries a natural real Banach—-Lie group structure (the topology might be finer than the
operator norm topology) such that its Lie algebra is given by

u(Z) = {z € B(Z):exp(Rz) C U(Z)}.

An operator x € B(Z) is called hermitian if exp(iRx) C U(Z). We write Herm(Z) := iu(Z) for
the closed subspace of all hermitian operators on Z ([Up85, Prop. 14.29]). u

Remark II.8. Condition (4) in Theorem II.2 implies in particular that Diss(Z) is a closed
convex cone, and Theorem I1.2(3) further shows that

Diss(Z) N — Diss(Z) = i Herm(Z) = u(Z).

That u(Z) might be quite small follows from work of Berkson and Porta on the isometry
group of the Hardy spaces of the ball and the polydisc in C". They show that for these Banach
spaces we have u(Z) = Ril, so that Herm(Z) = R1 (cf. [BP80]). A related result due to
Vesentini ([Ve79]) says that unit balls in L!-spaces which are more than one-dimensional are not
homogeneous. ]
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Proposition II.9. Let Z be a complex Banach space and A € Herm(Z). Then —A? is
dissipative and % 18 surjective and expansive.

Proof. If A€ Herm(Z), then itA is dissipative for each ¢ € R (Remark I1.3), so that 1 +itA
is expansive by Theorem I1.2(2). For t # 0 we now see that

14+ 124% = (1 —itA)(1 + itA)

also is expansive. Hence Theorem I1.2(2) implies that —A? is dissipative. Now the assertion
follows from Theorem II.6. ]

Proposition I1.10. Let Z be a Banach space. Then we have:

(i) Spec(g) CS* for g € U(Z).

(i) Spec(x) C R and sup|Spec(x)| = ||z|| for x € Herm(Z).

(iii) g(Z) := Herm(Z)+iHerm(Z) is a closed Lie subalgebra of B(Z) and x+iy — (z+iy)* :=
x — iy defines a continuous involution on ¢g(Z).

(iv) Herm™(Z) := {x € Herm(Z): Spec(x) C Rt = [0,00[} is a closed convex cone with interior
Herm™(Z) N GL(Z) = {x € Herm(Z): Spec(x) C]0,00[}.

(v) The function @:Herm(Z) — R,z — sup Spec(z) is convex and U(Z) -invariant with respect
to the conjugation action.

(vi) ||e?|| = esuPSPec®) for ¢ € Herm(Z).

Proof. (i) (cf. [Up85, Lemma 14.20]) Let v € Z and A € C. Then ||lg.v — Av]| > ||g.v|| —

[All|lo]] = (1 = |A])||v]]. We conclude that for |A| # 1, the operator g — Al is injective with closed

range. The same argument applies to the adjoint of g, showing that g — A1 is invertible.

(ii) (cf. [Up85, Lemma 14. 20]) Let # € Herm(Z), i.e., exp(iRx) C U(Z). Then (i) implies that

for all ¢t € R we have e 5Pe(®) = Spec(e?®) C S'. Hence Spec(z) C R. For the second assertion

we refer to [Up85, Lemma 14.30]

(iii) [Up85, Cor. 14.36]

(iv) [Up85, Th. 14.31]

(v) The U(Z)-invariance of the function ¢ is clear. In view of (iii), we only have to show that

¢ is a convex function on Herm(Z). Let

S:={B e B(2):[Ipll=1=p(1)}
be the set of states of the Banach algebra B(Z). Then for each x € Herm(Z) we have
S(z) = conv ( Spec(z))

([Up85, Cor. 14.37]) and therefore ¢(x) = sup(S(z)). As a supremum of the set S of continuous
linear functions on Herm(Z), the function ¢ is convex.
(vi) The Spectral Mapping Theorem ([Ru73, Th. 10.28]) implies that Spec(e®) = eSPec(®)
and hence that m := supSpec(z) satisfies €™ < sup Spec(e®) < |[e®]|. It remain to see that
lle®]] < e™. Replacing # by x — ml, we may assume that m = 0, i.e., that Spec(z) C —R*.
We will show that this implies that « is dissipative, and hence that ||e*|| < 1 (Theorem II.2(3)).
Let z € Z with ||z]] = 1 and a € F(z). Then the linear functional §:B(Z) — C,
B(A) = (o, A.z) satisfies ||8]| =1=8(1), ie., 8 €S. Now B(z) < supS(x) <0 implies that x
is dissipative. u

III. Symmetric Spaces

For general Banach manifolds one does not have smooth functions with arbitrarily small supports
(cf. [KM97]). Therefore many familiar objects from finite-dimensional differential geometry which
arise in several different guises, require a more restrictive approach in the infinite-dimensional
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setting; some approaches do not really depend on the finite dimensionality, but some correspon-
dences simply break down or become much more subtle. The concept of a spray is robust in
this sense. It is central to our discussion below because it encodes the exponential function of
the underlying manifold. In this section we discuss symmetric spaces in the sense of Loos (cf.
[Lo69]) as spaces endowed with a multiplication satisfying certain axioms. The advantage of this
approach is that it has excellent functorial properties, such as the fact that the tangent bundle
of a symmetric space has a natural structure of a symmetric space.

The notion of a connection on a manifold becomes more subtle in a Banach setting (cf.
[La99]) and the same is true for the higher tangent bundles as used by Loos in [Lo69]. Below we
explain how one associates to a symmetric space a spray with the same symmetries and which
is uniquely determined by this property. In the finite-dimensional case this is done by Loos in
[Lo69] in the context of higher tangent bundles. Since parallel transport along the geodesics of
the spray is given by global symmetries, the so called translations of the space, it becomes quite
easy to verify whether a tangent norm on a symmetric space is invariant under parallel transport.

To proceed further, we assume that the symmetric space M can be written as G/ K, where
G is a Banach-Lie group and K an open subgroup of the group of fixed points of an involution
o. It is a natural conjecture that this is no restriction of generality, but this is not clear (see
Problem III.1). We then derive a criterion for a G-invariant norm on M to lead to a space of
semipositive curvature.

Definition ITI.1. Let M be a smooth manifold. We say that (M,u) is a symmetric space
(in the sense of Loos) (cf. [Lo69]) if

wMxM—M (zy)—>z-y

is a smooth map with the following properties:

(S1) z -« for all x € M.

(S2) z-(z-y) =y forall z,y € M.

S3)x-(y-2)=(r-y) (z-2) forall z,y € M.

(S4) Every x € M has a neighborhood U such that z -y =y implies x =y forall y € U. ]

We want to show that each symmetric space M carries a canonical connection in the sense
of [La99].

Lemma II1.2. If M is a symmetric space and for x € M we put o,(y) :=x -y, then
daz(x) = _ldTw(M) .

Proof. It follows from (S2) that o2 = idas, so that o,(z) = x implies that do,(z) is an
involution on the Banach space V := T, (M).

Let U C V be an open 0-neighborhood and suppose that ¢:U — M is a chart with
©(0) = z. Since z is a fixed point of o,, we may w.l.o.g. assume that o,(V) =V . We consider
the involutive smooth map f:U — U defined by f(u) := ¢ 1(0,(¢(w))). Then f? =idy and
A := df(0) = dp(0)~tdo,(x)dp(0) is an involution. We have to show that A = —1. Suppose
that this is not the case and write

V=VieV., Vi=ker(A—-1), V_=ker(A+1).
We write elements of U as pairs (a,b) € Vi x V_ and consider the function
G:U =YV, G(a,b)=Fl(a,b)— (a,b).
Then
oG oG

%(0,0) = A|VJr - idvJr =0 and ab (0 O) A|V7 - idv7 = —21dv7 .

Hence the Implicit Function Theorem implies that there exists a 0-neighborhood W in V, and
a smooth map ¢: W — V_ such that

G(a,p(a))=0 forall aeW.

Since the zero set of G consists of fixed points of f, and (S4) implies that 0 is an isolated fixed
point of f, we conclude that Vi = {0}, and therefore that A = —1. u
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Proposition II1.3.  Let (M, i) be a symmetric space and identify T'(M x M) with TM xT M .
Then T defines by

v-w =T (p)(v,w)
on the tangent bundle the structure of a symmetric space. In each tangent space T,(M), x € M,
the product satisfies v - w = 2v — w.

Proof. (cf. [Lo69, p.74]) One has to express the properties (S1)—(S3) by commutative diagrams
to see that they are preserved by the functor 7'. For (S1) we write A: M — M x M for the
diagonal map. Then (S1) means that po A = idys, and passing to the tangent maps leads to
TpoTA =idg(pr) because TA corresponds to the diagonal map of T'M under the identification
T(Mx M)=TM xTM.

Condition (S2) can be written as p o (id xu) o (A x id) = ps, where py: M? — M is the
projection onto the second component, and likewise (S3) means that

po (id xp) = po ((mopi2) X (uopis)),

where pia,paz: M® — M? are given by pia(z,y,2) = (x,y), pi3(z,y,2) = (z,2). Applying T
leads to the corresponding conditions for T'pu.

To verity (S4), we first note that the projection m:TM — M satisfies

moTp=ypo(mxm),

showing in particular that T, (M) - T, (M) C T,(M) holds for each z € M. For v,w € T,(M)
Lemma III.2 leads to
v,w) = dp(z, x)(v,0) + dp(z, 2)(0, w)
v,0) + do, (z).w = du(x, x)(v,0) — w.
Now Tu(v,v) = v yields du(x,z)(v,0) = 2v, and therefore v-w = Tu(v,w) = 2v — w. Now
we can verify (S4). Let v € TM and z := n(v). Pick a neighborhood U of x € M such that
z is the only fixed point of o, in U. If w € 7~ 1(U) satisfies Tu(v,w) = w, then we obtain
w(m(v), 7(w)) = w(w), which implies n(w) = w(v) = . Therefore w = v-w = 2v — w implies
v=w. (]

For v € TM we write o,: TM — T M for the symmetry in v given by o,(w) := Tp(v,w) =
v-w (Proposition II1.3) and Z: M — T'M for the zero section.

Theorem II1.4.  The function

F:TM - TTM, F(v):=-T(0ygoZ)(v)
defines a spray on M .
Note that oz o Z: M — T'M, so that T'(cg o Z) maps T'M into TTM .

Proof. First we show that F is a vector field on T M, ie., a section of the bundle
mrm:TTM — TM. We obtain for © = 7(v) the relation
v

mr (F©) = 7 0 Toy 0 2)(0) = oy 0 Z)(x(v)) = 5 Z((v)) = v

(Proposition III.3). This proves that wpp o F' = idyas, so that F' is a vector field on TM.
Moreover,

T(m)F(v) = -T(rooyg o Z)(v) =T (0, 0mo Z)(v) = ~T(0,)(v) = —do,(z)(v) =v

shows that F' is a second order vector field on TM (cf. Definition I.1). For the product on 7'M
we have
0w = Tp(v,w) = dp(x(v), 7(w)) (v, w),

showing that for s € R we have
(sv) - w = Tp(sv,w) = du(r(v), 7(w)) (sv,w) = s(v - w)
if w=0in Ty, (M), ie., 0sy0Z = s0,0Z forall v€TM. This leads to
F(sv) = =T(02p0Z)(sv) = =sT (syamo0z0Z)(v) = T(star) (—sT(0302Z)(v)) = T(srar) (sF(v)).
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Lemma III.5. Let (M,F) be a connected manifold with a spray and f,g:M — M two F -
isomorphisms for which there exists a point x € M with f(x) = g(x) and df (x) = dg(x). Then
f=9

Proof. First we note that for each F'-isomorphism f of M the tangent map T'f preserves
Dexp , and we have foexp = expol' f on Dexp. In particular we get for v € T,(M) the relation

f(exp, (v)) = exp (df (z)v),

showing that the values of f in the neighborhood exp, (T, (M)) of x are determined by f(x)
and df (x).

We consider the subset N of all points p € M such that f and g coincide on a neigh-
borhood of p. It is clear that N is open. Using the regularity of the exponential function
exp,:Tp(M) — M in 0, we see that

N ={p e M: f(p) = g(p),df (p) = dg(p)},

showing that IV is closed. Moreover, z € N implies that N is a non-empty open and closed
subset of M , hence coincides with M . [ ]

Theorem II1.6.  Let (M, u) be a connected symmetric space and F the spray on M defined

in Theorem II1.4. Then the following assertions hold:

(i) Aut(M,p) = Aut(M, F).

(i) F is uniquely determined by the property of being invariant under all symmetries o, ,
reM.

(iii) (M, F) is geodesically complete.

(iv) Let a:R — M be a geodesic and call the maps To,s = 0q(5) © On(0), S € R, translations
along a. Then these are automorphisms of (M, ) with

Tasa(t) =a(t+s) and drss(a(t) = PT(a)

for all s,t € R.

Proof. (i) “C”: Let ¢ € Aut(M,p), ie., ¢opu = po (p X ) holds on M x M. Passing
to the tangent maps, we see that Ty is an isomorphism of the symmetric space (T'M,Tu) (cf.
Proposition II1.3). In particular we have T'poo, = or(,)., 0T on TM for each v € TM. Now
we calculate

FoT(@)0) = ~T(o2i © 2) o T(@)(v) = ~T( 21002 0 Z o))
— T(rig. 0 T() 0 Z)(0) = ~T(T() 0 7y 0 Z)(v)
=-TT(p)oT(oy 0 Z)(v) =TT(p) o F(v).

)
)

“D”: Let p € Aut(M,F) and ¢ € M. In view of the first part of the proof and (S3), we have
o, € Aut(M, F) for each z € M. Hence 00, and o,(,) o ¢ are two F-automorphisms of M
mapping x to ¢(x) such that

d(p 0 0.)(x) = dp(2)do, () = —dp(z)  and  d(0y () © ) () = (o) (P(2))dp(r) = —dp(z)

(Lemma III.2). Therefore Lemma II1.5 implies that @ oo, = 0y, © ¢ holds for all = € M. This
implies that ¢ € Aut(M, p).
(ii) (cf. [Lo69, p. 84]) Let F and F be two sprays on M which are invariant under all symmetries
oy, * € M. We consider the vector field H := F — FonTM.

Let « € M and v:U — M a chart around = whose range is o,-invariant, so that
opU =Y too, | vy © v is defined. We identify TU with U x V' for a Banach space V.
Then T(o,,v)(z,v) = (x,—v) and, more generally, T'(0,.v)(y,w) = (0g,0-Y,dosv(y).w). For
the second tangent map, this leads to

TT (0, v)(x,v,0,w) = (z,—v,0, —w).
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In local coordinates we further have

FU(mﬂ)) = (:U,v,v,f(:v)(v,v)), ﬁU(mﬂ)) = (:L',v,v,f(w)(v,v))

(cf. Remark 1.2), so that Hy(x,v) = (z,v,0, h(x)(v,v)), where h(z) € Sym(V?; V) is a symmet-
ric bilinear map. The invariance of Hy under o,y means that Hy oT(0,.0) = TT(0,,u) o Hy,
and in (z,v) we thus obtain

(z,—v,0,h(z)(v,v)) = Hu(z,—v) =TT (04,v)Hu(z,v) = (z,—v,0, —h(z)(v,v)).

Therefore h(z)(v,v) = —h(z)(v,v) leads to h(z)(v,v) =0, ie., H=0.

(iii) (i) implies that for a geodesic segment a:]—e,e[— M with @(0) = z and y = «a(t) the curve
B = sy o« is a geodesic sement with §'(t) = —a'(¢). For ¢ > 0 this shows that s — (2t —s) is
a geodesic segment compatible with a and defined on ]2t —€,2t 4 ¢[. Continuing in this fashion,
we see that « can be extended to a geodesic R — M, showing that (M, F) is geodesically
complete.

(iv) In view of (iii), the maximal geodesics of M are defined on R. The assertion follows from
[La99, Prop. XIII.5.5] whose proof does also work in our context. m

Corollary IIL.7.  Let (M,un) be a connected symmetric space, F the canonical spray on M,
and b a compatible tangent norm on M . If b is invariant under all reflections o, , x € M, then
(M,b,F) is a Finsler manifold with spray.

Proof.  We have seen in Theorem III.6(iv) that parallel transport along a geodesic a can
be described as a differential of a translation of a geodesic. Since the invariance of b under all
reflections implies that it is invariant under all translations along geodesics, it is also invariant
under parallel transport along geodesics. ]

Remark III.8. In [La99] S. Lang uses the following definition of a symmetric space M.
Let F be a spray on M and D the corresponding covariant derivative ([La99, §VIIL.2]). A
D -symmetry in x € M is an involutive D-isomorphism o,: M — M with o,(z) = z and
do,(r) = —idg, (). The pair (M, D) is called D -symmetric if every point x € M has a
D-symmetry and exp,: T, (M) — M is surjective for each = € M.

As we have seen in Theorem I11.4, every symmetric space in the sense of Loos is endowed
with a natural spray F (hence with a covariant derivative), and both structures have the same
automorphism (Theorem III.6). The problem of Lang’s definition is that it does not even cover
all finite-dimensional symmetric spaces because the exponential function of a general symmetric
space need not be surjective. His motivation to use this definition seems to be his Lemma XIII.5.1
which is covered by our Lemma III.5. Having generalized Lang’s Lemma XIII.5.1 in this way, we
can refer below to the results derived in Ch. XIII of [La99]. n

Example II1.9. (a) If G is a Banach-Lie group and o an involutive automorphism of G, then
we call (G,0) a symmetric Lie group. Let further G° := {z € G:0.x = x} be the subgroup of
o-fixed points, and K C G° an open subgroup. Inspection of the action of ¢ in an exponential
chart of G' shows that K is a Lie subgroup of G'. Furthermore the Lie algebra € of K is a closed
subalgebra of g which is complemented by the closed subspace p := {z € g:do(1).2 = —z}, so
that the quotient space M := G/K carries the structure of a Banach manifold ([Bou90, Ch. III,
§1.6, Prop. 11]). Let ¢:G — M,g — gK be the quotient map. Then a natural chart around
o:=m(1) is given by a restriction of the exponential map

Exp:p > M, z+— w(expz)
of G/K to a suitable open neighborhood of 0 in p. We define a multiplication p on M by
w(gK, hK) = go(g)~ o (h) K

and observe that this is well defined because for ki,k2 € K we have gkio(gk1) to(hk:)K =
gkikTto(9)o (ko K = go(g)o(h)K. One easily verifies that G acts on M by automorphism
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of this multiplication and that (S1)—(S3) are verified. Since G acts transitively on M, it
suffices to verify (S4) in the base point o. There o,(xK) = p(o,2K) = o(z)K implies that
do,(0) = —idy, (ar), and hence that o is an isolated fixed point. This proves that (M, u) is a
symmetric space.

To calculate the geodesics of such a symmetric space, we consider the base point o and
v € To(M) = p. The identification p = T,(M) is obtained by the bijection dg(1)|,:p — T,(M).
Let a:R — M be the geodesic with a(0) =0 and &/(0) = v, and let 7 := 0, (1) © 0a(0) denote
the translations along «. Then

d

gv ::E

is the unique Killing vector field on M satisfying &,(0) = v and 0,.§, = =&, (cf. [La99, Th.
5.8]). For X € p we consider the vector field

T M — TM
t=0

exp(tX).p

d
nx(p) =t

T dt
which is a Killing vector field satisfying o,.nx = —nx and nx (o) = dg(1).X. We conclude that
for v = dg(1).X we have nx =¢§,, so that the geodesic a is given by

a(t) = exp(tX).o = Exp(tX).

The preceding considerations show that Exp = exp, odg(1) |, .
(b) Each Banach-Lie group G is a symmetric space with respect to the multiplication

ple,y) =y~ .
This can be seen by using the construction under (a). The Lie group G x G acts transitively
on G by (¢1,92).¢ = glwggl, the stabilizer of the identity 1 is the diagonal subgroup K :=
{(9,9):9 € G}, and in this sense G = (G x G)/K . Moreover, K = (G x G)?, where o is the
flip involution on G x G given by o(x,y) = (y,x). Then the formula under (a) yields

n(a,y) = u((x,1).1,(y,1).1) = (2,1)(L,2)(L,y).1 = oy a.

For the special case, where G =V is a Banach space and the group structure is given by addition,
we simply have u(x,y) = 2¢ —y (cf. Proposition III.3). The exponential map

Exp:p={(X,-X): X €g} > G

is given by Exp(X,—X) = exp(X)exp(X) = exp(2X), so it essentially can be identified with
the exponential map exp:g — G of the Lie group G. ]

Problem IIL.1. Show that the group G := Aut(M, ) of automorphisms of a symmetric space
(M, p) is a Banach-Lie group acting transitively on M, so that M =2 G/K, where K = G, for
apoint p € M, and K is an open subgroup of the group of fixed points in G for the involution 7
on G given by 7(g) := op0goop. The corresponding proof for the finite-dimensional case given
by Loos in [Lo69] uses Palais’ Theorem on the integrability of a finite-dimensional Lie algebra
of complete vector fields to a smooth Lie group action. It seems to be doubtful that this line of
argumentation could persist in the Banach setting. Nevertheless, we expect the fact to be true.
If M is simply connected, we expect that Aut(M, p), coincides with the Banach—Lie group of
automorphisms of the Banach-Lie triple structure on T,(M). |

From now on we consider the setting of Example II1.9(a), where (G, o) denotes a connected
symmetric Banach-Lie group and M = G/K. We want to turn M into a Finsler manifold on
which G acts isometrically. We call a norm on a Banach space compatible if it defines the original
topology. In this sense we assume that there exists a compatible norm on p which is invariant
under the group Ad(K). We identify the tangent bundle T'(M) of M with the associated bundle
T(M) = G x g p, where the action of K on G x p is given by k.(g,7) = (gk ', Ad(k).x). We
write [g,v] € T(M) for a tangent vector in gK € M. Then by ([g,v]) := ||[g,v]|| := ||v|| is well-
defined and defines a tangent norm on M which is invariant under the action of G on T'(M)
which is simply given by g.[g1,v] = [gg1,v]. We call (M,by) a Finsler symmetric space.
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Lemma III.10. We identify T,(M) with p and write py: M — M for the map z — g.x.
Then the derivative of Exp in = € p is given by

sinh ad x

dExp(z) = dptexpz(0) ada |P'

This map is invertible if and only if Spec ((adz)?],) N {—n?x?:n € N} = {0}.
Proof. (cf. [Hel78, Th. IV.4.1]) We recall that for each = € g we have

1 _e—adw

dexp(z) = dAexpe (1) A2

where Ap:G — G, g — hg denotes the left multiplication. Therefore we obtain for y € p:

1—e ad x
dExp(z).y = dg(exp x)dexp(x).y = dg(exp x)dAexp (1) .Y
1 — ¢ ads sinh ad x
= dltexp +dq(1) ——————.y = dtexps ————— -,
Hexp q(1) ade Yy Hexp ad Y
because
1— e 2de _1—coshadz sinhad x
ade 7~ ade _adw
ce b

This proves the first assertion.
For z € C we recall the function s from Definition II.5 and note that the zeros of s are the
numbers —n*7?, n € N. In view of 88b2dz | — g((adx)?|,), the Spectral Mapping Theorem

([Ru73, Th. 10.28]) shows that this operator is invertible if and only if the spectrum of (adz)?|,
contains no zeros of the function s. This completes the proof. ]

Proposition II1.11.  The tangent norm turns M into a Banach—Finsler manifold.

Proof. To see that the tangent norm on M is compatible, in view of the transitivity of the
G -action on M , it suffices to check this for the canonical chart about o given by the exponential
function. According to Lemma II1.10, we have for z,v € p:

sinhad «
I|d Exp(z).v|| = ‘ W.UH = ||F(2)-0]],
where F:p — B(p) is a continuous function with F(0) = 1. Hence there exists a zero

neighborhood U of 0 in p and m,M > 0 with ||[F(z)!| < m and ||F(z)|| < M for all
x € U. Then
mljv]| < [|dExp(z)(v)[| < M]lv]]

for all # € U and v € p proves the compatibility of the tangent norm on M . |

Proposition I11.12.  Endowing the Finsler symmetric space (M,bys) with the canonical spray
F', we obtain a geodesically complete Finsler manifold with spray (M,by, F).

Proof. This is an immediate consequence of Corollary II1.7. ]

The following lemma is needed in the proof of Theorem III.14.

Lemma I11.13. For an element a of the Banach algebra A we have:

(i) ker(e® —1) =P,z ker(a —n2mil).

Gii) If e* = 1, then a is a semisimple element with finite spectrum and purely imaginary
eigenvalues.

Proof. (i) We only have to observe that all assumptions of [Bou90, Ch. 3., §6.4, Lemme 2]

are satisfied because all zeros of the holomorphic function f(z) =e* —1 on C are simple and

given by the set 2miZ .

(ii) is a direct consequence of (i). u
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Theorem II1.14. If M has seminegative curvature, then the exponential map Exp:p — M
is a covering of Banach manifolds and ' := {x € p:Expx = o} is a discrete additive subgroup
of the Banach space p with m (M) =T and M = p/T".

Proof. The first part of the assertion follows from Theorem 1.10. Let = € p with Expx = o,
ie., expxr € K CG?. Then expx = o(expx) = exp(—x) implies that exp 2z = 1. We conclude
that e?2d® = 1, showing that adz is diagonalizable with finite purely imaginary spectrum.
Hence (adz)?|, has non-positive real eigenvalues (Lemma II1.13(i)). Since Exp is regular in
every multiple of z, we conclude that (adz)?.p = {0}, and since adz is diagonalizable, that
[#,p] = {0}. Likewise we get (adz)?.t C (adz).p = {0} and therefore adz.t = {0}, showing
that o € 3(g). Let ' := Exp (o). Then I' C 3(g) Np is a discrete subgroup of p and for z € I
and y € p we have

Exp(z +y) = q(exp(z + y)) = q(expyexpz) = expy. Expz = expy.o = Expy.

Therefore I' can be viewed as the group of deck transformations of the covering map Exp:p — M,
so that the fact that p is simply connected implies that =1 (M) =" and M = p/T. |

We conclude this section by a characterization of the condition that translates the property
of a Finsler symmetric space (M,bys, F') to have seminegative curvature to a property of the
corresponding symmetric Lie algebra (g, do(1)).

Proposition II1.15.  For a Finsler symmetric space M = G/K , the following are equivalent:
(1) M has seminegative curvature.
(2) For each x € p the operator S2229Z | — g((ad x)?|,) is surjective and expansive.

3) For each x € p the operator $8Rade | — o((ad 1)? is expansive.
adz P p

(4) For each x € p the operator —(adz)?|, is dissipative.
Proof.  This is an immediate consequence of the formula for d Exp(z) (Lemma II1.10), the
definition of seminegative curvature (Definition I.4), and Theorem IL.6. ]

The following proposition covers the case where M is a Riemannian symmetric space in
the sense of Hilbert manifolds. If M is a Riemannian symmetric space, then the norm on p is
defined by a scalar product (-, ).

Proposition II1.16.  If p is a Hilbert space and the operators (adz)?|,, © € p, are non-
negative hermitian, then (SNC) is satisfied.

Proof. If A:= (adx)?|, is non-negative and hermitian, then |le=*4|| < 1 for all ¢ > 0 follows
from the functional calculus for hermitian operators on the Hilbert space p. Therefore —A is
dissipative. u

IV. Criteria for seminegative curvature and related concepts

In the light of Proposition III.15 and Theorem III.14, it is an important problem to find criteria
for a normed symmetric Lie algebra (g,7,b) which imply (SNC) and which can be checked in
many situations. Such criteria will be derived in Section IV, where we will show in particular
that hyperbolic normed symmetric Lie algebras satisfy (SNC).

Definition IV.1. Let g be a Banach-Lie algebra, where b:g — R denotes the norm
function on g, 7 a continuous linear involutive automorphism of g, g = € @ p the 7-eigenspace
decomposition, and assume that the norm b on p is invariant under e*d¢. Then we call the
triple (g,7,b) a normed symmetric Lie algebra.

(a) We say that (g,7,b) satisfies (SNC) (seminegative curvature) if for each = € p the operator
—(adx)? |, is dissipative. Note that this condition depends only on the norm on p.

(b) We call (g, 7,b) hyperbolic if b°(z+iy) := b(z+y), v € £, y € p, defines a norm on g° = t+ip
which is invariant under the group Inn(g¢) := (48} of inner automorphisms of g°.
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(¢) A normed symmetric subalgebra of (g,7,b) is a triple (g1,71,b1), where g; is a closed 7-
invariant subalgebra of g, 71 = 7|q, , and by = b|g, .

(d) Let (g;,75,b;), j = 1,2, be two normed symmetric Lie algebras. Then g := g1 & g2 is
a Banach-Lie algebra with respect to b(z,y) := max(b;(z),b2(y)), the prescription 7(x,y) =
(r1(z),m2(y)) defines a continuous involution on g with p = p; @ p2, so that we obtain the
normed symmetric Lie algebra (g,7,b). It is called the sup direct sum of (g;,7;,b;), j =1,2.
(e) Let (g,7,b) be a normed symmetric Lie algebra and X a compact space. Then C(X,g)
is a Banach-Lie algebra with respect to bx(f) := sup,cx b(f(x)). Moreover, 7x(f)(z) :=
7(f(x)) defines an involution on C(X,g), which leads to the normed symmetric Lie algebra
(C(Xag)7TX7bX)' u

Lemma IV.2. (i) If the normed symmetric Lie algebra (g,7,b) satisfies (SNC), then every
normed symmetric subalgebra satisfies (SNC).

(ii) Sup direct sums of two normed symmetric Lie algebras with (SNC) satisfy (SNC).

(iii) If (g, 7,b) satisfies (SNC) and X is a compact space, then (C(X,g),7x,bx) satisfies (SNC).
Proof. We use the notation of Definition IV.1.

(i) follows directly from Corollary II.3.

(ii) Let © = (z1,22) € p =p1®p2. Then A:= —(adx)?|, = A1 ® A, where A; := —(adxz;)* |y, ,
j=1,2. For each t > 0 the operators 1 —tA;, j = 1,2, are expansive, so that

(X = 2A) (1, y2)[| = max([|(X = A1) (y)|l, [1[(1 = £42) (y2)[]) = max(llya[]; lly2ll) = [I(y1, y2) I

Now Theorem I1.2(2) shows that A is dissipative, hence that g = g1 @ go satisfies (SNC).
(iii) For f,g € C(X,p) and t > 0 we have

11 = t(ad £)*)(9)l] = sup,cx (1 = t(ad £(2))*)(g(2))l] > sup,cx lg(@)ll = llgll.

Again Theorem IL.2(2) shows that —(ad f)? |c(x,p) is dissipative, so that C'(X,g) satisfies (SNC).
[

With Theorem I1.6 we can derive a quite handy criterion for a normed symmetric Lie algebra
(g,7,b) to satisfy (SNC). The following concept will be useful in this context.

Definition I'V.3.  We say that a real Banach-Lie algebra g is elliptic if the norm on g is
invariant under the group Inn(g) := (e?48) C Aut(g) of inner automorphisms. u

A finite-dimensional Lie algebra g is elliptic with respect to some norm if and only if it is
compact. In fact, the existence of an invariant norm for e*d® implies that the group of inner
automorphisms is relatively compact, which in turn implies that g is a compact Lie algebra. In
this case the requirement of an invariant scalar product leads to the same class of Lie algebras, but
in the infinite-dimensional context this is different. Here the requirement of an invariant scalar
product turning g into a real Hilbert space leads to the structure of a complex L*-algebra on the
complexification gc of g. Simple L*-algebras can be classified, and each L*-algebra is a Hilbert
space direct sum of simple ideals and its center (cf. [CGM90], and also [St99] for a classification
in a Lie theoretic context). In particular the classification shows that Every L*-algebra can
be realized as a closed subalgebra of the L*-algebra By;(H) of Hilbert—Schmidt operators on a
complex Hilbert space H. Therefore the requirement of an invariant scalar product on g leads
to the embeddability into the Lie algebra us(H) of skew-hermitian Hilbert—Schmidt operators
on a Hilbert space H. The class of elliptic Lie algebras is much bigger. It contains the algebra
u(A) of skew-hermitian elements of a C*-algebra A and in particular the Lie algebra u(H) of
the full unitary group on a Hilbert space.

Another interesting point is that finite-dimensional connected Lie groups with compact Lie
algebra have a surjective exponential function, so that it would be conceivable at first sight that
this might be true for infinite-dimensional groups with elliptic Lie algebras as well. Unfortunately
this is false, as shown by Putnam and Winter in [PW52]: the orthogonal group O(H) of a real
Hilbert space is a connected Banach-Lie group with elliptic Lie algebra, but its exponential
function is not surjective.
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Lemma IV.4. If Z is a complex Banach space, then the Lie algebra u(Z) of the group U(Z)
of isometries of Z is elliptic.

Proof.  The operator norm on u(Z) is invariant under conjugation with elements of U(Z),
hence invariant under the automorphisms e1?, z € g, which are given by €%y = e®ye*.
Now the assertion follows from the closedness of u(Z) in B(Z) ([Up85, Cor. 14.36]). =

Lemma IV.5. Let g be elliptic.
(i) Fach closed subalgebra of g is elliptic.
(i) If a< g is a closed ideal, then the quotient algebra g/a is also elliptic.

Proof. (i) Let h C g be a closed subalgebra. Each inner automorphism of § extends to an
inner automorphism of g, so that each Inn(g)-invariant compatible norm on g restricts to an
Inn(h)-invariant compatible norm on b.

(ii) The norm on the quotient space g/a is given by ||z + a|| = infyeq ||z + y|| = dist(z,a). Since
the norm on g and the subspace a are invariant under inner automorphisms, and each inner
automorphism of g/a is obtained by factorization of an inner automorphism of g, we see that
the norm on g/a is invariant under inner automorphisms. ]

Lemma IV.6. If Z is a Banach space, Y C Z a closed subspace, and © € B(Z) with .Y CY
and Spec(z) C R, then Spec(z|y) C Spec(z) C R.

Proof.  We consider the Banach algebra B := B(Z) and the closed subalgebra A := {b €
B:b.Y CY}. Since Spec(z) = Specg(z) is a compact subset of R, it does not separate C, and
[Ru73, Th. 10.18] implies that Spec,(x) = Specg(x). Further the map ' A — B(Y),a — aly is
a homomorphism of Banach algebras with identity, showing that Spec(z|y) = Specg(z)(r(z)) C
Spec4(x) for each x € A. This proves the lemma. [

Note that in general it is false that if an operator € B(Z) preserves a closed subspace
Y, then Spec(z |y) C Spec(z). A typical example is the shift operator on Z := [?(Z) which
preserves Y = [?(N). In this case z is unitary, but Spec(z|y) is the closed unit disc (see [Ha67,
Prob. 82]).

Lemma IV.7. Let Z be a Banach space. If ¢ C B(Z) and x € R with Spec(z) C R, then
Spec(adg z) C R.

Proof. Since Spec(z) C R, the same holds for the left and right multiplication operators
Az and p; on the Banach algebra B(Z) of all bounded operators on Z. Using [Ru73, Th.
11.23], we conclude that Specy(z) adz = Specy (4 (Az — p) € R, and Lemma IV.6 shows that
Spec(adg z) C R. [

The following criterion is a very direct one.

Proposition IV.8.  Let (g,7,b) be a normed symmetric Lie algebra. Then the Banach—-Lie
algebra g¢ := €+ ip is elliptic with respect to b°(x +iy) :=blx +y) for x €L, y € p, if and only
if (g,7,b) is hyperbolic. In this case (g,7,b) satisfies (SNC).
Proof.  The first assertion follows from the definition of the hyperbolicity of (g,7,b). Let
us assume that (g, 7,b) is hyperbolic. We extend the norm b° on g¢ to a compatible norm on
gc =g +ig =g° +ig® by b(a+ ib) := max(b®(a), b¢(b)) for a,b € g°.

Let 2 € p C ig°. Then the operator adg. x € B(gc) is hermitian, so that Theorem IL.6
shows that —(adg, z)? is dissipative. Since it preserves the subspace p, the operator —(adz)? |,
is dissipative by Corollary I1.3. ]

Corollary IV.9. If g = tc with p = it, then (g,7,b) satisfies (SNC).

Proof. In this case we have g° =t +ip =2 £ B ¢ as Lie algebras, where ¢ corresponds to the
diagonal subalgebra of €@ ¢ and ¢p to the antidiagonal subspace. It is clear that our assumption
implies that the Lie algebra £ @ £ is elliptic with respect to the norm ||(z,y)|| = max(b(z), b(y))
which corresponds to the compatible norm b on g given by

b(z +iy) = [|(z + y, 2z — y)|| = max(b(z + y), b(z — y)).
In view of 5|p = b|,, Proposition IV.8 implies that (g,T,g) and hence (g, 7,b) satisfy (SNC). m



20 Karl-Hermann Neeb

Corollary IV.10. If Z is a complex Banach space and g C Herm(Z)c is a closed real Lie-
subalgebra endowed with the involution T(x + iy) = —x + iy for x +iy € g, =,y € Herm(Z),
then (g,7) satisfies (SNC) with respect to the operator norm.

Proof. The Lie algebra g° = €+ ip is a closed subalgebra of the Banach—Lie algebra u(Z) on
which the operator norm is invariant under Inn(u(Z)). Therefore Proposition IV.8 applies. m

The following proposition shows that for finite-dimensional symmetric Lie algebras cor-
responding to Riemannian symmetric spaces of non-compact type, any invariant norm satisfies

(SNC).

Proposition IV.11.  Let (g,7,b) be a finite-dimensional normed symmetric Lie algebra such
that for each x € p the operator adx is diagonalizable over R. Then it satisfies (SNC).

Proof. Since (g,7) is a hyperbolic symmetric Lie algebra in the sense of [KN96], Prop. 1.19 in
[Ne99b] shows that the convex Inn(€)-invariant function f := b|, extends to an Inn(g®)-invariant
convex function on ig¢ given by

f() = sup b(q(Inn(g%).z)),

where ¢:p + i€ — p is the projection along €. Since every ideal of g contained in ¢ splits as
a direct summand, we may assume that £ does not contain any such non-zero ideal. Then one
easily verifies that f is a norm on ig® which is invariant under Inn(g®). We conclude from
Proposition IV.8 that that the symmetric Lie algebra (g, 7, f) satisfies (SNC). u

Remark IV.12. Proposition IV.11 implies that for any symmetric space M := G/K corre-
sponding to (g,7) and for every G-invariant Finsler structure on M , the symmetric space M
has seminegative curvature. Hence all the results of Section I apply to M endowed with any
invariant Finsler structure. If M is simply connected and the assumptions of Proposition IV.11
are satisfied, then M = R” x GG1/K;, where G1/K; is a Riemannian symmetric space of non-
compact type (cf. [KN96]), so this result deals essentially with Finsler structures on Riemannian
symmetric spaces of non-compact type. [ |

V. Polar decompositions of symmetric Lie groups

In this section we will prove a general theorem about the existence of a polar decomposition of
a symmetric Banach—Lie group (G, o) which also covers cases that cannot be deduced from the
finite-dimensional case or the polar decomposition of the operator group GL(H). In particular
it will apply to the complex group G = Aut(Z, Z) of a JB*-triple Z, where K = Aut(Z) is the
automorphism group of Z (cf. Definition VI.1 below).

From now on (G,o) denotes a connected symmetric Banach-Lie group, K = G, and
M := G/K as in Example III.9.

Theorem V.1. If (g,7,b) satisfies (SNC), then the polar map
m:K xp—>G, (k,x)— kexpx

is a surjective covering map whose fibers are given by the sets {(kexpz,z — z):z € '}, where
I :=Exp '(0) Cp is the fundamental group of G/K .

Proof. It is clear that m is a smooth map. First we show that its differential is everywhere
regular. Let A\ denote the left-multiplication by k& on G. Then m o (Ay x idy) = Ap o m shows
that it suffices to show that dm(1,z) is regular for each = € p. We recall that for each = € g
we have

l_e—adz 6ad;zc_]_

deXp(J,‘) = d/\expz(]-) = dpexp$(1)

adz adz
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Therefore

ead T

Am(1,2)(y,2) = dpesp s (1) + dexp(@). = dpops(1)-(y + ——=-2) = dpexps (1).F (@)1, 2),
where the map F'(z) € B(g) has the following block structure with respect to g = €@ p:

1 coshadz—1
F(.%') = <0 sinal?aitdz )

adz

Since si8hade jqipyvertible on p, the operator F(z) is invertible, and thus dm(1,z) is invertible.

We conclude that the differential of m is everywhere regular.

In view of Theorem IIL.14, the exponential map Exp:p — G/K is a covering whose
fibers are given by the cosets of the subgroup I' of the Banach space p. We conclude that
Kexpp = (expp)K = ¢ ' (Expp) = ¢ }(G/K) = G, so that m is surjective.

If m(ky,z1) = m(ks, z2), then

Exp(—x1) = q(m(ky, 1)) = q(m(kz, x2)™") = Exp(—>)

implies that z := x; — 2 € T' (Theorem II1.14). Therefore ki exp(z1) = koexp(z1 — 2) =
ko exp(—z)exp(x1) leads to ke = kiexp(z) and z2 = x1 — z. Conversely, for z € T, we get
m(kexpz, v —z) = kexpzexp(x — z) = kexp zexp(—z) expx = kexpx = m(k,z). This proves
the statement about the fibers of m. We conclude that the map m: K x p — G is a covering,
and T is the corresponding group of deck transformations. ]

Corollary V.2.  If (g,7,b) satisfies (SNC), then the space G := K x p carries a natural
structure of a Banach—Lie group such that the polar map m: G — G is a covering homomorphism.

Proof. This is standard covering theory of groups ([Bou90, Ch. III, §1.9]). ]

Lemma V.3. Suppose that two elements x,y in the Lie algebra g of the Banach—Lie group G
satisfy expx = expy, and that exp is non-singular at ©. Then [z,y] =0 and exp(z —y) =1.

Proof. (cf. [HHL89, V.6.7]) All elements expty, ¢t € R, commute with expa = expy. Thus
exp x = exp(ty) exp x exp(—ty) = eXp(et ad )

for all t € R, and therefore 0 = < |,—o exp(e!®¥z) = dexp(z).[y,z]. Since exp is non-singular
in & by assumption, we obtain [z,y] = 0. Then exp(x — y) = exp(z) exp(—y) =1 follows. m

Lemma V.4. If Z is a Banach space, then the function
exp: Herm(Z) — GL(Z), z— €e”

18 1njective.

Proof. Suppose that e* = e¥ for x,y € Herm(Z). In view of Lemma IV.7, we have
Spec(adz) C R on B(Z), so that x is a regular point for the exponential function. Hence
Lemma V.3 implies that exp(x —y) = 1. Now we use Lemma II1.13(ii) to see that x — y is
semisimple with Spec(z — y) = {0} which implies that z = y. u

Theorem V.5. Let Z be a complex Banach space and (G,0) a connected Banach-Lie
subgroup of GL(Z) whose Lie algebra g is a conjugation invariant subalgebra of Herm(Z)¢c such
that the complex conjugation on w(Z)¢ induces do(1) on g. Then the involution on g integrates
to an involution on G whose fized point group K is connected, and we have a diffeomorphic
polar decomposition

K xp— Kexpp =G.
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Proof.  First we consider the simply connected covering group G of G with Lie algebra g.
Then the involution 7 on g integrates to an involution ¢ on G. In view of Corollary IV.10, the
normed symmetric Lie algebra (g, 7, || - ||) satisfies (SNC), so that Theorem V.1 implies that the
polar map m: G x p— G is surjective and its fibers are given by the group

I={repexpreG}={recpexpr=1}

If = € p satisfies expgy 2z = 1, then we obtain in particular e* =1 on Z, so that Lemma V.4
yields x = 0. Hence I' = {0} shows that m is bijective, hence a diffeomorphism. In particular
we see that the group G is connected.

Now we consider the kernel D C G of the covering map 7 G — G. Let d € D and write
it as d = kexpx with o(k) =k and = € p. Then 7(k) = ¢~® is an isometry. The same holds
for e = w(k)~!. Therefore Spec(e®) C S! implies that Spec(z) C iR, so that Spec(z) C R
leads to Spec(z) = {0}, so that ||z|| = sup|Spec(x)| = 0 (Proposition III.10(ii)). This shows
that D C G . Therefore the _polar decomposition of G factors directly to a bijective polar map
K xp = G, where K = 71(G7) = (expg t) is a closed connected Lie subgroup of G. We also
see that the involution o on G factors to an involution og on G. For g = kexpxz we have
oc(9) = kexp(—z), showing that K = G7. =

Corollary V.6. If Z is a complex Banach space and G(Z) the connected Banach—Lie group
with Lie algebra g(Z) := u(Z)c corresponding to the analytic subgroup (expg(Z)) C GL(Z), then
G(Z) permits an antiholomorphic involution o with G(Z)” = U(Z)o, and we have a bijective
polar map U(Z)o x iuw(Z) — G(Z). [

We conclude this section with some general remarks concerning the relation between the
polar map and the exponential function of G/ K.

Remark V.7. (a) The proof of Theorem V.1 shows that the polar map m is regular if and only
if %‘f—wl | is regular for each x € p. This is equivalent to the regularity of the exponential
function Exp of M = G/K.

(b) The polar map m is a diffeomorphism if and only if Exp is a diffeomorphism. From
Kexpp = (expp)K = 7 1 (Expp) it follows that m is surjective if and only if Exp is surjective.
In view of (a), it therefore suffices to check that m is injective if and only if Exp is injective.
If Exp is injective, then the proof of Theorem V.1 shows that m is injective. If, conversely, m
is injective, and Expxz; = Expxs, then expx; € expas K implies that expxz; = expxs and
therefore ; = 2.

(c) Suppose that M = G/K is a connected symmetric space such that Exp is a diffeomorphism,
but we do not assume that G is connected. Since expp is contained in the identity component
Gy C G, the open subgroup Gy acts transitively on M . Therefore the polar map m: K xp — M
is surjective. Moreover, (a) implies that it is regular, and the injectivity on Ky x p implies that
it is injective on K X p, hence a diffeomorphism. ]

VI. Examples and open problems

In this last section we discuss some open problems arising in the context of this paper. We also
discuss some special classes of Finsler symmetric spaces that have already been studied in a more
restrictive context in the literature.

Bounded symmetric domains

Before we turn to bounded symmetric domains, we have to recall some definitions concern-
ing Jordan triples.
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Definition VI.1. Let Z be a vector space over a field K and (z,y,2) — {z,y,z} a
trilinear map. For z,y € Z we define the operator zOy by (zOy).z := {z,y,z} and put
P(z)(y) :={x,y,x}. Then Z is said to be a Jordan triple if

(IT1) {z,y,2z} = {z,y,2} and

(JT2) [aOb, 0y] = ((a0b).z) Oy — 20((b0a).y)

holds for all a,b,z,y,z € Z.

(a) A real Jordan triple Z is called hermitian if Z has a complex structure such that {z,y,z}
is complex linear in z, z, and antilinear in y.

(b) A Banach—Jordan triple is a Jordan triple which is a Banach space and for which the map
{-,+,-}:Z3 — Z is continuous.

(¢) A hermitian Banach-Jordan triple is a hermitian Jordan triple for which Z is a Banach—
Jordan triple, and, in addition, for u,v € Z the operator udv — vOu is contained in the Lie
algebra of the Banach—Lie group U(Z) (cf. [Up85, Def. 8.7]). A hermitian Banach—Jordan triple
is said to be positive if Spec(uOu) C RT for all u € Z.

(d) A JB*-triple is a positive hermitian Banach-Jordan triple for which [[u0u|| = |Ju||? holds
forall ue 7. ]

Let Z be a Banach space and D C Z be a bounded symmetric domain, i.e., an open
connected subset such that for each z € D there exists an involution j, € Aut(D), the group of
biholomorphic mappings of D, such that z is an isolated fixed point of j,. According to [Up85,
Th. 20.23] the space Z carries the structure of a JB*-triple and D is biholomorphic to the open
unit ball in Z. Therefore we assume from now on that Z is a JB™*-triple and

D={z€Z: |z < 1}.

The group G := Aut(D) carries a natural Banach-Lie group structure such that the transitive
action of G on D is real analytic ([Up85, Th. 13.14]). If K C G is the stabilizer of 0 € D, then
D = G/K, and conjugation with jo leads to an involution on G, showing that D is a symmetric
space in the sense of Example II1.9. The domain D carries a natural Finsler structure given by
the Carathéodory tangent norm

b(z,v) := sup {Mf € Hol(D,A)}, (x,v) e T(D)=D x Z,

1—|f(2)?
where A C C is the open unit disc (cf. [Up85, Prop. 12.23]). The corresponding metric is the
Carathéodory metric

d(z,y) := sup{d(f(z), f(y)): f € Hol(D,A)},

where § is the Poincaré metric on A ([Up85, Cor. 12.30]). It easily follows from the Hahn—
Banach Theorem and the Cauchy estimates on A that b(v) = ||v|| for v € To(D) (cf. [Up85,
Prop. 12.25]). In this sense we identify Z with To(D) as Banach spaces. Below we will show
that the symmetric Finsler manifold D has seminegative curvature.

A typical examples of a JB*-triple is the space B(H_, H1) of bounded operators from the
Hilbert space H_ to the Hilbert space H; endowed with the operator norm. The triple product
is given by {z,y,2} = L(zy*z + zy*z). Closed subtriples of B(H_, H.) are called JC*-triples.
These are also JB*-triples, and, more generally, every closed sub-triple of a JB*-triple is a
JB*-triple ([Up85, Cor. 20.9]).

Example VI.2. Let Z = B(H_,Hy), where Hy are Hilbert spaces. We endow the Hilbert
space H := H, @ H_ with the indefinite hermitian form given by h(v,w) := (v1,w1) — (va, wa).
Then we can write D as G/K, where G C GL(H_ @ H,) is the pseudo-unitary group

G=UH_,H;)={9 € GL(H): (Vv € H) h(g.v,g.v) = h(v,v)}.

In fact, the group G acts transitively on D by g.z = (az +b)(cz +d)~*, where g = (Z Z) is

written as a (2 x 2)-block matrix according to the decomposition H = H, & H_. The stabilizer
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Go of 0 € D is the subgroup K = U(H_) x U(H.). For the involution o(g) := (g*)~! (where
g* denotes adjoint operator on H ), we therefore obtain K = G’ and g =u(H;,H_) =t dp,
where ¢t =u(H;) @ u(H_) and

p={(5 )exesom} wa (L )] =1x

Therefore g¢ = €+ ip = u(H) is an elliptic Lie algebra where the norm on ip corresponds to
the operator norm on B(H). We conclude that in this case (g,7,||-||) is a hyperbolic normed
symmetric Lie algebra with respect to 7(X) = —X*, hence satisfies (SNC). [

Example VI.3. Let X be a compact space and V' be a finite-dimensional JB*-triple. Then
Z = C(X,V) is a JB*-triple with respect to {f,g,h}(z) = {f(z),g(z), h(z)} and the norm
£l == sup{|lf(z)|:2 € X}. In fact, for f,g,h € Z we have ||e!/5H) h|| = ||h|| because
e @Bf @) h(x)|| = ||h(x)|| holds for each z € X, and likewise we obtain |le /5f|| < 1, which
in turn leads to Spec(fOf) C RT (Proposition I1L.9(iii)). Moreover |[{f, f, f}(@)|| = ||f(=)|?
([Up85, Lemma 20.8)) and || f(2)3f (z)]| = [|f(«)||* for each = € X yield [[{f, f, f}|| = | f|I* and
therefore [|fI? < [[fOfI] < LI

Since V is finite-dimensional, we can view V as py, where gy = &y @ py is a finite-
dimensional hyperbolic normed symmetric Lie algebra. Then g := C(X,gy) satisfies (SNC)
(Lemma IV.2(iii)). =

Theorem VI.4. If D is a bounded symmetric domain, then D is a Finsler symmetric space
with seminegative curvature.

Proof. Let Z be the corresponding JB*-triple containing D as its open unit ball.

According to the Gelfand-Naimark Theorem for JB*-triples ([FR86]), every JB*-triple
Z is isometrically isomorphic to a closed subtriple of Z = B(H) > C(X,V), where H is a
Hilbert space, X is a compact space and V is a finite-dimensional JB*-triple (one can take
the irreducible JB*-triple of dimension 27). Combining Examples VI.3 and VI.4 with Lemma
IV.2(ii), we see that Z can be identified with p in a normed symmetric Lie algebra (g,7,b) with
(SNC), where p is the (—1)-eigenspace of 7.

We put p:= Z C Z = p and consider the closed subspace £ := {X € t:[X,p] Cp}. Then
g:=EDp is a closed T-invariant subalgebra of g, hence a normed symmetric Lie algebra with
(SNC) (Lemma IV.2(i)). Now the assertion follows from Propositions ITI.15. ]

Theorem VI.4 implies in particular that the polar map of the group Aut(D) is a diffeomor-
phism. This result has also been obtain by W. Kaup (cf. [Ka83, Prop. 4.6]).

Remark VI.5. Let Z C B(H_,H;) be a JC*-triple. We identify Z with p for the Lie
algebra g = aut(D) of the Banach-Lie group G := Aut(D)y. Then the exponential function of
the symmetric space D = G/K is a real diffeomorphism Exp: Z — D. Using [Up85, Prop. 5.21,
Lemma 18.12], and writing |z| := (22%)2 € B(H.), we obtain

tnh -1 _ sinh tanh
Exp(z) = S |Z|zcosh ((z*z)%) 1 _ s |2 (cosh |2[)~'z = anh |z|
|| B B
(cf. [Up85, p.257]). This is a generalization of the well known formula for the unit disc. m

Example VI.6. A Jordan algebra is a vector space Z with a commutative (not necessarily
associative) multiplication (x,y) — zy such that z(2?y) = z%(wy) holds for z,y € Z. An
involution on a complex Jordan algebra Z is an antilinear involutive map z — z* with (zw)* =
w*z* for all z,w € Z. A JB*-algebra is a complex Banach space Z endowed with the structure
of a Jordan algebra with involution * such that

lzwll < llzll - lwll - and  [[{z, 2,2} = [|=]°
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for z,w € Z, where
{2,y,2} = (2y")z + 2(y"2) — y* (22)

is the canonical Jordan triple structure on Z ([Up85, Prop. 20.35]).

Typical examples are C'*-algebras, where the Jordan product is given by aob := %(ab—l—ba) .
Every closed involutive Jordan subalgebra is also a JB*-algebra (cf. [Up85, Ex. 20.28]).

Let Z be a JB*-algebra with unit element e € Z satisfying e* = e, and consider the real
subalgebra X := {z € Z:2* = z}. Then Z = X¢. For z € Z we write M,(z) := zx for the
multiplication operators on Z. We consider the subset

C := {z € X:Spec(M,) C]0,c0[}.

It turns out that C' is an open convex cone in X, that Z is a JB™*-triple, and that the Cayley
transform
gD :={z€Z:|z]| <1} = C+iX, g(z)=(e+2)(e—2)"

is a biholomorphic map ([Up85, Cor. 21.22)). For z € Z we put P,(z) := {z,z, 2} and consider
the set
Aut(Z,Z) := {g € GL(Z): g.e invertible, (Vz € Z)P,.. = gP.g '},

where g':= g ! P,.. This set is a closed subgroup of GL(Z) which is a Banach-Lie group with
respect to the operator norm, and o(g) := (¢")~! is an involutive automorphism of Aut(Z,Z).
For every automorphism g we have g' = g~ and P, = P for every invertible element z € Z
([Up85, Cor. 22.16]). Similar statements hold for the subgroup Aut(X,X) C GL(X) which
contains Aut(X) as a closed subgroup. For the Lie algebras we have the direct decompositions

aut(X, X) = aut(X) ® Mx, where My ={M,:z€ X} C B(X)

and
w(Z) = out(Z) = aut(X) ®iMx = aut(X)°

([Up85, Prop. 22.24]). This shows in particular that aut(X, X)¢ is an elliptic Lie algebra with
respect to the operator norm, so that (aut(X,X),do(1),]-]]) is a hyperbolic normed symmetric
Lie algebra (Proposition IV.8).

Let G := Aut(X, X)o be the identity component of Aut(X, X). Then Theorem V.5 implies
that G has a polar decomposition G = Kexpp = K x p, where K = Aut(X)p and p = Mx
([Up85, Cor. 22.29], [Ka83]). In view of K = {g € G:g.e = e}, the action of G on X leads to

G/K = G.e = (expp)K.e = exp(Mx).e = e~ =C,

where e := Y > % is the exponential function of the real Banach—Jordan algebra X ([Up85,
Th. 22.37]). Therefore the open cone C carries a natural structure of a Finsler symmetric space
of seminegative curvature. Identifying p with X by the map M, — M,.e = x, the exponential
function of C' is given by

Exp: X = C, z—e€".

The Finsler structure on C' is given by b(e®,v) = |[e~M=.v||, and the geodesic 7:[0,1] — C
with 7(0) = €%, (1) = e¥ and +'(0) = eM=.z satisfies y(t) = eM=et?. Its length is given
by L(y) = b(e*,7'(0)) = ||z]|, and we have e* = e Mee¥. The fact that C' has seminegative
curvature implies that Exp: X — C is expansive, so that

(6.1) 2]l = de(e®, ') > dx (z,y) = [l — yl|.
Below we explain how (6.1) is related to the inequality

(6.2) le” ] < fle™=.e|
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for z,y € X. Since each operator M, on X extends to a hermitian operator on the Banach
space Z = X¢ , we have

ry(z) :=log|le™=|| = sup Spec(M,) = inf{t > 0:te —x € C'}

(cf. [Up85, Lemma 21.12]). Moreover, My.e = z yields ||z]| = || M3|| = max(ry(z),r4(—z)).
(a) Now we show that (6.1) implies (6.2). Replacing x by —z in (6.1) leads to

[z + yll < [[log(e™=e?)]|
for all z,y € X. Let z € X with e* = eMee¥. If z € C, then this leads directly to
ri(@+y) <llz+yll <[zl = r4(2)

and therefore to |[e®T¥|| < ||e?*]|. To deal with the general case, we first replace z and y by
Ty =z +ne and y, := y+ne for n € N. Then z, = z+ 2ne is positive for n sufficiently large.

Hence
[e” Y]] = e=?"||e" || < el || = [l

(b) We show that (6.2) also directly implies (6.1): First we note that (6.2) is equivalent to
llev=2|| < [[e=M=e¥|| for all 2,y € X. Let 2z € X with e* = e"M=e¥. Then ||e?~%|| < ||€?|| leads
to 71 (y — ) < r4(2). Replacing z and y by —z and —y, then e=% = (e*)~! = eM=.e7¥ leads
to

ri (o — ) < log leMe V]| = log le~*|| = 1 (~2).

Putting these two inequalities together, we find

ly — 2l = max(ry (y — 2),ry (z —y)) < max(ry(2),r4(=2)) = |||,

and this is a reformulation of the length increasing property of the exponential function which
therefore follows from (6.2). ]

Example VI.7. A special case of the situation discussed in Example VI.6 arises if Z = A is a
unital C*-algebra. Then it is a JB*-algebra with respect to aob = $(ab+ba). Let G := G(A)o
be the identity component of the group G(A) of units of A. Then o(g) := (¢*)~! turns G into
a symmetric Lie group with Lie algebra g = A (viewed as a Banach-Lie algebra). In this case
K = G° coincides with the unitary group U(A) = {a € A:a*a =aa* =1} of A and

G/K= Ay :={g9":g € G}

is the open cone of positive invertible operators in A. The Finsler geometry of A, has been stud-
ied extensively by Corach, Porta and Recht (see in particular [CPR92], [CPR93] and [CPR94]).
As a special example of the situation in Example V1.6, we see that A, has seminegative curva-
ture.

The multiplication operator M, on the real Jordan algebra X = AS is given by M =
1(Ly + R,), where L,(y) = zy and R,(y) = yz. Therefore eMe.a = e3l=e3fe g = e3ae? | and
(6.2) leads to Segal’s inequality

le” V]| < fleZeve®||
for z,y € Ay (cf. [RS78, Th. X.57] for a version of this inequality for semibounded selfadjoint
operators on a Hilbert space). For an extensive discussion of this type of inequalities we refer
to Thompson’s paper [Th71]. In [CPR92] it is shown that this inequality is equivalent to the
length-increasing property of the exponential for the Finsler metric on A, .

Apart from Segal’s inequality there are much more interesting convexity properties of the

Finsler metric on A, . We refer to [CPR93] for more details. To mention a few others:

(1) the distance functions d(z,a(t)), where a is a geodesic, are convex,

(2) the geodesic balls in A4 are convex subsets of A, and

(3) each positive functional ¢ € A% on A yields by restriction a geodesically convex function on
A+ .

Do these properties generalize to the setting of Example VI.67 ]
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Example VI.8. As a consequence of Proposition IV.11, every finite-dimensional Riemannian
symmetric space M of non-compact type endowed with an invariant Finsler structure has
seminegative curvature. A particular class of examples with natural Finsler structures which
are not Riemannian have been studied by Y. Lim in [Lim99a-c]. He considers finite-dimensional
symmetric cones ). Since such a cone can be identified with the cone C' of positive elements
in a euclidean Jordan algebra X (cf. [FK94]), and for each euclidean Jordan algebra X the
complexification is a JB*-algebra, this situation is covered by the discussion in Example VI.6.
Lim studies in particular properties of the mid-point operation on 0 which assigns to two
points a and b the mid-point afb of the geodesic segment connecting both. As a consequence,
he obtains the inequality (6.2) which, as we have seen in Example V1.6, is closely related to the
fact that C is a symmetric space with seminegative curvature ([Lim99a, Cor. 11]). In [Lim99c]
Lim gives various descriptions of the metric on 2 associated to the Finsler structure given by
the spectral norm. In particular he shows that conformal contractions of the cone 2 act by
contractions with respect to the Finsler metric. [ ]

More problems

Problem VI.1. Let Z be a complex Banach space.

(a) Is the subgroup G(Z) := (expHerm(Z)c) C GL(Z) closed? Even though we have the
holomorphic inclusion map G(Z) — GL(Z), it is not clear whether the image is closed.

(b) We have seen in Corollary V.6 that the symmetric space G(Z)/U(Z) is a Finsler symmetric
space with seminegative curvature, so that Exp:Herm(Z) — G(Z)/U(Z) is a diffeomorphism.
Moreover, U(Z) = G(Z)? holds for an antiholomorphic involution ¢ on G(Z), so that the map

G(2)/U(Z) — exp (Herm(Z)) CG, gU(Z)w go(g)™"

is a diffeomorphism mapping Exp(z) to exp(2z). In the special case where Z is a Hilbert
space the range of this map is the cone of positive invertible operators on Z. Is there a similar
description for a general Banach space? Since the Banach space Herm(Z) contains the open
cone Q:= {2z € Herm(Z):Spec(z) CJ0,00[}, it is natural to ask whether exp (Herm(Z)) C
Herm(Z). If this is the case, then the continuity property of the spectrum (cf. [Ru73]) implies
that exp (Herm(Z)) C Q. The action of G(Z) on exp (Herm(Z)) is given by g.a = gao(g)™",
so a related question is whether the action of G(Z) on B(Z) given by this formula preserves
the space Herm(Z). Infinitesimally this leads to the question whether for x,a € Herm(Z) the
anticommutator [z,a]l; = za + az is contained in Herm(Z). Using polarization, this would
follow if for each a € Herm(Z) we have a? € Herm(Z2). u

Problem VI.2. (A Banach analog of complex reductive groups) Let G be an elliptic Lie group.
Does G have a universal complexification G¢ with a polar decomposition G¢ = Gexp(ig)? The
groups G¢ would be natural analogs of the finite-dimensional complex reductive groups. For
a detailed discussion of the problems involved with complexifications of Banach—Lie groups we
refer to [G199].

(a) If G is a Lie subgroup of the group U(Z) of surjective isometries of a complex Banach space
(this means that its Lie algebra g is a closed subalgebra of u(Z)), then Corollary V.6 provides
a complex group G¢ with a polar decomposition which is obtained from the analytic subgroup
(expgc) € GL(Z). It is easy to see that this group is universal as a complexification of G. In
fact, if a:G — H is a morphism of G to a complex Banach—Lie group, then the differential
of a leads to a complex linear continuous homomorphism gc — b and thus to a holomorphic
homomorphism ac:Gc — H, where G¢ is the universal covering group. Since Gc¢ also has
a diffeomorphic polar decomposition G exp(ig), we see that ac factors through a holomorphic
homomorphism ac:Ge — H.

(b) Let G be an elliptic Lie group and a: G — H a homomorphism to a complex group such that
da(1) has closed range. Then the group B := «(G) is an elliptic Lie subgroup of H, and the
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same arguments as in (a) show that B has a universal complexification B¢ with a diffeomorphic
polar decomposition Bg = Bexp(ib). We conclude that each a factors through a morphism
G — Bg, where B¢ is a complexification of an elliptic Lie group B with a polar decomposition.
(c) Let a < g denote the intersection of all kernels of differentials da(1) of homomorphism
a:G — H into complex Lie groups. Then a is a closed ideal of g, so that we can form the
quotient algebra b := g/a which is elliptic (Lemma IV.5). One would like to show that bc is
enlargeable in the sense that it is the Lie algebra of a simply connected complex Banach—Lie
group Be. Then Be has a polar decomposition Be = Bexp(ib). If the group G is simply
connected, then we have a natural homomorphism G — B leading to a morphism 5:G — B¢
which can be shown, as in (a), to be a universal complexification.

Now suppose that G is not simply connected and that G is its universal covering. Then
each homomorphism «: G — H into a complex group lifts to a homomorphism a:G — H which
in turn factors through [3 G — B¢ with a holomorphic homomorphism 7v: Be — H. According
to the construction of b, the intersection of the Lie algebras of all kernels of such homomorphisms
B — H is trivial. Does this imply (in this special context) that D := ﬂ,y ker+ is discrete?

(d) It is conceivable that there is a more direct argument which would use the biinvariant Finsler
structure on G to construct a faithful Banach representation of G. Maybe an appropriate space
of continuous functions on G will do. ]

Problem VI.3. Let (g,7,b) be a normed symmetric Lie algebra. Find good criteria for the
Lie algebra g¢ = £+ ip to be elliptic in the sense that on ig® = p + it exists an Inn(g°)-invariant
norm extending the given one on p.

Suppose that ||-|| is an Inn(g°)-invariant norm on ¢g° which is invariant under the antilinear
extension of —7 to gc. Then x € ig® implies that ||z,|| = ||2(x — 7.2)|| < ||z]|. For z,y € p we
therefore obtain

lyll > [1(e**.g)y | = || cos(ad ).yl

We conclude that ||cos(adz) ||| < 1 holds for each & € p. Does this condition, conversely,
imply that || -|| extends to an Inn(g®)-invariant norm on ig®? Is this equivalent to the operator
(adx)?|, being dissipative? n

Problem VI.4. Let D be the open unit ball in he JB*-triple Z (a bounded symmetric
domain). Is it possible to show directly, without reference to the Gelfand—Naimark Theorem for
JB*-triples that for each & € p the operator 322342 s invertible and expansive? Maybe a good
strategy to attack this problem is to see whether the Lie algebra g° = €+ ip is elliptic With
respect to a suitable norm. Writing an element of p as a vector field X, (2) = (u — {z,u,2})Z
we have [X, Xy] = 2X,0u—wbe and [ Xy, [Xu, [Xu]]] = 2X {00} —{u,u,w}s SO that (adX )?

Z )
lp
corresponds on Z to the operator —ulu + P,. Is this operator dissipative for each u € Z7 =
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