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Abstra
t. In this paper we study Bana
h{Finsler manifolds endowed with a spray whi
h have

seminegative 
urvature in the sense that the 
orresponding exponential fun
tion has a surje
tive

expansive di�erential in every point. In this 
ontext we generalize the 
lassi
al theorem of Cartan{

Hadamard, saying that the exponential fun
tion is a 
overing map. We apply this to symmetri


spa
es and thus obtain 
riteria for Bana
h{Lie groups with an involution to have a polar de
ompo-

sition. Typi
al examples of symmetri
 Finsler manifolds with seminegative 
urvature are bounded

symmetri
 domains and symmetri
 
ones endowed with their natural Finsler stru
ture whi
h in

general is not Riemannian.

Introdu
tion

Let M = G=K be a �nite-dimensional non-
ompa
t Riemannian symmetri
 spa
e, where K is

the group of �xed points of an involution � on G . Then G has a polar de
omposition in the

sense that the de
omposition g = k + p of its Lie algebra into the eigenspa
es of the involution

d�(1) leads to a di�eomorphism

K � p! G; (k; x) 7! k expx

(
f. [Hel78℄). One en
ounters a similar situation for the group G := GL(H) of invertible


ontinuous linear operators on a 
omplex Hilbert spa
e H . Here K = U(H) is the unitary

group of H and p = Herm(H) is the spa
e of bounded hermitian operators on H . The

polar de
omposition of this group 
an be used to dedu
e similar results for a variety of in�nite-

dimensional analogs of the 
lassi
al groups (
f. [dlH72℄, [dlH83℄).

On the level of Riemannian manifolds, the polar de
omposition of G is essentially the

same as the statement that the exponential map Exp: p ! G=K of the Riemannian symmetri


spa
e G=K is a di�eomorphism. This is a spe
ial instan
e of the 
lassi
al theorem of Cartan-

Hadamard whi
h states that for a 
onne
ted geodesi
ally 
omplete Riemannian manifold M

with seminegative 
urvature, for ea
h point p 2M the exponential map exp

p

:T

p

(M)!M is a


overing. If, in addition, M is simply 
onne
ted, then the exponential map is a di�eomorphism,

and M is 
alled a Cartan{Hadamard manifold. So Riemannian symmetri
 spa
es of non-
ompa
t

type are spe
ial Cartan{Hadamard manifolds. In this form the result of Cartan{Hadamard has

been generalized to Riemannian manifolds (modeled over Hilbert spa
es) by Grossman [Gr65℄

and M
Alpin [M
A65℄ (see Se
tion IX.3 of [La99℄ for an exposition of this result). If G=K is

a Riemannian Cartan{Hadamard manifold, then M
Alpin's in�nite-dimensional version of the

Cartan{Hadamard Theorem applies, and one 
an derive a polar de
omposition of G . The polar

de
omposition of the full operator group G = GL(H) on a Hilbert spa
e 
annot be derived from

this geometri
 result be
ause the spa
e G=K = GL(H)=U(H) of positive operators on H is not

a Riemannian manifold. In this 
ase one has to work with spe
tral theoreti
 methods whi
h are

limited to quite spe
ial situations. These spe
tral theoreti
 methods apply equally well to the

spa
e G(A)=U(A), where A is a C

�

-algebra, G(A) its group of units, and U(A) the unitary

group of A . They fail for the 
omplex group G whi
h is a natural 
omplexi�
ation of the group
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U(Z) of isometries of a 
omplex Bana
h spa
e Z . A similar 
lass of examples are the bounded

symmetri
 domains in Bana
h spa
es. They 
an also be written as G=K for suitable Bana
h

groups, but they do not 
arry a natural Riemannian stru
ture.

What is 
ommon to all these manifolds is that they are symmetri
 Bana
h manifolds whi
h

are endowed with a natural G-invariant Finsler metri
. On the geometri
 side, their 
ounterparts

are Bana
h manifolds M endowed with a Finsler metri
 and a spray F :TM ! TTM su
h that

the Finsler metri
 is invariant under parallel transport along geodesi
 segments (see Se
tion I

for the de�nitions). The geometri
 heart of the present paper is a generalization of the Cartan{

Hadamard Theorem to su
h manifolds. A key point is that the requirement that for ea
h point

p 2 M the exponential map exp

p

:T

p

(M) ! M is length in
reasing in the sense that for ea
h

x 2 T

p

(M) the di�erential d exp

p

(x):T

p

(M)! T

exp

p

(x)

(M) is invertible and expansive. For the

Riemannian 
ase this 
ondition is equivalent to M having seminegative 
urvature, so that we

take this as the de�nition of \seminegative 
urvature" in the general 
ase.

In Se
tion II we �rst take a 
loser look at dissipative operators on a Bana
h spa
e Z . The

key result of this se
tion is Theorem II.6 saying that for a bounded operator A the operator �A

is dissipative if and only if s(tA) =

P

1

n=0

(tA)

n

(2n+1)!

is surje
tive and expansive for all t > 0. We

also show that if Z is 
omplex and exp(iRA) 
onsists of isometries, then

sinh(A)

A

is invertible

and expansive.

In Se
tion III we turn to symmetri
 spa
es in the sense of Loos. We explain how one

asso
iates to a symmetri
 spa
e a spray with the same symmetries and whi
h is uniquely

determined by this property. In the �nite-dimensional 
ase this 
onstru
tion is 
arried out in

[Lo69℄ in the 
ontext of higher tangent bundles whi
h does not work in the Bana
h setting. If

the symmetri
 spa
e M 
an be written as G=K , where G is a Bana
h{Lie group and K an

open subgroup of the group of �xed points of an involution � , then we derive a 
riterion for a

G-invariant Finsler metri
 on M to lead to a manifold with seminegative 
urvature whi
h only

refers to a property of the 
orresponding normed symmetri
 Lie algebra. Using the results of

Se
tion II, we show that M has seminegative 
urvature if and only if the operators �(adx)

2

j

p

,

x 2 p , are dissipative.

In Se
tion IV we elaborate on 
riteria for symmetri
 Bana
h Lie algebras whi
h make it

simpler to 
he
k that the 
ondition derived in Se
tion III is satis�ed.

Se
tion V 
ontains our main results on the existen
e of a polar de
omposition for a

symmetri
 Bana
h{Lie group (G; �) whi
h also 
overs 
ases that 
annot be dedu
ed from the

�nite-dimensional 
ase or the polar de
omposition of the operator group GL(H). In parti
ular

it applies to the \
omplexi�
ation" of the group U(Z) for any Bana
h spa
e.

We 
on
lude this paper with Se
tion VI whi
h 
ontains a dis
ussion of some spe
i�
 
lasses

of examples and relations to work of other people on spe
ial types of symmetri
 spa
es with

seminegative 
urvature su
h as symmetri
 
ones and the 
one of positive elements of a C

�

-

algebra.

It would be very interesting to understand the relations between the Finsler manifolds

of seminegative 
urvature dis
ussed in this paper and general metri
 spa
es with non-positive


urvature (
f. [AB90℄, [BH99℄). For Riemannian manifolds this property is also equivalent to the

semi parallelogram law whi
h 
an be formulated for arbitrary metri
 spa
es (see [La99, XI, x3℄).

Sin
e it implies that for two points there exists a unique \midpoint", there are Bana
h spa
es not

satisfying this 
ondition, so that it does not seem to lead very far in the general Finsler 
ontext.

Nevertheless there might be interesting relations if the Finsler metri
 is su
h that all tangent

spa
es are uniformly 
onvex.

During the preparation of this manus
ript I pro�ted a lot from 
onversations with H. Up-

meier who guided me through [Up85℄. I also thank J. Arazy for enlightening dis
ussions. Fur-

thermore I thank H. Upmeier and F. Haslinger for inviting me to the Erwin-S
hr�odinger-Institut

and for the very pleasant and produ
tive stay in Vienna.

All manifolds in this paper are smooth manifolds modeled over Bana
h spa
es. We refer to

Lang's book [La99℄ for the basi
 di�erential geometry of Bana
h manifolds.
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I. A generalization of the Cartan{Hadamard Theorem

In this se
tion we generalize the 
lassi
al theorem of Cartan{Hadamard to Bana
h{Finsler

manifolds of seminegative 
urvature (Theorem I.10).

De�nition I.1. Let M be a Bana
h manifold. A se
ond-order ve
tor �eld on M is a ve
tor

�eld F :TM ! TTM on TM satisfying T (�) ÆF = id

TM

, where �:TM !M is the proje
tion

map (
f. [La99, IV, x3℄). Let s 2 R and s

TM

:TM ! TM denote the multipli
ation by s in

ea
h tangent spa
e. A se
ond order ve
tor �eld F on TM is 
alled a spray if

F (sv) = T (s

TM

)(sF (v)) for all s 2 R; v 2 TM

(
f. [La99, IV, x3℄). The domain D

exp

� TM is the set of all those points v 2 T

x

(M) for whi
h

the maximal integral 
urve 


v

: J ! TM of F satis�es 1 2 J and exp

x

(v) := �(


v

(1)). Let

�: [s; t℄! X be a pie
ewise C

2

-
urve. We write

P

t

s

(�):T

�(s)

(X)! T

�(t)

(X)

for the 
orresponding linear map given by parallel transport along � (
f. [La99, Th. VIII.3.4℄).

Remark I.2. To visualize the 
on
epts lo
ally, we 
onsider an open subset U in the Bana
h

spa
e V . Then TU

�

=

U � V , �(x; v) = x , TTU

�

=

U � V

3

, and T (�)(x; v; u; w) = (x; u).

Therefore a se
ond-order ve
tor �eld F :TU ! TTU 
an be written as

F (x; v) =

�

x; v; v; f(x; v)

�

;

where f :U � V ! V is a smooth map. The spray 
ondition means that

(x; sv; sv; f(x; sv)) = F (x; sv) = T (s

TM

)sF (v) = T (s

TM

)

�

x; v; sv; sf(x; v)

�

= (x; sv; sv; s

2

f(x; v))

whi
h means that the maps f(x; �) are quadrati
.

De�nition I.3. (a) (
f. [Up85, Def. 12.19℄) Let M be a Bana
h manifold. A tangent norm

on M is a fun
tion b:T (M) ! R

+

whose restri
tion to every tangent spa
e T

x

(M) is a norm.

A 
ontinuous tangent norm b on M is 
alled 
ompatible if for ea
h p 2 M there exists a 
hart

':U ! Z (U an open neighborhood of p , Z a Bana
h spa
e) and 
onstants m;M > 0 with

m � b(v) � kd'(x)(v)k �M � b(v)

for all v 2 T

x

(M), x 2 U . A Finsler manifold is a pair (M; b) of a Bana
h manifold M and a


ompatible tangent norm b (In [Up85℄ Upmeier 
alls these obje
ts normed Bana
h manifolds).

(b) A metri
 d on M is 
alled lo
ally 
ompatible if for ea
h p 2M there exists a 
hart ':U ! Z

and 
onstants m;M > 0 with

m � d(x; y) � k'(x)� '(y)k �M � d(x; y)

for all x; y 2 U . A metri
 d is 
alled 
ompatible if it is lo
ally 
ompatible and the topology

indu
ed from the metri
 d 
oin
ides with the original topology. A metri
 Bana
h manifold is a

pair (M;d) of a Bana
h manifold M and a 
ompatible metri
 d .

(
) In the following we also write kvk := b(v) for v 2 T

p

(M) and p 2 M . We de�ne the length

of a pie
ewise C

1

-
urve 
: J !M by the improper Riemann integral

L(
) :=

Z

J

k _
(t)k dt =

Z

J

b( _
(t)) dt 2 [0;1℄:

We obtain a metri
 d on M by

d(x; y) := inf




L(
);

where the in�mum is taken over all 
ontinuous pie
ewise C

1

-
urves 
onne
ting x to y . A

ording

to [Up85, Prop. 12.22℄, the metri
 d on M is 
ompatible and invariant under the group Aut(M; b)

of all di�eomorphisms ' of M with b Æ T' = b . In this sense every Finsler manifold is a metri


Bana
h manifold in a 
anoni
al fashion. We 
all (M; b) 
omplete if it is a 
omplete metri
 spa
e

with respe
t to the metri
 d .
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De�nition I.4. (a) Let F be a spray on the Finsler manifold (M; b). We 
all (M; b; F ) a

Finsler manifold with spray if the norm fun
tion b:TM ! R is invariant under parallel transport

along geodesi
s. If M is 
onne
ted, then two points in M 
an be joined by a pie
ewise geodesi



urve, so that b is uniquely determined by its values in a �xed tangent spa
e T

x

0

(M).

(b) We say that (M; b; F ) has seminegative 
urvature if for all p 2M and x; v 2 T

p

(M) \ D

exp

we have

kd exp

p

(x)(v)k � kvk;

and d exp

p

(x) is invertible for ea
h x 2 T

p

(M)\D

exp

. This means that, as an operator between

the Bana
h spa
es T

p

(M) and T

exp

p

(x)

(M) the linear map d exp

p

(x) is invertible and its inverse

(d exp

p

(x))

�1

is a 
ontra
tion.

Example I.5. (a) Let V be a Bana
h spa
e. We identify TV with V �V and de�ne a tangent

norm by b(x; v) := kvk . For every pie
ewise C

1

-
urve 
: [a; b℄! V we have

k
(b)� 
(a)k = k

Z

b

a




0

(t) dtk �

Z

b

a

k


0

(t)k dt = L(
);

so that d(x; y) = kx� yk is the metri
 determined by b . Sin
e V is a Bana
h spa
e, the metri


spa
e (Y; d) is 
omplete, and d is a 
ompatible metri
 on V .

Identifying TTV with TV � V

2

�

=

V

4

, we obtain the trivial spray given by F (x; v) =

(x; v; v; 0). The integral 
urves of this spray are given by 


(x;v)

(t) = (x + tv; v), so that the

geodesi
 starting in x in dire
tion v is given by �

x;v

(t) = x + tv . The parallel transport maps

P

t

s

(�) asso
iated to a geodesi
 � are the identity on V , showing that (V; b; F ) is a Finsler

manifold with spray.

(b) If (M; g) is a Riemannian manifold, then M 
arries a 
anoni
al spray (the one 
orresponding

to the Levi{Civita 
onne
tion), su
h that the natural tangent norm given by b(v) = g(v; v)

1

2

is

invariant under parallel transport ([La99, Th. VIII.4.2℄).

For a Riemannian manifold (M; g) it follows from Theorem XI.3.5 in [La99℄ that it has

seminegative 
urvature in the usual sense if and only if the exponential map is lo
ally metri


in
reasing at every point, whi
h we have taken as the de�nition in the more general setup of

Finsler manifolds with sprays. For Riemannian manifolds this property is also equivalent to the

semi parallelogram law whi
h 
an be formulated for arbitrary metri
 spa
es (see [La99, XI, x3℄).

Sin
e it implies that for two points there exists a unique \midpoint", there are Bana
h spa
es

not satisfying this 
ondition, so that it does not seem to be useful in the Finsler 
ontext.

Problem I.1. For Riemannian manifolds it has been shown by M
Alpin that the requirement

that d exp

p

(x) is invertible for ea
h x 2 T

p

(M) is redundant in De�nition I.4 above ([La99, IX,

Th. 3.7℄). Is this also true for Finsler manifolds? The proof given given in [La99℄ does not seem

to generalize to the setting of Finsler manifolds with sprays.

Problem I.2. If F is a spray on M , then the 
orresponding 
ovariant derivative D leads to

the 
urvature tensor

R(�; �; �) = D

�

D

�

� �D

�

D

�

� �D

[�;�℄

�

for ve
tor �elds � , � and � . The tensor property of R implies that for ea
h point p 2 M and

v; w 2M we obtain an operator R

p

(v; w):T

p

(M)! T

p

(M) su
h that

R

p

(v; w)(u) = R(�; �; �)

holds for lo
al ve
tor �elds � , � , � with �(p) = v , �(p) = u and �(p) = w (
f. [La99, p. 232℄).

For Riemannian manifolds endowed with the Levi-Civita 
onne
tion one de�nes seminegative


urvature by the property that

hR

p

(u; v; u); vi � 0 for all u; v 2 T

p

(M):

In fun
tional analyti
 terms this means that the operators �R

p

(u; �; u) on T

p

(M) are dissipative

as operators on the Bana
h spa
e T

p

(M) (De�nition II.1). Is this 
ondition for Bana
h{Finsler

manifolds with spray equivalent to having seminegative 
urvature in the sense of De�nition I.4?
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Lemma I.6. Let f : (Y; b

Y

) ! (X; b

X

) be a C

1

-map between Finsler manifolds. Assume that

there is a 
onstant C > 0 su
h that for all y 2 Y and w 2 T

y

(Y ) we have b

X

�

Tf(w)

�

� Cb

Y

(w):

If 
: [a; b℄! Y is a pie
ewise smooth path in Y , then L(f Æ 
) � C � L(
):

Proof. This follows immediately from the de�nitions (
f. [La99, VIII, Lemma 6.8℄).

Lemma I.7. Let a < b and 
: [a; b[! X be a pie
ewise C

1

-
urve in the 
omplete Finsler

manifold (X; b) and assume that L(
) <1 . Then lim

t!b


(t) exists in X .

Proof. For ea
h " > 0 there exists a Æ > 0 with b� Æ > a and L(
 j

[b�Æ;b[

) < " . This means

that for t

1

; t

2

2 [b�Æ; b[ we have d

�


(t

1

); 
(t

2

)

�

� L(
 j

[b�Æ;b[

) < ": Thus (
(t))

t2[a;b[

is a Cau
hy

net in the 
omplete metri
 spa
e (X; d), so that x := lim

t!b


(t) exists.

Lemma I.8. Let (X; b

X

; F

X

) be a 
omplete Finsler manifold with spray. Then X is geodesi-


ally 
omplete in the sense that D

exp

= TX .

Proof. Let x 2 X and v 2 D

exp

\ T

x

(M). We 
onsider the maximal geodesi
 �: ℄� T

0

; T [!

M; t 7! exp

x

(tv), where T; T

0

2℄0;1℄ . If T =1 , then there is nothing to show. So we assume

that T <1 . Sin
e �

0

is a parallel ve
tor �eld along the 
urve � , we obtain

L(�) =

Z

T

0

k�

0

(t)k dt = Tkvk <1;

and therefore x

T

:= lim

t!T

�(T ) exists in X (Lemma I.7). Using [La99, VIII, Cor. 5.2℄, we now

see that the geodesi
 � 
an be extended to an open interval 
ontaining [0; T ℄ . This 
ontradi
ts

the maximality of T and therefore proves the assertion.

Let f :X ! Y be a C

1

-map of manifolds. We say that f has the unique path lifting

property if given a point y 2 Y , a pie
ewise C

1

-path � in Y starting from y , and a point x 2 X

with f(x) = y , there exists a unique pie
ewise C

1

-path 
 in X with f Æ 
 = � starting in

x . The following theorem is a generalization of Theorem 6.9 in [La99, VIII℄ (about Riemannian

manifolds) to the setting of Finsler manifolds. It is a geometri
 key result in this paper.

Theorem I.9. Let (X; b

X

) a 
omplete Finsler manifold and (Y; b

Y

; F

Y

) be a 
onne
ted Finsler

manifold with spray. Let f :X ! Y be a lo
al C

1

-di�eomorphism for whi
h there exists a 
onstant

C > 0 su
h that for all w 2 TX we have

b

Y

(Tf(w)) � C � b

X

(w):

Then f is surje
tive, f is a 
overing and has the unique path lifting property, and Y is 
omplete.

Proof. We 
losely follow the proof in [La99℄ for the 
ase of Riemannian manifolds. The proof

is in three steps. First we show that f is surje
tive and has the unique path lifting property.

Let x 2 X and y := f(x). Every point in Y 
an be joined to y by a pie
ewise C

1

-path. Let

�: [a; b℄ ! Y be su
h a path joining y = �(a) with �(b). We shall prove that � 
an be lifted

uniquely to a path in X starting from x . This will a

omplish the �rst step. Let S be the set

of elements t 2 [a; b℄ su
h that � j

[0;t℄


an be lifted uniquely to a path 
 in X starting at x . If

a = b , there is nothing to show, so we assume that a < b . The set is not empty be
ause a 2 S ,

and it is open be
ause f is a lo
al di�eomorphism. Moreover, it is 
lear from the de�nition

that S is an interval. If b 62 S , then S = [a; s[ , where s = supS , and we have a unique lift


: [a; s[! X of � with 
(a) = x . Using Lemma I.6, we obtain

L(�) � L(� j

[a;s[

) = L(f Æ 
) � CL(
):

Therefore L(
) <1 , and Lemma I.7 implies that x := lim

t!s


(t) exists. Using the assumption

that f maps an open neighborhood U of x di�eomorphi
ally onto f(U), we obtain a unique

lift of 
 on an interval [a; s

0

℄ properly 
ontaining [a; s℄ . This 
ontradi
ts the maximality of s ,

and we thus obtain S = [a; b℄ . This proves that f is surje
tive and that it has the unique path

lifting property.
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The next step is to redu
e the theorem to the 
ase where f is a lo
al isometry of Finsler

manifolds. To do this, let b

�

X

:= b

Y

ÆTf be the pull-ba
k of the tangent norm b

Y

to X . Observe

that b

�

X

is a 
ompatible tangent norm on X be
ause f is a lo
al di�eomorphism. Moreover,

our assumptions imply b

�

X

� Cb

X

and therefore d

�

X

� Cd

X

for the 
orresponding metri
s on

X (Lemma I.6). We 
laim that X is 
omplete with respe
t to d

�

X

. So let (x

n

)

n2N

be a d

�

X

-

Cau
hy sequen
e in X . Then it also is a Cau
hy-sequen
e with respe
t to d

X

, hen
e 
onverges

to an element x 2 X , and sin
e the metri
 d

�

X

is 
ompatible, it follows that the metri
 spa
e

(X; d

�

X

) is 
omplete. Sin
e f is a lo
al di�eomorphism, the spray F

Y

:TY ! TTY 
an be

pulled ba
k to a spray F

X

:TX ! TTX on X with TTf Æ F

X

= F

Y

Æ Tf . Now the triple

(X; b

�

X

; F

X

) is a Finsler manifold with spray be
ause the map Tf :TX ! TY is 
ompatible with

the 
orresponding parallel transport maps. Lemma I.8 implies that D

exp

X

= TX , so that the


ompatibility of Tf with the sprays implies that

TY = imTf � D

exp

Y

and exp

Y

ÆTf = f Æ exp

X

:

As we have seen in the se
ond step, we may assume that f is a lo
al isometry of Finsler

manifolds whi
h is a morphism of manifolds with sprays. In the last step we show that f is a


overing. Sin
e (X; d

�

X

) is 
omplete, this will also prove that (Y; d

Y

) is 
omplete, and therefore


on
lude the proof. Let y 2 Y . In view of [La99, Cor. 5.2℄, there exists an open ball B � T

y

(Y )

su
h that exp

y

maps B di�eomorphi
ally onto an open subset V := exp

y

(B). Let

e

V := f

�1

(V ).

For ea
h x 2 f

�1

(y) we put B

x

:= df(x)

�1

(B) � T

x

(X). Then V

x

:= exp

x

(B

x

) � X satis�es

f(V

x

) = f(exp

x

(B

x

)) = exp

y

(B) = V:

Sin
e the map f j

V

x

Æ exp

x

j

B

x

:B

x

! V 
oin
ides with exp

y

j

B

Æ df(x), we see that exp

x

j

B

x

is a

di�eomorphism onto an open subset of X be
ause this map is inje
tive and has an everywhere

regular di�erential. We 
laim that

e

V =

[

f(x)=y

V

x

:

In fa
t, let z 2

e

V . Then f(z) = exp

y

(a) 2 V for some a 2 B . Then the geodesi
 segment

�: [0; 1℄ ! Y; t 7! exp

y

(ta) in B has a unique lift to a geodesi
 segment �: [0; 1℄ ! X with

�(1) = z and f Æ � = � . This shows that x := �(0) 2 f

�1

(�(0)) = f

�1

(y), and for

b := �

0

(0) = df(x)

�1

(a) 2 B

x

� T

x

(X) we have �(t) = exp

x

(tb). In parti
ular, we get

z = exp

x

(b) 2 V

x

. Next we show that V

x

1

\ V

x

2

6= � implies x

1

= x

2

. So let z 2 V

x

1

\ V

x

2

.

We write z = exp

x

1

(b

1

) = exp

x

2

(b

2

) with b

1

2 B

x

1

and b

2

2 B

x

2

. Applying f yields

f(z) = exp

y

(df(x

1

):b

1

) = exp

y

(df(x

2

):b

2

) and therefore a := df(x

1

):b

1

= df(x

2

):b

2

. Now the

two geodesi
 segments

[0; 1℄! X; t 7! exp

x

1

(tb

1

); exp

x

2

(tb

2

)

ending in y are lifts of the same geodesi
 segment

[0; 1℄! Y; t 7! exp

y

(ta);

so that the uniqueness of the path lifting property yields exp

x

1

(tb

1

) = exp

x

2

(tb

2

) for all t 2 [0; 1℄,

and �nally that x

1

= x

2

. This shows that

e

V =

S

x2f

�1

(y)

V

x

is a disjoint union of open pairwise

di�eomorphi
 subsets, and therefore that f is a 
overing.

The proof of Theorem I.9 is even simpler than the one given in [La99℄ for the spe
ial 
ase

of Riemannian manifolds whi
h makes use of geodesi
 
onvexity properties of metri
 balls in M

and hen
e of the Gau� Lemma. A Gau� Lemma makes no sense in our setting, but fortunately

su
h �ne results are not needed for the 
on
lusions.

Theorem I.10. (Cartan{Hadamard{Grossman{M
Alpin Theorem for Bana
h{Finsler mani-

folds) Let (M; b; F ) be a 
onne
ted geodesi
ally 
omplete Finsler manifold with spray whi
h has

seminegative 
urvature. Then for ea
h p 2 M the exponential map exp

p

:T

p

(M) ! M is a

surje
tive 
overing and M is 
omplete.
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Proof. Sin
e M is geodesi
ally 
omplete, Exp := exp

p

is de�ned on the whole tangent

spa
e T

p

(M). Sin
e M has seminegative 
urvature, for ea
h x 2 T

p

(M) the di�erential

dExp(x):T

p

(M) ! T

Exp(x)

(M) is expansive and invertible. We endow X := T

p

(M) with

the stru
ture (X; b

X

) of a 
omplete Finsler manifold as in Example I.5(a). Now the map

Exp:X !M is a lo
al di�eomorphism satisfying b

�

T Exp(w)

�

� kwk = b

X

(w) for all w 2 TX .

Therefore Theorem I.9 applies and shows that Exp is a surje
tive 
overing map.

Corollary I.11. Let (M; b; F ) be a 
onne
ted Finsler manifold with spray whi
h has semineg-

ative 
urvature. Then M is 
omplete if and only if it is geodesi
ally 
omplete.

Proof. This follows from Lemma I.8 and Theorem I.10.

We 
all a simply 
onne
ted 
omplete Finsler manifold with spray whi
h has seminegative


urvature a Finsler{Cartan{Hadamard manifold.

Corollary I.12. Let (M; b; F ) be a Finsler{Cartan{Hadamard manifold. Then the following

assertions hold:

(i) For ea
h p 2M the exponential map exp

p

:T

p

(M)!M is a di�eomorphism.

(ii) If �:R !M is a geodesi
 in M and x 2M , then lim

t!�1

d

�

�(t); x

�

=1:

(iii) For two points x; y 2M there exists a unique length minimizing geodesi
 segment �: [0; 1℄!

M with �(0) = x and �(1) = y .

Proof. (i) follows dire
tly from Theorem I.10.

(ii) In view of (i), we may assume that M = V is a Bana
h spa
e and that �(t) = tv for some

v 2 V . Then the metri
 in
reasing property of the exponential fun
tion implies that

d

M

(�(t); x) � d

V

(tv; x) = kx� tvk ! 1

for t! �1 .

(iii) Sin
e exp

x

:T

x

(M)!M is surje
tive, there exists a v 2 T

x

(M) with exp

x

(v) = y . We put

�(t) := exp

x

(tv) for t 2 [0; 1℄. Then � is a geodesi
 segment and the length in
reasing property

of the exponential fun
tion implies that kvk = d

T

x

(M)

(0; v) � d(x; y) � L(�) = kvk; so that �

is distan
e minimizing. The uniqueness follows from the inje
tivity of exp

x

.

The te
hnique used in the proof of Corollary I.12 goes ba
k to Hadamard ([Ha96℄) who

proved the result for surfa
es. E. Cartan generalized it to �nite-dimensional Riemannian man-

ifolds (
f. [Ca63℄). The generalization to in�nite-dimensional Riemannian manifolds is due to

Grossman [Gr65℄ and M
Alpin M
A65℄. We 
losely followed the exposition in [La99℄.

Problem I.3. Let (M; b; F ) be a Finsler{Cartan{Hadamard manifold.

(1) Let x 2 M and �:R !M be a geodesi
. Is the fun
tion f :R ! R with f(t) = d(x; �(t))

2


onvex? For the Riemannian 
ase this follows dire
tly from the semi parallelogram law whi
h

implies that for t; s 2 R we have

d

�

x; �(

t+s

2

)

�

2

� d

�

x; �(

t+s

2

)

�

2

+

1

4

d

�

�(s); �(t)

�

�

1

2

d

�

�(s); x

�

2

+

1

2

d

�

�(t); x

�

2

:

A more dire
t approa
h is given in [La99, Th. IX.4.4℄.

(2) Does every �nite group a
ting by isometries on M have a �xed point? For the Riemannian


ase this 
an be proved by the Bruhat{Tits Fixed Point Theorem ([La99, Th. XI.3.2℄), using

the fa
t that (M;d) is a Bruhat-Tits spa
e, i.e., a 
omplete metri
 spa
e in whi
h the semi

parallelogram law holds. For su
h spa
es a theorem of Serre ensures that every bounded subset

is 
ontained in a unique 
losed ball of minimal radius.

These properties and those stated in Corollary I.12 are dis
ussed in the setting of �nite-

dimensional Riemannian geometry in E. Cartan's book [Ca63℄.
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II. Some fa
ts on operators on Bana
h spa
es

In this se
tion we 
olle
t some results on operators on Bana
h spa
es. A key result is Theorem

II.6 saying that if A is a bounded operator on a Bana
h spa
e for whi
h �A

2

is dissipative, then

sinh(A)

A

is a surje
tive expansion. This 
ondition is in parti
ular satis�ed if A is hermitian in the

sense that e

iRA


onsists of isometries. We use this result in Se
tion IV to obtain a 
riterion for

a normed symmetri
 Lie algebra to lead to a symmetri
 spa
e with seminegative 
urvature.

Dissipative operators

De�nition II.1. Let Z be a Bana
h spa
e. We write B(Z) for the spa
e of bounded operators

Z ! Z . For z 2 Z we put

F (z) := f� 2 Z

0

: k�k � 1; h�; zi = kzkg:

We 
all A 2 B(Z) dissipative if for ea
h z 2 Z there exists an � 2 F (z) with Reh�;A(z)i � 0:

We write Diss(Z) for the set of bounded dissipative operators on Z .

Sin
e we only deal with bounded operators, some of the results for dissipative unbounded

operators be
ome mu
h simpler. We re
all them in the following theorem.

Theorem II.2. For A 2 B(Z) the following are equivalent:

(1) A is dissipative.

(2) For ea
h t > 0 the operator 1� tA is expansive.

(3) ke

tA

k � 1 holds for all t > 0 .

(4) Reh�;A(z)i � 0 holds for all z 2 Z , � 2 F (z) .

(5) For ea
h t > 0 the operator 1� tA is expansive and surje
tive.

Proof. (1) () (2): holds also for unbounded operators (
f. [Paz83, Th. 4.2℄).

(1) () (3): We note that for �kAk < 1 the operator 1 � �A is invertible, hen
e surje
tive.

Therefore the assertion is a 
onsequene of the Lumer{Phillips Theorem (
f. [Paz83, Th. 4.3℄).

(3) () (4) also follows from [Paz83, Th. 4.3℄.

(1) () (5): Sin
e (1) implies (2), we only have to see that 1� tA is invertible for ea
h t > 0,

but this follows from Spe
(A)\℄0;1[= � whi
h is a 
onsequen
e of (3) ([Paz83, Th. 4.3℄).

Corollary II.3. If A 2 B(Z) is dissipative and Z

1

� Z a 
losed A-invariant subspa
e, then

A j

Z

1

is dissipative.

Proof. This is a dire
t 
onsequen
e of Theorem II.2(2).

Lemma II.4. If " > 0 and 
: [0; "℄! B(Z) is a C

1

-
urve with 
(0) = 1 and k
(t)k � 1 for

all t , then 


0

(0) dissipative.

Proof. Let z 2 Z and � 2 F (z). Then k
(t)(z)k � kzk for all t � 0 implies that

Reh�; 
(t):zi � kzk = Reh�; 
(0):zi

and therefore Reh�; 


0

(0):zi � 0:

De�nition II.5. We 
onsider the entire fun
tion s: C ! C given by the power series

s(z) :=

1

X

n=1

z

n

(2n+ 1)!

:
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Then s(z

2

) =

sinh(z)

z

: Moreover, From [Re95, x1.3℄ we re
all the produ
t expansion

sin z = z

1

Y

n=1

�

1�

z

2

n

2

�

2

�

; z 2 C :

The relation sinh(iz) = i sin z now leads to

sinh z

z

=

Q

1

n=1

�

1 +

z

2

n

2

�

2

�

and therefore to

s(z) =

1

Y

n=1

�

1 +

z

n

2

�

2

�

; z 2 C :

Theorem II.6. For A 2 B(Z) the following are equivalent:

(1) �A is dissipative.

(2) For ea
h t > 0 the operator s(tA) is expansive.

(3) For ea
h t > 0 the operator s(tA) is surje
tive and expansive.

Proof. (1) ) (2): If �A is dissipative, then the same holds for �tA for all t > 0. Therefore

it suÆ
es to show that s(A) is expansive. Using the produ
t expansion of the fun
tion s , we

obtain

s(A) =

1

Y

n=1

�

1 +

A

n

2

�

2

�

(
f. [Ru73, Th. 10.27℄). We use Theorem II.2 to see that ea
h operator 1+

A

n

2

�

2

is expansive, so

that the 
onvergen
e of the in�nite produ
t implies that s(A) is expansive.

(2) ) (1): We have s(z) = 0 if and only if z = �n

2

�

2

for some n 2 N . Therefore the Spe
tral

Mapping Theorem ([Ru73, Th. 10.28℄) implies that the operator s(tA) is invertible if ktAk < �

2

,

Pi
k " > 0 with "kAk < �

2

. For t 2 [0; "℄ we put 
(t) := s(tA)

�1

. Our assumption implies that

k
(t)k � 1 for all t , so that 


0

(0) = �

1

3!

A is dissipative (Lemma II.4).

(1) ) (3): If �A is dissipative, then Spe
(A)\℄ � 1; 0[= �, so that the Spe
tral Mapping

Theorem implies that s(A) is invertible. The same 
on
lusion holds if we repla
e A by tA for

some t > 0.

(3) ) (2) is trivial.

Hermitian operators

De�nition II.7. Let Z be a 
omplex Bana
h spa
e. We write B(Z) for the Bana
h algebra

of bounded linear operators on Z and GL(Z) for its group of units. We further write

U(Z) := fg 2 GL(Z): kgk = kg

�1

k = 1g

for the group of unitary, i.e., bije
tive linear isometries of Z . A

ording to [Up85, Cor. 7.8℄, this

group 
arries a natural real Bana
h{Lie group stru
ture (the topology might be �ner than the

operator norm topology) su
h that its Lie algebra is given by

u(Z) = fx 2 B(Z): exp(Rx) � U(Z)g:

An operator x 2 B(Z) is 
alled hermitian if exp(iRx) � U(Z). We write Herm(Z) := iu(Z) for

the 
losed subspa
e of all hermitian operators on Z ([Up85, Prop. 14.29℄).

Remark II.8. Condition (4) in Theorem II.2 implies in parti
ular that Diss(Z) is a 
losed


onvex 
one, and Theorem II.2(3) further shows that

Diss(Z) \�Diss(Z) = iHerm(Z) = u(Z):

That u(Z) might be quite small follows from work of Berkson and Porta on the isometry

group of the Hardy spa
es of the ball and the polydis
 in C

n

. They show that for these Bana
h

spa
es we have u(Z) = Ri1 , so that Herm(Z) = R1 (
f. [BP80℄). A related result due to

Vesentini ([Ve79℄) says that unit balls in L

1

-spa
es whi
h are more than one-dimensional are not

homogeneous.
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Proposition II.9. Let Z be a 
omplex Bana
h spa
e and A 2 Herm(Z) . Then �A

2

is

dissipative and

sinhA

A

is surje
tive and expansive.

Proof. If A 2 Herm(Z), then itA is dissipative for ea
h t 2 R (Remark II.3), so that 1� itA

is expansive by Theorem II.2(2). For t 6= 0 we now see that

1+ t

2

A

2

= (1� itA)(1+ itA)

also is expansive. Hen
e Theorem II.2(2) implies that �A

2

is dissipative. Now the assertion

follows from Theorem II.6.

Proposition II.10. Let Z be a Bana
h spa
e. Then we have:

(i) Spe
(g) � S

1

for g 2 U(Z) .

(ii) Spe
(x) � R and sup j Spe
(x)j = kxk for x 2 Herm(Z) .

(iii) g(Z) := Herm(Z)+ iHerm(Z) is a 
losed Lie subalgebra of B(Z) and x+ iy 7! (x+ iy)

�

:=

x� iy de�nes a 
ontinuous involution on g(Z) .

(iv) Herm

+

(Z) := fx 2 Herm(Z): Spe
(x) � R

+

= [0;1[g is a 
losed 
onvex 
one with interior

Herm

+

(Z) \GL(Z) = fx 2 Herm(Z): Spe
(x) �℄0;1[g .

(v) The fun
tion ': Herm(Z)! R; x 7! sup Spe
(x) is 
onvex and U(Z)-invariant with respe
t

to the 
onjugation a
tion.

(vi) ke

x

k = e

supSpe
(x)

for x 2 Herm(Z) .

Proof. (i) (
f. [Up85, Lemma 14.20℄) Let v 2 Z and � 2 C . Then kg:v � �vk � kg:vk �

j�jkvk = (1� j�j)kvk: We 
on
lude that for j�j 6= 1, the operator g� �1 is inje
tive with 
losed

range. The same argument applies to the adjoint of g , showing that g � �1 is invertible.

(ii) (
f. [Up85, Lemma 14.20℄) Let x 2 Herm(Z), i.e., exp(iRx) � U(Z). Then (i) implies that

for all t 2 R we have e

it Spe
(x)

= Spe
(e

itx

) � S

1

: Hen
e Spe
(x) � R . For the se
ond assertion

we refer to [Up85, Lemma 14.30℄

(iii) [Up85, Cor. 14.36℄

(iv) [Up85, Th. 14.31℄

(v) The U(Z)-invarian
e of the fun
tion ' is 
lear. In view of (iii), we only have to show that

' is a 
onvex fun
tion on Herm(Z). Let

S := f� 2 B(Z)

0

: k�k = 1 = �(1)g

be the set of states of the Bana
h algebra B(Z). Then for ea
h x 2 Herm(Z) we have

S(x) = 
onv

�

Spe
(x)

�

([Up85, Cor. 14.37℄) and therefore '(x) = sup(S(x)): As a supremum of the set S of 
ontinuous

linear fun
tions on Herm(Z), the fun
tion ' is 
onvex.

(vi) The Spe
tral Mapping Theorem ([Ru73, Th. 10.28℄) implies that Spe
(e

x

) = e

Spe
(x)

,

and hen
e that m := supSpe
(x) satis�es e

m

� sup Spe
(e

x

) � ke

x

k . It remain to see that

ke

x

k � e

m

. Repla
ing x by x �m1 , we may assume that m = 0, i.e., that Spe
(x) � �R

+

.

We will show that this implies that x is dissipative, and hen
e that ke

x

k � 1 (Theorem II.2(3)).

Let z 2 Z with kzk = 1 and � 2 F (z). Then the linear fun
tional �:B(Z) ! C ,

�(A) = h�;A:zi satis�es k�k = 1 = �(1), i.e., � 2 S . Now �(x) � supS(x) � 0 implies that x

is dissipative.

III. Symmetri
 Spa
es

For general Bana
h manifolds one does not have smooth fun
tions with arbitrarily small supports

(
f. [KM97℄). Therefore many familiar obje
ts from �nite-dimensional di�erential geometry whi
h

arise in several di�erent guises, require a more restri
tive approa
h in the in�nite-dimensional
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setting; some approa
hes do not really depend on the �nite dimensionality, but some 
orrespon-

den
es simply break down or be
ome mu
h more subtle. The 
on
ept of a spray is robust in

this sense. It is 
entral to our dis
ussion below be
ause it en
odes the exponential fun
tion of

the underlying manifold. In this se
tion we dis
uss symmetri
 spa
es in the sense of Loos (
f.

[Lo69℄) as spa
es endowed with a multipli
ation satisfying 
ertain axioms. The advantage of this

approa
h is that it has ex
ellent fun
torial properties, su
h as the fa
t that the tangent bundle

of a symmetri
 spa
e has a natural stru
ture of a symmetri
 spa
e.

The notion of a 
onne
tion on a manifold be
omes more subtle in a Bana
h setting (
f.

[La99℄) and the same is true for the higher tangent bundles as used by Loos in [Lo69℄. Below we

explain how one asso
iates to a symmetri
 spa
e a spray with the same symmetries and whi
h

is uniquely determined by this property. In the �nite-dimensional 
ase this is done by Loos in

[Lo69℄ in the 
ontext of higher tangent bundles. Sin
e parallel transport along the geodesi
s of

the spray is given by global symmetries, the so 
alled translations of the spa
e, it be
omes quite

easy to verify whether a tangent norm on a symmetri
 spa
e is invariant under parallel transport.

To pro
eed further, we assume that the symmetri
 spa
e M 
an be written as G=K , where

G is a Bana
h{Lie group and K an open subgroup of the group of �xed points of an involution

� . It is a natural 
onje
ture that this is no restri
tion of generality, but this is not 
lear (see

Problem III.1). We then derive a 
riterion for a G-invariant norm on M to lead to a spa
e of

semipositive 
urvature.

De�nition III.1. Let M be a smooth manifold. We say that (M;�) is a symmetri
 spa
e

(in the sense of Loos) (
f. [Lo69℄) if

�:M �M !M; (x; y) 7! x � y

is a smooth map with the following properties:

(S1) x � x for all x 2M .

(S2) x � (x � y) = y for all x; y 2M .

(S3) x � (y � z) = (x � y) � (x � z) for all x; y 2M .

(S4) Every x 2M has a neighborhood U su
h that x � y = y implies x = y for all y 2 U .

We want to show that ea
h symmetri
 spa
e M 
arries a 
anoni
al 
onne
tion in the sense

of [La99℄.

Lemma III.2. If M is a symmetri
 spa
e and for x 2M we put �

x

(y) := x � y , then

d�

x

(x) = � id

T

x

(M)

:

Proof. It follows from (S2) that �

2

x

= id

M

, so that �

x

(x) = x implies that d�

x

(x) is an

involution on the Bana
h spa
e V := T

x

(M).

Let U � V be an open 0-neighborhood and suppose that ':U ! M is a 
hart with

'(0) = x . Sin
e x is a �xed point of �

x

, we may w.l.o.g. assume that �

x

(V ) = V . We 
onsider

the involutive smooth map f :U ! U de�ned by f(u) := '

�1

(�

x

('(u))). Then f

2

= id

U

and

A := df(0) = d'(0)

�1

d�

x

(x)d'(0) is an involution. We have to show that A = �1 . Suppose

that this is not the 
ase and write

V = V

+

� V

�

; V

+

= ker(A� 1); V

�

= ker(A+ 1):

We write elements of U as pairs (a; b) 2 V

+

� V

�

and 
onsider the fun
tion

G:U ! V; G(a; b) = F (a; b)� (a; b):

Then

�G

�a

(0; 0) = A j

V

+

� id

V

+

= 0 and

�G

�b

(0; 0) = A j

V

�

� id

V

�

= �2 id

V

�

:

Hen
e the Impli
it Fun
tion Theorem implies that there exists a 0-neighborhood W in V

+

and

a smooth map ':W ! V

�

su
h that

G(a; '(a)) = 0 for all a 2W:

Sin
e the zero set of G 
onsists of �xed points of f , and (S4) implies that 0 is an isolated �xed

point of f , we 
on
lude that V

+

= f0g , and therefore that A = �1 .
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Proposition III.3. Let (M;�) be a symmetri
 spa
e and identify T (M�M) with TM�TM .

Then T� de�nes by

v � w := T (�)(v; w)

on the tangent bundle the stru
ture of a symmetri
 spa
e. In ea
h tangent spa
e T

x

(M) , x 2M ,

the produ
t satis�es v � w = 2v � w:

Proof. (
f. [Lo69, p.74℄) One has to express the properties (S1){(S3) by 
ommutative diagrams

to see that they are preserved by the fun
tor T . For (S1) we write �:M ! M �M for the

diagonal map. Then (S1) means that � Æ� = id

M

, and passing to the tangent maps leads to

T�ÆT� = id

T (M)

be
ause T� 
orresponds to the diagonal map of TM under the identi�
ation

T (M �M)

�

=

TM � TM .

Condition (S2) 
an be written as � Æ (id��) Æ (� � id) = p

2

; where p

2

:M

2

! M is the

proje
tion onto the se
ond 
omponent, and likewise (S3) means that

� Æ (id��) = � Æ

�

(� Æ p

12

)� (� Æ p

13

)

�

;

where p

12

; p

23

:M

3

! M

2

are given by p

12

(x; y; z) = (x; y); p

13

(x; y; z) = (x; z): Applying T

leads to the 
orresponding 
onditions for T� .

To verify (S4), we �rst note that the proje
tion �:TM !M satis�es

� Æ T� = � Æ (� � �);

showing in parti
ular that T

x

(M) � T

x

(M) � T

x

(M) holds for ea
h x 2 M . For v; w 2 T

x

(M)

Lemma III.2 leads to

T�(v; w) = d�(x; x)(v; w) = d�(x; x)(v; 0) + d�(x; x)(0; w)

= d�(x; x)(v; 0) + d�

x

(x):w = d�(x; x)(v; 0) � w:

Now T�(v; v) = v yields d�(x; x)(v; 0) = 2v , and therefore v � w = T�(v; w) = 2v � w: Now

we 
an verify (S4). Let v 2 TM and x := �(v). Pi
k a neighborhood U of x 2 M su
h that

x is the only �xed point of �

x

in U . If w 2 �

�1

(U) satis�es T�(v; w) = w , then we obtain

�(�(v); �(w)) = �(w), whi
h implies �(w) = �(v) = x . Therefore w = v � w = 2v � w implies

v = w .

For v 2 TM we write �

v

:TM ! TM for the symmetry in v given by �

v

(w) := T�(v; w) =

v � w (Proposition III.3) and Z:M ! TM for the zero se
tion.

Theorem III.4. The fun
tion

F :TM ! TTM; F (v) := �T (�

v

2

Æ Z)(v)

de�nes a spray on M .

Note that �

v

2

Æ Z:M ! TM , so that T (�

v

2

Æ Z) maps TM into TTM .

Proof. First we show that F is a ve
tor �eld on TM , i.e., a se
tion of the bundle

�

TM

:TTM ! TM . We obtain for x = �(v) the relation

�

TM

(F (v)) = �

TM

Æ T (�

v

2

Æ Z)(v) = (�

v

2

ÆZ)(�(v)) =

v

2

� Z(�(v)) = v

(Proposition III.3). This proves that �

TM

Æ F = id

TM

, so that F is a ve
tor �eld on TM .

Moreover,

T (�)F (v) = �T (� Æ �

v

2

Æ Z)(v) = �T (�

x

Æ � ÆZ)(v) = �T (�

x

)(v) = �d�

x

(x)(v) = v

shows that F is a se
ond order ve
tor �eld on TM (
f. De�nition I.1). For the produ
t on TM

we have

v � w = T�(v; w) = d�

�

�(v); �(w)

�

(v; w);

showing that for s 2 R we have

(sv) � w = T�(sv; w) = d�

�

�(v); �(w)

�

(sv; w) = s(v � w)

if w = 0 in T

�(w)

(M), i.e., �

sv

Æ Z = s�

v

Æ Z for all v 2 TM . This leads to

F (sv) = �T (�

sv

2

ÆZ)(sv) = �sT (s

TM

Æ�

v

2

ÆZ)(v) = T (s

TM

)

�

�sT (�

v

2

ÆZ)(v)

�

= T (s

TM

)

�

sF (v)

�

:
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Lemma III.5. Let (M;F ) be a 
onne
ted manifold with a spray and f; g:M ! M two F -

isomorphisms for whi
h there exists a point x 2M with f(x) = g(x) and df(x) = dg(x) . Then

f = g .

Proof. First we note that for ea
h F -isomorphism f of M the tangent map Tf preserves

D

exp

, and we have f Æ exp = exp ÆTf on D

exp

. In parti
ular we get for v 2 T

x

(M) the relation

f(exp

x

(v)) = exp

�

df(x):v

�

;

showing that the values of f in the neighborhood exp

x

(T

x

(M)) of x are determined by f(x)

and df(x).

We 
onsider the subset N of all points p 2 M su
h that f and g 
oin
ide on a neigh-

borhood of p . It is 
lear that N is open. Using the regularity of the exponential fun
tion

exp

p

:T

p

(M) ! M in 0, we see that

N = fp 2M : f(p) = g(p); df(p) = dg(p)g;

showing that N is 
losed. Moreover, x 2 N implies that N is a non-empty open and 
losed

subset of M , hen
e 
oin
ides with M .

Theorem III.6. Let (M;�) be a 
onne
ted symmetri
 spa
e and F the spray on M de�ned

in Theorem III.4. Then the following assertions hold:

(i) Aut(M;�) = Aut(M;F ) .

(ii) F is uniquely determined by the property of being invariant under all symmetries �

x

,

x 2M .

(iii) (M;F ) is geodesi
ally 
omplete.

(iv) Let �:R ! M be a geodesi
 and 
all the maps �

�;s

:= �

�(

s

2

)

Æ �

�(0)

, s 2 R; translations

along � . Then these are automorphisms of (M;�) with

�

�;s

:�(t) = �(t+ s) and d�

�;s

(�(t)) = P

t+s

t

(�)

for all s; t 2 R .

Proof. (i) \�": Let ' 2 Aut(M;�), i.e., ' Æ � = � Æ (' � ') holds on M �M . Passing

to the tangent maps, we see that T' is an isomorphism of the symmetri
 spa
e (TM; T�) (
f.

Proposition III.3). In parti
ular we have T' Æ�

v

= �

T ('):v

ÆT' on TM for ea
h v 2 TM . Now

we 
al
ulate

F Æ T (')(v) = �T (�

T('):v

2

Æ Z) Æ T (')(v) = �T (�

T('):v

2

Æ Z Æ ')(v)

= �T (�

T('):v

2

Æ T (') Æ Z)(v) = �T (T (') Æ �

v

2

Æ Z)(v)

= �TT (') Æ T (�

v

2

Æ Z)(v) = TT (') Æ F (v):

\�": Let ' 2 Aut(M;F ) and x 2 M . In view of the �rst part of the proof and (S3), we have

�

x

2 Aut(M;F ) for ea
h x 2 M . Hen
e ' Æ �

x

and �

'(x)

Æ ' are two F -automorphisms of M

mapping x to '(x) su
h that

d(' Æ �

x

)(x) = d'(x)d�

x

(x) = �d'(x) and d(�

'(x)

Æ ')(x) = d(�

'(x)

('(x))d'(x) = �d'(x)

(Lemma III.2). Therefore Lemma III.5 implies that ' Æ�

x

= �

'(x)

Æ' holds for all x 2M . This

implies that ' 2 Aut(M;�).

(ii) (
f. [Lo69, p. 84℄) Let F and

e

F be two sprays on M whi
h are invariant under all symmetries

�

x

, x 2M . We 
onsider the ve
tor �eld H := F �

e

F on TM .

Let x 2 M and 
:U ! M a 
hart around x whose range is �

x

-invariant, so that

�

x;U

:= 


�1

Æ �

x

j


(U)

Æ 
 is de�ned. We identify TU with U � V for a Bana
h spa
e V .

Then T (�

x;U

)(x; v) = (x;�v) and, more generally, T (�

x;U

)(y; w) = (�

x;U

:y; d�

x;U

(y):w). For

the se
ond tangent map, this leads to

TT (�

x;U

)(x; v; 0; w) = (x;�v; 0;�w):
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In lo
al 
oordinates we further have

F

U

(x; v) = (x; v; v; f(x)(v; v));

e

F

U

(x; v) = (x; v; v;

e

f(x)(v; v))

(
f. Remark I.2), so that H

U

(x; v) = (x; v; 0; h(x)(v; v)), where h(x) 2 Sym(V

2

;V ) is a symmet-

ri
 bilinear map. The invarian
e of H

U

under �

x;U

means that H

U

ÆT (�

x;U

) = TT (�

x;U

) ÆH

U

,

and in (x; v) we thus obtain

(x;�v; 0; h(x)(v; v)) = H

U

(x;�v) = TT (�

x;U

)H

U

(x; v) = (x;�v; 0;�h(x)(v; v)):

Therefore h(x)(v; v) = �h(x)(v; v) leads to h(x)(v; v) = 0, i.e., H = 0.

(iii) (i) implies that for a geodesi
 segment �: ℄�"; "[!M with �(0) = x and y = �(t) the 
urve

� := s

y

Æ� is a geodesi
 sement with �

0

(t) = ��

0

(t). For t > 0 this shows that s 7! �(2t� s) is

a geodesi
 segment 
ompatible with � and de�ned on ℄2t� "; 2t+ "[ . Continuing in this fashion,

we see that � 
an be extended to a geodesi
 R ! M , showing that (M;F ) is geodesi
ally


omplete.

(iv) In view of (iii), the maximal geodesi
s of M are de�ned on R . The assertion follows from

[La99, Prop. XIII.5.5℄ whose proof does also work in our 
ontext.

Corollary III.7. Let (M;�) be a 
onne
ted symmetri
 spa
e, F the 
anoni
al spray on M ,

and b a 
ompatible tangent norm on M . If b is invariant under all re
e
tions �

x

, x 2M , then

(M; b; F ) is a Finsler manifold with spray.

Proof. We have seen in Theorem III.6(iv) that parallel transport along a geodesi
 � 
an

be des
ribed as a di�erential of a translation of a geodesi
. Sin
e the invarian
e of b under all

re
e
tions implies that it is invariant under all translations along geodesi
s, it is also invariant

under parallel transport along geodesi
s.

Remark III.8. In [La99℄ S. Lang uses the following de�nition of a symmetri
 spa
e M .

Let F be a spray on M and D the 
orresponding 
ovariant derivative ([La99, xVIII.2℄). A

D -symmetry in x 2 M is an involutive D -isomorphism �

x

:M ! M with �

x

(x) = x and

d�

x

(x) = � id

T

x

(M)

. The pair (M;D) is 
alled D -symmetri
 if every point x 2 M has a

D -symmetry and exp

x

:T

x

(M)!M is surje
tive for ea
h x 2M .

As we have seen in Theorem III.4, every symmetri
 spa
e in the sense of Loos is endowed

with a natural spray F (hen
e with a 
ovariant derivative), and both stru
tures have the same

automorphism (Theorem III.6). The problem of Lang's de�nition is that it does not even 
over

all �nite-dimensional symmetri
 spa
es be
ause the exponential fun
tion of a general symmetri


spa
e need not be surje
tive. His motivation to use this de�nition seems to be his Lemma XIII.5.1

whi
h is 
overed by our Lemma III.5. Having generalized Lang's Lemma XIII.5.1 in this way, we


an refer below to the results derived in Ch. XIII of [La99℄.

Example III.9. (a) If G is a Bana
h{Lie group and � an involutive automorphism of G , then

we 
all (G; �) a symmetri
 Lie group. Let further G

�

:= fx 2 G:�:x = xg be the subgroup of

� -�xed points, and K � G

�

an open subgroup. Inspe
tion of the a
tion of � in an exponential


hart of G shows that K is a Lie subgroup of G . Furthermore the Lie algebra k of K is a 
losed

subalgebra of g whi
h is 
omplemented by the 
losed subspa
e p := fx 2 g: d�(1):x = �xg , so

that the quotient spa
e M := G=K 
arries the stru
ture of a Bana
h manifold ([Bou90, Ch. III,

x1.6, Prop. 11℄). Let q:G ! M; g 7! gK be the quotient map. Then a natural 
hart around

o := �(1) is given by a restri
tion of the exponential map

Exp: p!M; x 7! �(exp x)

of G=K to a suitable open neighborhood of 0 in p . We de�ne a multipli
ation � on M by

�(gK; hK) := g�(g)

�1

�(h)K

and observe that this is well de�ned be
ause for k

1

; k

2

2 K we have gk

1

�(gk

1

)

�1

�(hk

2

)K =

gk

1

k

�1

1

�(g)�(h)k

2

K = g�(g)�(h)K: One easily veri�es that G a
ts on M by automorphism



A Cartan{Hadamard Theorem for Bana
h{Finsler Manifolds 15

of this multipli
ation and that (S1){(S3) are veri�ed. Sin
e G a
ts transitively on M , it

suÆ
es to verify (S4) in the base point o . There �

o

(xK) = �(o; xK) = �(x)K implies that

d�

o

(o) = � id

T

o

(M)

; and hen
e that o is an isolated �xed point. This proves that (M;�) is a

symmetri
 spa
e.

To 
al
ulate the geodesi
s of su
h a symmetri
 spa
e, we 
onsider the base point o and

v 2 T

o

(M)

�

=

p . The identi�
ation p

�

=

T

o

(M) is obtained by the bije
tion dq(1) j

p

: p! T

o

(M).

Let �:R !M be the geodesi
 with �(0) = o and �

0

(0) = v , and let �

t

:= �

�(

t

2

)

Æ �

�(0)

denote

the translations along � . Then

�

v

:=

d

dt

t=0

�

t

:M ! TM

is the unique Killing ve
tor �eld on M satisfying �

v

(o) = v and �

o

:�

v

= ��

v

(
f. [La99, Th.

5.8℄). For X 2 p we 
onsider the ve
tor �eld

�

X

(p) :=

d

dt

t=0

exp(tX):p

whi
h is a Killing ve
tor �eld satisfying �

o

:�

X

= ��

X

and �

X

(o) = dq(1):X . We 
on
lude that

for v = dq(1):X we have �

X

= �

v

, so that the geodesi
 � is given by

�(t) = exp(tX):o = Exp(tX):

The pre
eding 
onsiderations show that Exp = exp

o

Ædq(1) j

p

.

(b) Ea
h Bana
h{Lie group G is a symmetri
 spa
e with respe
t to the multipli
ation

�(x; y) := xy

�1

x:

This 
an be seen by using the 
onstru
tion under (a). The Lie group G � G a
ts transitively

on G by (g

1

; g

2

):x = g

1

xg

�1

2

, the stabilizer of the identity 1 is the diagonal subgroup K :=

f(g; g): g 2 Gg , and in this sense G

�

=

(G � G)=K . Moreover, K = (G � G)

�

, where � is the


ip involution on G�G given by �(x; y) = (y; x). Then the formula under (a) yields

�(x; y) = �

�

(x;1):1; (y;1):1

�

= (x;1)(1; x)(1; y):1 = xy

�1

x:

For the spe
ial 
ase, where G = V is a Bana
h spa
e and the group stru
ture is given by addition,

we simply have �(x; y) = 2x� y (
f. Proposition III.3). The exponential map

Exp: p = f(X;�X):X 2 gg ! G

is given by Exp(X;�X) = exp(X) exp(X) = exp(2X), so it essentially 
an be identi�ed with

the exponential map exp: g! G of the Lie group G .

Problem III.1. Show that the group G := Aut(M;�) of automorphisms of a symmetri
 spa
e

(M;�) is a Bana
h{Lie group a
ting transitively on M , so that M

�

=

G=K , where K = G

p

for

a point p 2M , and K is an open subgroup of the group of �xed points in G for the involution �

on G given by �(g) := �

p

Æ g Æ�

p

. The 
orresponding proof for the �nite-dimensional 
ase given

by Loos in [Lo69℄ uses Palais' Theorem on the integrability of a �nite-dimensional Lie algebra

of 
omplete ve
tor �elds to a smooth Lie group a
tion. It seems to be doubtful that this line of

argumentation 
ould persist in the Bana
h setting. Nevertheless, we expe
t the fa
t to be true.

If M is simply 
onne
ted, we expe
t that Aut(M;�)

p


oin
ides with the Bana
h{Lie group of

automorphisms of the Bana
h{Lie triple stru
ture on T

p

(M).

From now on we 
onsider the setting of Example III.9(a), where (G; �) denotes a 
onne
ted

symmetri
 Bana
h{Lie group and M = G=K . We want to turn M into a Finsler manifold on

whi
h G a
ts isometri
ally. We 
all a norm on a Bana
h spa
e 
ompatible if it de�nes the original

topology. In this sense we assume that there exists a 
ompatible norm on p whi
h is invariant

under the group Ad(K). We identify the tangent bundle T (M) of M with the asso
iated bundle

T (M)

�

=

G �

K

p , where the a
tion of K on G � p is given by k:(g; x) = (gk

�1

;Ad(k):x). We

write [g; v℄ 2 T (M) for a tangent ve
tor in gK 2M . Then b

M

([g; v℄) := k[g; v℄k := kvk is well-

de�ned and de�nes a tangent norm on M whi
h is invariant under the a
tion of G on T (M)

whi
h is simply given by g:[g

1

; v℄ = [gg

1

; v℄ . We 
all (M; b

M

) a Finsler symmetri
 spa
e.
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Lemma III.10. We identify T

o

(M) with p and write �

g

:M ! M for the map x 7! g:x .

Then the derivative of Exp in x 2 p is given by

dExp(x) = d�

expx

(o)

sinh adx

adx

j

p

:

This map is invertible if and only if Spe


�

(adx)

2

j

p

�

\ f�n

2

�

2

:n 2 Ng = f0g:

Proof. (
f. [Hel78, Th. IV.4.1℄) We re
all that for ea
h x 2 g we have

d exp(x) = d�

expx

(1)

1� e

� adx

adx

;

where �

h

:G! G; g 7! hg denotes the left multipli
ation. Therefore we obtain for y 2 p :

dExp(x):y = dq(exp x)d exp(x):y = dq(expx)d�

exp x

(1)

1� e

� adx

adx

:y

= d�

expx

dq(1)

1� e

� adx

adx

:y = d�

expx

sinh adx

adx

:y;

be
ause

1� e

� adx

adx

:y =

1� 
osh adx

adx

:y

| {z }

2k

+

sinh adx

adx

:y

| {z }

2p

:

This proves the �rst assertion.

For z 2 C we re
all the fun
tion s from De�nition II.5 and note that the zeros of s are the

numbers �n

2

�

2

, n 2 N . In view of

sinh adx

adx

j

p

= s((adx)

2

j

p

), the Spe
tral Mapping Theorem

([Ru73, Th. 10.28℄) shows that this operator is invertible if and only if the spe
trum of (adx)

2

j

p


ontains no zeros of the fun
tion s . This 
ompletes the proof.

Proposition III.11. The tangent norm turns M into a Bana
h{Finsler manifold.

Proof. To see that the tangent norm on M is 
ompatible, in view of the transitivity of the

G-a
tion on M , it suÆ
es to 
he
k this for the 
anoni
al 
hart about o given by the exponential

fun
tion. A

ording to Lemma III.10, we have for x; v 2 p :

kdExp(x):vk =










sinh adx

adx

:v










=







F (x):v







;

where F : p ! B(p) is a 
ontinuous fun
tion with F (0) = 1 . Hen
e there exists a zero

neighborhood U of 0 in p and m;M > 0 with kF (x)

�1

k � m and kF (x)k � M for all

x 2 U . Then

mkvk � kdExp(x)(v)k �Mkvk

for all x 2 U and v 2 p proves the 
ompatibility of the tangent norm on M .

Proposition III.12. Endowing the Finsler symmetri
 spa
e (M; b

M

) with the 
anoni
al spray

F , we obtain a geodesi
ally 
omplete Finsler manifold with spray (M; b

M

; F ) .

Proof. This is an immediate 
onsequen
e of Corollary III.7.

The following lemma is needed in the proof of Theorem III.14.

Lemma III.13. For an element a of the Bana
h algebra A we have:

(i) ker(e

a

� 1) =

L

n2Z

ker(a� n2�i1):

(ii) If e

a

= 1 , then a is a semisimple element with �nite spe
trum and purely imaginary

eigenvalues.

Proof. (i) We only have to observe that all assumptions of [Bou90, Ch. 3., x6.4, Lemme 2℄

are satis�ed be
ause all zeros of the holomorphi
 fun
tion f(z) = e

z

� 1 on C are simple and

given by the set 2�iZ .

(ii) is a dire
t 
onsequen
e of (i).
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Theorem III.14. If M has seminegative 
urvature, then the exponential map Exp: p ! M

is a 
overing of Bana
h manifolds and � := fx 2 p: Expx = og is a dis
rete additive subgroup

of the Bana
h spa
e p with �

1

(M)

�

=

� and M

�

=

p=� .

Proof. The �rst part of the assertion follows from Theorem I.10. Let x 2 p with Expx = o ,

i.e., expx 2 K � G

�

. Then expx = �(expx) = exp(�x) implies that exp 2x = 1 . We 
on
lude

that e

2 adx

= 1 , showing that adx is diagonalizable with �nite purely imaginary spe
trum.

Hen
e (adx)

2

j

p

has non-positive real eigenvalues (Lemma III.13(i)). Sin
e Exp is regular in

every multiple of x , we 
on
lude that (adx)

2

:p = f0g , and sin
e adx is diagonalizable, that

[x; p℄ = f0g . Likewise we get (adx)

2

:k � (adx):p = f0g and therefore adx:k = f0g , showing

that x 2 z(g). Let � := Exp

�1

(o). Then � � z(g) \ p is a dis
rete subgroup of p and for x 2 �

and y 2 p we have

Exp(x+ y) = q(exp(x + y)) = q(exp y expx) = exp y:Expx = exp y:o = Exp y:

Therefore � 
an be viewed as the group of de
k transformations of the 
overing map Exp: p!M ,

so that the fa
t that p is simply 
onne
ted implies that �

1

(M)

�

=

� and M

�

=

p=�.

We 
on
lude this se
tion by a 
hara
terization of the 
ondition that translates the property

of a Finsler symmetri
 spa
e (M; b

M

; F ) to have seminegative 
urvature to a property of the


orresponding symmetri
 Lie algebra (g; d�(1)).

Proposition III.15. For a Finsler symmetri
 spa
e M

�

=

G=K , the following are equivalent:

(1) M has seminegative 
urvature.

(2) For ea
h x 2 p the operator

sinh ad x

adx

j

p

= s((adx)

2

j

p

) is surje
tive and expansive.

(3) For ea
h x 2 p the operator

sinh ad x

adx

j

p

= s((adx)

2

j

p

) is expansive.

(4) For ea
h x 2 p the operator �(adx)

2

j

p

is dissipative.

Proof. This is an immediate 
onsequen
e of the formula for dExp(x) (Lemma III.10), the

de�nition of seminegative 
urvature (De�nition I.4), and Theorem II.6.

The following proposition 
overs the 
ase where M is a Riemannian symmetri
 spa
e in

the sense of Hilbert manifolds. If M is a Riemannian symmetri
 spa
e, then the norm on p is

de�ned by a s
alar produ
t h�; �i .

Proposition III.16. If p is a Hilbert spa
e and the operators (adx)

2

j

p

, x 2 p , are non-

negative hermitian, then (SNC) is satis�ed.

Proof. If A := (adx)

2

j

p

is non-negative and hermitian, then ke

�tA

k � 1 for all t > 0 follows

from the fun
tional 
al
ulus for hermitian operators on the Hilbert spa
e p . Therefore �A is

dissipative.

IV. Criteria for seminegative 
urvature and related 
on
epts

In the light of Proposition III.15 and Theorem III.14, it is an important problem to �nd 
riteria

for a normed symmetri
 Lie algebra (g; �; b) whi
h imply (SNC) and whi
h 
an be 
he
ked in

many situations. Su
h 
riteria will be derived in Se
tion IV, where we will show in parti
ular

that hyperboli
 normed symmetri
 Lie algebras satisfy (SNC).

De�nition IV.1. Let g be a Bana
h{Lie algebra, where b: g ! R denotes the norm

fun
tion on g , � a 
ontinuous linear involutive automorphism of g , g = k� p the � -eigenspa
e

de
omposition, and assume that the norm b on p is invariant under e

ad k

. Then we 
all the

triple (g; �; b) a normed symmetri
 Lie algebra.

(a) We say that (g; �; b) satis�es (SNC) (seminegative 
urvature) if for ea
h x 2 p the operator

�(adx)

2

j

p

is dissipative. Note that this 
ondition depends only on the norm on p .

(b) We 
all (g; �; b) hyperboli
 if b




(x+iy) := b(x+y), x 2 k , y 2 p , de�nes a norm on g




= k+ip

whi
h is invariant under the group Inn(g




) := he

ad g




i of inner automorphisms of g




.
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(
) A normed symmetri
 subalgebra of (g; �; b) is a triple (g

1

; �

1

; b

1

), where g

1

is a 
losed � -

invariant subalgebra of g , �

1

= � j

g

1

, and b

1

= b j

g

1

.

(d) Let (g

j

; �

j

; b

j

), j = 1; 2, be two normed symmetri
 Lie algebras. Then g := g

1

� g

2

is

a Bana
h{Lie algebra with respe
t to b(x; y) := max(b

1

(x); b

2

(y)), the pres
ription �(x; y) =

(�

1

(x); �

2

(y)) de�nes a 
ontinuous involution on g with p = p

1

� p

2

, so that we obtain the

normed symmetri
 Lie algebra (g; �; b). It is 
alled the sup dire
t sum of (g

j

; �

j

; b

j

) , j = 1; 2.

(e) Let (g; �; b) be a normed symmetri
 Lie algebra and X a 
ompa
t spa
e. Then C(X; g)

is a Bana
h{Lie algebra with respe
t to b

X

(f) := sup

x2X

b(f(x)). Moreover, �

X

(f)(x) :=

�(f(x)) de�nes an involution on C(X; g), whi
h leads to the normed symmetri
 Lie algebra

(C(X; g); �

X

; b

X

).

Lemma IV.2. (i) If the normed symmetri
 Lie algebra (g; �; b) satis�es (SNC), then every

normed symmetri
 subalgebra satis�es (SNC).

(ii) Sup dire
t sums of two normed symmetri
 Lie algebras with (SNC) satisfy (SNC).

(iii) If (g; �; b) satis�es (SNC) and X is a 
ompa
t spa
e, then (C(X; g); �

X

; b

X

) satis�es (SNC).

Proof. We use the notation of De�nition IV.1.

(i) follows dire
tly from Corollary II.3.

(ii) Let x = (x

1

; x

2

) 2 p = p

1

�p

2

. Then A := �(adx)

2

j

p

= A

1

�A

2

, where A

j

:= �(adx

j

)

2

j

p

j

,

j = 1; 2. For ea
h t > 0 the operators 1� tA

j

, j = 1; 2, are expansive, so that

k(1� tA)(y

1

; y

2

)k = max(k(1� tA

1

)(y

1

)k; k(1� tA

2

)(y

2

)k) � max(ky

1

k; ky

2

k) = k(y

1

; y

2

)k:

Now Theorem II.2(2) shows that A is dissipative, hen
e that g = g

1

� g

2

satis�es (SNC).

(iii) For f; g 2 C(X; p) and t > 0 we have

k(1� t(ad f)

2

)(g)k = sup

x2X

k(1� t(ad f(x))

2

)(g(x))k � sup

x2X

kg(x)k = kgk:

Again Theorem II.2(2) shows that �(ad f)

2

j

C(X;p)

is dissipative, so that C(X; g) satis�es (SNC).

With Theorem II.6 we 
an derive a quite handy 
riterion for a normed symmetri
 Lie algebra

(g; �; b) to satisfy (SNC). The following 
on
ept will be useful in this 
ontext.

De�nition IV.3. We say that a real Bana
h{Lie algebra g is ellipti
 if the norm on g is

invariant under the group Inn(g) := he

ad g

i � Aut(g) of inner automorphisms.

A �nite-dimensional Lie algebra g is ellipti
 with respe
t to some norm if and only if it is


ompa
t. In fa
t, the existen
e of an invariant norm for e

adg

implies that the group of inner

automorphisms is relatively 
ompa
t, whi
h in turn implies that g is a 
ompa
t Lie algebra. In

this 
ase the requirement of an invariant s
alar produ
t leads to the same 
lass of Lie algebras, but

in the in�nite-dimensional 
ontext this is di�erent. Here the requirement of an invariant s
alar

produ
t turning g into a real Hilbert spa
e leads to the stru
ture of a 
omplex L

�

-algebra on the


omplexi�
ation g

C

of g . Simple L

�

-algebras 
an be 
lassi�ed, and ea
h L

�

-algebra is a Hilbert

spa
e dire
t sum of simple ideals and its 
enter (
f. [CGM90℄, and also [St99℄ for a 
lassi�
ation

in a Lie theoreti
 
ontext). In parti
ular the 
lassi�
ation shows that Every L

�

-algebra 
an

be realized as a 
losed subalgebra of the L

�

-algebra B

2

(H) of Hilbert{S
hmidt operators on a


omplex Hilbert spa
e H . Therefore the requirement of an invariant s
alar produ
t on g leads

to the embeddability into the Lie algebra u

2

(H) of skew-hermitian Hilbert{S
hmidt operators

on a Hilbert spa
e H . The 
lass of ellipti
 Lie algebras is mu
h bigger. It 
ontains the algebra

u(A) of skew-hermitian elements of a C

�

-algebra A and in parti
ular the Lie algebra u(H) of

the full unitary group on a Hilbert spa
e.

Another interesting point is that �nite-dimensional 
onne
ted Lie groups with 
ompa
t Lie

algebra have a surje
tive exponential fun
tion, so that it would be 
on
eivable at �rst sight that

this might be true for in�nite-dimensional groups with ellipti
 Lie algebras as well. Unfortunately

this is false, as shown by Putnam and Winter in [PW52℄: the orthogonal group O(H) of a real

Hilbert spa
e is a 
onne
ted Bana
h{Lie group with ellipti
 Lie algebra, but its exponential

fun
tion is not surje
tive.
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Lemma IV.4. If Z is a 
omplex Bana
h spa
e, then the Lie algebra u(Z) of the group U(Z)

of isometries of Z is ellipti
.

Proof. The operator norm on u(Z) is invariant under 
onjugation with elements of U(Z),

hen
e invariant under the automorphisms e

adx

, x 2 g , whi
h are given by e

adx

:y = e

x

ye

�x

.

Now the assertion follows from the 
losedness of u(Z) in B(Z) ([Up85, Cor. 14.36℄).

Lemma IV.5. Let g be ellipti
.

(i) Ea
h 
losed subalgebra of g is ellipti
.

(ii) If a E g is a 
losed ideal, then the quotient algebra g=a is also ellipti
.

Proof. (i) Let h � g be a 
losed subalgebra. Ea
h inner automorphism of h extends to an

inner automorphism of g , so that ea
h Inn(g)-invariant 
ompatible norm on g restri
ts to an

Inn(h)-invariant 
ompatible norm on h .

(ii) The norm on the quotient spa
e g=a is given by kx+ ak = inf

y2a

kx+ yk = dist(x; a). Sin
e

the norm on g and the subspa
e a are invariant under inner automorphisms, and ea
h inner

automorphism of g=a is obtained by fa
torization of an inner automorphism of g , we see that

the norm on g=a is invariant under inner automorphisms.

Lemma IV.6. If Z is a Bana
h spa
e, Y � Z a 
losed subspa
e, and x 2 B(Z) with x:Y � Y

and Spe
(x) � R , then Spe
(x j

Y

) � Spe
(x) � R .

Proof. We 
onsider the Bana
h algebra B := B(Z) and the 
losed subalgebra A := fb 2

B: b:Y � Y g . Sin
e Spe
(x) = Spe


B

(x) is a 
ompa
t subset of R , it does not separate C , and

[Ru73, Th. 10.18℄ implies that Spe


A

(x) = Spe


B

(x). Further the map r:A! B(Y ); a 7! a j

Y

is

a homomorphism of Bana
h algebras with identity, showing that Spe
(x j

Y

) = Spe


B(Z)

(r(x)) �

Spe


A

(x) for ea
h x 2 A . This proves the lemma.

Note that in general it is false that if an operator x 2 B(Z) preserves a 
losed subspa
e

Y , then Spe
(x j

Y

) � Spe
(x). A typi
al example is the shift operator on Z := l

2

(Z) whi
h

preserves Y = l

2

(N). In this 
ase x is unitary, but Spe
(x j

Y

) is the 
losed unit dis
 (see [Ha67,

Prob. 82℄).

Lemma IV.7. Let Z be a Bana
h spa
e. If g � B(Z) and x 2 R with Spe
(x) � R , then

Spe
(ad

g

x) � R .

Proof. Sin
e Spe
(x) � R , the same holds for the left and right multipli
ation operators

�

x

and �

x

on the Bana
h algebra B(Z) of all bounded operators on Z . Using [Ru73, Th.

11.23℄, we 
on
lude that Spe


B(Z)

adx = Spe


B(Z)

(�

x

� �

x

) � R , and Lemma IV.6 shows that

Spe
(ad

g

x) � R .

The following 
riterion is a very dire
t one.

Proposition IV.8. Let (g; �; b) be a normed symmetri
 Lie algebra. Then the Bana
h{Lie

algebra g




:= k+ ip is ellipti
 with respe
t to b




(x+ iy) := b(x+ y) for x 2 k , y 2 p , if and only

if (g; �; b) is hyperboli
. In this 
ase (g; �; b) satis�es (SNC).

Proof. The �rst assertion follows from the de�nition of the hyperboli
ity of (g; �; b). Let

us assume that (g; �; b) is hyperboli
. We extend the norm b




on g




to a 
ompatible norm on

g

C

= g+ ig = g




+ ig




by b(a+ ib) := max(b




(a); b




(b)) for a; b 2 g




.

Let x 2 p � ig




. Then the operator ad

g

C

x 2 B(g

C

) is hermitian, so that Theorem II.6

shows that �(ad

g

C

x)

2

is dissipative. Sin
e it preserves the subspa
e p , the operator �(adx)

2

j

p

is dissipative by Corollary II.3.

Corollary IV.9. If g = k

C

with p = ik , then (g; �; b) satis�es (SNC).

Proof. In this 
ase we have g




= k + ip

�

=

k � k as Lie algebras, where k 
orresponds to the

diagonal subalgebra of k� k and ip to the antidiagonal subspa
e. It is 
lear that our assumption

implies that the Lie algebra k� k is ellipti
 with respe
t to the norm k(x; y)k = max(b(x); b(y))

whi
h 
orresponds to the 
ompatible norm

e

b on g given by

e

b(x+ iy) = k(x+ y; x� y)k = max(b(x + y); b(x� y)):

In view of

e

b j

p

= b j

p

, Proposition IV.8 implies that (g; �;

e

b) and hen
e (g; �; b) satisfy (SNC).
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Corollary IV.10. If Z is a 
omplex Bana
h spa
e and g � Herm(Z)

C

is a 
losed real Lie-

subalgebra endowed with the involution �(x + iy) = �x + iy for x + iy 2 g , x; y 2 Herm(Z) ,

then (g; �) satis�es (SNC) with respe
t to the operator norm.

Proof. The Lie algebra g




= k+ ip is a 
losed subalgebra of the Bana
h{Lie algebra u(Z) on

whi
h the operator norm is invariant under Inn(u(Z)). Therefore Proposition IV.8 applies.

The following proposition shows that for �nite-dimensional symmetri
 Lie algebras 
or-

responding to Riemannian symmetri
 spa
es of non-
ompa
t type, any invariant norm satis�es

(SNC).

Proposition IV.11. Let (g; �; b) be a �nite-dimensional normed symmetri
 Lie algebra su
h

that for ea
h x 2 p the operator adx is diagonalizable over R . Then it satis�es (SNC).

Proof. Sin
e (g; �) is a hyperboli
 symmetri
 Lie algebra in the sense of [KN96℄, Prop. 1.19 in

[Ne99b℄ shows that the 
onvex Inn(k)-invariant fun
tion f := b j

p

extends to an Inn(g




)-invariant


onvex fun
tion on ig




given by

f(x) = sup b

�

q(Inn(g




):x)

�

;

where q: p + ik ! p is the proje
tion along ik . Sin
e every ideal of g 
ontained in k splits as

a dire
t summand, we may assume that k does not 
ontain any su
h non-zero ideal. Then one

easily veri�es that f is a norm on ig




whi
h is invariant under Inn(g




). We 
on
lude from

Proposition IV.8 that that the symmetri
 Lie algebra (g; �; f) satis�es (SNC).

Remark IV.12. Proposition IV.11 implies that for any symmetri
 spa
e M := G=K 
orre-

sponding to (g; �) and for every G-invariant Finsler stru
ture on M , the symmetri
 spa
e M

has seminegative 
urvature. Hen
e all the results of Se
tion I apply to M endowed with any

invariant Finsler stru
ture. If M is simply 
onne
ted and the assumptions of Proposition IV.11

are satis�ed, then M

�

=

R

n

� G

1

=K

1

, where G

1

=K

1

is a Riemannian symmetri
 spa
e of non-


ompa
t type (
f. [KN96℄), so this result deals essentially with Finsler stru
tures on Riemannian

symmetri
 spa
es of non-
ompa
t type.

V. Polar de
ompositions of symmetri
 Lie groups

In this se
tion we will prove a general theorem about the existen
e of a polar de
omposition of

a symmetri
 Bana
h{Lie group (G; �) whi
h also 
overs 
ases that 
annot be dedu
ed from the

�nite-dimensional 
ase or the polar de
omposition of the operator group GL(H). In parti
ular

it will apply to the 
omplex group G = Aut(Z;Z) of a JB

�

-triple Z , where K = Aut(Z) is the

automorphism group of Z (
f. De�nition VI.1 below).

From now on (G; �) denotes a 
onne
ted symmetri
 Bana
h{Lie group, K = G

�

, and

M := G=K as in Example III.9.

Theorem V.1. If (g; �; b) satis�es (SNC), then the polar map

m:K � p! G; (k; x) 7! k expx

is a surje
tive 
overing map whose �bers are given by the sets f(k exp z; x � z): z 2 �g , where

� := Exp

�1

(o) � p is the fundamental group of G=K .

Proof. It is 
lear that m is a smooth map. First we show that its di�erential is everywhere

regular. Let �

k

denote the left-multipli
ation by k on G . Then m Æ (�

k

� id

p

) = �

k

Æm shows

that it suÆ
es to show that dm(1; x) is regular for ea
h x 2 p . We re
all that for ea
h x 2 g

we have

d exp(x) = d�

expx

(1)

1� e

� adx

adx

= d�

expx

(1)

e

adx

� 1

adx

:
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Therefore

dm(1; x)(y; z) = d�

expx

(1):y+ d exp(x):z = d�

expx

(1):

�

y+

e

adx

� 1

adx

:z

�

= d�

expx

(1):F (x)(y; z);

where the map F (x) 2 B(g) has the following blo
k stru
ture with respe
t to g = k� p :

F (x) =

�

1


osh adx�1

adx

0

sinh adx

adx

�

:

Sin
e

sinh adx

adx

is invertible on p , the operator F (x) is invertible, and thus dm(1; x) is invertible.

We 
on
lude that the di�erential of m is everywhere regular.

In view of Theorem III.14, the exponential map Exp: p ! G=K is a 
overing whose

�bers are given by the 
osets of the subgroup � of the Bana
h spa
e p . We 
on
lude that

K exp p = (exp p)K = q

�1

(Exp p) = q

�1

(G=K) = G , so that m is surje
tive.

If m(k

1

; x

1

) = m(k

2

; x

2

), then

Exp(�x

1

) = q(m(k

1

; x

1

)

�1

) = q(m(k

2

; x

2

)

�1

) = Exp(�x

2

)

implies that z := x

1

� x

2

2 � (Theorem III.14). Therefore k

1

exp(x

1

) = k

2

exp(x

1

� z) =

k

2

exp(�z) exp(x

1

) leads to k

2

= k

1

exp(z) and x

2

= x

1

� z . Conversely, for z 2 �, we get

m(k exp z; x� z) = k exp z exp(x � z) = k exp z exp(�z) expx = k expx = m(k; x). This proves

the statement about the �bers of m . We 
on
lude that the map m:K � p ! G is a 
overing,

and � is the 
orresponding group of de
k transformations.

Corollary V.2. If (g; �; b) satis�es (SNC), then the spa
e

e

G := K � p 
arries a natural

stru
ture of a Bana
h{Lie group su
h that the polar map m:

e

G! G is a 
overing homomorphism.

Proof. This is standard 
overing theory of groups ([Bou90, Ch. III, x1.9℄).

Lemma V.3. Suppose that two elements x; y in the Lie algebra g of the Bana
h{Lie group G

satisfy expx = exp y , and that exp is non-singular at x . Then [x; y℄ = 0 and exp(x� y) = 1 .

Proof. (
f. [HHL89, V.6.7℄) All elements exp ty , t 2 R , 
ommute with expx = exp y . Thus

expx = exp(ty) expx exp(�ty) = exp(e

t ad y

x)

for all t 2 R , and therefore 0 =

d

dt

j

t=0

exp(e

t ad y

x) = d exp(x):[y; x℄: Sin
e exp is non-singular

in x by assumption, we obtain [x; y℄ = 0. Then exp(x � y) = exp(x) exp(�y) = 1 follows.

Lemma V.4. If Z is a Bana
h spa
e, then the fun
tion

exp:Herm(Z)! GL(Z); x 7! e

x

is inje
tive.

Proof. Suppose that e

x

= e

y

for x; y 2 Herm(Z). In view of Lemma IV.7, we have

Spe
(adx) � R on B(Z), so that x is a regular point for the exponential fun
tion. Hen
e

Lemma V.3 implies that exp(x � y) = 1 . Now we use Lemma III.13(ii) to see that x � y is

semisimple with Spe
(x � y) = f0g whi
h implies that x = y .

Theorem V.5. Let Z be a 
omplex Bana
h spa
e and (G; �) a 
onne
ted Bana
h{Lie

subgroup of GL(Z) whose Lie algebra g is a 
onjugation invariant subalgebra of Herm(Z)

C

su
h

that the 
omplex 
onjugation on u(Z)

C

indu
es d�(1) on g . Then the involution on g integrates

to an involution on G whose �xed point group K is 
onne
ted, and we have a di�eomorphi


polar de
omposition

K � p! K exp p = G:
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Proof. First we 
onsider the simply 
onne
ted 
overing group

e

G of G with Lie algebra g .

Then the involution � on g integrates to an involution � on

e

G . In view of Corollary IV.10, the

normed symmetri
 Lie algebra (g; �; k � k) satis�es (SNC), so that Theorem V.1 implies that the

polar map m:

e

G

�

� p!

e

G is surje
tive and its �bers are given by the group

� = fx 2 p: expx 2

e

G

�

g = fx 2 p: exp 2x = 1g:

If x 2 p satis�es exp

e

G

2x = 1 , then we obtain in parti
ular e

x

= 1 on Z , so that Lemma V.4

yields x = 0. Hen
e � = f0g shows that m is bije
tive, hen
e a di�eomorphism. In parti
ular

we see that the group

e

G

�

is 
onne
ted.

Now we 
onsider the kernel D �

e

G of the 
overing map �:

e

G ! G . Let d 2 D and write

it as d = k expx with �(k) = k and x 2 p . Then �(k) = e

�x

is an isometry. The same holds

for e

x

= �(k)

�1

. Therefore Spe
(e

x

) � S

1

implies that Spe
(x) � iR , so that Spe
(x) � R

leads to Spe
(x) = f0g , so that kxk = sup j Spe
(x)j = 0 (Proposition III.10(ii)). This shows

that D �

e

G

�

. Therefore the polar de
omposition of

e

G fa
tors dire
tly to a bije
tive polar map

K � p ! G , where K = �(

e

G

�

) = hexp

G

ki is a 
losed 
onne
ted Lie subgroup of G . We also

see that the involution � on

e

G fa
tors to an involution �

G

on G . For g = k expx we have

�

G

(g) = k exp(�x), showing that K = G

�

.

Corollary V.6. If Z is a 
omplex Bana
h spa
e and G(Z) the 
onne
ted Bana
h{Lie group

with Lie algebra g(Z) := u(Z)

C


orresponding to the analyti
 subgroup hexp g(Z)i � GL(Z) , then

G(Z) permits an antiholomorphi
 involution � with G(Z)

�

= U(Z)

0

, and we have a bije
tive

polar map U(Z)

0

� iu(Z)! G(Z):

We 
on
lude this se
tion with some general remarks 
on
erning the relation between the

polar map and the exponential fun
tion of G=K .

Remark V.7. (a) The proof of Theorem V.1 shows that the polar map m is regular if and only

if

sinh(adx)

ad x

j

p

is regular for ea
h x 2 p . This is equivalent to the regularity of the exponential

fun
tion Exp of M = G=K .

(b) The polar map m is a di�eomorphism if and only if Exp is a di�eomorphism. From

K exp p = (exp p)K = �

�1

(Exp p) it follows that m is surje
tive if and only if Exp is surje
tive.

In view of (a), it therefore suÆ
es to 
he
k that m is inje
tive if and only if Exp is inje
tive.

If Exp is inje
tive, then the proof of Theorem V.1 shows that m is inje
tive. If, 
onversely, m

is inje
tive, and Expx

1

= Expx

2

, then expx

1

2 expx

2

K implies that expx

1

= expx

2

and

therefore x

1

= x

2

.

(
) Suppose that M = G=K is a 
onne
ted symmetri
 spa
e su
h that Exp is a di�eomorphism,

but we do not assume that G is 
onne
ted. Sin
e exp p is 
ontained in the identity 
omponent

G

0

� G , the open subgroup G

0

a
ts transitively on M . Therefore the polar map m:K�p!M

is surje
tive. Moreover, (a) implies that it is regular, and the inje
tivity on K

0

� p implies that

it is inje
tive on K � p , hen
e a di�eomorphism.

VI. Examples and open problems

In this last se
tion we dis
uss some open problems arising in the 
ontext of this paper. We also

dis
uss some spe
ial 
lasses of Finsler symmetri
 spa
es that have already been studied in a more

restri
tive 
ontext in the literature.

Bounded symmetri
 domains

Before we turn to bounded symmetri
 domains, we have to re
all some de�nitions 
on
ern-

ing Jordan triples.
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De�nition VI.1. Let Z be a ve
tor spa
e over a �eld K and (x; y; z) 7! fx; y; zg a

trilinear map. For x; y 2 Z we de�ne the operator x�y by (x�y):z := fx; y; zg and put

P (x)(y) := fx; y; xg . Then Z is said to be a Jordan triple if

(JT1) fx; y; zg = fz; y; xg and

(JT2) [a�b; x�y℄ =

�

(a�b):x

�

�y � x�

�

(b�a):y

�

holds for all a; b; x; y; z 2 Z .

(a) A real Jordan triple Z is 
alled hermitian if Z has a 
omplex stru
ture su
h that fx; y; zg

is 
omplex linear in x , z , and antilinear in y .

(b) A Bana
h{Jordan triple is a Jordan triple whi
h is a Bana
h spa
e and for whi
h the map

f�; �; �g:Z

3

! Z is 
ontinuous.

(
) A hermitian Bana
h{Jordan triple is a hermitian Jordan triple for whi
h Z is a Bana
h{

Jordan triple, and, in addition, for u; v 2 Z the operator u�v � v�u is 
ontained in the Lie

algebra of the Bana
h{Lie group U(Z) (
f. [Up85, Def. 8.7℄). A hermitian Bana
h{Jordan triple

is said to be positive if Spe
(u�u) � R

+

for all u 2 Z .

(d) A JB

�

-triple is a positive hermitian Bana
h{Jordan triple for whi
h ku�uk = kuk

2

holds

for all u 2 Z .

Let Z be a Bana
h spa
e and D � Z be a bounded symmetri
 domain, i.e., an open


onne
ted subset su
h that for ea
h z 2 D there exists an involution j

z

2 Aut(D), the group of

biholomorphi
 mappings of D , su
h that z is an isolated �xed point of j

z

. A

ording to [Up85,

Th. 20.23℄ the spa
e Z 
arries the stru
ture of a JB

�

-triple and D is biholomorphi
 to the open

unit ball in Z . Therefore we assume from now on that Z is a JB

�

-triple and

D = fz 2 Z: kzk < 1g:

The group G := Aut(D) 
arries a natural Bana
h{Lie group stru
ture su
h that the transitive

a
tion of G on D is real analyti
 ([Up85, Th. 13.14℄). If K � G is the stabilizer of 0 2 D , then

D

�

=

G=K , and 
onjugation with j

0

leads to an involution on G , showing that D is a symmetri


spa
e in the sense of Example III.9. The domain D 
arries a natural Finsler stru
ture given by

the Carath�eodory tangent norm

b(x; v) := sup

n

jdf(x)(v)j

1� jf(x)j

2

: f 2 Hol(D;�)

o

; (x; v) 2 T (D)

�

=

D � Z;

where � � C is the open unit dis
 (
f. [Up85, Prop. 12.23℄). The 
orresponding metri
 is the

Carath�eodory metri


d(x; y) := supfÆ(f(x); f(y)): f 2 Hol(D;�)g;

where Æ is the Poin
ar�e metri
 on � ([Up85, Cor. 12.30℄). It easily follows from the Hahn{

Bana
h Theorem and the Cau
hy estimates on � that b(v) = kvk for v 2 T

0

(D) (
f. [Up85,

Prop. 12.25℄). In this sense we identify Z with T

0

(D) as Bana
h spa
es. Below we will show

that the symmetri
 Finsler manifold D has seminegative 
urvature.

A typi
al examples of a JB

�

-triple is the spa
e B(H

�

; H

+

) of bounded operators from the

Hilbert spa
e H

�

to the Hilbert spa
e H

+

endowed with the operator norm. The triple produ
t

is given by fx; y; zg =

1

2

(xy

�

z + zy

�

x). Closed subtriples of B(H

�

; H

+

) are 
alled JC

�

-triples.

These are also JB

�

-triples, and, more generally, every 
losed sub-triple of a JB

�

-triple is a

JB

�

-triple ([Up85, Cor. 20.9℄).

Example VI.2. Let Z = B(H

�

; H

+

), where H

�

are Hilbert spa
es. We endow the Hilbert

spa
e H := H

+

�H

�

with the inde�nite hermitian form given by h(v; w) := hv

1

; w

1

i � hv

2

; w

2

i .

Then we 
an write D as G=K , where G � GL(H

�

�H

+

) is the pseudo-unitary group

G = U(H

�

; H

+

) = fg 2 GL(H): (8v 2 H)h(g:v; g:v) = h(v; v)g:

In fa
t, the group G a
ts transitively on D by g:z = (az + b)(
z + d)

�1

, where g =

�

a b


 d

�

is

written as a (2� 2)-blo
k matrix a

ording to the de
omposition H = H

+

�H

�

. The stabilizer
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G

0

of 0 2 D is the subgroup K = U(H

�

) � U(H

+

). For the involution �(g) := (g

�

)

�1

(where

g

�

denotes adjoint operator on H ), we therefore obtain K = G

�

and g = u(H

+

; H

�

) = k � p;

where k = u(H

+

)� u(H

�

) and

p =

n

�

0 X

X

�

0

�

:X 2 B(H

�

; H

+

)

o

with










�

0 X

X

�

0

�










= kXk:

Therefore g




= k + ip = u(H) is an ellipti
 Lie algebra where the norm on ip 
orresponds to

the operator norm on B(H). We 
on
lude that in this 
ase (g; �; k � k) is a hyperboli
 normed

symmetri
 Lie algebra with respe
t to �(X) = �X

�

, hen
e satis�es (SNC).

Example VI.3. Let X be a 
ompa
t spa
e and V be a �nite-dimensional JB

�

-triple. Then

Z := C(X;V ) is a JB

�

-triple with respe
t to ff; g; hg(x) := ff(x); g(x); h(x)g and the norm

kfk := supfkf(x)k:x 2 Xg . In fa
t, for f; g; h 2 Z we have ke

i(f�f)

:hk = khk be
ause

ke

i(f(x)�f(x))

:h(x)k = kh(x)k holds for ea
h x 2 X , and likewise we obtain ke

�f�f

k � 1, whi
h

in turn leads to Spe
(f�f) � R

+

(Proposition III.9(iii)). Moreover kff; f; fg(x)k = kf(x)k

3

([Up85, Lemma 20.8℄) and kf(x)�f(x)k = kf(x)k

2

for ea
h x 2 X yield kff; f; fgk = kfk

3

and

therefore kfk

2

� kf�fk � kfk

2

.

Sin
e V is �nite-dimensional, we 
an view V as p

V

, where g

V

= k

V

� p

V

is a �nite-

dimensional hyperboli
 normed symmetri
 Lie algebra. Then g := C(X; g

V

) satis�es (SNC)

(Lemma IV.2(iii)).

Theorem VI.4. If D is a bounded symmetri
 domain, then D is a Finsler symmetri
 spa
e

with seminegative 
urvature.

Proof. Let Z be the 
orresponding JB

�

-triple 
ontaining D as its open unit ball.

A

ording to the Gelfand{Naimark Theorem for JB

�

-triples ([FR86℄), every JB

�

-triple

Z is isometri
ally isomorphi
 to a 
losed subtriple of

e

Z := B(H) �

1

C(X;V ), where H is a

Hilbert spa
e, X is a 
ompa
t spa
e and V is a �nite-dimensional JB

�

-triple (one 
an take

the irredu
ible JB

�

-triple of dimension 27). Combining Examples VI.3 and VI.4 with Lemma

IV.2(ii), we see that

e

Z 
an be identi�ed with

e

p in a normed symmetri
 Lie algebra (

e

g; e� ; b) with

(SNC), where

e

p is the (�1)-eigenspa
e of e� .

We put p := Z �

e

Z =

e

p and 
onsider the 
losed subspa
e k := fX 2 k: [X; p℄ � pg . Then

g := k � p is a 
losed e� -invariant subalgebra of

e

g , hen
e a normed symmetri
 Lie algebra with

(SNC) (Lemma IV.2(i)). Now the assertion follows from Propositions III.15.

Theorem VI.4 implies in parti
ular that the polar map of the group Aut(D) is a di�eomor-

phism. This result has also been obtain by W. Kaup (
f. [Ka83, Prop. 4.6℄).

Remark VI.5. Let Z � B(H

�

; H

+

) be a JC

�

-triple. We identify Z with p for the Lie

algebra g = aut(D) of the Bana
h{Lie group G := Aut(D)

0

. Then the exponential fun
tion of

the symmetri
 spa
e D

�

=

G=K is a real di�eomorphism Exp:Z ! D . Using [Up85, Prop. 5.21,

Lemma 18.12℄, and writing jzj := (zz

�

)

1

2

2 B(H

+

), we obtain

Exp(z) =

sinh jzj

jzj

z 
osh

�

(z

�

z)

1

2

�

�1

=

sinh jzj

jzj

(
osh jzj)

�1

z =

tanh jzj

jzj

z

(
f. [Up85, p.257℄). This is a generalization of the well known formula for the unit dis
.

Example VI.6. A Jordan algebra is a ve
tor spa
e Z with a 
ommutative (not ne
essarily

asso
iative) multipli
ation (x; y) 7! xy su
h that x(x

2

y) = x

2

(xy) holds for x; y 2 Z . An

involution on a 
omplex Jordan algebra Z is an antilinear involutive map z 7! z

�

with (zw)

�

=

w

�

z

�

for all z; w 2 Z . A JB

�

-algebra is a 
omplex Bana
h spa
e Z endowed with the stru
ture

of a Jordan algebra with involution � su
h that

kzwk � kzk � kwk and kfz; z; zgk= kzk

3
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for z; w 2 Z , where

fx; y; zg = (xy

�

)z + x(y

�

z)� y

�

(xz)

is the 
anoni
al Jordan triple stru
ture on Z ([Up85, Prop. 20.35℄).

Typi
al examples are C

�

-algebras, where the Jordan produ
t is given by aÆb :=

1

2

(ab+ba).

Every 
losed involutive Jordan subalgebra is also a JB

�

-algebra (
f. [Up85, Ex. 20.28℄).

Let Z be a JB

�

-algebra with unit element e 2 Z satisfying e

�

= e , and 
onsider the real

subalgebra X := fz 2 Z: z

�

= zg . Then Z

�

=

X

C

. For z 2 Z we write M

z

(x) := zx for the

multipli
ation operators on Z . We 
onsider the subset

C := fx 2 X : Spe
(M

x

) �℄0;1[g:

It turns out that C is an open 
onvex 
one in X , that Z is a JB

�

-triple, and that the Cayley

transform

g:D := fz 2 Z: kzk < 1g ! C + iX; g(z) = (e+ z)(e� z)

�1

is a biholomorphi
 map ([Up85, Cor. 21.22℄). For z 2 Z we put P

z

(x) := fz; x; zg and 
onsider

the set

Aut(Z;Z) := fg 2 GL(Z): g:e invertible; (8z 2 Z)P

g:z

= gP

z

g

>

g;

where g

>

: = g

�1

P

ge

. This set is a 
losed subgroup of GL(Z) whi
h is a Bana
h{Lie group with

respe
t to the operator norm, and �(g) := (g

>

)

�1

is an involutive automorphism of Aut(Z;Z).

For every automorphism g we have g

>

= g

�1

and P

z

= P

>

z

for every invertible element z 2 Z

([Up85, Cor. 22.16℄). Similar statements hold for the subgroup Aut(X;X) � GL(X) whi
h


ontains Aut(X) as a 
losed subgroup. For the Lie algebras we have the dire
t de
ompositions

aut(X;X) = aut(X)�M

X

; where M

X

= fM

x

:x 2 Xg � B(X)

and

u(Z) = aut(Z) = aut(X)� iM

X

= aut(X)




([Up85, Prop. 22.24℄). This shows in parti
ular that aut(X;X)




is an ellipti
 Lie algebra with

respe
t to the operator norm, so that (aut(X;X); d�(1); k � k) is a hyperboli
 normed symmetri


Lie algebra (Proposition IV.8).

Let G := Aut(X;X)

0

be the identity 
omponent of Aut(X;X). Then Theorem V.5 implies

that G has a polar de
omposition G = K exp p

�

=

K � p , where K = Aut(X)

0

and p = M

X

([Up85, Cor. 22.29℄, [Ka83℄). In view of K = fg 2 G: g:e = eg , the a
tion of G on X leads to

G=K

�

=

G:e = (exp p)K:e = exp(M

X

):e = e

X

= C;

where e

x

:=

P

1

n=0

x

n

n!

is the exponential fun
tion of the real Bana
h{Jordan algebra X ([Up85,

Th. 22.37℄). Therefore the open 
one C 
arries a natural stru
ture of a Finsler symmetri
 spa
e

of seminegative 
urvature. Identifying p with X by the map M

x

7!M

x

:e = x , the exponential

fun
tion of C is given by

Exp:X ! C; x 7! e

x

:

The Finsler stru
ture on C is given by b(e

x

; v) = ke

�M

x

:vk; and the geodesi
 
: [0; 1℄! C

with 
(0) = e

x

, 
(1) = e

y

and 


0

(0) = e

M

x

:z satis�es 
(t) = e

M

x

e

tz

: Its length is given

by L(
) = b(e

x

; 


0

(0)) = kzk , and we have e

z

= e

�M

x

e

y

. The fa
t that C has seminegative


urvature implies that Exp:X ! C is expansive, so that

(6:1) kzk = d

C

(e

x

; e

y

) � d

X

(x; y) = kx� yk:

Below we explain how (6.1) is related to the inequality

(6:2) ke

x+y

k � ke

M

x

:e

y

k
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for x; y 2 X . Sin
e ea
h operator M

x

on X extends to a hermitian operator on the Bana
h

spa
e Z = X

C

, we have

r

+

(x) := log ke

M

x

k = sup Spe
(M

x

) = infft > 0: te� x 2 Cg

(
f. [Up85, Lemma 21.12℄). Moreover, M

x

:e = x yields kxk = kM

x

k = max(r

+

(x); r

+

(�x)).

(a) Now we show that (6.1) implies (6.2). Repla
ing x by �x in (6.1) leads to

kx+ yk � k log(e

M

x

e

y

)k

for all x; y 2 X . Let z 2 X with e

z

= e

M

x

e

y

. If z 2 C , then this leads dire
tly to

r

+

(x + y) � kx+ yk � kzk = r

+

(z)

and therefore to ke

x+y

k � ke

z

k . To deal with the general 
ase, we �rst repla
e x and y by

x

n

:= x+ne and y

n

:= y+ne for n 2 N . Then z

n

= z+2ne is positive for n suÆ
iently large.

Hen
e

ke

x+y

k = e

�2n

ke

x

n

+y

n

k � e

�2n

ke

z

n

k = ke

z

k:

(b) We show that (6.2) also dire
tly implies (6.1): First we note that (6.2) is equivalent to

ke

y�x

k � ke

�M

x

:e

y

k for all x; y 2 X . Let z 2 X with e

z

= e

�M

x

e

y

. Then ke

y�x

k � ke

z

k leads

to r

+

(y � x) � r

+

(z). Repla
ing x and y by �x and �y , then e

�z

= (e

z

)

�1

= e

M

x

:e

�y

leads

to

r

+

(x � y) � log ke

M

x

:e

�y

k = log ke

�z

k = r

+

(�z):

Putting these two inequalities together, we �nd

ky � xk = max(r

+

(y � x); r

+

(x� y)) � max(r

+

(z); r

+

(�z)) = kzk;

and this is a reformulation of the length in
reasing property of the exponential fun
tion whi
h

therefore follows from (6.2).

Example VI.7. A spe
ial 
ase of the situation dis
ussed in Example VI.6 arises if Z = A is a

unital C

�

-algebra. Then it is a JB

�

-algebra with respe
t to aÆ b =

1

2

(ab+ ba). Let G := G(A)

0

be the identity 
omponent of the group G(A) of units of A . Then �(g) := (g

�

)

�1

turns G into

a symmetri
 Lie group with Lie algebra g = A (viewed as a Bana
h{Lie algebra). In this 
ase

K = G

�


oin
ides with the unitary group U(A) = fa 2 A: a

�

a = aa

�

= 1g of A and

G=K

�

=

A

+

:= fgg

�

: g 2 Gg

is the open 
one of positive invertible operators in A . The Finsler geometry of A

+

has been stud-

ied extensively by Cora
h, Porta and Re
ht (see in parti
ular [CPR92℄, [CPR93℄ and [CPR94℄).

As a spe
ial example of the situation in Example VI.6, we see that A

+

has seminegative 
urva-

ture.

The multipli
ation operator M

x

on the real Jordan algebra X = A

s

is given by M

x

=

1

2

(L

x

+R

x

), where L

x

(y) = xy and R

x

(y) = yx . Therefore e

M

x

:a = e

1

2

L

x

e

1

2

R

x

:a = e

x

2

ae

x

2

, and

(6.2) leads to Segal's inequality

ke

x+y

k � ke

x

2

e

y

e

x

2

k

for x; y 2 A

s

(
f. [RS78, Th. X.57℄ for a version of this inequality for semibounded selfadjoint

operators on a Hilbert spa
e). For an extensive dis
ussion of this type of inequalities we refer

to Thompson's paper [Th71℄. In [CPR92℄ it is shown that this inequality is equivalent to the

length-in
reasing property of the exponential for the Finsler metri
 on A

+

.

Apart from Segal's inequality there are mu
h more interesting 
onvexity properties of the

Finsler metri
 on A

+

. We refer to [CPR93℄ for more details. To mention a few others:

(1) the distan
e fun
tions d(x; �(t)), where � is a geodesi
, are 
onvex,

(2) the geodesi
 balls in A

+

are 
onvex subsets of A , and

(3) ea
h positive fun
tional ' 2 A

?

+

on A yields by restri
tion a geodesi
ally 
onvex fun
tion on

A

+

.

Do these properties generalize to the setting of Example VI.6?
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Example VI.8. As a 
onsequen
e of Proposition IV.11, every �nite-dimensional Riemannian

symmetri
 spa
e M of non-
ompa
t type endowed with an invariant Finsler stru
ture has

seminegative 
urvature. A parti
ular 
lass of examples with natural Finsler stru
tures whi
h

are not Riemannian have been studied by Y. Lim in [Lim99a-
℄. He 
onsiders �nite-dimensional

symmetri
 
ones 
. Sin
e su
h a 
one 
an be identi�ed with the 
one C of positive elements

in a eu
lidean Jordan algebra X (
f. [FK94℄), and for ea
h eu
lidean Jordan algebra X the


omplexi�
ation is a JB

�

-algebra, this situation is 
overed by the dis
ussion in Example VI.6.

Lim studies in parti
ular properties of the mid-point operation on 
 whi
h assigns to two

points a and b the mid-point a℄b of the geodesi
 segment 
onne
ting both. As a 
onsequen
e,

he obtains the inequality (6.2) whi
h, as we have seen in Example VI.6, is 
losely related to the

fa
t that C is a symmetri
 spa
e with seminegative 
urvature ([Lim99a, Cor. 11℄). In [Lim99
℄

Lim gives various des
riptions of the metri
 on 
 asso
iated to the Finsler stru
ture given by

the spe
tral norm. In parti
ular he shows that 
onformal 
ontra
tions of the 
one 
 a
t by


ontra
tions with respe
t to the Finsler metri
.

More problems

Problem VI.1. Let Z be a 
omplex Bana
h spa
e.

(a) Is the subgroup G(Z) := hexpHerm(Z)

C

i � GL(Z) 
losed? Even though we have the

holomorphi
 in
lusion map G(Z) ,! GL(Z), it is not 
lear whether the image is 
losed.

(b) We have seen in Corollary V.6 that the symmetri
 spa
e G(Z)=U(Z) is a Finsler symmetri


spa
e with seminegative 
urvature, so that Exp:Herm(Z) ! G(Z)=U(Z) is a di�eomorphism.

Moreover, U(Z) = G(Z)

�

holds for an antiholomorphi
 involution � on G(Z), so that the map

G(Z)=U(Z)! exp

�

Herm(Z)

�

� G; gU(Z) 7! g�(g)

�1

is a di�eomorphism mapping Exp(x) to exp(2x). In the spe
ial 
ase where Z is a Hilbert

spa
e the range of this map is the 
one of positive invertible operators on Z . Is there a similar

des
ription for a general Bana
h spa
e? Sin
e the Bana
h spa
e Herm(Z) 
ontains the open


one 
:= fx 2 Herm(Z): Spe
(x) �℄0;1[g , it is natural to ask whether exp

�

Herm(Z)

�

�

Herm(Z). If this is the 
ase, then the 
ontinuity property of the spe
trum (
f. [Ru73℄) implies

that exp

�

Herm(Z)

�

� 
. The a
tion of G(Z) on exp

�

Herm(Z)

�

is given by g:a = ga�(g)

�1

,

so a related question is whether the a
tion of G(Z) on B(Z) given by this formula preserves

the spa
e Herm(Z). In�nitesimally this leads to the question whether for x; a 2 Herm(Z) the

anti
ommutator [x; a℄

+

= xa + ax is 
ontained in Herm(Z). Using polarization, this would

follow if for ea
h a 2 Herm(Z) we have a

2

2 Herm(Z).

Problem VI.2. (A Bana
h analog of 
omplex redu
tive groups) Let G be an ellipti
 Lie group.

Does G have a universal 
omplexi�
ation G

C

with a polar de
omposition G

C

= G exp(ig)? The

groups G

C

would be natural analogs of the �nite-dimensional 
omplex redu
tive groups. For

a detailed dis
ussion of the problems involved with 
omplexi�
ations of Bana
h{Lie groups we

refer to [Gl99℄.

(a) If G is a Lie subgroup of the group U(Z) of surje
tive isometries of a 
omplex Bana
h spa
e

(this means that its Lie algebra g is a 
losed subalgebra of u(Z)), then Corollary V.6 provides

a 
omplex group G

C

with a polar de
omposition whi
h is obtained from the analyti
 subgroup

hexp g

C

i � GL(Z). It is easy to see that this group is universal as a 
omplexi�
ation of G . In

fa
t, if �:G ! H is a morphism of G to a 
omplex Bana
h{Lie group, then the di�erential

of � leads to a 
omplex linear 
ontinuous homomorphism g

C

! h and thus to a holomorphi


homomorphism e�

C

:

e

G

C

! H , where

e

G

C

is the universal 
overing group. Sin
e

e

G

C

also has

a di�eomorphi
 polar de
omposition

e

G exp(ig), we see that e�

C

fa
tors through a holomorphi


homomorphism �

C

:G

C

! H .

(b) Let G be an ellipti
 Lie group and �:G! H a homomorphism to a 
omplex group su
h that

d�(1) has 
losed range. Then the group B := �(G) is an ellipti
 Lie subgroup of H , and the
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same arguments as in (a) show that B has a universal 
omplexi�
ation B

C

with a di�eomorphi


polar de
omposition B

C

= B exp(ib). We 
on
lude that ea
h � fa
tors through a morphism

G! B

C

, where B

C

is a 
omplexi�
ation of an ellipti
 Lie group B with a polar de
omposition.

(
) Let a E g denote the interse
tion of all kernels of di�erentials d�(1) of homomorphism

�:G ! H into 
omplex Lie groups. Then a is a 
losed ideal of g , so that we 
an form the

quotient algebra b := g=a whi
h is ellipti
 (Lemma IV.5). One would like to show that b

C

is

enlargeable in the sense that it is the Lie algebra of a simply 
onne
ted 
omplex Bana
h{Lie

group B

C

. Then B

C

has a polar de
omposition B

C

= B exp(ib). If the group G is simply


onne
ted, then we have a natural homomorphism G ! B leading to a morphism �:G ! B

C

whi
h 
an be shown, as in (a), to be a universal 
omplexi�
ation.

Now suppose that G is not simply 
onne
ted and that

e

G is its universal 
overing. Then

ea
h homomorphism �:G! H into a 
omplex group lifts to a homomorphism e�:

e

G! H whi
h

in turn fa
tors through

e

�:

e

G! B

C

with a holomorphi
 homomorphism 
:B

C

! H . A

ording

to the 
onstru
tion of b , the interse
tion of the Lie algebras of all kernels of su
h homomorphisms

B

C

! H is trivial. Does this imply (in this spe
ial 
ontext) that D :=

T




ker 
 is dis
rete?

(d) It is 
on
eivable that there is a more dire
t argument whi
h would use the biinvariant Finsler

stru
ture on G to 
onstru
t a faithful Bana
h representation of G . Maybe an appropriate spa
e

of 
ontinuous fun
tions on G will do.

Problem VI.3. Let (g; �; b) be a normed symmetri
 Lie algebra. Find good 
riteria for the

Lie algebra g




= k+ ip to be ellipti
 in the sense that on ig




= p+ ik exists an Inn(g




)-invariant

norm extending the given one on p .

Suppose that k�k is an Inn(g




)-invariant norm on ig




whi
h is invariant under the antilinear

extension of �� to g

C

. Then x 2 ig




implies that kx

p

k = k

1

2

(x � �:x)k � kxk: For x; y 2 p we

therefore obtain

kyk � k(e

ad ix

:y)

p

k = k 
os(adx):yk:

We 
on
lude that k 
os(adx) j

p

k � 1 holds for ea
h x 2 p . Does this 
ondition, 
onversely,

imply that k � k extends to an Inn(g




)-invariant norm on ig




? Is this equivalent to the operator

(adx)

2

j

p

being dissipative?

Problem VI.4. Let D be the open unit ball in he JB

�

-triple Z (a bounded symmetri


domain). Is it possible to show dire
tly, without referen
e to the Gelfand{Naimark Theorem for

JB

�

-triples that for ea
h x 2 p the operator

sinh adx

adx

is invertible and expansive? Maybe a good

strategy to atta
k this problem is to see whether the Lie algebra g




= k + ip is ellipti
 with

respe
t to a suitable norm. Writing an element of p as a ve
tor �eld X

u

(z) = (u� fz; u; zg)

�

�z

,

we have [X

u

; X

w

℄ = 2X

v�u�u�v

and [X

u

; [X

u

; [X

w

℄℄℄ = 2X

fu;v;ug�fu;u;vg

; so that (adX

u

)

2

j

p


orresponds on Z to the operator �u�u+ P

u

: Is this operator dissipative for ea
h u 2 Z ?
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