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Abstract

In this article we formulate a mathematical model for the temporally
evolving microstructure generated by phase changes and study the ho-
mogenization of this model. The investigations are partially formal,
since we do not prove existence or convergence of solutions of the mi-
crostructure model to solutions of the homogenized problem. To model
the microstructure, the sharp interface approach is used. The evolu-
tion of the interface is governed by an everywhere defined distribution
partial differential equation for the characteristic function of one of the
phases. This avoids the disadvantage commonly associated with this ap-
proach of an evolution equation only defined on the interface. To derive
the homogenized problem, a family of solutions of the microstructure
problem depending on the fast variable is introduced. The homoge-
nized problem obtained contains a history functional, which is defined
by the solution of a initial-boundary value problem in the representative
volume element. In the special case of a temporally fixed microstruc-
ture the homogenized problem is reduced to an evolution equation to a
monotone operator.

1 Introduction

Alloys used in jet engines display a microstructure, whose configuration evolves
in time under loading. This microstructure, which is formed by phase changes
of the material, influences the creep behavior of the alloy. A mathematical
model describing the stress and deformation behavior of the alloy must there-
fore also account for the evolving microstructure. Since in this microstructure
the length scale of the phase changes is less than 0.5um, effective numerical
computations of the stress and strain fields in metallic components, whose
dimensions lie in the range of centimeters or meters, can not be based on a
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microscopic mathematical model which faithfully describes the evolving mi-
crostructure. A macroscopic model is needed for this purpose. An interesting
idea to develop a macroscopic model is to formulate a microscopic model first
and then to derive a macroscopic model from it by homogenization. In this
article we want to contribute to the development of this idea. We derive and
formulate a microscopic model, which is of the sharp interface type, and study
the homogenization of the partial differential equations in this model. The ho-
mogenized problem obtained contains a history functional, which is defined via
the solution of an initial-boundary value problem in the representative volume
element. The derivation of the homogenized equations is partly formal, since
neither do we prove existence or uniqueness of solutions for the microscopic
model, nor do we prove convergence of solutions of the microscopic model to so-
lutions of the homogenized equations, assuming that such solutions exist. Such
investigations must be left to later work. However, as a special case the model
we derive describes microstructures, which do not evolve, but are temporally
fixed. In this simpler case we discuss the homogenized initial-boundary value
problem more precisely and verify some results towards an existence proof for
solutions of this initial-boundary value problem.

To understand the mathematical investigations in this paper it is helpful
to know the mechanical background of the mathematical model. Therefore we
sketch this mechanical background first. Detailed descriptions and experimen-
tal and theoretical investigations can be found in [29, 18, 54, 67].

Nickel based single crystal alloys display a microstructure after production.
For simplicity, we discuss alloys which only consist of the two components
aluminium and nickel. Embedded in a matrix phase 7 are cubic precipitates
~'. After complete aging the precipitates are distributed in the y—matrix phase
as a periodic array of cuboids of fairly uniform size. The length of the edges and
the mutual distance of the precipitates is in the range of 0.2-0.5um. The ~'—
phase is highly ordered: The large aluminium atoms are placed in the crystal
lattice at the eight corners of a cube and the nickel atoms are placed at the
center of the six sides of this cube. In the y—matrix phase the aluminium and
the nickel atoms are distributed randomly over the positions in the crystal
lattice. There is a mismatch between the lattice parameters a, and a., of the
crystal in the y— and ~'—phases. Typically the mismatch
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is of the order of |§] < 0.005. Nevertheless, this small mismatch introduces a
significant internal stress in the crystal at the phase interfaces and is considered
to be the reason for the evolution of the morphology of the precipitates, which
happens at high temperatures under the application of external stress. Two
different types of evolution have been observed: Either the cuboids coarsen



preferentially along the direction of the applied stress and form plates which lie
parallel to the stress direction; or the coarsening is normal to the applied stress
and plates form with the faces normal to the stress direction. The difference
in the coarsening directions is attributed to the different crystal structures of
the alloys.

As an important aspect, a mathematical model for this type of problem
must account for the phase changes. Two approaches are used to model tempo-
rally evolving phase changes mathematically; both are employed in the differ-
ent mathematical models, which have been developed to model the microstruc-
ture and the stress-strain behavior of single crystal alloys: In the phase field
approach the different phases are characterized by an order parameter, which
varies rapidely but smoothly and is assumed to satisfy a diffusion equation.
The two phases are separated by the transition region of the order parame-
ter. In the sharp interface approach the different phases are assumed to be
separated by sharp moving interfaces. The movement of the interfaces is de-
termined by an equation for the normal speed of the interfaces. The basic
principle used in all investigations and models to govern the movement of the
interfaces or the evolution of the order parameter is the second law of ther-
modynamics, which requires that this movement or evolution tend to decrease
the free energy.

Mathematical models for the evolving microstructure in single crystal alloys
using the phase field approach are formulated in [18, 78|; the sharp interface
approach is used in [33, 55, 64, 65, 67|, for example. Of these references, only
[18] contains a complete set of model equations; in the others the main interest
is to compute the equilibrium states of the microstructure. They do not give
such a complete set of equations, which is not needed for this purpose.

In continuum mechanics and in the material sciences the investigation of
moving interfaces and phase changes is a very active field of research with a
long history. From the large body of literature we only mention [1, 5, 21, 22,
34, 35, 36, 47, 49, 50, 56]. Together with more articles several of these are
collected in the book [6]. For detailed studies we must refer the reader to the
bibliography contained in these articles.

From the mathematical literature about moving interfaces, moving bound-
aries and phase transitions we can only mention here [4, 8, 9, 10, 11, 13, 14, 17,
20, 27, 30, 31, 40, 48, 57, 68, 72, 73, 74, 76]. Many of the mathematical inves-
tigations concern interface problems, where the free energy has a nonvanishing
surface part. This leads to problems of mean curvature flow or a generalization
of it. Together with the constitutive assumption that the free energy is only
a function of space, time and normal velocity of the interface, the problem
can be reduced to the solution of a scalar partial differential equation, which
in most cases is parabolic. An extensive theory also exists for the phase field



approach, where the coupled evolution of the order parameter and the tem-
perature field is studied. We refer in particular to [4]. This approach leads to
initial-boundary value problems for a parabolic system or for a parabolic sys-
tem coupled with other equations. In the recent investigation [30], the phase
field approach is used to study temporally evolving phase changes in an elastic
medium. Local existence of solutions is proved and the sharp interface limit is
studied in the stationary case.

Concerning homogenization, we mention the articles [19, 46, 51, 53, 59, 60,
61, 62, 66, 69, 70], where the engineering view is dominating. A theoretical
view predominates in the books and articles [3, 7, 12, 15, 24, 25, 37, 38, 39,
41, 42, 43, 44, 45, 52, 58, 63, 71]. The first group of articles contains investiga-
tions of the homogenization of problems with evolving microstructure as well
as with temporally fixed microstructure, and numerical algorithms to compute
the overall response of solids with microstructure. [12] and [58] from the sec-
ond group discuss homogenization of nonlinear monotone operators, which is
of interest for the investigations in Section 4. There the homogenization of
initial-boundary value problems for inelastic materials with temporally fixed
microstructure is studied, which, after a suitable transformation, can often be
written as an evolution equation to a monotone operator. This is shown in
2]. In [52] the homogenization of a rate independent model for phase transfor-
mations is investigated. The homogenization of complicated time dependent
flow problems from chemistry and engineering is discussed in [38, 39, 42].
The mathematical models studied in these articles contain transmission condi-
tions and partial differential equations defined on the boundary manifold. In
(15, 24, 25, 37| the homogenization of Hamilton-Jacobi equations is discussed
in the frame of the theory of viscosity solutions.

We finally summarize the content of this article: In Section 2 we formulate
a model for the evolving microstructure in single crystal alloys, which is of the
sharp interface type. The basic, standard assumptions we use to formulate it
are the same as in the model of Socrate and Parks [67]. In this model, the
free energy does not have a surface part, but the material is allowed to show
inelastic stress-strain behavior. This stress-strain behavior may be different in
the two different phases. It is modeled using internal variables.

To characterize the two phases we introduce an order parameter which only
takes the values 0 and 1 and thus jumps at the face interface. Using an order
parameter is not new in the sharp interface approach, since the level set method
uses such a parameter, for example. However, the choice of a discontinuous
order parameter is in contrast both to the phase field approach and to the level
set method, where the order parameters are smooth.

We first use the second law of thermodynamics to derive dissipation inequal-
ities, which must be satisfied by the normal velocity of the phase interfaces and
by the time derivative of the internal variables. These dissipation inequalities
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restrict the constitutive relations for the normal velocity and for the internal
variables. The derivation is standard, but we present it for completeness and
for definitness. As usual, it follows that the driving traction for the phase
interface is generated by a jump of the Eshelby tensor at the interface; this
jump is caused by the misfit strain originating from the different values of the
lattice parameters in the y— and y—phases. Since the free energy does not
have a surface part, the mean curvature does not appear in the equations. We
then formulate a constitutive equation for the normal velocity of the phase
interfaces, which is in accordance with these restrictions. This equation can
be considered to be an evolution equation for the phase interface. The mathe-
matical model thus consists of an initial-boundary value problem to a system,
which consists of partial differential equations for the strain and stress fields
and of evolution equations for the internal variables and the phase interface.
This model is derived in Sections 2.1 and 2.2.

Our new contributions to the modelling of moving phase interfaces are
contained in Sections 2.3 to 2.5. A drawback of the sharp interface approach
is that the equation for the normal speed of the interface is only defined on the
interface, which causes difficulties in theoretical investigations and numerical
computations. For example, the coalescence or the separation of precipitates
will be difficult to model and to study. However, in a first step we show that
the equation for the normal speed of the interface can be reformulated as an
evolution equation for the discontinuous order parameter S taking the value
0 on the y—phase and the value 1 on the +'~phase. The evolution equation
holds in the distribution sense and is defined everywhere, not only on the
interfaces. Since knowledge of the interfaces is not needed to formulate the
equation, the above mentioned drawback of the second approach is removed.
Still, this equation is complicated and will not be easy to use. In a second
step we therefore show that if the solution of this equation is smooth, it can
be reduced to the first order partial differential equation

Si(z,t) = —cpps(e, S, z) [V, S(x, t)]

for S, a transport equation or Hamilton-Jacobi equation. Here vg is the partial
derivative of the free energy with respect to S, c¢is a constant and p, €, z denote
the density, the strain and the vector of internal variables. We surmise that the
initial-boundary value problem with this equation as evolution equation for the
order parameter has smooth solutions to smooth initial data, and that these
smooth solutions can be used to approximate theoretically and numerically
the discontinuous solutions to the original microstructure problem:.

In Section 3 we formally derive the homogenized initial-boundary value
problem associated to this microstructure model. The microstructure is intro-
duced in the problem by assuming that the initial data for the order parameter



are given by a function of the form

where y — S© (x,y) is periodic and where 7 > 0 is a small parameter. z is
called the slow variable, y the fast variable. This means that the initial data
are approximately periodic in space and that the scale of the microstructure
tends to zero for n — 0. To derive the homogenized equations, we assume that
the microscopic initial-boundary value problem has solutions to these initial
data with an order parameter of the form

x
Sﬂ(gjv Evt)a

where S, (z,y,t) is periodic in the fast variable y and tends to Sy(z,y,t) for
17 — 0 in a suitable sense. Moreover, it is assumed that the other unknowns
in the initial-boundary value problem have similar representations. By let-
ing tend n — 0, an initial-boundary value problem is determined which must
be solved by Sy and by the limit functions of the other unknowns. This is
the homogenized problem. The homogenized problem consists of a macro-
scopic initial-boundary value problem in the macroscopic (z,t)-variables for
the macroscopic deformation uy(z, t) and the macroscopic mean stress T, (z, ),
with a history functional

TOO(Z',t) - fsgt(vx UO(x7 8))7

which for every x is computed via the solution of an initial-boundary value
problem in the (y, t)—variables. y varies in the periodicity cell. This periodicity
cell, or better, the initial-boundary value problem in the periodicity cell, is
called representative volume element.

The evolution equation for the order parameter in the microscopic prob-
lem is a partial differential equation containing derivatives with respect to x
and t. These derivatives are distribution derivatives. It turns out that in
the initial-boundary value problem of the representative volume element the
function (y,t) — Sy(z,y,t) must solve a partial differential equation contain-
ing distribution derivatives with respect to y and ¢. As usual in the theory
of distributions, to define distribution derivatives with respect to y, an in-
tegration with respect to the y—variable must be present. To introduce this
integration, we define in Section 3.1 the notion of a family of solutions of
the microscopic initial-boundary value problem depending on the fast variable
and generalize it in Section 3.4 to distribution solutions. For a precise discus-
sion of the homogenized initial-boundary value problem we refer to the scholia
after Definition 3.11 of this homogenized initial-boundary value problem in
Section 3.4.



The reduction of the microscopic initial-boundary value problem to a ho-
mogenized problem with history functional defined via the solution of an
initial-boundary value problem in the representative volume element is not
completely satisfactory, since, as is discussed more precisely in the scholia af-
ter Definition 3.11, the determination of such a history functional still is of
high computational complexity. Therefore this first homogenization should be
followed in a second step by a homogenization of this representative volume
element, which results in the elimination of the y—variable. Ideas have been
developed for such a second homogenization, cf. [46, 52, 59, 60, 61, 62, 69, 70].
We can not discuss these ideas here, but have to refer to these articles and to
the literature cited there.

In Section 4 we specialize the model to the simpler situation of a temporally
fixed microstructure. In this simpler situation it is suggestive to interpret the
homogenized initial-boundary value problem as a quasi-static problem with a
constitutive equation, which is an ordinary differential equation in an infinite
dimensional Banach space. We reduce the problem to an evolution equation
and show that this is an evolution equation to a monotone operator, if the con-
stitutive equation for the original microscopic problem is of monotone type.
This is an important step towards an existence proof for solutions of the ho-
mogenized problem.



2 A mathematical model with sharp phase interfaces

2.1 Equations for the stress, displacement and internal variables

In this section we introduce the model equations for the stress, displacement
and internal variables. These equations coincide essentially with the equations
for homogeneous inelastic materials discussed in the book [2]. The only dif-
ferences are that the microstructure introduces inhomogeneity in the material
and that the equations used here contain a term representing the misfit strain.
Therefore we only state these equations and refer the reader to [2] for a precise
discussion. Also, we formulate interface conditions, boundary conditions and
initial conditions.

To model phase changes evolving in time one needs in addition to the
model equations for inelastic materials an evolution equation for the phase
interfaces. Sections 2.2-2.5 are devoted to the formulation and transformation
of this equation.

Let Q C R? be a bounded open set with smooth boundary 9€). It represents
the points of a material body. By v(¢) we denote the set of points of 2, which
at time ¢ belong to the y—phase, whereas +'(t) denotes the set of points of
which at time ¢ belong to the 7/—phase. We assume that v(¢) is closed in Q
and that

Y NY () =0, A(t)uy(t)=Q.
The interface between the two phases is

L) =) 0y (@)

These subsets of ) are the cross sections at time ¢ of the sets

v={(=1) e Ax R} [z ev(t)}, ' ={(z,1) € LxR] |z €(t)}
and
IL={(z,t) e Qx R} |z €T (t)}.

If in the following we do not mention special assumptions, we shall always
assume that I' is a sufficiently smooth submanifold of Q2 x Ry . To represent
these sets, we introduce an order parameter S : Q x Rf — {0, 1} with

S(at) = { 0, ze(t)

1, ze(t).

Let 8% denote the set of symmetric 3 x 3-matrices, let u : @ x Rf — R? denote
the displacement and

S(qu(l’,t)) = [Vmu(x,t) + (Vou(z, 1)) € S

N | —
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the linear strain tensor. Here (V, u(x,t))” denotes the transpose of the 3 x 3—
matrix V, u(z,t), the matrix of first order partial derivatives of u with respect
to © = (z1,72,23). The function T : Q x Ry — & is the Cauchy stress
tensor and z : Q x Rf — RY is the vector of internal variables. Finally,
b:Q xRy — R® is the given volume force. The strain and stress distributions
are governed by the equations

—div, T(z,t) = b(x,t) (2.1)
T(x,t) = D(S(z,t)) <€(qu(x, t)) —e*(S(z,t)) — Bz(x, t)) (2.2)
zi(x,t) = f(S(x,t), T(x,t), z(x,t)), (2.3)

which must be satisfied for all ¢ > 0 and for all z € Q\I'(¢) . Here D(0), D(1) :
83 — 83 are linear, symmetric, positiv definite mappings. D(0) is the elasticity
tensor in the matrix phase 7, and D(1) is the elasticity tensor in the 4'~phase.
£*(1) € 8% is the misfit strain in the 7'~phase. The misfit strain is equal to
zero in the matrix—phase, hence €*(0) = 0.

B : RY — &% is a linear mapping, which maps the vector of internal
variables to the plastic strain tensor:

ep(z,t) = Bz(x,t).

The given function f : A(f) C {0,1} x 8 x RY — RY in the evolution
equation (2.3) for the vector z of internal variables determines the inelastic
properties of the v— and ~/'—phases of the material. Here A(f) denotes the
domain of definition of f. This function depends on S, since the two phases
behave differently. Purely elastic behavior in the ~'-phase is obtained with
f(l,6,2)=0.

On the interface I'(¢) the functions u, T and z must satisfy interface condi-
tions. The functions e(V,u), us, T, and z can jump across ', but we assume
that the displacement u and the traction vector are continuous across the in-
terface. Thus, with a given function ¢ : RY — RY the interface conditions for
u, T and z are

ut(z,t) = u (z,1), (2.4)
T (z,t)n(z,t) = T (z,t)n(z,t), (2.5)
2(z,t4+) = g(z2(z,t—)), (2.6)

which must hold for all (z,¢) € T'. Here n(x,t) € R® is the unit normal vector
to T'(t) pointing from ~'(¢) to v(t). Also, T (z,t) and T~ (z,t) are the limit
values of T if the argument tends to (z,t) € T" from ~ or from 7, respectively.



Precisely, for a function w and (z,t) € I' we define

wh(z,t) = lim w((z,t) + nm(z,t))
wo(z,t) = 1}_{% w((z,t) — nm(z,t)),

with the unit normal vector m(x,t) € R* to I’ pointing from 7' to . In the
following we assume that this normal vector differs everywhere from the vector
(0,+1) € R x R.

Finally, the boundary condition is

T(xz,t)n(x) =0, x€0Q, t>0, (2.7)
with a unit vector n(x) normal to 0 at x, and the initial conditions are
2(2,0) = 20(x), S(z,0) =S5V (), zcq. (2.8)

Under suitable regularity conditions for I" and b, the equations (2.1) and (2.5),
respectively, hold in the classical sense in (2 x RY)\I" and on I, respectively,
if and only if 7" is a weak solution of (2.1) in Q x R* . By definition, T is a
weak solution if and only if

/OOO/Q T(x,t): Vyp(x, t)dedt = /OOO/Q b(x,t) - o(x,t) dodt (2.9)

is satisfied for every function ¢ € C°(Q x RT,R?) .

Remark. Instead of (2.6) we require in Section 3 that z is continuous across
the interface I'. We caution the reader that in this article v does not normally
denote velocity. Instead, by v we denote functions with values in S* or in R™
with m > 1.

2.2 Evolution equation for the phase interface, dissipation inequal-
ity
The 3 + 9 + N equations (2.1)—(2.3) contain the 3 +9 + N + 1 unknown
components of u, T,z und S. Therefore the system (2.1)—(2.3) is not closed;
an evolution equation for the order parameter S is missing. The evolution of
S is known if and only if the evolution of the sets v(¢) and +'(¢) is known, and
this evolution is known, if a constitutive equation is known, which determines
the normal speed of the interface between the phases as a function of u, T
and z. In this section we first derive restrictions for the form of such an
equation from the second law of thermodynamics, essentially following the
standard arguments in thermodynamics. Our presentation is influenced by
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[35]. We then formulate a constitutive equation for the normal speed, which
is in accordance with these restrictions. In Section 2.3 this equation is used to
formulate an evolution equation for the order parameter S.

Let ¢ = (g, S, z) be the free energy. We assume that

iAW) =R

is a sufficiently smooth function, whose domain of definition A(v) is equal to
the set 8% x {0,1} x RY or to a suitable subset of it. ¢ must satisfy the basic
equation

pVeih(e, S, 2) =T, (2.10)

(cf. [2]), where p > 0 denotes the mass density. In this article we assume that
p is a constant. Insertion of (2.2) into (2.10) and integration yields

1
p(e, S, 2) = 3 [D(S) (5 —&"(S) - Bz)] : (5 —e"(S) — Bz) + 1 (5, 2),
with a suitable function vy .

Second law of thermodynamics. We use the second law of thermodynam-
ics in the following form: For every subregion R of {2 with sufficiently smooth

boundary OR the displacement u, the stress T', the vector of internal variables
z and the order parameter S must satisfy the inequality

% . p(e(Veu), S, z)de < /aR q(e(Vyu),uy, S, z) - n(x) do(z)

+/ b-uydr, (2.11)
R
with the negative energy flow (the stress power)
q(e(Vyu),us S, z) = T(e(Vyu), S, 2)ug .
Here n(z) is a unit vector normal to R pointing out of R.

Theorem 2.1 (Dissipation inequalities for the internal variables and for the
phase boundary)  Let (u,T,2,5) : Q x RI — R3 x 8 x RN x {0,1} be a
function, which is continuously differentiable on the closed set v and on the
set ', and which is such that (u,T), z, S)|7, has a continuously differentiable

extension to y'.

(i)  Then (2.11), the second law of thermodynamics, implies

p%@/}(s, S,z) —divyq(e,u, S, 2) —b-uy <0 (2.12)

on Q X RT in the weak sense.
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(ii) Assume in addition that u,T,z,S satisfy (2.1), (2.2) on Q@ x RT and
(2.4) (2.5) on the phase interface I'. Then (2.12) holds if and only if the
following two inequalities are satisfied:

pV . 0 (e(Vau(x,t)), S(x, t), z(x, 1)) - z¢(x,t) <0 (2.13)
for almost all (z,t) € Q x Ry , and

m" (z, 1) (m'(x,t)~ [C(Vmu(x,t),S(x,t),z(:c,t))]m'(x,t)) <0 (2.14)

for all (z,t) € T'. Here m(z,t) = (m'(z,t),m"(z,t)) € R®* x R is a unit
normal vector to I' pointing from ~' to -+,

C(Vau, S, 2) = p(e(Veu), S, 2)I — (Vou)'T (2.15)
= p(e(Vyu), S, 2)I — (Vo u) (D(S)(e(Vyu) — £7(S) — B2))
is the Eshelby tensor, and
[Cl=CF—-C~

denotes the jump of C along the phase boundary I'. By I we denote the
unit matrix.

Remark. By definition, (2.12) is satisfied in the weak sense if
[ (s oot oS, Vop = beug) diat) <0
OxRT

for all ¢ € C§°(2 x RT,R) with ¢(z,t) > 0.

Since we assumed that m(z,t) # (0,41), hence m’'(x,t) # 0, it follows that
(2.14) is equivalent to

1/<n~ [O(qu, S, z)}n) >0,

with the unit normal vector n = I%\ € R? to I'(¢) and with

m” (x,t)

vz, t) = —7‘7”,(%0’ .

(2.16)

v(x,t) is the normal speed of propagation of the phase interface I'(¢) at the
point z in the direction of n(x,t). Therefore we have the following
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Corollary 2.2 (Constitutive equation for the normal speed of the phase in-
terface.) Let ¢ : R — R be a given function with c¢(s)s > 0 for all s € R. If
u, T, z,S satisfy (2.1)~(2.5), if the normal speed of the phase interface satisfies

v(w,t) = c(nle,t) - |C(Taule,1), S(a,8), 2(2,)) |n(a, 1)) (2.17)
for all (z,t) € T, and if the dissipation inequality
pV. (e, S, 2) - f(S,T,2) <0 (2.18)
is satisfied for all
(£:9,2) € A(Y) N {(5,9,2) [ (5,T,2) € A(f)},

then the inequality (2.12) expressing the second law of thermodynamics is ful-
filled.

Remark. Since by assumption (2.2) is satisfied, we consider here T =
T(e,S,z) to be a function of (¢,5,2). (2.18) is the well known dissipation
inequality for constitutive equations with internal variables, cf. [2].

Proof of the Corollary: The equation (2.17) implies (2.14), and (2.13) is im-
plied by (2.3) and (2.18). Therefore the statement follows from Theorem 2.1.

Proof of Theorem 2.1: (i) Assume that the inequality (2.11) holds. To
every function ¢ € C§°(Q2 x R") satisfying ¢(y,t) > 0 for all (y,t) € Q x R*
we can choose a number r € R such that

1
0<r< §dist (supp @, 0(Q x R+)> .
Then for every (y,t) € supp ¢ the closed ball
B(y)={z €R*| Jx —y| <1}

belongs to Q. In (2.11) we choose R = B,(y) with (y,t) € Q x R" , multiply
the inequality with ¢(y,t) and integrate with respect to (y,t). The result is

< / 1) /| T Y do()d(y, 1)

QxR+ r
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where we used the notations
V(@) = O (e(Vau(e, 1), Sl t), 2(x,1))

and
g(z,t) = q(s(VIu(x,t)),ut(x,t), S(z, 1), z(x,t)) .

Partial integration and interchange of the order of integration yields

- / / e Dot 0 dydGe
/QXRJF /y z|=r ot

* /QXRJF /y—x<r W(y, t) (b ; ut) (37, t) dy d(x’ t) :

In the first term on the right hand side of this inequality we use the Divergence
Theorem to obtain

/wa / ol <r ( — @iy, (@, 1) + Vyp(y, t) - q(, 1)

— (. 1)(b- ) (x,) ) dyd(. 1) < 0.

L do(y) - q(x,t) d(z, )

Since

/| | Ve, )dy = Vi ye(z,t),
y—z|<r

uniformly with respect to (z,t) € QxR | we conclude from the last inequality
that

r—0 4773

[ (- oteatnn +aen - anten

— (b ) (x, 1) gp(x,t))d(x,t) <0 (2.19)
for all non-negative ¢ € C§°(€2 x R™). This proves (i).

(ii) Since S is constant on the sets v and ~', it follows that on 7 and on v,

g V(@) = V(e 8,2) rer + Vath(e, 5, 2) - 2

Therefore the inequality (2.19) is equivalent to
R GECCIEEY TP
QxR+
— divaq(e,us, 8, 2) = b- ) ol )d(a, 1)

+ [ (obote 5. = e, 8.2 ol ) dorla ) < 0,
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where, as above, m(z,t) = (m/,m") € R®> x R is a unit normal vector to T’
pointing from +' to v and [¢p] = YT — 17, [q] = ¢* — ¢~ denote the jumps of
¥ and ¢ along ['. Using that

div,q = divx(Tut) = (diVa;TT) - Up + T" . V., U
(div,T) - uy + p(Vep) : &y, (2.20)

where we employed (2.10) and the symmetry of T, the above inequality is seen
to be equivalent to

/Q><R+ (PVzl/)(g, S,z) -z — (divyT) - ug — b+ ut)gp(:(;, t) d(z,t)

T / (ol ~ [Tw] - ") ol 1) do(w, 1) < 0.
Because of div, T 4+ b = 0 and because of
[Twe] = (T)ue] + [T]{ue)
with ) )
(1) =5 +T7), (u) = 5w +u),

this is equivalent to

/ssz+ (pvzw(s,s, 2) - zt><p(x,t)d(aj,t) (2.21)
+/F (p[w]m" = ((T)ym) - [ue] = ([T]m) - <ut))<p(x,t) do(z,t) <0.

Since m’ € R? is normal to ['(t), it follows from (2.5) that [T]m’ = 0. The
vector field

(mllml7 _‘mI‘Z)
is tangential to I'. Since by assumption u is continuously differentiable on 7%
and on 7' and continuous across I', it follows that the limits (u;)*, (V,u)* on
[' exist and that the tangential derivatives on both sides of I' coincide:

—|/|Puf + " (Veu)t™m' = —|m|Pu; +m" (Veu) m',
hence .,
m
!
[u] = [Veulm e

Therefore (2.21) is equivalent to

/Q><R+ (pvzw(e, 5,2)- Zt) p(z,t)d(z, 1)

" / (01 = (1)) - (19 )yt 0o 0) < 0.

||
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This inequality holds for all ¢ € C§°(2 x Rt) with ¢ > 0 if and only if
Pvzw(& S, Z) -2 <0

almost everywhere in 0 x R" and
m’ m’ "
_ — . — < .
(o] = ((0)r) - (19l ) < 0 (2:22)
almost everywhere on I'. We use again that [T]m' = 0, which implies
[Veu] (T)ym' = [V u] (T)ym' + (Vo u) [T]m' = [(Vyu) T]m/,

whence (2.22) is equivalent to

! !

()] = (Vo u)"T])

m

. m" <0 onl.

|m/| /|

This inequality can be written in the form (2.14) using the definition of the
Eshelby tensor C' in (2.15). The theorem is proven.

2.3 Evolution equation for the order parameter S

The equations (2.1)-(2.3), (2.17) form a closed system, since the evolution in
time of the phase interface [' can be determined from the normal velocity v
given in (2.17). However, instead of the equation (2.17) for the normal speed
of the phase interface I' one would prefer to have an evolution equation for
the order parameter S directly. To derive such an equation we start from the
method of characteristics, a customary way to model moving phase interfaces,
cf. Taylor, Cahn and Handwerker [73]. The method is based on a partial dif-
ferential equation readily derived from (2.16). We shortly sketch the iteration
procedure which must be used to determine the manifold I' with this method.
After this we shall not follow this method any further; instead, we show that
this partial differential equation can be used directly as an evolution equation
for the order parameter S. This evolution equation is however a distribution
equation.

Assume that I' is a sufficiently smooth 3—dimensional submanifold of € x
R* , that (m’,m") is a unit normal vector field on I', and that v : I' — R is
the normal velocity of I'. Then v satisfies the equation (2.16) on all of T :

n
t
o) = D
m/ (,1)]
Assume moreover that I" is given by
F:{(I,t) eQxR+‘X(x,t):o}, (2.23)
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with a suitable function y . Then for all (x,¢) € I the vector
(Vaex(z,t), x¢(x,t)) is normal to I' , and we assume that it has the direction of
—(m!'(x,t),m"(x,t)), hence

(va:X7 Xt) = _’(va7 Xt)‘ (ml7 m”) :
From this equation and from (2.16) we infer that the equation
Xi(, 1) — v(z, )| Vex (e, )] = 0 (2.24)

holds for all (z,t) € I".
Conversely, if x is a sufficiently smooth function which satisfies (2.24) and
which on a 2—dimensional submanifold I' of I' fulfills the initial condition

x(z,t) =0, (x,t) €T,

then y vanishes on all of I'; whence (2.23) is satisfied. This follows from the
classical theory of first order partial differential equations. If for (§,() € R* xR
we set

p(z,:€,¢) = ¢ —w(x, 1)[¢],

then the equation (2.24) can be written in the form

p(z,t, Vax(a,t), xe(z,t)) = 0.

However, the solution x of this differential equation can not be determined in
the usual manner by solving the characteristic system of ordinary differential
equations, since v(z,t) and p(x,t; €, () are only defined for points (x,t) on the
manifold ['. The partial derivatives p; and V,p are therefore not defined. To
solve the characteristic system it is necessary to extend v smoothly from I" to
an open neighborhood of I' by a suitable method. Then a solution of (2.24)
can be obtained by solving the characteristic system

d

dt 0

i = 8—CP($J;§7C)
e .

% - _vxp(xa ta 67 C)
d 0

The solution x of (2.24) is constant along the characteristic curves s
(z(s),t(s)), whence the manifold {x(x,) = 0} is generated by those char-
acteristic curves s — (x(s),t(s)), which pass through I'. That (2.23) holds
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can be deduced from (2.24), which implies that the normal vector field
(m/,m") = —(Vz X, x¢) to the manifold x(z,t) = 0 satisfies

~
v(z,t) = —m :
! (,1)]
Therefore, since the manifolds T and {x(z,t) = 0} both contain I as a subman-
ifold and since the normal speeds coincide, it follows that I' = {x(z,t) = 0}.
In these considerations we assumed that I' and the normal velocity v : I' —
R are known from the outset. However, in the initial-boundary value problem
to the equations (2.1)-(2.3), (2.17) the unknowns are u, 7, z and I'. The
normal speed is determined by (2.17) as a function of (u, T, 2,T") and is also
unknown. To determine these unknowns, we must use an iteration procedure:
Start with an approximate phase interface I'y, determine to this approximate
interface a solution (u, T', z) of the partial differential equations (2.1)—(2.3) with
suitable boundary and initial conditions and with suitable interface conditions
on 'y, and insert this solution into (2.17) to compute an approximate normal
speed vy on I'y. Insert vy for v into (2.24). After smooth extension of vy, a
new approximate phase interface ['; can be computed by solving this partial
differential equation with the method of characteristics. The iteration can then
be continued and one expects that the sequence of phase interfaces {I'g, 'y, ...}
tends to the correct interface sought.

We will not pursue this method further; instead, in the next lemma we show
that without extending v smoothly, the order parameter S can be inserted for
X in (2.24) directly. If v is continued by zero from the manifold ' to  x R*,
then (2.24) can be interpreted as a partial differential equation, which holds
on all of Q x R in the sense of measures. This yields an evolution equation
for S.

To formulate this result, we need the space BV!°¢(Q x R*) of functions
in LM°¢(Q) x RT), whose weak first derivatives are Radon measures. More
precisely, a function i belongs to the space BV°¢(Q x Rt | R) if h € LY1°¢(Q x
R*,R) and if for any open subset V' compactly contained in  x R

sup { [ e t)div ol ) dot) | ¢ € UV, o] <1} < .
Vv

Here C}(Q x R") denotes the space of all continuous mappings with compact
support in € x RT. A function belonging to the space BV'°¢(2 x R") is said
to have locally bounded variation.

The derivatives h; and h,, are signed measures. To these measures the total
variation measures || and |V, h| can be introduced: For a measure p on an
open subset U and a measureable subset R of U the total variation measure
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|| is defined by
p(R)| = sup Y [p(Rs)], (2.25)
i=1

where the supremum is taken over all finite collections {R;} of yu—measurable,
pairwise disjoint sets with ; C R.

The set 7' is said to be of locally finite perimeter if the characteristic
function S of this set belongs to the space BV'°¢(2 x R* | R). In this case a
unit normal vector field (m/, m”) pointing from 7' to  can be defined on the
measure theoretic boundary I', C I', which consists of all points (x,t) € " with

1 1
limsup —|B,(x,t) N[ >0, limsup —|B,(z,t)\7'[ > 0.
r—0 T r—0 T

Here B,(z,t) C R is the ball with center (x,t) and radius r and |- | denotes
the Lebesgue measure. For these and other results about the spaces BV'°¢ we
refer to [26, 77, 75].

Lemma 2.3 Assume that ~' is of locally finite perimeter with a unit normal
vector field (m',m") of Tx pointing from ~' to v. Let v : Q@ x Rt — R be a
function satisfying

v(z,t) =0, (x,t) € (QxR")\L,.

Then S solves the equation

Sy =v|Vy S| (2.26)
iof and only if
m"(x,t)
)= -l
0 = g, )

for os—all (x,t) € I'x, where o3 denotes the three dimensional Hausdorff mea-
sure.

Scholium. Because of S € BV!¢(Q x RT), both members of the equation
(2.26) are measures, and equality is meant in the sense of measures. The
measures S; and V, S satisty S;(V) = V,S(V) = 0 for every open subset
V C (2 x RY)\I', and the product v|V, S| is the measure corresponding to
the bounded linear form on Cy(€Q2 x R") defined by the integral

o (WIV. 5], ) = / o, (e, ) IV .S, )]
QxR+

for p € Cp(2 x RT).
S must satisfy (2.26) with the normal speed of the phase boundary I" given
by (2.17) inserted for v. Therefore (2.26) is the evolution equation for S. In
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the proof of Theorem 2.5 we also need the other direction of the statement
of the lemma: If S is the characteristic function of the set 7' and satisfies an
equation of the form (2.26), then v must necessarily be the normal speed of
the boundary T", along which S jumps.

Proof of Lemma 2.3: By definition of the distribution S; and by the Diver-
gence Theorem for functions of locally bounded variation (cf. [26, p. 209]), we
obtain for ¢ € C§°(Q x R*)

/wa(x,t)dst(x,t) _ —/QXW(pt(x,t)S(x,t)d(x,t)
:_// alat)det) = = [ m'G.p(at) dos(e.).

For the measure S; this means that
Sy = —m"o3| [y, (2.27)

where o3|, denotes the restriction of the Hausdorff measure o3 to I', . Simi-
larly,

/Q Ple ) dS () = - / o (2, 8)S (@, ) d(z, 1)

QxR+

__ /F ml (@, ) (@, 1) dos(z, 1),

hence V, S = —m/o3|', . This equation together with (2.25) implies
|V, S|=|m|os|L,.

From this equation and from (2.27) we infer that S; = v |V, S| is equivalent
to

—m" o3| = v|m/|os| Ty,
which holds if and only if —m"(z,t) = v(z,t)|m/(z,t)| for og-all (z,t) € T,.
This completes the proof.

2.4 'Weak form of the evolution equation for S

With the result of Lemma 2.3 we obtain an evolution equation for S by inser-
tion of (2.17) into (2.26). Combination of the resulting equation with (2.1)-
(2.3) yields a closed system for the unknown function (u, T, z, S). This system

1S
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(0,6) = b{a,1) (
(0.t) = D(S(,0) (=(Voule, 1) — *(S(z, 1)) — Ba(e,1)) (
ze(x,t) = f(S(x,t),T(z,t),2(x,1)) (
(2,1) (

- c(n(x,t) (C(Vyulz, 1), S(z, 1), z(w,t))]n(:c,t)) V.S, 1)

In (2.31), n(x,t) is a normal vector to the surface I'(¢), which bounds the
set v = {x € Q| S(z,t) = 1}. Such a normal vector field can be defined
if S belongs to the space BV1°¢(Q2 x R"). However, for several reasons it is
advantageous to have an evolution equation without normal vectors. In this
section we transform the evolution equation (2.31) into a form without normal
vectors under the assumption, that the function c is linear. In Section 2.5 it is
shown that this form of the evolution equation can be considerably simplified
provided that the solutions are smooth. This is one of the advantages of the
form without normal vectors.
Thus, in the remainder of this article ¢ denotes a positive constant.

Lemma 2.4 Assume that (u,T,z,5) : @ x Rf — R x & x RY x {0,1}
satisfies the assumptions of Theorem 2.1 (ii). Then the following assertions
hold:

(i)  The equation
n - [Cln| = [C]n] (2.32)

is satisfied on T', where n(z,t) € R® is a unit normal vector to T'(t) at
zeTl(t).

(ii) Let the distribution [C|n|V S| be defined by
([C]n\V$S\,<p> :/ [C @, t)]n(z, t)p(w, 1) dIVS (2, 1)
QxR+
for o € CP(Q x RY,R®) , with

[C(Vu(x,t),S(x,t), 2(x,t)], (z,t) el
Cla, 1) = :
0, (z,t) € (QxRH\T.
Then, in the sense of distributions,
div, C(V,u, S, 2) — p(Vy 2)'V, 9¥(e, S, 2) — (V,u)'b

= [C]n|V,S|. (2.33)
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Remark. Precisely, (2.33) means that
—/ C(Vyu,S,2): Vypd(z,t)
QxR+
- / (022" V. (6. 5. 2) + (Vo)D) - o (e, 1)
(QXRH\T

= (ICInIV.S1, o)

for all p € C(2 x RT,R®). The derivatives of V, z of z in (2.33) are the
classical derivatives on (€ x RT)\I', not the distributional derivatives of z on
2 x RT. The function z can jump across I, in which case the distributional
derivatives on 2 x R differ from the classical derivatives on (2 x RT)\I" by a
measure on I'. This measure does not appear in (2.33).

Proof: (i) The interface condition (2.5) yields [T'(x, t)|n(x,t) = 0 for (x,t) € I.
(2.15) and the equation [(V,u)TT] = [(V,u)TT) + ((V,u)T)[T] thus imply

ne[Cln = n- (ple] - [(Veu)"T])n (2.34)
= n- (vl = (Vo) (D)0 = (Vo)) [T]n)
= n- (pleln — [Vou]"(T)n) .

We now show that the range of the linear mapping [V, u|" is contained in the
subspace of R® spanned by n(z,t). Since p[t] is a scalar, statement (i) is an
obvious consequence of this result and of (2.34).

Thus, assume that 7 € R? is orthogonal to n € R*. Then 7 is a tangential
vector to ['(¢) . Since by assumption u is continuously differentiable on 7(¢) and
on 7/(t) and continuous across I'(t), it follows that the limits (V,u)* exist on
I'(¢t) and that the tangential derivatives on both sides of I'(#) coincide. For
every v € R® we thus obtain

T~ ([qu]TU> =

[qu]T) v
((Vgcu)T)+ — ((qu)7'>7> X
(5:0) () ) o=0.

which proves that the range of [V, u]
by n.

is contained in the subspace spanned

(ii) Let m(x, t) = (m/(z,t), m"(z,t)) € R* be a unit normal vector to I’ pointing
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from +' to . With the unit normal vector n(z,t) = |Z;E§3\ to I'(t) and with

p € C°(Q2 x RT,R?) we obtain just as in the proof of Lemma 2.3 that
(Cnlv.sle) = [ ¢-lCmav.s|
QxR+

= /F o(z,t) - [Clx, t)]n(x, t)|m/ (z,t)| dos(x, t)

= [ (oot = (T Tl ) - (2.35)
m' -+ [Tug,]

= /Fp[z/)]m’-gpdag—/r : ~pdos
m' -+ [Tug,]

= /r plY)m’ - o dos + /QX]R+ Z divy (Tug, i) d(z, t) .

Now, because of the symmetry of T',
dive (Tug, ©;) = (divyTT) - ug, 5 + TT (Vg )i + (Tuy,) - Ve
= (div,T) - uy, i + T : (Vg ug,)pi + (Tuy,) - Vi gi . (2.36)

Since S is constant on connected components of (€2 x RT)\I', we obtain from
(2.10) that on (2 x RT)\I'

T :e(Vaug)pi = pVe(e(Veu), S, 2) 1 6(Ve ug, )

9]
=P (e, S, 2)pi — pV.(e, S, 2) - 2, @i - (2.37)

Using that 7" solves (2.1), we obtain by insertion of (2.37) into (2.36) that

3
Z div, (Tu,, @;)
i=1

3

+ Z (Tuil?z) -V

= (diVa; (pz/)(g, S, z)I_> — (Vou)Tb — p(V,.2) V.1 (e, S, z)) -
+(T(Vou)) : (Vo)
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We insert this equation into (2.35), note that (T(V,u)) : (V.e)' =
(Vou)I'T) : V4 and apply the Divergence Theorem to obtain

(Icm V.51, )

_ /QXR+ (pI/J(S,S, ) — (Vmu)TT> : Ve pd(z,t)
_:me(Ghuﬂ6+pﬁthVﬂM&SJ0'@d@J)

- (divm (p¢(s, S, )1 — (qu)TT), 90)

— (T2 + (V22) V200, S, 2), )
= (diVmC(Vm u, S, 2) — (Vau)'b — p(Vu2) 'V (e, S, 2), go) )

The second equality sign in this computation holds by definition of the distri-
bution div, (ptpI — (V,u)?T) . This proves the lemma.

With this result we obtain the evolution equation for S, which does not contain
normal vectors:

Theorem 2.5 Assume that (u,T,z,5) : Q x Rf — R x 8§ x RY x {0,1}
satisfies the equations (2.28)—(2.31), the interface conditions

[u] = [T]n =0

on I and the reqularity assumptions of Theorem 2.1. Moreover, assume that
the function f in (2.30) fulfills the dissipation inequality (2.18):

pV.0(e, S, z) - f(S,T,z) <0.
Then the equation
|Si| = c|dive C(Vau, S, 2) = p(Ve2) ' Voib(e, S, 2) = (Vou) 0] (2.38)

and the entropy condition

p% (e, S,2) —divgqle,ug, S,2) —b-uy <0 (2.39)

are satisfied with
q(e,ug, S, 2) = Tuy .

Proof: The equations (2.31), (2.32) and (2.33) together imply
|St] = cln - [Cn] [V S| = c|[Cln[ [V5]
(Ol V81| = eldivC — p(V,2) V.6 — (V).

= C
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which is (2.38). If (2.31) holds, then it follows from Lemma 2.3 that
c(n-[C(Vyu, S, z)n)

must be the normal velocity v of the surface ', along which S has a jump.
Therefore equation (2.17) is satisfied. By Corollary 2.2, the equations (2.17)
and (2.18) together imply that (2.39) holds. This proves the theorem.

Initial-boundary value problem for an inelastic material with evolv-
ing microstructure. The equation (2.38) does not contain normal vectors.
However, because of the absolute values on both sides, this equation allows
more solutions than (2.31) does. We surmise that the entropy condition (2.39)
singles out the correct solutions of (2.38) and that, therefore, (2.38) and (2.39)
together are equivalent to (2.31). The mathematical model for the inelastic
material with evolving microstructure thus derived consists of the equations
(2.28)-(2.30), (2.38), of the entropy condition (2.39) as side condition, and
of the interface, boundary and initial conditions (2.4)-(2.8). The complete
initial-boundary value problem is formulated at the beginning of Section 3.

2.5 Reduction of the evolution equation for smooth solutions

In this section we show that the evolution equation (2.38) can be simplified
considerably under the assumption that the function (u, T, z,.S) does not jump
at the phase boundaries, but varies smoothly in all of © x R™. In these in-
vestigations we are led by the idea that the initial-boundary value problem
consisting of the equations (2.1)—(2.3), (2.7), (2.8) and of the simplified evolu-
tion equation derived below has smooth solutions, at least for a finite interval
of time, if smooth functions are inserted for the initial data 2(?, S in (2.8).
We surmise that if a sequence of smooth initial data is chosen, which approx-
imates the original initial data with jumps, a sequence of smooth solutions
is obtained approximating the discontinuous solution to the original initial
data. This would be helpful both to prove existence of solutions of the initial-
boundary value problem (2.1)-(2.8), (2.38) to discontinuous initial data, and
to compute the solution of this problem numerically.
Let J C R be an interval containing the numbers 0 and 1 and let

e J—= 83,
fiA(f)TTI xS xRY - RY,
ViAW) CSP x JxRY - R

be smooth functions. We assume that the free energy 1 satisfies (2.10) and
that f and v satisfy the dissipation inequality (2.18):

oV, (e, S, z) - f(S,T(g,5,2),2) <0
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for all (¢,5,2) € A(Y)N{(e, S, 2)| (S, T(e,S,z2),2) € A(f)}. Here we set
T(e,S,z) = D(S)(e —€"(S) — Bz).

Lemma 2.6 Let (u,T,z,S) be a continuously differentiable solution of the
equations (2.28) and (2.38). Then

|5t = cplrs(e(Vaw), S, 2)[ V. S| (2.40)

holds in Q x R*.
Conversely, if (u,T, z,S) is a continuously differentiable solution of

—div,T = b, (2.41)
T o= D(S)(s(Vmu)—s*(S)—Bz>, (2.42)
zz = f(S,T,z2), (2.43)
Sy = —epis(e(Veu), S, 2) |V, S|, (2.44)

then (2.28)—(2.30), the evolution equation (2.38) for S and the entropy condi-
tion (2.39) are satisfied.

Proof: The definition of the Eshelby tensor in (2.15) yields
div,C — p(V2)'V b — (Vou)'h (2.45)
= PV — div, ((qu)TT> — p(V2) Vb — (V)"
Moreover, (2.10) implies

pV(e, S, 2)
Pval/)(& S, Z) Dep Tt vaw(‘g? S, Z) " Ry

— : + ps(e, S, 2)Vy S
PV (e, S, 2) 1 €4y + pVo0(g, S, 2) - 24,

T ey
= : +p(Ve2) 'V + pis(e, S, 2)V,. S. (2.46)
T : €4,
Also, because of the symmetry of T',
TV, (ug,)
—div, ((qu)TT) = —(Vou)'div, T —
T2V (ug,)
1T :eq,
= —(V,u)div, T — : : (2.47)
T ey,
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Therefore, if T" solves (2.28) (or (2.41)), then we obtain by combination of
(2.45)—(2.47) the equality

div, C — p(V22)'V, 0 — (Vu)'b = pi)s(e, S, 2) V.S . (2.48)

With this equation the proof of the lemma readily follows: First, if (2.28) and
(2.38) are satisfied, then insertion of (2.48) in (2.38) yields (2.40). Conversely,
if (2.41)-(2.44) are satisfied, we take absolut values on both sides of (2.44)
and insert (2.48) into the resulting equation to obtain (2.38). The equations
(2.28)—(2.30) hold, since (2.41)—(2.43) are restatements of these equations.

To prove that the entropy condition (2.39) holds, we use (2.20) and (2.41)
to compute

P (e, 5,2) — divy (e, 1, S.2) — b

=p(Vey)) 1 e(Vaur) + pths Se + pV. ¢ - 2

— (dive T) - up — p(Vetp) 1 e(Vou) = b-uy
= psSi+ pVa b - 2
= —pbs cpts| Ve S|+ pV. - f <0

The last equality sign follows from (2.43) and (2.44), and the inequality sign
is a consequence of the dissipation inequality (2.18) for f, which we assumed
to hold. This shows that the entropy condition (2.39) is fulfilled.

Scholia. 1. Because of the product ¥g |V, S|, the formulation of the system
(2.41)—(2.44) is only valid for smooth solutions. Since a smooth solution of this
system also satisfies the evolution equation (2.38) and the entropy condition
(2.39), whose formulations are both valid for non-smooth solutions, it is tempt-
ing to assume that for a sequence of smooth solutions tending to a non-smooth
limit function, this limit function is a solution of (2.38) and (2.39). This would
allow us to construct and compute numerically non-smooth solutions of the
initial-boundary value problem for evolving microstructures using the simpler
equations (2.41)—(2.44).

2. In this section we require that the free energy (e, S, z) is defined for all
values of S in an interval J containing 0 and 1. As in the derivation of the
Cahn-Allen equation, cf. [9], it should be required that v is a double well
potential having minima at the values S = 0 and S = 1. The first order equa-
tions (2.44) or (2.38) could be an alternative to the Cahn-Allen equation, an
equation of second order.
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3 Homogenization of the equations for materials with
evolving microstructure

3.1 The microscopic initial-boundary value problem

In this section we study the homogenization of the following initial-boundary
value problem for (u, T, z,S) stated and derived in the preceding section: In
Q2 x RT the partial differential equations

—div, T'(z,t) = b(x,t) (3.1)

T(x,t) = D(S(x,t))(s(vxu(x,t)) — e(S(x, 1)) —Bz(x,t)>(3.2)

ze(z,t) = f(S(x,t), T(x,t), z(x,1)) (3.3)
|S¢(z,t)] = ne|ldiv, C(V,u, S, 2)
_p(vx Z)Tvz w(g(va: u),S, Z) - (Va: U)Tb’ (34)

must be satisfied. The entropy condition
0 .
paw(s, S, z) — divy (Tug) — buy <0, (3.5)
must be fulfilled as side condition. The interface conditions are
[u(z,t)] = [T(z,t)|n(z,t) =0, z(z,t+) =g(z(x,t—)), (z,t) e, (3.6)
the boundary condition is
T(x,t)n(x) =0, z€0Q,t>0, (3.7)
and the initial conditions are
2(2,0) = 2O(x), S(x,0)=50), ze€Q. (3.8)

In the interface condition g : RY — RY is a given function.

At time ¢ = 0 the microstructure in the material, that is the distribution of
the 7'—precipitates in the v—matrix phase, is determined by the initial function
S We shall assume that the microstructure is approximately periodic at
t = 0 and study the situation when the dimensions of the periodicity cell of
this microstructure are proportional to a parameter n and thus tend to zero
for n — 0. If we assume that also the initial function 2(® is approximately
periodic with the same periodicity cell, then also the solution (u,T,z,S) of
(3.1)—(3.8) to these initial data will be periodic. With shrinking periodicity
cell one expects that this solution tends in a suitable sense against the solution
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of a homogenized system of partial differential equations. In this section we
derive this homogenized system.

This derivation will be purely formal, however, since we do neither prove
that the initial-boundary value problem (3.1)—(3.8) has a solution, nor do we
prove that solutions must converge to solutions of the homogenized system.
Instead, we assume that solutions of this initial-boundary value problem exist
and that these solutions converge to limit functions. Our goal is to derive a
system of partial differential equations, the homogenized system, which must
be satisfied by the limit functions.

The constant nc in (3.4) determines the speed of propagation of the phase
boundary between the v— and 7'—phases. Since this speed is proportional to 7,
it is also proportional to the dimensions and distances of the precipitates. The
time scale, on which the microstructure evolves, does therefore not change
if n tends to zero. If the speed of propagation would not decrease with 7,
then because of the decreasing distances of the precipitates the microstructure
would evolve more and more rapidly, and the interaction of the precipitates
would happen in a short time interval with length tending to zero. One ex-
pects that after this short time interval the microstructure would settle to an
approximately steady state. Homogenization would essentially amount to de-
termine an initial-boundary value problem, whose solutions are asymptotic to
the solution of the original problem at large times.

At present we do not know how to derive such an initial-boundary value
problem. In fact, in practical problems the main interest is not to determine
such a long time asymptotics to the evolution of the microstructure. Instead,
in a real material the evolution of the microstructure is slow and typically
needs hundreds or thousands of hours, and it is just this slow evolution before
and during the interaction and the formation of the plate-like structure, which
one wants to study. The choice of the constant nc in (3.4) is therefore not
only justified by the reduction of the mathematical difficulties; it is in fact a
natural choice in the problem we want to study.

The evolution equation (3.4) for the order parameter and the equation
resulting from it in the homogenized initial-boundary value problem are dis-
tribution equations. To derive and formulate the homogenized distribution
equation we use a family of solutions of the initial-boundary value problem
(3.1)~(3.8) depending on the fast variable. The definition of this family is
given below. The homogenized equations for the displacement, the stress and
the internal variables are derived in Section 3.2 using the method of asymptotic
series. In Section 3.3 we prove some results for oscillating functions of bounded
variation, which are used in Section 3.4 to derive the homogenized equation
for the order parameter. There we also formulate the complete homogenized
initial-boundary value problem.
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Thus, assume that the initial data are given in the form

(@) = 20(,5), SO) =850, 2), (3.9)

with a parameter 7 > 0 and functions 2" : @ x R — RY, S : Q x R? —
{0,1}. The functions y — zéo) (x,y), Yy — Séo) (x,y) are assumed to be periodic

for every € Q with a bounded periodicity cell Y C R3. For simplicity we

assume that
/ dy = 1. (3.10)
Y

We consider values of n in the range 0 < 1 < ny, with a positive constant
no. The functions z(()o) (z,7) and Séo) (#,7) are approximately periodic with a
periodicity cell, whose dimensions decrease to zero when 7 tends to zero.

In the following definition the value n > 0 is kept fixed:

Definition 3.1 Let
(z,y,t) = (u,T,2,9)) : O x R* x R" = R x 8 x RY x {0,1}
be a function which satisfies the initial condition

d%%@z%%%%+% sm%m=59m%+w (3.11)

for almost all (z,y) € Q x R, and for which the function (x,t) >
(u, T, z,5)(x,y,t) is a solution of (3.1)~(3.7) for almost all y € R*>. Then
(u, T, z,5) is called a family of solutions depending on the fast variable y of
the initial-boundary value problem (3.1)—(3.7), (3.11) with parameter n and
initial data (z((]o), Séo)).

In the following we fix z(()o) and Séo) and for brevity avoid to mention the initial
data. Thus, we call (u,T,z,S) a family of solutions of the initial-boundary
value problem depending on the fast variable with parameter 7.

3.2 Homogenized equations for u, 7" and =z

In this section we study the homogenization of the equations (3.1)-(3.3). We
assume that for all 0 < n < ny a family of solutions (&n,Tn,én,Sn) of the
initial-boundary value problem depending on the fast variable with parameter
7 exists, which can be asymptotically expanded in the form

~ ~

. . x
(i, Ty, 2, Sp) (@, y, t) = (uy, Ty, 2, Sy) (, p +y,t), 0<n<mn, (3.12)
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with

uy(z,y,t) = gz, t) +nui(z,y,t) + nus(z, y,t,n) (3.13)
Ty(x,y,t) = Tolz,y,t) + nTi(x,y,t,m) (3.14)
z(@,y,t) = 20(2,y,t) + 21 (2, y,t,m) (3.15)
Sp(x,y,t) = Sol(x,y,t) + Si(z,y,t.m), (3.16)

where the functions
Up, U1, ug(-,m) 1 A X R® x RY — R?
Ty, To, To(-,m) - Q x R® x R — &3
Zn, 20, 21(m) 1 Q@ x R* x R — RY
Syy So, S1(5,m) : Q@ x R* x RY — {0, 1}

are assumed to be periodic with respect to the y—argument and have periodicity
cell Y. The remainder terms are assumed to satisfy

lim Sy(x,y,t,n) = 0 (3.17)
—0

n
lim / / 21 (e, ton)Pdyde = 0, (3.18)
QJYy

n—0

and the boundedness conditions

sup [ [ (1D, ustesotn) ) dydo < o0 (3.19)
0<n<no Jo Jy ’
sup //(\D;“yTl(x,y,t,n)F) dydx < o0, (3.20)
0<n<no J Jy ’

for every multi-index « with |o| < 1.

~

Scholia. 1. The function (%,, S,) satisfies the initial condition (3.11) if (2, S,)
fulfills

Zn(x7y70)zz(()0)(x7y)7 Sn(x,y,O):Séo)(x,y), (x,y) GQXR?"

2. If the solution of the initial-boundary value problem (3.1)—(3.8) is unique,

and if (4, Tn, Zn, Sn) is a family of solutions to the initial-boundary value prob-
lem (3.1)—(3.7), (3.11) depending on the fast variable with parameter 7, then
Y (U, Tn, Zn, S’n)(x, y, t) is periodic with periodicity cell Y. For, otherwise a
solution different from

~ ~

(U, Ty, 2, Sp) : QX R x R — R® x 8 x RY x {0, 1}
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could be obtained by extending (a,, Tn» Zns Sn) - periodically with peri-
0

|QxYx
odicity cell 2 x Y x Ry to 2 x R® x Ry. This would contradict the uniqueness
of the solution.

A

3. Assume that (a,, Tn, Zp, Sp) is a family of solutions depending on the fast
variable with parameter 7, which are periodic with respect to the y—argument
and have periodicity cell Y. Let (ug, uy, To, 20, So) = (o, u1, T, 20, So)(x, y, )
be a given function, which is periodic with respect to y and has periodicity
cell Y. Then necessarily the remainder (@, 7, %, S) defined by

~ ~

(G, Ty 29, Sy) (@, 9, 1) (3.21)
= (ug + nuy, T, 20, So)(z, % +y,t) + (WP, 0T, 2,8)(x,y,t,1)
is of the form given above:
(i, T, 7, ) (2, 9, t,m) = (uz, Ty, 21, S1) (x, % +y,t,m), (3.22)

with a function

(.T, Y, t) = (Uz, Tl: 1y Sl)(x7 Y, t: 77)7
which is periodic with respect to y and has periodicity cell Y. For, the left
hand side of the equation (3.21) and the first term on the right hand side are

periodic with periodicity cell Y. Therefore also the second term on the right
hand side is periodic. Define

- L = X
(u27Tl7zlasl)(x>yat7 77) = (U,T,Z,S)(.T,y - ;:t 77)

Clearly, uy, T, 21, S7 are periodic with respect to y and satisfy (3.22).

Homogenization. From the hypothesis that (u,, Tm Zns §n) is a family of so-
lutions of the initial-boundary value problem depending on the fast variable
and under the assumption that the terms wuy and 77 in the asymptotic ex-
pansion satisfy (3.19) and (3.20) we derive now a system of three equations
which must be satisfied by the limit functions ug, 1y, 29, So. The equations
of this system are the homogenized equations corresponding to the equations
(3.1)=(3.3). To formulate this system we need some definitions:

By My : L?(Y) — R we denote the mean value operator

Myvz/yv(y)dy.

Of course, My can also be considered to be a projector to the space of constant
functions on Y.
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The elasticity tensors D(0) : 8* — 8% and D(1) : 8* — &® in the matrix
phase v and in the «'—phase, respectively, are by assumption symmetric, pos-
itive definite mappings. Since the inverses D(0)~! and D(1)~! have the same
properties, to a given function S : Q x Y x Rf — {0, 1} we can therefore
define an (S, r,t)-dependent scalar product on L*(Y,S%) by

v lisae = [ (D(S(e.0) 00) : w(w)dy.
for v, w € L*(Y,8%). Let

Dy = {w|y ‘ w e L*°°(R*, 8%, div, w =0, w is periodic
with periodicity cell Y} .
D, is a closed subspace of L*(Y,S?). By
Psen : L*(Y,8%) = Dy C L*(Y, 8?)

we denote the projector onto Dy, which is orthogonal with respect to the scalar
product [v, w](sz 4. Of course, Ps ;4 depends on the function S and on (z,1).

By H;(2 x Y') we denote the usual Sobolev space of functions with weak
derivatives in L*(2 X Y) up to order 1.

Theorem 3.2 Assume that for all ng > n > 0 the function (i, Tn, Zns Sn) with
the representation (3.12)—(3.16) is a family of solutions of the initial-boundary
value problem depending on the fast variable with parameter n. If the function
(x,y) — (ug, ur, u9, T, T1) (z,y,t) belongs to the Sobolev space Hi(2 x Y') for
almost all t, if (x,y) — (20, 21)(x,y,1t) belongs to L*(2 x Y) for almost all t,
and if the conditions (3.17)—(3.20) are fulfilled, then the function (ug, Ty, 2o, So)
satisfies

—div, (MyTy(z, 1)) = b(z,1) (3.23)
To(@, 1) = Psoan{ D(So(w, 1) (=(Vauo(w,1) (3:24)
—5*(So(x,-,t))—Bzo(x,-,t)>}.
Proof: From (3.12) and (3.14) we obtain

~

div, T, (x,y, t) = div, T, (x, i +y,t)
n
. X xT
- dlvx (To(l‘, ; + Y, t) + 77T1($: ; + y7t> 77))
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1

= [Zdive To(w, €, 1) (3.25)
n

+ dlvx TO (ZB, 57 t) =+ d1V§ Tl (I7 57 ta 77)

+ 77le99 Tl (:1:7 57 t7 77):|
=24y

Because of the periodicity of y — Ti(z,y,t,n), the hypothesis (3.20) implies

_ ) 1/2
o [ [T gty Payde)
n

QY

1/2
= 77(// ’diVITl(Z',y,t,?])dedl') S 77K17
QY

with a suitable constant K. This estimate and (3.25) show that (3.1) can only
hold for all 0 < n < ng if

//|divyT0(x,%+y,t)|2dydx://|divyT0(x,y,t)|2dyd:U:0
Qv Qv

and

|div,To(x, &, t)| o + div, T} (z, % +y,t,n) + b(z, t)|2dyd:c

z
n

P—

P m—

/ \div, Ty (z, y,t) + div, Ty (z, v, t,1) + b(z, t)|*dydz = 0,
Y

from which we conclude that the equations
div, To(z,y,t) = 0 (3.26)
—div, To(z,y,t) — divy, T1(z,y,t,n) = b(z,1) (3.27)

hold for almost all (z,y,t) € 2 x R® x R". Integration of (3.27) with respect
to y yields

—lea:/To(l”%t)dy—/leyTl(Iay7t;77)dy:/b(I7t)dl/:b(I7t)a
Y Y Y

where in the last step we used (3.10). The Divergence Theorem yields

—div, /YTO (x,y,t) dy — - Ti(z,y,t,m)n(y) do(y) = b(z, 1), (3.28)
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where n(y) is the exterior unit normal vector to dY at y. Since Y is a period-
icity cell for 77, it follows that

/@Y Ty (2, y,t,mn(y) do(y) = 0.

With the definition of the mean value operator equation (3.28) can therefore
be written in the form of equation (3.23).
To prove (3.24), we insert (3.13) and (3.14) into (3.2) and obtain for £ =
£ty
T[)(ZE, 57 t) + 77T1($7 57 t7 77)
= D(Sy(w, &) ((Ta ol 1) + Ve ur (2,6, ) (3.29)
+ne(Veun (2,6, 1) + Ve ug(w,€,1,1))
+ 7725(V;1: UQ(I7 57 ta 77)) - 5*(377(.13, 57 t)) - an(xa 57 t)) .
With the components D;;x(S) of the elasticity tensor D(S) we define
S)P = Dij(S)?
Since the hypothesis (3.17) implies

. 2 _
lim [ D(S)(z,9,)) = D(Soz, 5, ) = 0

for almost all (z, y), since S, and Sy have values in {0, 1} and since all functions
are periodic with respect to y, the Dominated Convergence Theorem implies

7175%//‘ (, —+y, ))—D(So(:c,%+y,t))>

< (Veuo(z,t) + Vyu(z, n—l—y, )))‘dydx
:EL%//‘ (.9.1)) — D(Solr..)) (3.30)
<6(Vm ug(x,t) + Vyui(z,y, t))) ‘ dydx

<tim ([ [ DS, (@.) = DSt 1)
(/Q/Y‘5(qu0(x,t)—i—Vyul(x,y,t))2

Qdydx) 1/2

dydx) v =0.
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Since |D(S,(z,y,t))| < max(]D(0)|,|D(1)|), the hypothesis (3.19) yields

lim /Q /Y ‘D(Sn(x,%+y,t))<n5(vxu1(x,§,t)

n—0

+ Veus(o, &, t,0) + Pe(Vawle,&,t,0))], | dyde

< lim ( /Q /Y |D(Sn(x,y,t))|2dyda;>l/2 (3.31)

n—0

1/2
( / / [1(V a1 + V) + 1Pe(V o) Py ) = 0
QJY

By a similar reasoning we see that (3.15)—(3.18) and the Dominated Conver-
gence Theorem also imply

iy [ [ DSy, %4 500 (=4S 5 +08) = Byl = +3.0)

n—0 n

X X X
=D(Solr, -+, ) (< (Sol, | +,0) = Baolr, — +,1)) dydz =0,

(3.32)
Finally, (3.20) implies
T
I Tz, 4y, t,n)|d 3.33
ti [ [ i, 2+ gt o (3.33)
1/2
<10 tmn( [ [ Dyt Pdyds) " =o.
n—0 aoJy

Combination of (3.30)—(3.33) with (3.29) shows that (3.2) can hold for all
no > n > 0 only if

/Q/Y ‘To(x,f,t) - D(So(x,g,t))(s(vx ug(w,t) + Veur (z, €, 1))

— S (Solw, 6 1) = Brofw,6,0))|  dyde
§=,+y

- /Q/Y Ti(e,6) — D(Soler, 9, 0) (=(V o, 1) + Vs, 9,1)
—&"(So(z,y,t)) — Bzy(z, y,t)) ‘ dydzx = 0,

where we again used the periodicity of all functions of the integrand with
respect to y, whence
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To(z,y,t) = D(So(x,y,t))(s(kuo(x,t)+Vyu1(x,y,t)) (3.34)

—&"(So(z,y,t)) — Bzy(x, y,t))

for almost all (z,y,t) € QA x R* x R" .
To see that this equation implies (3.24), note that for every w € Dy we
obtain because of the symmetry of w(y) for the scalar product

[D(So(xv g t)) €(Vy ul(xv K t))? w(')](soal‘;t)

ZLs(Vyul(x,y,t)):w(y) dy:LVyul(x»y>t)rw(y) dy

:/m(:c,y,t»divw(y)dy:o.
Y

The last integral vanishes since divw = 0. The partial integration does not
yield boundary terms, since u; and w both have periodicity cell Y. From this
computation we conclude that the function y — D(So(x,y,t)) e(Vyui(x,y,t))
belongs to the orthogonal space of Dy . This orthogonal space is equal to the
kernel of the projector Ps, s . Moreover, (3.26) implies that y — Ty(xz,y,1)
belongs to Dy . Application of P, . on both sides of (3.34) thus yields the
equation (3.24). This completes the proof.

Remark. For use in Section 3.4 we note that the reasoning at the end of this

proof also shows that application of P(f%’m’t) = (I — Pisyp)) to (3.34) yields

—D(So(x,-,1))e(Vy us(x, 1)) (3.35)
= Pty { D(So(, ) (( T o, 1) = = (So(w, -, 1) = Bao(a, 1) |.
Definition 3.3 We call the equations
—div, (MyTy(z,-1)) = blz,?) (3.36)
To(z, 1) = PsouniD(So(z, 1) (e(Vauo(z, 1)) (3.37)
— &' (So(2, 1)) = Bzo(x, -, 1))}

%Zo(lf,y,t) = f(So(l’,y,t),To(l’,y,t),Zo(ZE,y,t)) (338)

homogenized system associated to the equations (3.1)—(3.3).

Note that we did not require f to satisfy any restricting conditions. In consti-
tutive models used in the engineering sciences f is in general a function growing
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rapidly with respect to several of its variables. Of course, for such general f
the conditions (3.17)—(3.20) for the solution (u, T, z,S) of (3.1)—(3.3) are not
sufficient to guarantee that the limit function (7}, 29, So) satisfies the equation
(3.38). Clearly, for a given function f it is not difficult to formulate conditions
for (u, T, S, z) assuring that the limit function satisfies (3.38). However, such
investigations are of interest only in connection with investigations of existence
and regularity of solutions of the initial-boundary value problem (3.1)—(3.8).
The justification of (3.38) in the homogenized system is therefore left to later
works.

3.3 Oscillating functions of bounded variation

It remains to derive the homogenized form of the evolution equation for the

order parameter. The derivatives in this evolution equation are measures. In

this section we study the measures obtained by insertion of oscillating solutions

of the form (3.12) into this equation. The derivation of the homogenized

evolution equation in the next section is based upon the result obtained in the

following lemma. To state this lemma, we need some definitions and notations.
Assume that

((z,y,t) = Hy(x,y,t)) € BV*(Q x R* x RY)

for all 0 < n < ny. The values of H, can lie in R, in RY or in the set M?
of 3 x 3-matrices. Accordingly, in this section the scalar product in all three
spaces is uniformly denoted by v - w, and the test functions are chosen with
values in appropriate spaces. We set

~

xXr
Hn(xa Y, t) = Hﬁ(xa ; + y7t)
for 7 > 0. The distribution div,H, is defined by
. o xXr
(leme 90) = - / Hn(xa —+ Y, t) ’ vx@(xa Y, t) d(ﬂf, Y, t)?
QxR3XR+ n

for p € C°(Q x R* x R"). This distribution is a measure. To see this, note
that if V' is an open set compactly contained in £ x R* x R*, then also

V, = {(z,4,1) | m—%w eV}

is open and compactly contained in  x R® x R*. Since H, € BV!*¢(Q x R?® x
R"), the derivatives div,H, and div,H, are measures. This means that there
exist constants C, Cy with

|(divyH,, p)| < Cy mvax|g0|, |(divy Hyy, )| < Cy mvax|g0| (3.39)
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for all ¢ € C3°(V})). Since for all ¢ € C§°(V') the function ¢, defined by

5 T
(Ipn(x7y7t) - ‘P(Ly - ;725)

belongs to C3°(V;,), we obtain from (3.39) that

~

|(divy iy, ¢))|

x
= / H,(z, ; +y,t) - Veo(z,y,t)d(z,y,1) ‘
v

=| | Hywy,0) Veoelaet)_,  day|
Vi =Y

T 1 T
= Hy(z,y,t) | Veplr,y — —,t) + -V r,y ——,t)) d(z, ,t‘
Vnn(y)<w(yn)nys@n(yn))(y)

IN

H,(,9,) - Vi @, 5, ), .1
V’W

1 .
+_‘ Hn(x,y,t)-Vygon(x,y,t)d(x,y,t)‘
nJv,
< (G + 2Cy) max |p,] = (Cy + ~C) max |yl
< 1 7 2 mVE;}X QDT] = 1 7 2 m&mx @|-

This estimate shows that divgcl':l,7 is a measure.
Consequently, by the Riesz representation theorem (cf. [26, pp. 49 and pp.
167]), to the total variation measure

fin = |div, H,)| (3.40)

there exists a fi,~measurable function &, with

~

div, H, = 6yfl -
From this theorem it also follows that to the measure
ndiv,H, + div,H,
there exists a non-negative Radon measure p, and a p,~measurable function

o, with
ndiv,H, + div,H, = oy, .

We call p,, the total variation measure of ndiv,H, + div,H, and write

\ndiv, H, + div,H,| = . (3.41)
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Lemma 3.4 For every p € C3°(2 x R* x RT) we have

/ oz, = +y, t) nd|div,H,| (3.42)
OxR3xR+ n

_ / (., 1) d|ndiv, H, + div, H,|
OxR3xR+

and

T 0 - 0
g@x,—+y,td‘—H :/ gox,y,td‘—H .
/Q><IR3><R+ ( n ) ot ! QOxR3 xR+ ( ) ot "

Proof: Let T: Q x R x R — Q x R® x RT be the map defined by

(3.43)

T(x,y,t) = (a:,%w,t).

With the notations from (3.40) and (3.41), equation (3.42) can be written in
the form

[ eeTwutndin= [ plwyt)du, (3.44)
QOxR3xRT

OxR3xR+

This formula holds if p,, = T fi,, where the measure T fi, is defined by
T. fiy(A) = fiy (T (A))

for every measurable subset A. Since p, and 0T ji, are Radon measures on
0 x R® x R" and since Radon measures coincide if they coincide on open sets
compactly contained in  x R* x R*, cf. [28, p. 62], equation (3.44) follows if
we show that

pn(V) = 01T iy (V) = mjin(TH(V)) (3.45)
for all open subsets V' compactly contained in Q x R® x R*. For such sets

(V) = Sup{/s@d(ndivan+diVyH) peCo(V), !w!gl}
14

= s {= [ B a0 05+ Vel t) et |

pECTWV), <1} (3.46)

~

i) = s { [ pndaive iy [ o € GV, ol <1)
- sup{—/T1(V)H'n($,y,t)-nvxw(x,y,t)d(x,y,t) ‘
pECETIVY), el <1} (347)
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Since T~'(z, y,t) = (z,y — £,) and |det(T~")'(z,y,t)| = 1, we obtain
/ Hy(x,y,t) -0 Ve o(a,y,t) d(z,y, 1)
T=1(V)

=/ Hy(T(z,y,1)) -1V oz, y,t) d(z,y,1)
T-1(V)

~ [ et 0 Vese gt (3.48)
\%4 &=y n

X

= [ Hyle..t)- 09, Vel = Tt dla.

”

- / Hﬂ('r7 Y, t) : (77 VI + Vy)(@ © T_l)('r7 Y, t) d(l‘, Y, t) .
v
Since the mapping
prrpoTC(T (V) = CF°(V)

is bijective, it follows from (3.48) that

su{ = [l Vapdiat) | e e GRET V), ol <1
(V)

—sup{ = [ Hy- 09, + Vy)edio ) |0 € RO el <1},
v
(3.45) results from this formula and from (3.46), (3.47). This proves (3.42).
The proof of (3.43) runs exactly along the same lines, but is slightly simpler.

Definition 3.5 For every 0 < n < g let v, be a Radon measure on § x R* x
RS If
lim o(z,y,t) dy, :/ o(x,y,t)dyy (3.49)
120 Jax®s xR+ QXR3 xR+
for all ¢ € C°(Q x R® x RY), we write
Uy X .
If (3.49) holds for all ¢ € Cy(2 x R* x R"), we write

N
Uy 4]

and say that v, converges to vy weak™.

Examples show that in general v, X 1 does not imply Vn = 1y . However, the
following simple result holds:
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Lemma 3.6 Assume that for every open subset V- compactly contained in €2 x
R? x RF

sup |v,|(V) < o0.

n>0
Then v, X implies vy, Ny
Proof: To ¢ € Cy(QxR* xR*") choose an open set V' with supp ¢ C V CC Qx
R3 x RT. To d > 0 we next choose a function y € C§°(V) with sup ¢ — x| < 6.
Then

vy —vo,0)| < (v — v0,X)] + (lvg] + [0l [ — x1)

< vy = wo, )]+ 0 (vl (V) + sup [l (V)),

from which the statement follows, since  was arbitrary.

In Lemma 3.8 we give a criterion for the family {H, }o<y<p, which guaran-
tees that
Indiv, H, + div, H,| = |div, Hy|,

with a suitable function Hy. This type of convergence is needed in the deriva-
tion of the homogenized evolution equation for the order parameter. In the
proof of this lemma we rely on the following

Lemma 3.7 Assume that V is a bounded open subset of R" and that v, is a
Radon measure on V' for every 0 < n <mny. If

Vp —

and
| (V) = |ol(V)

forn — 0, then
vyl = |10l

A proof can be found in [75, pp. 141]. See also [32, pp. 9].

We assume that H, € BV'"°(Q2 x R®* x R") for all 0 < 1 < 1 and that
additionally for almost all (z,t) and all 0 < n < 7y the functions

y = Hﬂ(x7y7t)

are periodic with periodicity cell Y C R*. Without loss of generality we assume
that the periodicity cell is the half open cube

Y:{y: (1/179271/3) ER3 |0§yz < 1, 121,2,3}
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For 6 > 0 we denote by
(QxR")s = {(z,t) € A x R | dist((z,t),0(2 x R")) > 4, |(x, )| < %}

the bounded open set of all points with distance from the boundary of € x R*
greater than § and with norm less than 1/0.

Lemma 3.8 Assume that there ezists a sequence {Qy, X I, }°°_ of bounded

open sets with
QxR CQpx 1, CQxR,

such that for all m

lim |H,y(,y,t) — Ho(z,y,1)| d(z,y,t) = 0. (3.50)
=0 Ja, <Y xIm

sup |divy Hy|(Qp X Y X Ip,) < 00 (3.51)
0<n<no

lin% divy H, (2, X Y % L) = |divy Ho|(Q, x Y x I,).  (3.52)
n—

Then
Indiv, H, + div, H,| = |div, Hy|. (3.53)

Proof: This statement results from Lemma 3.7. Therefore the main part of
the proof consists in the verification of the assumptions of Lemma 3.7.

In the first step of the proof we construct a partition of unity on R®. We
use the notations s, = max{s,0} for s € R and |y|oc = maxi<;<s|y;| for
y = (y1,92,y3) € R®. Define a function x € Co(R3,Rf) by

3

Xw) =] - lwihs. yveR.

1=1

Then x differs from zero only in the cube {y € R® | |yl < 1} consisting
of 2% copies of Y. With this function we set xo(z) = x(z — @) and obtain
a partition of unity {Xa}aezg which satisfies for every positive integer m and
every periodic function p with periodicity cell Y

@)= Y el =1 e <m, (359
latfco <m
[ s = @m+ 1) [ pw)ay (3.55)
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For the proof of (3.55) note that the definition of x(™ in (3.54) yields

m 3

/Rs 2 Xal)p(y)dy = /R > o=y —aiy (3.56)

|| co<mn o2,a3=—m t=2

./R Z (1= |y1 — 1)) ap(y) dy1 d(ya, y3) -

ar=—m

We use substitution and the periodicity of p to obtain

3 j£<1-—|y1—-aln+p<y>dy1

ar=—m

m 1
= Z / (1 = |1 ])+p(yr + a1, y2,y3) diy
1

al=—m"

= (2m + 1)(/01(1 — |y11)p(y) dyr + /01(1 — |n—=1)p(n — 1, y2, y3) dn)

1 1
=G+ 1) [ (=) + 0= (0= w)lp)dn = @m+ 1) [ p)dun.
0 0
Insertion of this formula into (3.56) and recursive application of it with the
indices ¢ = 2, 3 yields (3.55).

With the function x™ just constructed the proof of the lemma is ob-
tained as follows: For the measures mgm)(x,y,t) = X(m)(y) (ndiv, H, +
divy, H,)(z,y,t), n > 0, we prove that

pim) XL (3.57)

and
Lim [{™](Q x R % L) = [5™ (2 x R® % L), (3.58)

n—0

for all m € N. Since to any open set V' compactly contained in Q x R® x R*
there exists m with

VC{(r,y,t) | (2,) € QxR 1, ye R*} CQ,, xR* x I,
it follows from (3.58) that

sup |V7(7m)|(V) < 00.
n>0

This relation, (3.57) and Lemma 3.6 together imply



and this result, (3.58) and Lemma 3.7 yield

™ = ™|

on the set ,, x R* x I,,, for all m. Note that the unbounded set €,, x R® x I,,,
can be inserted for the bounded set V' in Lemma 3.7, since the measure 1/7(7m)
restricted to the set €, x R® x I, has bounded support. The statement of
Lemma 3.8 is an immediate consequence of this result, since (3.54) implies
that to any ¢ € Co(Q x R* x RT) there exists m with suppy C Q,, x {y |

™ =1} x I, .

To complete the proof it remains to show (3.57) and (3.58). For the proof
of (3.57) let p € C*(2 x R* x R") and choose m with supp ¢ C Q,, x R® x
I, . Using that the functions o™ (z,y,t) = x™ (y)o(z,y,t) and . (z,y,t) =
Xa(y)e(x,y,t) have weak derivatives in L*° we obtain

‘ / o(x,y, t)X(m) (v) (d(ndivx H, + div, H,) — d(div, HO)) ‘ =
OxR3xRT
|- [ w0 Ve ) de)
OxR3xRT

- e ) = o 0)- Ty 0 de 1)
OXR3 xR+

A

> (] o, 0.0)| IV (o0 0)] .9,

|a‘oo<m m XSUPP Xa X Im

+/ ‘Hn(%y»t) - Ho(l’,y,t)‘ ’vy (pa(x7y7t)’ d(l‘,y,t))
Qo XSUPP Xa X I,

< Z <max |Vx (;Oa(x7y7t)| + max |Vy gpa(gj,y,tﬂ)

|at|oo <m
23/ (77|H77($7y7t)| + |H77(I7y7t) - HO(xayat”) d(xayat) — 0
QXY X I

for n — 0. To get the last inequality sign we used that the cube supp x, consists
of 2* copies of Y, and we applied the periodicity of H,. The convergence to
zero is implied by (3.50) and by

o [ ] < s,
10>1>0 J Quy XY X Iy,

which also is a consequence of (3.50). This proves (3.57).
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To verify (3.58) we note that the equation (3.55) yields for the measures
1v{™| by some straightforward considerations

VN B x L) = (2m+ 10| (2 X ¥ x L),

for all n > 0. Here the measures v, are defined by v, = ndiv, H, + div, H,,.
Therefore, to prove (3.58) it suffices to show that

lin% V| (R, X Y X Iyy) = |16](Q, X Y X I,). (3.59)
n—
To verify this relation, note that the inverse triangle inequality and (3.51)
imply
‘ ndive H, + divy Hy|(Qm % Y x L) — |divy Hy|(Qm % Y % L)
< |ndivyHy| (S x Y x Ip,) < nC.

From the hypothesis (3.52) we thus obtain
‘ | (e X Y % L) — [0l (e X Y % L)
< ‘ 1 dive Hy + divy Hy|(Qm X Y X L) — |divy Hy|(Qm % ¥ x Im)‘
+ ‘ (divy Hy | (Q % Y % Iy) — |divy Hol (Qm x ¥ x Im)‘
<nC+ ‘ (divy Hy | (Qn % Y % L) — |divy Ho|(Q x ¥ x Im)‘ 0

for n — 0. Therefore (3.59) and also (3.58) hold. This completes the proof of
the lemma.

3.4 Homogenized evolution equation for the order parameter and
homogenized initial-boundary value problem

To derive the homogenized form of the equation (3.4) we must insert the func-
tions @, T}, %y, Sy from (3.12) into (3.4) and study the limits of the terms
on both sides of the equation for n — 0. These are limits in the distribu-
tion sense. Therefore, to study these limits we must generalize Definition 3.1
and introduce a family of distribution solutions of the initial-boundary value
problem depending on the fast variable. We begin with this definition.

The space BV'¢(Q x R* x R") and the total variation measure was intro-

duced before Lemma 2.3. In the following definition we also need the space
BVc(Q x R® x R}), which consists of all functions w on Q x R® x R} with

46



the property that for every open set V' compactly contained in © x R* x R the
restriction of w to V N (Q x R* x R") satisfies
3 +
W)y k) € BV(VN(Q xR xR")).
For the given initial data z((]o) QxR — RY and Séo) QxR — {0, 1}
we assume as above that y — z((]o) (z,y) and y Séo) (x,y) are periodic with
periodicity cell Y and that this periodicity cell satisfies (3.10).

In the equation (3.4), which was derived in Lemma 2.4 for piecewise con-
tinuously differentiable z, the derivatives V, z are the classical derivatives on
(2 x RT)\I" and differ from the distributional derivatives by a measure on I’
generated by jumps of z across ['. To avoid regularity problems, we want to
use in the following definition only weak or distributional derivatives. V, z
could be computed from the distributional derivatives by subtraction of the
measure on the interface I'. Since we also want to avoid the discussion of the
regularity of I, which would be necessary if this measure would explicitely
appear in the definition, we require in the following definition of a family of
distribution solutions depending on the fast variable that z is continuous across
the interface. This means that we take the identity for the function ¢ in the
interface condition (3.6). In this case the weak and the classical derivatives
coincide when the latter exist, and for V, z in (3.4) we can insert the weak
derivatives. Also for V,u we can take the weak derivatives, since in all our
investigations we assume that u is continuous across I'.

Definition 3.9 a.) Let Z(()O) € LMoc(Q x R?), let Séo) be measurable and let
n > 0 be constant. The function (u,T,z,S) is a distribution solution of the
partial differential equations

—div, T'(z,y,t) = b(z,1) (3.60)
T(x,y,t) = D(S(x,y,t))(e(Voulz,y,t) —*(S(z,y,1))

— Bz(w,y,1)) (3.61)

za(r,y,t) = f(S(z,y,1), T(2,y,1), 2(2,9,1)) (3.62)

1Si(z,y,8)] = neldiv, C(Vyu, S, 2) (3.63)

—p(Ve2)' V. (e(Vy ), S, 2) = (Ve u) D)
defined for (z,y,t) € Q x R®* x R" | of the interface conditions
(u(z,y,t)] = [T(x,y,t)]n(zx) = [2(z,y,1)] =0, (x,y) €T(t), t € R", (3.64)
of the boundary condition

T(x,y,t)n(x) =0, (,9,t) €N xR xRy, (3.65)
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and of the initial conditions

x
2(z,y,0) = zéo) (x, ; + ),

o, (z,y) € A xR, (3.66)
S(x,y,()) = SO (Z‘, ; + y)7

if the following conditions (1)—(v) are satisfied:

(1)

(i)
(iv)

The functions u, T, z, S, C, f and b satisfy

S, C(Vyu,S,2) € BV(QxR* xR])
u, Vou, Vpoz, € LY°(Q xR x R")
T, b € LY"Q xR xR")

z, f(S,T,z) € LY°(Q xR xR)),

and also

(Vo) 'h, (Ve 2)'V,9(e(Veu), S, 2) € LM x R* x RT)

The equation
(T, V) = (b,9), (3.67)
holds for all ¢ € CP(R® x R® x RT,R3), the equation (3.61) holds for
almost all (x,y,t) € Q x R® x RY, and the equation
—(z,00) = (J(5,T,2),9) (3.68)
0. T
s A ) oo, 0) dla)
QxRS n

is satisfied for all p € C°(Q x R3 x R, RY)

The equation (3.63) holds in the sense of measures, where the absolute
values on both sides of this equation denote the total variation measures

The interface condition
[u(z,y,8)] =0 (3.69)

holds for almost all (z,y) € L'(t) x R}, t € R"

The initial condition
S(z,y,0) = S (x, % +y) (3.70)
holds for almost all (z,y) € 2 x R3.
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b.) We say, that the distribution solution (u,T,z,S) of (3.60)—(3.66) defines
a family of distribution solutions of the initial-boundary value problem (3.1)—

(3.4), (3.6), (3.7), (3.11) depending on the fast variable y with parameter n
(0))

and initial data (zéo), Sy

Of course, the equation (3.67) combines the equation (3.60), the interface con-
dition for 7" and the boundary condition (3.65), the equation (3.68) combines
the equation (3.62), the interface condition for z and the first one of the initial
conditions (3.66), and in (3.70) we use that as a BV -function S has a trace on
the part Q x R® x {0} of the boundary of Q x R® x R*.

Now we derive the homogenized evolution equation for the order parameter

~

S. For 0 < n < n let (i, Tn» Zp, Sp) be a family of distribution solutions of the
initial-boundary value problem depending on the fast variable with parameter
n, which can be represented in the form (3.12)—(3.16). Let C' denote the
Eshelby tensor and v the free energy. We define

én(xayat) = C(vx ﬁn(xayat% Sn(x7y7t)> ZAJU(.Z',Z/,?S)),

Vog(z,y,t) = Vob(e(Voiy(z,y,t)), Sy(w,y,t), 2y(x,y,1))

and
Cy(z,y,t) = C(Vyuy(z,y,t)+ %Vy up(x,y, 1), Sy(x, y, 1), 25(x,y,t)),
Viiby(z,y,1) =
= VUVt 900)) (T, (0 0), Syl 1) 01 1),

hence

~

T ~ T
Cn(xayat) = Cn(xa ; + y7t)> vzwn(xayat) = vzwn(xa ; + yat)

Under suitable boundedness conditions for the function ug in (3.13) and its
derivatives, we have

1
Vg (z,y,t) + ;Vy up(x,y,t) = Vyug(z,t) + Vyui(z,y,t)

for n — 0. Therefore we assume below that for n — 0 the function Cj, tends
to the function

Co(z,y,t) = C(Vyuo(z,t) + Vyur(x,y,t), So(x,y,t), 20(x, y, 1)),
and V1, tends to
quvz)()(xa Y, t) - quvz)(g(vx U,()(ZE, t)) + 5(Vy U,l(ZE, Y, t))7 So(lf, Y, t)7 ZO(I7 Y, t)) .
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With these definitions we can write the equation which results from insertion
of (ty,, 1), 2y, Sy) into the evolution equation (3.63) in the form

0 4 o
(%S (x, y,t)‘ = UC‘leI Cy(z,y,1) (3.71)

= (Ve 2y, y,0)V 2y (2,1, 1)
— (Vo tn(,y, 1) b(x, 1) |.
Lemma 3.10 Assume that
divy Cy = p(Va 20) Vo by — (Vi ity) "D

and %Sn are measures, and that the corresponding total variation measures
satisfy (3.71). Assume moreover that

0

=S, (3.72)

5]

and

‘ndivx C, +divy Cy — p(1V4 2 + Vy 20) Ve thy — (1Y 0 1y + Vyun)Tb‘

= Jdivy Gy = (9 20) 9 0 (3.73)

forn — 0. Then the equation

So(z,y,t ‘ = c|div, Cy(z,y,t) — p(Vy zo(x,y,t))TVZ z/)o(x,y,t)‘ (3.74)

\a

holds in the sense of measures on  x R® x RT.

Remark. Equation (3.74) is the homogenized evolution equation for the order
parameter. Because of the nonlinear dependence of C and p(V, 2)"V, v on
(u, T, 2,S5), it is clear that weak convergence of (u,, T, 2,, Sy) to (uo, To, 20, So)
is not sufficient to guarantee (3.73). This problem arises in all investigations
of nonlinear partial differential equations and in particular in investigations of
quasilinear hyperbolic conservation laws. In the present problem an additional
difficulty is introduced through the presence of the total variation measure. We
do not investigate this problem any further, but only refer to the criterion for
weak convergence of total variation measures given in Lemma 3.8.

Proof: If we insert the function S for H in the equation (3.43) of the
Lemma 3.4, we obtain for every ¢ € C§°(2 x R® x RT | R) that

T 0 0
olx,—+y,t d‘—S :/ olx,y,t d‘—S
/(2><R3><R+ ( n ) ot " QxR3 xR+ ( ) ot "
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Insertion of C' for H in (3.42) yields a corresponding result for the measures
\div, C,| and |ndiv, C, + div, C,|. Examination of the proof of (3.42) shows
that the result can be extended to the measure on the right hand side of (3.71)
and that the same proof yields for all p € C§°(Q x R* x R")

/ oz, = +y,t)n d‘divx Gy — (Vo 20)7V ) — (V1) 7D

OXR3xR+ n

= / o(x,y,t) d‘ndivm C, +div, C, — p(nVy 2, + V, 2,) 'V, 4,
OXR3xR+

— NV uy + Vyu,)'b|. (3.76)

From (3.71), (3.75) and (3.76) we thus obtain

/Q><R3><R+ p(z,y,1) (d‘%sn

— p(MVe 2y + Vy 2) V. 0 — (Vo uy) + Vyun)Tb‘ ) =0

— ¢ |ndiv, C,, +div, C),

for all p € C°(2 x R* x R, R), which implies

Sy

P
‘a — ¢ ‘ndivx C, + divy Cy — p(nVi 2y + Vy 20)T V.,

— (NV e uy + Vyu,)'b|.

By (3.72) and (3.73), the left hand side tends to |2 Sp| and the right hand side
tends to ¢|div, Co — p(Vy 20)TV, thg|. Therefore these limits must coincide,
which proves (3.74).

Next we define the homogenized initial-boundary value problem. In this
definition the mean stress

Tolz,t) = MyTy(z,-,t) = / To(z,y,t) dy
Y

playes an important part:

Definition 3.11 The homogenized initial-boundary value problem associated
to the initial-boundary value problem (3.1)—(3.4), (3.6)—~(3.8) is constituted by
the equations

—div, T (x,t) = b(x,t), (3.77)
Tw(z,t) = Fect(Vyue(z,s), x), (3.78)
To(z,t)n(z) = 0, €0, t>0. (3.79)
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Here the history functional V,ug(z, ) — Tuo(z, ) = Fe<t(Vauo(z, s),x) is
defined by the equation

Tz, 1) = My Ty (s, -, 1), (3.80)

which couples the mean stress to the micro stress 1y , and by an initial-boundary
value problem in the representative volume element, which defines Ty and which
consists of the four equations

—D(So(z,-,1)e(Vyui(z,-,t)) = (3.81)
= P(Jéo,m,t){D(SO(% '>t))(€(vx uo(xv t)) - 5*(50(377 '>t)) - BZO(*T: 5 t))}7
To(z, 1) = (3.82)
= P(So,w,t){D(SO(x7 '>t))(€(vx uo(xv t)) - 5*(50(377 '>t)) - BZO(*T: K t))}7
%zo(x,y,t) = f(So(x,y,t), To(x,y,t), z0(x,y,t)), (3.83)
‘ %S@ C ‘ diVy C(VI Uy + Vy Uy, S(), Z()) (384)

— p(Vy 20)" V. (e(Vaug + Vyur), So, 20) | 4

where Prg = (I = Psgan) @ LX(Y) = Dy © L*(Y) is the orthogonal
projector onto the orthogonal space Dy of Dy,

of the interface conditions
[uo(z,y,t)] = [To(z,y, t)|n(z,t) = [20(z,y,t)] =0, (z,y,t) €, (3.85)
of the boundary condition
y = (uy(z,y,t), To(z,y,t), 20(z,y,t), So(z,y,t)) (3.86)
has periodicity cell Y,
and of the initial conditions
20(z,y,0) = zéo)(x,y), So(z,y,0) = Séo)(x,y), (z,y) € QxR (3.87)

Scholia. 1. For every fixed x € Q the equations (3.81)—(3.87) define an
initial-boundary value problem in the domain ¥ x R* for the unknown function
(y,t) — (uq, Ty, So, 20) (z,y, t), which has the same form as the initial-boundary
value problem (3.1)—(3.8). This is hidden by the introduction of the projections
P(So,a:,t) and (] - P(S(vavt))'
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To see that (3.81)—(3.87) has this form, note that the pair of equations
(3.81) and (3.82) is equivalent to the pair of equations (3.26) and (3.34).

In fact, at the end of the proof of Theorem 3.2 it was shown that (3.26) and
(3.34) imply the equations (3.35) and (3.24), which coincide with (3.81) and
(3.82). Conversely, (3.26) is obtained from (3.82), since P(g,2, is a projector
to the space Dy of periodic functions with vanishing divergence, and (3.34) is
obtained from (3.81) and (3.82) by addition of these two equations. Therefore
the equations (3.81) and (3.82) can be replaced by

div, Ty(z,y,t) = 0, (3.88)

To(z,y,t) = D(So(x,y,t))<5(vmuo(x,t)+Vyu1(x,y,t)) (3.89)

_ 5*(50(1‘, y,t)) - BZO(I7 y7t))7

and the problem constituted by these two equations and by (3.83)-(3.87) is of
the form of (3.1)—(3.8). The main difference is the presence of the term

Ve ug(x,t)

in (3.89) and in (3.84), which from the point of view of the initial-boundary
value problem (3.88), (3.89), (3.83)—(3.87) is a given function. This term im-
poses a deformation field on the representative volume element, which does not
depend on y. Hence, for every given time this deformation field is constant
throughout the representative volume element Y. Besides the micro stress Tg
also uy is determined by this initial-boundary value problem. The function u,
playes the part of a micro displacement.

2. The periodicity requirement for u; and Tj in the boundary condition (3.86)
is not needed in conjunction with the equations (3.81) and (3.82), since it is a
consequence of the definition of the projection Pg, ) . It is needed, however,
in conjunction with the equations (3.88) and (3.89).

3. The z-dependence of the history functional Fy<;(V,uo(z,s), ) is intro-
) and 5" (z,y).
(3.65) one would obtain

duced by the z—dependence of the initial data zéo) (x,y

4. By a formal reasoning, from the boundary condition
the boundary condition

To(z,y,t)n(z) =0, (z,y,t) €00 x R’ x Rf

for the homogenized problem, which is stronger than the boundary condition
(3.79). However, in accordance with well known results from the theory of ho-
mogenization for linear elliptic problems, cf. [7, pp. 87|, one expects that this
stronger boundary condition cannot be imposed in the homogenized problem
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and that (3.79) is the right condition.

5. The functions ug, uy, Ty, 2o and Sy determined as solution of the homog-
enized initial-boundary value problem can be used in two ways:

Since these functions are the leading terms in the expansions (3.13)—(3.16),
the functions

. T
uovn(xayat) = Uo(x»t) +77u1(x,; +y7t)7 (390)
. T
Tou(x,y,t) = To(z, Z +y,1),
. T
Zom(2,y,1) = 2o(z, Z +y,1),

~ X
SO,n(I7y7t) = SO('I7 ; + Z/;t)7

~

form an asymptotic approximation to the solution (,, Tn» Zp, Sy) of the micro-
scopic initial-boundary value problem (3.1)—(3.7), (3.11):

(am Tm 2y gn) - (aO,mTOm» 20,1, 5‘0,77) —0 (3.91)

for n — 0. This is the first usage. X
For the second usage we define the mean stress 7T;, o, of the exact solution
in the cell nY = {ny |y € Y} by

~

1 .
TThOO(x7y7t) = W/YTU(x+Z>yat) dz
n

T+ z

1 / T+ 2z 1
= — Tx+z,—+y,t)dz:—/ T,(x + z, 1) dz,
Y| Sy ot U Y| Sy "

where [nY| = fnY dy . Here we used (3.12) and the periodicity of 7;. This
computation shows that T}, oo (2, y,t) = T).00(,1). We also use that

Too(x7t) = /TO(xayat)dy:/TO(x>%+y>t)dy
Y

Y

1 /‘ r+y
= — To(x, —=,t)dy
’UY‘ ny 0( n )

1 / T+y
= T~ T .T—{—y,—,t dy+7“(77):
’UY‘ ny 0( n )

with the remainder
1

r+y r+y
rn) = —— (Tx,—,t—Tx+ ,—,t)d =0
=gy, (e 20 =T+, ) dy
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for n — 0. From (3.91) we thus have

~

]T ( — Too(z, t)|
+y r+y
< x+ vy, —To(r+y,—,t))d ‘—I—r — 0

for n — 0. As second usage we therefore see from this relation and from (3.90),
(3.91) that up and T, which are macroscopic, non-oscillating quantities, are
the limits of the displacement 4, and of the averaged stress Tmoo over the cell
nY for n — O: X

(T, Ty 00) — (10, To)-

6. The history functional Fy<;(V,uo(x,s),z) has the input function s —
V. up(z, s) and the output function ¢ — T (z,t). To compute T (z,-) from
the deformation gradient V, ugy(z,-) for a given fixed z, this deformatlon gra-
dient is considered as a function (y,s) — V,ug(z,s) constant with respect
to y, which we insert in the initial-boundary value problem (3.88), (3.89),
(3.83)—(3.87) posed in the representative volume element Y. Then the func-
tions uy, Ty, Sop, zp varying with respect to y in the representative volume
element are computed by solving this initial-boundary value problem. Fi-
nally, we obtain the y—independent value T, (z,t) by taking the mean value
of Ty(x, -, t) over the representative volume element. This computation of the
y— 1ndependent function T4, from the y—independent function V, uy via the de-
termination of y—dependent functions as solutions of an initial-boundary value
problem is computationally expensive. An important open problem is there-
fore to devise a method to eliminate the y—variable by homogenization of the
initial-boundary value problem (3.88), (3.89), (3.83)—(3.87) posed in the rep-
resentative volume element. The homogenization procedure discussed in this
article can therefore only be considered as a first step. The homogenization of
the microscopic initial-boundary value problem leading to a history functional
defined by an initial-boundary value problem in the representative volume el-
ement should be completed by a homogenization procedure, which replaces
this initial-boundary value problem in the representative volume element by
a constitutive relation, which for every x consists of an ordinary differential
equation with respect to the time variable. For a discussion of such second
homogenization procedures we have to refer to the literature cited at the end
of the introduction. Closely connected to the problems studied in this article
s [52], where a second homogenization procedure for a phase transformation
problem is presented.
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4 Materials with temporally invariant microstructure

4.1 The microscopic and the homogenized initial-boundary value
problems

In the remainder of this paper we study the initial-boundary value problem de-
scribing a material with a microstructure, which is temporally fixed. As in the
case of the evolving microstructure the history functional in the homogenized
problem is defined by an initial-boundary value problem in the representative
volume element. In the case of fixed microstructure it is particularly sug-
gestive to interpret this homogenized problem as a quasi-static problem for an
inelastic material with a constitutive equation, which is an ordinary differential
equation in an infinite dimensional Banach space.

Existence proofs for initial-boundary value problems to inelastic materials
are often based on the idea to show that under suitable assumptions for the
constitutive equations the initial-boundary value problem can be written as
an evolution equation to a monotone operator. In [2] it is shown that even
if the given constitutive equations do not satisfy these assumptions, they can
sometimes be brought into a transformed form, in which the assumptions are
fulfilled. Existence of solutions is then obtained from the general theory of
such evolution equations if in a second step it can be shown that the operator
is maximal monotone. This program has been carried out completely in [2]
for some dynamic initial-boundary value problems, whereas for quasi-static
problems only the reduction to an evolution equation to a monotone operator
is given there.

The goal of this section is to show that under the same assumptions for
the constitutive equations, which allow to reduce the initial-boundary value
problem for an inelastic material with fixed microstructure to a monotone
evolution equation also the homogenized problem with constitutive equation in
an infinite dimensional Banach space can be reduced to a monotone evolution
equation. The reduction to an evolution equation is carried out in section 4.2,
the proof of monotonicity is given in section 4.3. Monotonicity is not enough
to prove existence of solutions of the evolution equation. In addition it must be
shown that the monotone operator is maximal and that the resulting family
of monotone operators satisfies some regularity conditions. We must leave
the determination of conditions for the constitutive equations assuring these
properties and thus guaranteeing existence of solutions for the homogenized
problem to later investigations. Also, the problem, to show that solutions of
the microscopic problem tend to solutions of the homogenized problem if the
scale of the microstructure goes to zero, is left open in this work.

We begin with the formulation of the microscopic and the homogenized
initial-boundary value problems. We assume that the elasticity tensor D is
a periodic function of the space variable x, but is independent of the time
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variable ¢. Moreover, we assume that the misfit strain €* is negligible. In
this case the order parameter S is not needed to describe the microstructure.
Therefore we obtain the mathematical model for a material with temporally
fixed microstructure from the initial-boundary value problem (3.1)-(3.8) by
droping the relations (3.4)—(3.6) and omiting the term ¢* in (3.2).

Thus, let 2 C R3? be a bounded open set with smooth boundary. For
every y € R® let D(y) : 8 — 83 be a linear mapping, which is symmetric
and positive definite. Let f : R® x A(f) = RY be a given map with A(f) C
S3xRY. We assume that y — D(y) and y — f(y, T, z) are sufficiently smooth
periodic functions with periodicity cell Y C R3. The periodicity cell is assumed
to satisfy (3.10). Let n > 0 be a parameter, B : RV — 83 be a linear mapping
and z(® : O — R be given initial data. The microscopic initial-boundary
value problem is

—div, T'(z,t) = b(x,t) (4.1)
T(z,t) = D(%)(s(ku(x,t)) — Bz(x,1)) (4.2)
a(z,t) = f(%, T(2,1), 2(x,1)), (4.3)

T(z,t)n(x) = 0, z€0Q, t>0 (4.4)
2(2,0) = 2O@), zeq. (4.5)

To study the homogenization of this system we consider initial data of the
form

20 (z) = zéo) (z, E), z € Q, (4.6)

with a sufficiently regular function z{” : Q x R® — R¥. It is assumed that
for every x € € the function y — z((]o) (x,y) is periodic with periodicity cell
Y. For such initial data the analysis of Section 3.2 can be repeated. The
resulting homogenized system is essentially equal to (3.36)—(3.38). To state
the homogenized initial-boundary value problem precisely, let the mean value
operator My and the space Dy be defined as in Section 3.2. A scalar product

on L?(Y) is defined by

v, 1] = /Y (D) o(y)) - wly) dy.

By P : L*(Y) — Dy C L*(Y) we denote the projector onto Dy, which is
orthogonal with respect to the scalar product [v, w].
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Definition 4.1 The homogenized initial-boundary value problem associated to
the problem (4.1)—(4.6) is given by

—div, T (x,t) = b(x,t), (4.7)
Tw(z,t) = Fect(Vyue(z,s), x), (4.8)
To(z,t)n(zr) = 0, xz€0, t>0. (4.9)

Here the history functional Vyug(z, ) —= Tuo(z, ) = Fe<t(Vyuo(z,s),x) is
defined by the equation

Too(z,t) = MyTp(z, -, 1), (4.10)

which yields the mean stress T, as a function of the micro stress Ty, and by
the initial-boundary value problem, which defines Ty and which consists of the
equations

To(z,-,t) = P{D(-)(e(Vyup(z,t)) — Bzo(z,-, 1))}, (4.11)

0
Ezo(%y:t) = f(y7T0(x7y7t)730(x>y>t))7 (412)

and of the boundary and initial conditions
y = (To(x,y,t), z0(x,y, 1)) is periodic with periodicity cell Y, (4.13)

w0(e,y,0) =2 (x,y), (r.y) €Qx K. (4.14)
Remark. The periodicity requirement for Tj in (4.13) can be dropped, since
it is implied by the definition of the projection P.

From this formulation of the homogenized problem we see that it is a quasi-
static problem for an inelastic material, whose history functional Fy<; is defined
by the system (4.11), (4.12) of ordinary differential equations in an infinite
dimensional Banach space. Depending on the properties of f, the solution
(y,t) = 2o(z,y,t) of this differential equation can for every fixed ¢ lie in the
Banach space of functions on R? periodic with periodicity cell Y and contained
in LP(Y") for a suitable p, or it can lie in a Banach space of measures.

Just as in the homogenized problem to the evolving microstructure, we
can also take another point of view and replace the equation (4.11) by the
equivalent pair of equations

div, Ty(z,y,t) = 0,
To(z,y,t) = D(y)(e(Vyuo(z,t) + Vyui(z,y,t)) — Bz(z,y,1)),
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which must be supplemented by the periodicity condition
y — (uy(z,y,t), To(z,y,t)) is periodic with periodicity cell Y.

For every x € (, the equations (4.12)—(4.14) together with this pair of equa-
tions and with the periodicity condition constitute an initial-boundary value
problem for the unknown function (y,t) — (u1,To, 20)(z,y,t) in the domain
Y x R", which has the same form as the problem (4.1)—(4.5). The function u;
is the micro deformation.

For all these considerations we refer to the scholia after Definition 3.11.

4.2 Reduction of the homogenized system to an evolution equation

In this section we reduce the homogenized initial-boundary value problem to an
evolution equation. The reduction follows in all essential details the reduction
of quasi-static initial-boundary value problems to inelastic materials given in
Section 3.2 of [2]. However, in the more complicated case of the homogenized
problem properties of several linear spaces and linear operators play a role,
which must first be determined. Before we carry out the reduction, we first
collect the information needed about these spaces and operators in several
lemmas:

We assume that the symmetric linear mapping D(y) : 8* — 8 is uniformly
positive definite: There exists a constant ¢ > 0 with

(D(y)F) : F = c|F|?

for all y € R® and all ' € §*. The bounded linear operator P : Dy — Dy is
defined by
Pv=P(D(-)v(-)), veDy.

Lemma 4.2 The operator P is selfadjoint with respect to the scalar product

(v, w) = /Y v(y) : w(y) dy

on Dy and positive definite.

Proof: D(y) is symmetric and positive definite, hence D(y) ! exists and is

symmetric. By definition the projection P is orthogonal with respect to the
scalar product [v,w] on L?*(Y). Hence P is selfadjoint. For v, w € Dy we thus
obtain

(Po,w) = /Y PD(()]() : wly) dy
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- AD(y)l[P(D(-)v(->>](y) - D(y)w(y) dy
= | D) PN : [POOw)) dy
_ /Y D(y) ' D(y)v(y) : [P(D()w(-)](y) dy

= [ o) POLE)Iw) = (0. Pw).

Therefore P is selfadjoint. To see that P is positive definite, note that the
above calculation also yields

(Pv,v) = /YD(y)l[P(D(')U('))](y) HPD()o()](y) dy = [Pv, Pv] 2 0.

It follows that P is positive definite if Pv = P(D(-)v(-)) # 0 for all v € Dy with
v # 0, hence if ker P = {0}. Now, if v € ker P, then D(-)v(-) € ker P = Dy
Since v € Dy, this implies

0 = [0, D(Jo()] = /Y (D (W)o(v)) : D(y)ely) dy = / v(y) : v(y) dy,

Y

whence v = 0. This proves that P is positive definite. The proof is complete.

Next we need to collect some information about the kernel of the operator
div, My . First we define precisely how we want to understand this operator.

Definition 4.3 The domain of definition of div, My consists of all functions
w € L*(Q x Y, 8%), for which v € L*(Q,R®) ewists satisfying

. / (Myw(e, ) : V, o(a) do = / o() - () da,

for all ¢ € H (Q,R?). Obuviously, v is uniquely defined by this equation. We
thus define
(div, My )w = .

Clearly, this means that the domain of definition of div, My consists of all
w, for which div, can be applied to x — (Myw(z,-)) in the weak sense, and
which in the weak sense satisfy

(Myw(z,-)|n(x) =0, =z € 0.

By K we denote the kernel of the operator div, My . Then K is the subspace
of all functions w € L*(Q x Y, 8%) with

/Q(Myw(:c, V)t Vs o(@) da = 0 (4.15)
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for all ¢ € H;(Q,R*). The subspace K is closed. The orthogonal space of K
in L?(Q x Y, 83) with respect to the scalar product

(0, W)y = / /Y v(e,y) : w(e,y) dedy

is denoted by K+,
Lemma 4.4 (i) The space K consists of all functions w of the form
w(z,y) = wo(r) + wi(z,y), (4.16)
where wy € L*(Q, 8*) satisfies
divywy =0, wo(z)n(z) =0, x €N (4.17)
in the weak sense, and where wy € L*(2 x Y, 8?) satisfies
Myw;(z,-) =0, z €. (4.18)
(ii) We have
K+ ={(z,y) = e(Vyv(2)) | v e Hi(Q,R?)}. (4.19)

Remark. wy satisfies (4.17) in the weak sense if [, wo(x) : V() dz = 0 for
all ¢ € H{(Q,R?), of course. (ii) means that all functions of the set Kt are
constant with respect to the y-variable.

Proof: (i) Assume that w = wy+w; with wg, w; satistying (4.17), (4.18). For
© € Hi(Q,R*) we then have because of (3.10)

/Q(Myw(x, ) Vep(z)de = /Q(Mywo(x) + Myw(x,-)) : Vyo(x)de

_ /Qwo(x) Vo p(a) do =0,

whence w € K. On the other hand, assume that w € K. We set wp(x) =
Myw(z,-) and wy = w—wy. Then w(z,y) = wo(x) +wy(z,y) and w; satisfies
(4.18), since

Myw;(z,+) = Myw(zx,-) — Mywgy(z)
= Myw(z, ) —wy(x) = Myw(x,-) — Myw(z,-) =0,
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where we used (3.10) again. Moreover, wy satisfies (4.17), since for ¢ €
Hy(Q,R?)

/Qwo(x) : Ve o(x)de = /Q/on(x) dy : V., o(x)dx
= /Q(Mywo(x) + Mywi(x,-)) : V,o(x) dz

~ [ (yu(a,): V. ota)do =0,

This proves (i).
(i) Let MY : L*(Q,8%) — L?(Q x Y,8%) denote the transpose operator of
My : I*(Q x Y, 8%) — L*(Q,8?). Tt is immediately seen that

(Myv)(w,y) = v(x)

for all v € L*(2,8%) and all (z,y) € 2 x Y.
Since Myw(z,-) is a symmetric matrix for all w € L?(Q x Y, 8?), it follows
that

(Myw(z,-)) : Vo p(z) = (Myw(z,-)) : (Ve o(2)).
Therefore, by (4.15), K is the set of all w € L*(Q2 x Y, 83) with

0 = /Q(Myw(x,-)) Ve o(x)de
= [ Oyt )) e(apla) de

— [ [ wlen): DT )l 0) dude
aly
for all ¢ € H,(Q2,R?). Thus, K is the orthogonal space of the subspace
{My (e(Va9)) | ¢ € HiI(Q,R)} = {(2,y) = e(Vap(2)) | ¢ € Hi(QR)}.

Since this subspace is closed, it is equal to K. This proves (ii).

Because K is a closed subspace of L*(2 x Y, 8?), we can define the orthogo-
nal projection I} : L?(2x Y, 83) — K C L?(Q2 x Y, 83) onto K. Orthogonality
is meant with respect to the scalar product (v, w)qxy . By Il = I —II; we
denote the orthogonal projection to the orthogonal space K+ of K.

An operator defined on a subspace of L?(2x Y, 8%) can be introduced using
the operator P : Dy — Dy as follows: Since this operator is linear, bounded,
selfadjoint and positive definite, it defines by

((z,y) = v(z,y)) = (2, y) = (Po(z,-))(y)) (4.20)
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a bounded linear operator on
L*(Q,Dy) = {v e L*(Qx Y,8% | v(z,-) € Dy for almost all z},

which is also selfadjoint with respect to the scalar product (v, w)gxy and pos-
itive definite, and which we denote by the same symbol P : L*(Q2,Dy) —
L*(Q2,Dy). Of course, the same considerations apply to the inverse P~! :
LZ(Q, Do) — LZ(Q,D()).

The next lemma contains information about these operators:

Lemma 4.5 (i) We have

I, (L3(Q, Dy)) € KN LA(Q,Dy), TL(L2(Q x Y, 8%) C L3R, Dy)

(i)  The operator IL P~ maps the subspace K N L*(Q, Dy) of L*(Q x Y, 8?)
into itself, and

P~ KN L*(Q,Dy) — KN L*(Q, Dy)
15 selfadjoint and positive definite.

Proof: (i) Lemma 4.4 (ii) implies for the range R(Ily) of the projection Il
that

R(Ily) = K+ = {(z,y) = e(V,v(z) | v e H(QR)} C L*(Q,Dy),

since functions w(zx,y) = (V, v(x)) are periodic with respect to y and satisfy
div, v(z,y) = 0. For v € L?(Q2, Dy) we thus have

v = (I —My)v=uv—Thw e L*(Q, Dy),
hence I, (L%(2, Dy)) € KN L*(Q, Dy). The proof of (i) is complete.
(ii) Since P~1: L?(Q, Dy) — L?*(Q, Dy) we conclude from (i) that
ILP™!: KN L*Q,Dy) — KN L* (S, Dy).

To see that this operator is selfadjoint and positive definite, let v, w € KN
L?*(Q2, Dy). Then II;v = v and IT;w = w. Since the orthogonal projection IT; is
selfadjoint on L?(Q2 x Y) and P! is selfadjoint on L?(€2, Dy), we thus obtain

(ILP v, w)axy = (P, hw)axy = (P™'v, w)axy
= (v, P7'w)axy = (Lo, P w)axy = (v, ILP ™ w)axy -

This shows that II; P! is selfadjoint. From this computation it also follows
that for v # 0
(ILP v, v)axy = (P~'v,v)axy > 0,
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since P! is positive definite on L?*(2, Dy). Consequently, II;P~! is positive
definite. This proves the lemma.

Reduction to an evolution equation. With these lemmas we can reduce
the homogenized initial-boundary value problem to an evolution equation. We
use the following notation: For functions v and w defined on Q x R™ and on
1 x Y x R, respectively, which take values in some space V', we denote by
v(t) and w(t) the functions

= v(z,t): Q—V and (z,y) —» w(z,y,t) : QA xY =V,

respectively.

Since by Lemma 4.2 the operator P : Dy — D, is selfadjoint and positive
definite, it has a selfadjoint and positive definite inverse P~ : Dy — D,.
Because P is the projection to Dy, the terms on both sides of the equation
(4.11) belong to the domain of definition of P~!. Therefore we can apply P~
to this equation and obtain together with (4.7) and (4.10)

—div, (MyTo(z, 1)) = b(z, 1) (4.21)
P Ty(x, -, t) = £(Vaug(a, ) — P~ P(D(-)Bzo(x, -, t).  (4.22)

Here we used that (V, ug(z,t)) can be considered to be a function of (z, y, ),

which is constant with respect to y. Since constant functions belong to Dy, we
have e(V, ug(x,t)) € Dy for all (x,t), which yields

P IP(D()e(Vaup(w, b)) = P 'Pe(Viug(z, b)) = (Vi uo(z, t)).

In the second term on the right of (4.22) this simplification is not possible,
since Bzg(z,-,t) ¢ Dy, in general. Hence this function does not belong to the
domain of definition of P.

In the next step we insert Ty = 11,7y + I1o75 into (4.21). Because II;
projects to the kernel of the operator div, My, we obtain

—lex MyT() (t) = —dlvx My(HlTo)(t) - lex MY(HQTO)(t)
= —div, My (ILTy)(t) = b(t). (4.23)

Here we used that Ty(¢) and, as a consequence, also IIsTy(t) belong to the
domain of definition of div, My-. This is guaranteed by the boundary condition
(4.9). We continue by applying II; to (4.22), which results in

ILP 'To(t) = ILe(Viu(t)) —ILP ' P(DBz(t))
= —ILP'P(DBz(t)),

since (4.19) implies £(V, uo(t)) € K+ and since K+ = kerIl;. Using Ty(t) €
L*(2, Dy), we conclude from Lemma 4.5 (i) that [T, Ty(t), I1,To(t) € L*(2, Dy),

64



whence I, Ty(t) and I,T,(t) both belong to the domain of definition of P~
Consequently, P~'1y(t) = P L To(t) + P IxTy(t), which shows that the
last equation can be written in the form

ILP HILT,)(t) = —ILP ' P(DBz(t)) — I, P~ (ILLTo)(t). (4.24)
Because the mapping
ILP™': KN L*(Q,Dy) — KN L8, Dy)

is selfadjoint and positive definite, it has an inverse, which is also selfadjoint
and positive definite. We denote this inverse by (II;P~')"!. Because the
three functions Ty(t), P 'P(DBzy(t)) and P~(II,Ty)(¢) all are contained in
L*(Q, Dy), we can invoke Lemma 4.5 (i) again to conclude from this fact that
I1,75(t) and both terms on the right hand side of (4.24) belong to the subspace
KN L2, Dy), the domain of definition of (II;P~*)~!. Therefore we can apply
this inverse to all terms of the equation (4.24). Differentiation of the resulting
equation and insertion of (4.12) for 2z, yields

0

5 MMT)( 1) = —(LP ) ILPP(D() B+ To(-s 1), 20( 1))
— (Hlp—l)*nm*%(nﬂo)(-, ). (4.25)

We note that in this equation (II;P~1)~'I;P~! can not be replaced by the
identity, since (I[;P~1) ! is the inverse of [I;P~* on K N L?3(£2, Dy). However,
P(DBf) ¢ KN L*(Q,Dy) and (I1,Ty), ¢ K N L*(Q, Dy), in general.

If we replace Ty by 11,7y + I, in the argument of f, then we obtain
from (4.25) the evolution equation for IT,7; which we sought. We state this
evolution equation and the equation (4.23) for I} in the following

Theorem 4.6 Assume that (ug, To, 20) is a function which has the properties

up(t) € H(Q,R?) (4.26)
Ty(t), %To(t) c L*(QxY,8 (4.27)
20(t), %zo(t) e LX(QxY,8%, (4.28)

for almost all t € RY, and which satisfies the homogenized initial-boundary
value problem (4.7)—(4.14). Then Ty and zy satisfy on QxY x RT the equations

—div, My (IL, 1Y) = b(x,1) (4.29)
%(HlTO) = —(ILPHULP'P(D(C)BFf (-, Ty + [Ty, 2))

— (P~ H L P HILTY), (4.30)

%ZO = f(-, LTy + Ty, ), (4.31)
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on 00 x RT the boundary condition
(My I, Ty(z, -, t)n(z) =0, (4.32)
and on §2 XY the initial conditions
(ILTy)(z,-,0) = —(I,PY) "MLPP(D() B2 (x,))

— (I, P~ Y ', P (I, Th) (w, -, 0) (4.33)
ZO(xayao) = ZSO)(x7y) (434)
Conversely, if Ty and zo are periodic with respect to y, fulfill (4.27), (4.28)
and satisfy (4.29)—(4.34), then a unique function ug ezists satisfying (4.26),
such that the function (ug, To, zo) solves the homogenized initial-boundary value

problem (4.7)—(4.14).

Scholium. Before we give the remaining parts of the proof of this theorem,
we interpret the equations (4.29)-(4.34). The equations (4.29) and (4.32)
belong together and are meant in the weak sense. Together they mean that for
almost all ¢ the function (x,y) — (II,Ty)(x,y,t) must belong to the domain
of definition of the operator div, My introduced in Definition 4.3 and that the
application of this operator to IIsTy yields z — b(z,t). Since by definition Il
maps to the orthogonal space of the kernel of div, My, the function 1,7} is
uniquely determined by (4.29) and (4.32). Hence, if these two equations can
be solved for almost all ¢, then the component II,T} of T}, in the space Kt is
known. Thus, the unknowns in (4.30), (4.31) and (4.33), (4.34) are 2z, and the
component 11,7y of T, in the space K. Therefore, (4.30), (4.31) is a system
of evolution equations for the functions II;7y and zy to the initial conditions
(4.33), (4.34). If this system can be solved, then Ty = 1,7y + [I;7y and z
are known. By the statement of the theorem, 1 can be determined such that
(ug, T, 20) satisfy the homogenized initial-boundary value problem.

Proof: We already proved that (4.29), (4.30) follow from (4.7), (4.11). The
equations (4.31) and (4.34) coincide with (4.12) and (4.14). With T, (z,t) =
MyTy(x,-,t), the boundary condition (4.9) can be written in the form

(MyTy(z, -, t))n(z) =0, (x,t) € 02 x R".
The boundary condition (4.32) follows from this equation and from
1Ty =Ty — 11Ty,

since by definition II; is the projection to the kernel of the operator div, My ;
the function II,7, thus satisfies

[My I Ty(z, -, t)]n(z) = 0
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on 90 x RT in the weak sense. Finally, the initial condition (4.33) for IT; T} is
obtained by application of the operator (II;P~1)~! to (4.24) and insertion of
the initial data for zy in the resulting equation.

Conversely, assume that (4.29)—(4.34) are satisfied. We use (4.31) to replace
f in (4.30) by %zo and integrate the resulting equation with respect to ¢.
Insertion of the initial condition (4.33) for I1; T and application of the operator
I[I;P~! to the resulting equation yields (4.24), which can be written in the form

Hl,PilTo = —Hl,PilP(D()BZO)

Since ker IT; = Kt, this equation and Lemma 4.4 (ii) imply that for almost
every ¢ there exists a function (z — ug(x,t)) € Hi(Q,R®) such that (4.22) is
satisfied. Moreover, (4.21) follows directly from (4.29). From (4.21), (4.22) we
obtain (4.7) and (4.11) by application of P to (4.22). The equations (4.12),
(4.14) and (4.9) result directly from (4.31), (4.34) and (4.32). This proves the
theorem.

Remark. The hypothesis zo(t), 2z(t) € L*(Q x Y,8?) in Theorem 4.6 is
questionable. In fact, from the theory of quasi-static problems it is known that
20(t) belongs to L? only if f satisfies growth restrictions, which are not satisfied
in most constitutive models derived in the engineering sciences. In general, z
belongs to LP or to a space of measures, depending on the properties of f.
However, we believe that the preceding reasoning can be modified to hold also
in situations where z; belongs to these more general spaces.

4.3 Monotonicity of the evolution equation

The crucial difficulty in proving that the homogenized initial-boundary value
problem has a solution is to show that the evolution system (4.30) and (4.31) is
solvable. Here we prove that if f is a monotone vector field, then this evolution
system can be written as an evolution equation of the form

mi(t) = —A@)7(t) + 9(1) (4.35)

with a known function g and with a family {A(¢)};>o of monotone operators.
This is an essential step in proving existence of solutions for the homogenized
system. Of course, monotonicity of A(t) alone is not sufficient for existence
of solutions of (4.35). It is necessary that A(¢) is maximal monotone and
that the family { A(t)};>o satisfies additional regularity conditions, cf. [16, 23].
Whether these additional conditions are satisfied is an open question, not only
for the homogenized system, but also for the original system, where a similar,
but simpler reduction to an evolution equation is possible.

In order to keep the discussion simple, we restrict ourselves in the following
investigations to constitutive equations (4.3) of the form

x

t = _7T7
z f(77 )

67



where the function f does not depend on the internal variables z explicitly.
Many simple constitutive equations used in the engineering sciences are of this
form, cf. [2]. We remark however, that the following considerations go through
for considerably more general functions f, which also depend on the internal
variables z explicitly.

So, assume that
f=71T).

In this case (4.29), (4.30) and the boundary condition (4.32) form a closed
system for I1, Ty and 11,7}, and the evolution equation (4.31) for the internal
variables zg can be dropped. To simplify the notation we set

T:H1T0, O':HQT().

Then 7 = 7(z,y,t), 0 = o(x,y,t) and 7(t) € KN L3, Dy), o(t) € K+ for
almost every ¢ > 0. The equation (4.30) takes the form

7(t) = —(IL P H 'L P P(D()Bf (-, 7(t) + o(t)) — ALPH L P ou(t).

(4.36)
According to the discussion following Theorem 4.6, the function o(t) is
uniquely determined by (4.29) and (4.32). Therefore o and the function
g = (ILP7H 7L, P~ oy can be considered to be known. With this function
g the equation (4.36) can thus be written in the form (4.35), if we define the
operator A(t) = A(o(t)) by

A(o(t)7 = ILPH 'L P P(DC)Bf(-, 7+ a(t))), (4.37)

for every 7 from the domain of definition A(o(¢)) of A(o(t)). For A(o(t)) we
choose the set of all functions 7 € K N L%(Q, Dy), for which

(@) = [y, 7(2,y) + o(z,,1))) € L*(Q x YV,R") (4.38)
holds. With this choice we have

A(o(t)) : A(o(t)) € KN L*(Q, D) — KN L*(Q,Dy).
To see this, note that by definition of the projection P, the relation (4.38)

implies

x> P(D()Bf(, 7(z,+) + o(z,-,t))) € L*(Q, Dy).

Since P~1: L?(Q,Dy) — L*(2, Dy), we thus obtain from Lemma 4.5 (i) that
for 7 € A(o(t))

ILP'P(D()Bf(-, 7 +0(t)) € KN L*(, Dy),
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which together with Lemma 4.5 (ii) and with the definition of A(o(¢)) yields
A(o(t))F € K N LXQ, Dy).

This proves the assertion. In passing we note that, as indicated in the notation,
the operator A(t) = A(o(t)) depends on the time ¢ only via the known function

o(t).
A mapping A : A(A) € H — H on a Hilbert space H with the scalar
product (v, w) is monotone if

(Av — Aw,v —w) >0

for all v,w € A(A). Here A(A) denotes the domain of A. We shall prove that
A(o(t)) is a monotone operator on KN L?*(Q, Dy) for almost all ¢, if this Hilbert
space is equipped with the scalar product defined as follows: In Lemma 4.5 it
was proved that II; P! is selfadjoint and positive definite on the Hilbert space
KN L*(Q, Dy) with the scalar product (v, w)axy = [q [ v(2,y) : w(z,y) dyda.
Using this, we define the new scalar product on K N L*(Q, Dy) by

(v,w) = /Q/Y(Hﬂ?lv) cwdydx . (4.39)

Theorem 4.7 Let f : R> x S* — RN be a given function and B : RN — S3 be
a linear mapping. Assume that for every y € R® the vector field 7 — Bf(y,7) :
S3 — 83 is monotone:

(Bf(y,71) = Bf(y,72)) : (71 — 72) >0, (4.40)

for all 7y, 7 € 83. Then for every o € K+ C L?(2 x Y, 83) the operator A(o)
defined in (4.37) is monotone on K N L*(QY, Dy), if this space is equipped with
the scalar product (v, w).

Proof: Let 7, 7 € A(o). Then (4.37) and (4.39) yield
(A(o)m1 — A(0)72, 71 — T2)

= [ (WP PDOBIC 7 +0) — PDOBEC, 7+ 0))) s (n = m)dl,y)

QXY

= [ (WP PDOBS .+ 0) = Bfn+ ) s (= m)davy) = i

QXY

where we used the linearity of II;P~! and of P. Since II; : L*(Q x ¥, 8%) —
K C L*(Q x Y,8%) is orthogonal with respect to the scalar product (v, w)axy
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and since 11 — 75 € K, hence II; (1 — 75) =71 — 72, we obtain that

I = // (Bf(, Tl+0)—Bf(-,Tz+0)))>:(Tl—Tz)dydx

- /Q/Y <P(D(-)(Bf(-77'1 +0) = Bf(-, 72+ 0)))) P (ry — 1) dyda

Here we used that P defined in (4.20) and also P! are selfadjoint on L?(2, Dy)
with respect to the scalar product (v, w)qxy . Note that P projects to Dy,
hence PD(-)(Bf(-,71+0)—Bf(-,72+0)) € L*(Q, Dy) and 71 — 7, € L*(Q, Dy) .
We next use that P LA(Y) —> DO C L*(Y) is orthogonal with respect to the
scalar product [v,w] = [,.(D (y)) : w(y)dy. For all v, w € L*(Y) we
thus have

/Y[P(Dv)] :wdy:/y[D(y)_IP(D(')v('))] F D(y)w(y) dy

= /YD(y)_lD(y)v(y)  P(D()w(+)) dy = /Yv H[P(Dw)]dy .
Using this relation, we obtain

Jo = /Q/Y (Bf(y,ﬁ +0)—Bf(y,m +a)) . P(D(YP~\ (1 — 7)) dydz
— /Q/Y(Bf(y;ﬁ +0) = Bf(y, 2+ 0)): (1 — 1) dydx

- / /Y [(BF . (. +0)(w,9) ~ By, (72 +0) (x,9))]

(1 +o0)(x,y) — (2 + 0)(x, y)} dydx
> 0.

The last inequality sign follows from the assumption (4.40). In this step we
used that for v € L*(2, Dy)

P(D()v(z,))(y) = (Po)(z,y),

by definition of P, hence P(D(-)P~ (1, — 1)) =PP H(n—7n) =71 — 7.
This computation proves that the operator A(c) is monotone. The proof
is complete.

Conclusion. The contributions of this article to the mathematical theory
of phase transformations and to the homogenization of mathematical models
from solid mechanics can be summarized as follows:
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In Section 2 we derived a new mathematical model for the evolution in time
of phase transitions. In this model the order parameter belongs to the space
BV'°¢ of functions of bounded variation. Its evolution in time is rate dependent
and is governed by a first order partial differential equation, a Hamilton-Jacobi
equation. This model could be an alternative to the Cahn-Allen model.

Since the order parameter is of bounded variation, to determine the effective
equations to this model it was necessary in Section 3 to study homogenization
in the space BV, This made it necessary to introduce the idea of a family of
solutions of the microscopic initial-boundary value problem depending on the
fast variable.

In Section 4 we reduced the homogenized system of partial differential
equations for temporally invariant microstructure to an evolution equation.
The reduction procedure generalizes the reduction given in [2] for the equations
modeling inelastic solids. As a first step in the direction of an existence proof
we showed that the resulting evolution equation is monotone.

It remains open whether the model suggested in Section 2 has a solution
and whether the solution is unique. Moreover, it would be important to in-
vestigate this model numerically. Also,the proof of monotonicity in Section 4
should be extended to an existence proof for the homogenized system to tempo-
rally invariant microstructure. Subsequently, this homogenized system should
be justified by proving that the solutions of the homogenized problem tend
asymptotically to the solutions of the microscopic problem. In the last step,
the same program should be carried out for the homogenized problem to evolv-
ing microstructure. Of these tasks, the existence proof for the homogenized
system to invariant microstructure and the justification of this system seem to
be the most accessible ones.
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