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Abstrat

In this artile we formulate a mathematial model for the temporally

evolving mirostruture generated by phase hanges and study the ho-

mogenization of this model. The investigations are partially formal,

sine we do not prove existene or onvergene of solutions of the mi-

rostruture model to solutions of the homogenized problem. To model

the mirostruture, the sharp interfae approah is used. The evolu-

tion of the interfae is governed by an everywhere de�ned distribution

partial di�erential equation for the harateristi funtion of one of the

phases. This avoids the disadvantage ommonly assoiated with this ap-

proah of an evolution equation only de�ned on the interfae. To derive

the homogenized problem, a family of solutions of the mirostruture

problem depending on the fast variable is introdued. The homoge-

nized problem obtained ontains a history funtional, whih is de�ned

by the solution of a initial-boundary value problem in the representative

volume element. In the speial ase of a temporally �xed mirostru-

ture the homogenized problem is redued to an evolution equation to a

monotone operator.

1 Introdution

Alloys used in jet engines display a mirostruture, whose on�guration evolves

in time under loading. This mirostruture, whih is formed by phase hanges

of the material, inuenes the reep behavior of the alloy. A mathematial

model desribing the stress and deformation behavior of the alloy must there-

fore also aount for the evolving mirostruture. Sine in this mirostruture

the length sale of the phase hanges is less than 0:5�m, e�etive numerial

omputations of the stress and strain �elds in metalli omponents, whose

dimensions lie in the range of entimeters or meters, an not be based on a
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mirosopi mathematial model whih faithfully desribes the evolving mi-

rostruture. A marosopi model is needed for this purpose. An interesting

idea to develop a marosopi model is to formulate a mirosopi model �rst

and then to derive a marosopi model from it by homogenization. In this

artile we want to ontribute to the development of this idea. We derive and

formulate a mirosopi model, whih is of the sharp interfae type, and study

the homogenization of the partial di�erential equations in this model. The ho-

mogenized problem obtained ontains a history funtional, whih is de�ned via

the solution of an initial-boundary value problem in the representative volume

element. The derivation of the homogenized equations is partly formal, sine

neither do we prove existene or uniqueness of solutions for the mirosopi

model, nor do we prove onvergene of solutions of the mirosopi model to so-

lutions of the homogenized equations, assuming that suh solutions exist. Suh

investigations must be left to later work. However, as a speial ase the model

we derive desribes mirostrutures, whih do not evolve, but are temporally

�xed. In this simpler ase we disuss the homogenized initial-boundary value

problem more preisely and verify some results towards an existene proof for

solutions of this initial-boundary value problem.

To understand the mathematial investigations in this paper it is helpful

to know the mehanial bakground of the mathematial model. Therefore we

sketh this mehanial bakground �rst. Detailed desriptions and experimen-

tal and theoretial investigations an be found in [29, 18, 54, 67℄.

Nikel based single rystal alloys display a mirostruture after prodution.

For simpliity, we disuss alloys whih only onsist of the two omponents

aluminium and nikel. Embedded in a matrix phase  are ubi preipitates



0

. After omplete aging the preipitates are distributed in the {matrix phase

as a periodi array of uboids of fairly uniform size. The length of the edges and

the mutual distane of the preipitates is in the range of 0:2{0:5�m. The 

0

{

phase is highly ordered: The large aluminium atoms are plaed in the rystal

lattie at the eight orners of a ube and the nikel atoms are plaed at the

enter of the six sides of this ube. In the {matrix phase the aluminium and

the nikel atoms are distributed randomly over the positions in the rystal

lattie. There is a mismath between the lattie parameters a



and a



0

of the

rystal in the { and 

0

{phases. Typially the mismath

Æ =

a



0

� a



a



is of the order of jÆj � 0:005. Nevertheless, this small mismath introdues a

signi�ant internal stress in the rystal at the phase interfaes and is onsidered

to be the reason for the evolution of the morphology of the preipitates, whih

happens at high temperatures under the appliation of external stress. Two

di�erent types of evolution have been observed: Either the uboids oarsen
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preferentially along the diretion of the applied stress and form plates whih lie

parallel to the stress diretion; or the oarsening is normal to the applied stress

and plates form with the faes normal to the stress diretion. The di�erene

in the oarsening diretions is attributed to the di�erent rystal strutures of

the alloys.

As an important aspet, a mathematial model for this type of problem

must aount for the phase hanges. Two approahes are used to model tempo-

rally evolving phase hanges mathematially; both are employed in the di�er-

ent mathematial models, whih have been developed to model the mirostru-

ture and the stress-strain behavior of single rystal alloys: In the phase �eld

approah the di�erent phases are haraterized by an order parameter, whih

varies rapidely but smoothly and is assumed to satisfy a di�usion equation.

The two phases are separated by the transition region of the order parame-

ter. In the sharp interfae approah the di�erent phases are assumed to be

separated by sharp moving interfaes. The movement of the interfaes is de-

termined by an equation for the normal speed of the interfaes. The basi

priniple used in all investigations and models to govern the movement of the

interfaes or the evolution of the order parameter is the seond law of ther-

modynamis, whih requires that this movement or evolution tend to derease

the free energy.

Mathematial models for the evolving mirostruture in single rystal alloys

using the phase �eld approah are formulated in [18, 78℄; the sharp interfae

approah is used in [33, 55, 64, 65, 67℄, for example. Of these referenes, only

[18℄ ontains a omplete set of model equations; in the others the main interest

is to ompute the equilibrium states of the mirostruture. They do not give

suh a omplete set of equations, whih is not needed for this purpose.

In ontinuum mehanis and in the material sienes the investigation of

moving interfaes and phase hanges is a very ative �eld of researh with a

long history. From the large body of literature we only mention [1, 5, 21, 22,

34, 35, 36, 47, 49, 50, 56℄. Together with more artiles several of these are

olleted in the book [6℄. For detailed studies we must refer the reader to the

bibliography ontained in these artiles.

From the mathematial literature about moving interfaes, moving bound-

aries and phase transitions we an only mention here [4, 8, 9, 10, 11, 13, 14, 17,

20, 27, 30, 31, 40, 48, 57, 68, 72, 73, 74, 76℄. Many of the mathematial inves-

tigations onern interfae problems, where the free energy has a nonvanishing

surfae part. This leads to problems of mean urvature ow or a generalization

of it. Together with the onstitutive assumption that the free energy is only

a funtion of spae, time and normal veloity of the interfae, the problem

an be redued to the solution of a salar partial di�erential equation, whih

in most ases is paraboli. An extensive theory also exists for the phase �eld
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approah, where the oupled evolution of the order parameter and the tem-

perature �eld is studied. We refer in partiular to [4℄. This approah leads to

initial-boundary value problems for a paraboli system or for a paraboli sys-

tem oupled with other equations. In the reent investigation [30℄, the phase

�eld approah is used to study temporally evolving phase hanges in an elasti

medium. Loal existene of solutions is proved and the sharp interfae limit is

studied in the stationary ase.

Conerning homogenization, we mention the artiles [19, 46, 51, 53, 59, 60,

61, 62, 66, 69, 70℄, where the engineering view is dominating. A theoretial

view predominates in the books and artiles [3, 7, 12, 15, 24, 25, 37, 38, 39,

41, 42, 43, 44, 45, 52, 58, 63, 71℄. The �rst group of artiles ontains investiga-

tions of the homogenization of problems with evolving mirostruture as well

as with temporally �xed mirostruture, and numerial algorithms to ompute

the overall response of solids with mirostruture. [12℄ and [58℄ from the se-

ond group disuss homogenization of nonlinear monotone operators, whih is

of interest for the investigations in Setion 4. There the homogenization of

initial-boundary value problems for inelasti materials with temporally �xed

mirostruture is studied, whih, after a suitable transformation, an often be

written as an evolution equation to a monotone operator. This is shown in

[2℄. In [52℄ the homogenization of a rate independent model for phase transfor-

mations is investigated. The homogenization of ompliated time dependent

ow problems from hemistry and engineering is disussed in [38, 39, 42℄.

The mathematial models studied in these artiles ontain transmission ondi-

tions and partial di�erential equations de�ned on the boundary manifold. In

[15, 24, 25, 37℄ the homogenization of Hamilton-Jaobi equations is disussed

in the frame of the theory of visosity solutions.

We �nally summarize the ontent of this artile: In Setion 2 we formulate

a model for the evolving mirostruture in single rystal alloys, whih is of the

sharp interfae type. The basi, standard assumptions we use to formulate it

are the same as in the model of Sorate and Parks [67℄. In this model, the

free energy does not have a surfae part, but the material is allowed to show

inelasti stress-strain behavior. This stress-strain behavior may be di�erent in

the two di�erent phases. It is modeled using internal variables.

To haraterize the two phases we introdue an order parameter whih only

takes the values 0 and 1 and thus jumps at the fae interfae. Using an order

parameter is not new in the sharp interfae approah, sine the level set method

uses suh a parameter, for example. However, the hoie of a disontinuous

order parameter is in ontrast both to the phase �eld approah and to the level

set method, where the order parameters are smooth.

We �rst use the seond law of thermodynamis to derive dissipation inequal-

ities, whih must be satis�ed by the normal veloity of the phase interfaes and

by the time derivative of the internal variables. These dissipation inequalities
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restrit the onstitutive relations for the normal veloity and for the internal

variables. The derivation is standard, but we present it for ompleteness and

for de�nitness. As usual, it follows that the driving tration for the phase

interfae is generated by a jump of the Eshelby tensor at the interfae; this

jump is aused by the mis�t strain originating from the di�erent values of the

lattie parameters in the { and 

0

{phases. Sine the free energy does not

have a surfae part, the mean urvature does not appear in the equations. We

then formulate a onstitutive equation for the normal veloity of the phase

interfaes, whih is in aordane with these restritions. This equation an

be onsidered to be an evolution equation for the phase interfae. The mathe-

matial model thus onsists of an initial-boundary value problem to a system,

whih onsists of partial di�erential equations for the strain and stress �elds

and of evolution equations for the internal variables and the phase interfae.

This model is derived in Setions 2.1 and 2.2.

Our new ontributions to the modelling of moving phase interfaes are

ontained in Setions 2.3 to 2.5. A drawbak of the sharp interfae approah

is that the equation for the normal speed of the interfae is only de�ned on the

interfae, whih auses diÆulties in theoretial investigations and numerial

omputations. For example, the oalesene or the separation of preipitates

will be diÆult to model and to study. However, in a �rst step we show that

the equation for the normal speed of the interfae an be reformulated as an

evolution equation for the disontinuous order parameter S taking the value

0 on the {phase and the value 1 on the 

0

{phase. The evolution equation

holds in the distribution sense and is de�ned everywhere, not only on the

interfaes. Sine knowledge of the interfaes is not needed to formulate the

equation, the above mentioned drawbak of the seond approah is removed.

Still, this equation is ompliated and will not be easy to use. In a seond

step we therefore show that if the solution of this equation is smooth, it an

be redued to the �rst order partial di�erential equation

S

t

(x; t) = �� 

S

("; S; z) jr

x

S(x; t)j

for S, a transport equation or Hamilton-Jaobi equation. Here  

S

is the partial

derivative of the free energy with respet to S,  is a onstant and �; "; z denote

the density, the strain and the vetor of internal variables. We surmise that the

initial-boundary value problem with this equation as evolution equation for the

order parameter has smooth solutions to smooth initial data, and that these

smooth solutions an be used to approximate theoretially and numerially

the disontinuous solutions to the original mirostruture problem.

In Setion 3 we formally derive the homogenized initial-boundary value

problem assoiated to this mirostruture model. The mirostruture is intro-

dued in the problem by assuming that the initial data for the order parameter

5



are given by a funtion of the form

S

(0)

(x;

x

�

);

where y ! S

(0)

(x; y) is periodi and where � > 0 is a small parameter. x is

alled the slow variable, y the fast variable. This means that the initial data

are approximately periodi in spae and that the sale of the mirostruture

tends to zero for � ! 0. To derive the homogenized equations, we assume that

the mirosopi initial-boundary value problem has solutions to these initial

data with an order parameter of the form

S

�

(x;

x

�

; t);

where S

�

(x; y; t) is periodi in the fast variable y and tends to S

0

(x; y; t) for

� ! 0 in a suitable sense. Moreover, it is assumed that the other unknowns

in the initial-boundary value problem have similar representations. By let-

ing tend � ! 0, an initial-boundary value problem is determined whih must

be solved by S

0

and by the limit funtions of the other unknowns. This is

the homogenized problem. The homogenized problem onsists of a maro-

sopi initial-boundary value problem in the marosopi (x; t){variables for

the marosopi deformation u

0

(x; t) and the marosopi mean stress T

1

(x; t),

with a history funtional

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s));

whih for every x is omputed via the solution of an initial-boundary value

problem in the (y; t){variables. y varies in the periodiity ell. This periodiity

ell, or better, the initial-boundary value problem in the periodiity ell, is

alled representative volume element.

The evolution equation for the order parameter in the mirosopi prob-

lem is a partial di�erential equation ontaining derivatives with respet to x

and t. These derivatives are distribution derivatives. It turns out that in

the initial-boundary value problem of the representative volume element the

funtion (y; t)! S

0

(x; y; t) must solve a partial di�erential equation ontain-

ing distribution derivatives with respet to y and t. As usual in the theory

of distributions, to de�ne distribution derivatives with respet to y, an in-

tegration with respet to the y{variable must be present. To introdue this

integration, we de�ne in Setion 3.1 the notion of a family of solutions of

the mirosopi initial-boundary value problem depending on the fast variable

and generalize it in Setion 3.4 to distribution solutions. For a preise disus-

sion of the homogenized initial-boundary value problem we refer to the sholia

after De�nition 3.11 of this homogenized initial-boundary value problem in

Setion 3.4.
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The redution of the mirosopi initial-boundary value problem to a ho-

mogenized problem with history funtional de�ned via the solution of an

initial-boundary value problem in the representative volume element is not

ompletely satisfatory, sine, as is disussed more preisely in the sholia af-

ter De�nition 3.11, the determination of suh a history funtional still is of

high omputational omplexity. Therefore this �rst homogenization should be

followed in a seond step by a homogenization of this representative volume

element, whih results in the elimination of the y{variable. Ideas have been

developed for suh a seond homogenization, f. [46, 52, 59, 60, 61, 62, 69, 70℄.

We an not disuss these ideas here, but have to refer to these artiles and to

the literature ited there.

In Setion 4 we speialize the model to the simpler situation of a temporally

�xed mirostruture. In this simpler situation it is suggestive to interpret the

homogenized initial-boundary value problem as a quasi-stati problem with a

onstitutive equation, whih is an ordinary di�erential equation in an in�nite

dimensional Banah spae. We redue the problem to an evolution equation

and show that this is an evolution equation to a monotone operator, if the on-

stitutive equation for the original mirosopi problem is of monotone type.

This is an important step towards an existene proof for solutions of the ho-

mogenized problem.
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2 A mathematial model with sharp phase interfaes

2.1 Equations for the stress, displaement and internal variables

In this setion we introdue the model equations for the stress, displaement

and internal variables. These equations oinide essentially with the equations

for homogeneous inelasti materials disussed in the book [2℄. The only dif-

ferenes are that the mirostruture introdues inhomogeneity in the material

and that the equations used here ontain a term representing the mis�t strain.

Therefore we only state these equations and refer the reader to [2℄ for a preise

disussion. Also, we formulate interfae onditions, boundary onditions and

initial onditions.

To model phase hanges evolving in time one needs in addition to the

model equations for inelasti materials an evolution equation for the phase

interfaes. Setions 2.2{2.5 are devoted to the formulation and transformation

of this equation.

Let 
 � R

3

be a bounded open set with smooth boundary �
. It represents

the points of a material body. By (t) we denote the set of points of 
, whih

at time t belong to the {phase, whereas 

0

(t) denotes the set of points of 


whih at time t belong to the 

0

{phase. We assume that (t) is losed in 


and that

(t) \ 

0

(t) = ; ; (t) [ 

0

(t) = 
 :

The interfae between the two phases is

�(t) = (t) \ 

0

(t):

These subsets of 
 are the ross setions at time t of the sets

 = f(x; t) 2 
� R

+

0

j x 2 (t)g; 

0

= f(x; t) 2 
� R

+

0

j x 2 

0

(t)g

and

� = f(x; t) 2 
� R

+

0

j x 2 �(t)g:

If in the following we do not mention speial assumptions, we shall always

assume that � is a suÆiently smooth submanifold of 
 � R

+

0

: To represent

these sets, we introdue an order parameter S : 
� R

+

0

! f0; 1g with

S(x; t) =

(

0 ; x 2 (t)

1 ; x 2 

0

(t) :

Let S

3

denote the set of symmetri 3�3{matries, let u : 
�R

+

0

! R

3

denote

the displaement and

"

�

r

x

u(x; t)

�

=

1

2

h

r

x

u(x; t) + (r

x

u(x; t))

T

i

2 S

3
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the linear strain tensor. Here (r

x

u(x; t))

T

denotes the transpose of the 3� 3{

matrix r

x

u(x; t), the matrix of �rst order partial derivatives of u with respet

to x = (x

1

; x

2

; x

3

). The funtion T : 
 � R

+

0

! S

3

is the Cauhy stress

tensor and z : 
 � R

+

0

! R

N

is the vetor of internal variables. Finally,

b : 
�R

+

0

! R

3

is the given volume fore. The strain and stress distributions

are governed by the equations

�div

x

T (x; t) = b(x; t) (2.1)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))� Bz(x; t)

�

(2.2)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) ; (2.3)

whih must be satis�ed for all t � 0 and for all x 2 
n�(t) : Here D(0); D(1) :

S

3

! S

3

are linear, symmetri, positiv de�nite mappings. D(0) is the elastiity

tensor in the matrix phase  ; and D(1) is the elastiity tensor in the 

0

{phase.

"

�

(1) 2 S

3

is the mis�t strain in the 

0

{phase. The mis�t strain is equal to

zero in the matrix{phase, hene "

�

(0) = 0 :

B : R

N

! S

3

is a linear mapping, whih maps the vetor of internal

variables to the plasti strain tensor:

"

p

(x; t) = Bz(x; t) :

The given funtion f : �(f) � f0; 1g � S

3

� R

N

! R

N

in the evolution

equation (2.3) for the vetor z of internal variables determines the inelasti

properties of the { and 

0

{phases of the material. Here �(f) denotes the

domain of de�nition of f : This funtion depends on S ; sine the two phases

behave di�erently. Purely elasti behavior in the 

0

{phase is obtained with

f(1; "; z) � 0 :

On the interfae �(t) the funtions u; T and z must satisfy interfae ondi-

tions. The funtions "(r

x

u); u

t

; T; and z an jump aross � ; but we assume

that the displaement u and the tration vetor are ontinuous aross the in-

terfae. Thus, with a given funtion g : R

N

! R

N

the interfae onditions for

u; T and z are

u

+

(x; t) = u

�

(x; t); (2.4)

T

+

(x; t)n(x; t) = T

�

(x; t)n(x; t); (2.5)

z(x; t+) = g(z(x; t�)); (2.6)

whih must hold for all (x; t) 2 � : Here n(x; t) 2 R

3

is the unit normal vetor

to �(t) pointing from 

0

(t) to (t) : Also, T

+

(x; t) and T

�

(x; t) are the limit

values of T if the argument tends to (x; t) 2 � from  or from 

0

; respetively.
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Preisely, for a funtion w and (x; t) 2 � we de�ne

w

+

(x; t) = lim

�!0

�>0

w((x; t) + �m(x; t))

w

�

(x; t) = lim

�!0

�<0

w((x; t)� �m(x; t)) ;

with the unit normal vetor m(x; t) 2 R

4

to � pointing from 

0

to  : In the

following we assume that this normal vetor di�ers everywhere from the vetor

(0;�1) 2 R

3

� R :

Finally, the boundary ondition is

T (x; t)n(x) = 0; x 2 �
; t � 0; (2.7)

with a unit vetor n(x) normal to �
 at x, and the initial onditions are

z(x; 0) = z

(0)

(x); S(x; 0) = S

(0)

(x); x 2 
: (2.8)

Under suitable regularity onditions for � and b, the equations (2.1) and (2.5),

respetively, hold in the lassial sense in (
� R

+

)n� and on �, respetively,

if and only if T is a weak solution of (2.1) in 
 � R

+

: By de�nition, T is a

weak solution if and only if

Z

1

0

Z




T (x; t) : r

x

'(x; t) dxdt =

Z

1

0

Z




b(x; t) � '(x; t) dxdt (2.9)

is satis�ed for every funtion ' 2 C

1

0

(
� R

+

;R

3

) :

Remark. Instead of (2.6) we require in Setion 3 that z is ontinuous aross

the interfae �. We aution the reader that in this artile v does not normally

denote veloity. Instead, by v we denote funtions with values in S

3

or in R

m

with m � 1.

2.2 Evolution equation for the phase interfae, dissipation inequal-

ity

The 3 + 9 + N equations (2.1){(2.3) ontain the 3 + 9 + N + 1 unknown

omponents of u; T; z und S : Therefore the system (2.1){(2.3) is not losed;

an evolution equation for the order parameter S is missing. The evolution of

S is known if and only if the evolution of the sets (t) and 

0

(t) is known, and

this evolution is known, if a onstitutive equation is known, whih determines

the normal speed of the interfae between the phases as a funtion of u; T

and z. In this setion we �rst derive restritions for the form of suh an

equation from the seond law of thermodynamis, essentially following the

standard arguments in thermodynamis. Our presentation is inuened by
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[35℄. We then formulate a onstitutive equation for the normal speed, whih

is in aordane with these restritions. In Setion 2.3 this equation is used to

formulate an evolution equation for the order parameter S.

Let  =  ("; S; z) be the free energy. We assume that

 : �( )! R

is a suÆiently smooth funtion, whose domain of de�nition �( ) is equal to

the set S

3

� f0; 1g� R

N

or to a suitable subset of it.  must satisfy the basi

equation

�r

"

 ("; S; z) = T ; (2.10)

(f. [2℄), where � > 0 denotes the mass density. In this artile we assume that

� is a onstant. Insertion of (2.2) into (2.10) and integration yields

� ("; S; z) =

1

2

h

D(S)

�

"� "

�

(S)�Bz

�i

:

�

"� "

�

(S)� Bz

�

+  

1

(S; z);

with a suitable funtion  

1

:

Seond law of thermodynamis. We use the seond law of thermodynam-

is in the following form: For every subregion R of 
 with suÆiently smooth

boundary �R the displaement u ; the stress T ; the vetor of internal variables

z and the order parameter S must satisfy the inequality

d

dt

Z

R

� ("(r

x

u); S; z) dx �

Z

�R

q("(r

x

u); u

t

; S; z) � n(x) d�(x)

+

Z

R

b � u

t

dx ; (2.11)

with the negative energy ow (the stress power)

q("(r

x

u); u

t

; S; z) = T ("(r

x

u); S; z)u

t

:

Here n(x) is a unit vetor normal to �R pointing out of R :

Theorem 2.1 (Dissipation inequalities for the internal variables and for the

phase boundary) Let (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g be a

funtion, whih is ontinuously di�erentiable on the losed set  and on the

set 

0

, and whih is suh that (u; T; z; S)

j



0

has a ontinuously di�erentiable

extension to 

0

.

(i) Then (2.11), the seond law of thermodynamis, implies

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

� 0 (2.12)

on 
� R

+

in the weak sense.

11



(ii) Assume in addition that u; T; z; S satisfy (2.1), (2.2) on 
 � R

+

and

(2.4) (2.5) on the phase interfae �. Then (2.12) holds if and only if the

following two inequalities are satis�ed:

�r

z

 ("(r

x

u(x; t)); S(x; t); z(x; t)) � z

t

(x; t) � 0 (2.13)

for almost all (x; t) 2 
� R

+

0

, and

m

00

(x; t)

�

m

0

(x; t) �

h

C

�

r

x

u(x; t); S(x; t); z(x; t)

�i

m

0

(x; t)

�

� 0 (2.14)

for all (x; t) 2 � : Here m(x; t) = (m

0

(x; t); m

00

(x; t)) 2 R

3

� R is a unit

normal vetor to � pointing from 

0

to  ;

C(r

x

u; S; z) = � ("(r

x

u); S; z)I � (r

x

u)

T

T (2.15)

= � ("(r

x

u); S; z)I � (r

x

u)

T

(D(S)("(r

x

u)� "

�

(S)�Bz))

is the Eshelby tensor, and

[C℄ = C

+

� C

�

denotes the jump of C along the phase boundary � : By I we denote the

unit matrix.

Remark. By de�nition, (2.12) is satis�ed in the weak sense if

Z


�R

+

�

� � ("; S; z)'

t

+ q("; u

t

; S; z) � r

x

'� b � u

t

'

�

d(x; t) � 0

for all ' 2 C

1

0

(
� R

+

;R) with '(x; t) � 0.

Sine we assumed that m(x; t) 6= (0;�1) ; hene m

0

(x; t) 6= 0 ; it follows that

(2.14) is equivalent to

�

�

n �

h

C(r

x

u; S; z)

i

n

�

� 0 ;

with the unit normal vetor n =

m

0

jm

0

j

2 R

3

to �(t) and with

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

: (2.16)

�(x; t) is the normal speed of propagation of the phase interfae �(t) at the

point x in the diretion of n(x; t) : Therefore we have the following

12



Corollary 2.2 (Constitutive equation for the normal speed of the phase in-

terfae.) Let  : R ! R be a given funtion with (s)s � 0 for all s 2 R : If

u; T; z; S satisfy (2.1){(2.5), if the normal speed of the phase interfae satis�es

�(x; t) = 

�

n(x; t) �

h

C

�

r

x

u(x; t); S(x; t); z(x; t)

�i

n(x; t)

�

(2.17)

for all (x; t) 2 � ; and if the dissipation inequality

�r

z

 ("; S; z) � f(S; T; z) � 0 (2.18)

is satis�ed for all

("; S; z) 2 �( ) \ f("; S; z) j (S; T; z) 2 �(f)g ;

then the inequality (2.12) expressing the seond law of thermodynamis is ful-

�lled.

Remark. Sine by assumption (2.2) is satis�ed, we onsider here T =

T ("; S; z) to be a funtion of ("; S; z). (2.18) is the well known dissipation

inequality for onstitutive equations with internal variables, f. [2℄.

Proof of the Corollary: The equation (2.17) implies (2.14), and (2.13) is im-

plied by (2.3) and (2.18). Therefore the statement follows from Theorem 2.1.

Proof of Theorem 2.1: (i) Assume that the inequality (2.11) holds. To

every funtion ' 2 C

1

0

(
 � R

+

) satisfying '(y; t) � 0 for all (y; t) 2 
 � R

+

we an hoose a number r 2 R suh that

0 < r <

1

2

dist

�

supp'; �(
� R

+

)

�

:

Then for every (y; t) 2 supp' the losed ball

B

r

(y) = fx 2 R

3

j jx� yj � rg

belongs to 
 : In (2.11) we hoose R = B

r

(y) with (y; t) 2 
 � R

+

; multiply

the inequality with '(y; t) and integrate with respet to (y; t) : The result is

Z


�R

+

'(y; t)

d

dt

Z

jx�yj<r

� (x; t) dx d(y; t)

�

Z


�R

+

'(y; t)

Z

jx�yj=r

q(x; t) �

x� y

r

d�(x)d(y; t)

+

Z


�R

+

'(y; t)

Z

jx�yj<r

(b � u

t

)(x; t) dxd(y; t);

13



where we used the notations

 (x; t) =  

�

"(r

x

u(x; t)); S(x; t); z(x; t)

�

and

q(x; t) = q

�

"(r

x

u(x; t)); u

t

(x; t); S(x; t); z(x; t)

�

:

Partial integration and interhange of the order of integration yields

�

Z


�R

+

Z

jy�xj<r

'

t

(y; t)� (x; t) dy d(x; t)

� �

Z


�R

+

Z

jy�xj=r

'(y; t)

y � x

r

d�(y) � q(x; t) d(x; t)

+

Z


�R

+

Z

jy�xj<r

'(y; t)(b � u

t

)(x; t) dy d(x; t) :

In the �rst term on the right hand side of this inequality we use the Divergene

Theorem to obtain

Z


�R

+

Z

jy�xj<r

�

� '

t

(y; t)� (x; t) +r

y

'(y; t) � q(x; t)

� '(y; t)(b � u

t

)(x; t)

�

dyd(x; t) � 0 :

Sine

lim

r!0

3

4�r

3

Z

jy�xj<r

r

(y;t)

'(y; t)dy = r

(x;t)

'(x; t) ;

uniformly with respet to (x; t) 2 
�R

+

; we onlude from the last inequality

that

Z


�R

+

�

� � (x; t)'

t

(x; t) + q(x; t) � r

x

'(x; t)

� (b � u

t

)(x; t)'(x; t)

�

d(x; t) � 0 (2.19)

for all non-negative ' 2 C

1

0

(
� R

+

) : This proves (i).

(ii) Sine S is onstant on the sets  and 

0

; it follows that on

Æ



and on 

0

;

�

�t

 (x; t) = r

"

 ("; S; z) : "

t

+r

z

 ("; S; z) � z

t

:

Therefore the inequality (2.19) is equivalent to

Z


�R

+

�

�r

"

 ("; S; z) : "

t

+ �r

z

 ("; S; z) � z

t

� div

x

q("; u

t

; S; z)� b � u

t

�

'(x; t)d(x; t)

+

Z

�

�

�[ ("; S; z)℄m

00

� [q("; u

t

; S; z)℄ �m

0

�

'(x; t) d�(x; t) � 0 ;

14



where, as above, m(x; t) = (m

0

; m

00

) 2 R

3

� R is a unit normal vetor to �

pointing from 

0

to  and [ ℄ =  

+

�  

�

, [q℄ = q

+

� q

�

denote the jumps of

 and q along � : Using that

div

x

q = div

x

(Tu

t

) = (div

x

T

T

) � u

t

+ T

T

: r

x

u

t

= (div

x

T ) � u

t

+ �(r

"

 ) : "

t

; (2.20)

where we employed (2.10) and the symmetry of T ; the above inequality is seen

to be equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

� (div

x

T ) � u

t

� b � u

t

�

'(x; t) d(x; t)

+

Z

�

�

�[ ℄m

00

� [Tu

t

℄ �m

0

�

'(x; t) d�(x; t) � 0 :

Beause of div

x

T + b = 0 and beause of

[Tu

t

℄ = hT i[u

t

℄ + [T ℄hu

t

i

with

hT i =

1

2

(T

+

+ T

�

); hu

t

i =

1

2

(u

+

t

+ u

�

t

) ;

this is equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

�

'(x; t)d(x; t) (2.21)

+

Z

�

�

�[ ℄m

00

� (hT im

0

) � [u

t

℄� ([T ℄m

0

) � hu

t

i

�

'(x; t) d�(x; t) � 0 :

Sine m

0

2 R

3

is normal to �(t) ; it follows from (2.5) that [T ℄m

0

= 0 : The

vetor �eld

(m

00

m

0

;�jm

0

j

2

)

is tangential to � : Sine by assumption u is ontinuously di�erentiable on 

and on 

0

and ontinuous aross � ; it follows that the limits (u

t

)

�

; (r

x

u)

�

on

� exist and that the tangential derivatives on both sides of � oinide:

�jm

0

j

2

u

+

t

+m

00

(r

x

u)

+

m

0

= �jm

0

j

2

u

�

t

+m

00

(r

x

u)

�

m

0

;

hene

[u

t

℄ = [r

x

u℄m

0

m

00

jm

0

j

2

:

Therefore (2.21) is equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

�

'(x; t)d(x; t)

+

Z

�

�

�[ ℄�

�

hT i

m

0

jm

0

j

�

�

�

[r

x

u℄

m

0

jm

0

j

��

m

00

'(x; t)d�(x; t) � 0 :
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This inequality holds for all ' 2 C

1

0

(
� R

+

) with ' � 0 if and only if

�r

z

 ("; S; z) � z

t

� 0

almost everywhere in 
� R

+

and

�

�[ ℄�

�

hT i

m

0

jm

0

j

�

�

�

[r

x

u℄

m

0

jm

0

j

��

m

00

� 0 (2.22)

almost everywhere on � : We use again that [T ℄m

0

= 0, whih implies

[r

x

u℄

T

hT im

0

= [r

x

u℄

T

hT im

0

+ hr

x

ui

T

[T ℄m

0

= [(r

x

u)

T

T ℄m

0

;

whene (2.22) is equivalent to

m

0

jm

0

j

� (�[ ℄I � [(r

x

u)

T

T ℄)

m

0

jm

0

j

m

00

� 0 on �:

This inequality an be written in the form (2.14) using the de�nition of the

Eshelby tensor C in (2.15). The theorem is proven.

2.3 Evolution equation for the order parameter S

The equations (2.1){(2.3), (2.17) form a losed system, sine the evolution in

time of the phase interfae � an be determined from the normal veloity �

given in (2.17). However, instead of the equation (2.17) for the normal speed

of the phase interfae � one would prefer to have an evolution equation for

the order parameter S diretly. To derive suh an equation we start from the

method of harateristis, a ustomary way to model moving phase interfaes,

f. Taylor, Cahn and Handwerker [73℄. The method is based on a partial dif-

ferential equation readily derived from (2.16). We shortly sketh the iteration

proedure whih must be used to determine the manifold � with this method.

After this we shall not follow this method any further; instead, we show that

this partial di�erential equation an be used diretly as an evolution equation

for the order parameter S. This evolution equation is however a distribution

equation.

Assume that � is a suÆiently smooth 3{dimensional submanifold of 
 �

R

+

; that (m

0

; m

00

) is a unit normal vetor �eld on � ; and that � : � ! R is

the normal veloity of �. Then � satis�es the equation (2.16) on all of � :

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

:

Assume moreover that � is given by

� =

n

(x; t) 2 
� R

+

�

�

�

�(x; t) = 0

o

; (2.23)
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with a suitable funtion � : Then for all (x; t) 2 � the vetor

(r

x

�(x; t); �

t

(x; t)) is normal to � ; and we assume that it has the diretion of

�(m

0

(x; t); m

00

(x; t)) ; hene

(r

x

�; �

t

) = �j(r

x

�; �

t

)j (m

0

; m

00

) :

From this equation and from (2.16) we infer that the equation

�

t

(x; t)� �(x; t)jr

x

�(x; t)j = 0 (2.24)

holds for all (x; t) 2 � :

Conversely, if � is a suÆiently smooth funtion whih satis�es (2.24) and

whih on a 2{dimensional submanifold

~

� of � ful�lls the initial ondition

�(x; t) = 0; (x; t) 2

~

�;

then � vanishes on all of �, whene (2.23) is satis�ed. This follows from the

lassial theory of �rst order partial di�erential equations. If for (�; �) 2 R

3

�R

we set

p(x; t; �; �) = � � �(x; t)j�j ;

then the equation (2.24) an be written in the form

p(x; t;r

x

�(x; t); �

t

(x; t)) = 0 :

However, the solution � of this di�erential equation an not be determined in

the usual manner by solving the harateristi system of ordinary di�erential

equations, sine �(x; t) and p(x; t; �; �) are only de�ned for points (x; t) on the

manifold � : The partial derivatives p

t

and r

x

p are therefore not de�ned. To

solve the harateristi system it is neessary to extend � smoothly from � to

an open neighborhood of � by a suitable method. Then a solution of (2.24)

an be obtained by solving the harateristi system

dx

ds

= r

�

p(x; t; �; �)

dt

ds

=

�

��

p(x; t; �; �)

d�

ds

= �r

x

p(x; t; �; �)

d�

ds

= �

�

�t

p(x; t; �; �) :

The solution � of (2.24) is onstant along the harateristi urves s 7!

(x(s); t(s)) ; whene the manifold f�(x; t) = 0g is generated by those har-

ateristi urves s 7! (x(s); t(s)), whih pass through

~

�. That (2.23) holds

17



an be dedued from (2.24), whih implies that the normal vetor �eld

( ~m

0

; ~m

00

) = �(r

x

�; �

t

) to the manifold �(x; t) = 0 satis�es

�(x; t) = �

~m

00

(x; t)

j ~m

0

(x; t)j

:

Therefore, sine the manifolds � and f�(x; t) = 0g both ontain

~

� as a subman-

ifold and sine the normal speeds oinide, it follows that � = f�(x; t) = 0g.

In these onsiderations we assumed that � and the normal veloity � : �!

R are known from the outset. However, in the initial-boundary value problem

to the equations (2.1){(2.3), (2.17) the unknowns are u; T; z and �. The

normal speed is determined by (2.17) as a funtion of (u; T; z;�) and is also

unknown. To determine these unknowns, we must use an iteration proedure:

Start with an approximate phase interfae �

0

, determine to this approximate

interfae a solution (u; T; z) of the partial di�erential equations (2.1){(2.3) with

suitable boundary and initial onditions and with suitable interfae onditions

on �

0

, and insert this solution into (2.17) to ompute an approximate normal

speed �

0

on �

0

. Insert �

0

for � into (2.24). After smooth extension of �

0

, a

new approximate phase interfae �

1

an be omputed by solving this partial

di�erential equation with the method of harateristis. The iteration an then

be ontinued and one expets that the sequene of phase interfaes f�

0

;�

1

; : : :g

tends to the orret interfae sought.

We will not pursue this method further; instead, in the next lemma we show

that without extending � smoothly, the order parameter S an be inserted for

� in (2.24) diretly. If � is ontinued by zero from the manifold � to 
� R

+

,

then (2.24) an be interpreted as a partial di�erential equation, whih holds

on all of 
 � R

+

in the sense of measures. This yields an evolution equation

for S.

To formulate this result, we need the spae BV

lo

(
 � R

+

) of funtions

in L

1;lo

(
 � R

+

), whose weak �rst derivatives are Radon measures. More

preisely, a funtion h belongs to the spae BV

lo

(
�R

+

;R) if h 2 L

1;lo

(
�

R

+

;R) and if for any open subset V ompatly ontained in 
� R

+

sup

n

Z

V

h(x; t) div'(x; t) d(x; t)

�

�

�

' 2 C

1

0

(V;R

4

); j'j � 1

o

<1:

Here C

1

0

(
� R

+

) denotes the spae of all ontinuous mappings with ompat

support in 
� R

+

. A funtion belonging to the spae BV

lo

(
 � R

+

) is said

to have loally bounded variation.

The derivatives h

t

and h

x

i

are signed measures. To these measures the total

variation measures jh

t

j and jr

x

hj an be introdued: For a measure � on an

open subset U and a measureable subset R of U the total variation measure

18



j�j is de�ned by

j�(R)j = sup

n

X

i=1

j�(R

i

)j ; (2.25)

where the supremum is taken over all �nite olletions fR

i

g of �{measurable,

pairwise disjoint sets with R

i

� R.

The set 

0

is said to be of loally �nite perimeter if the harateristi

funtion S of this set belongs to the spae BV

lo

(
 � R

+

;R). In this ase a

unit normal vetor �eld (m

0

; m

00

) pointing from 

0

to  an be de�ned on the

measure theoreti boundary �

�

� �, whih onsists of all points (x; t) 2 � with

lim sup

r!0

1

r

4

jB

r

(x; t) \ 

0

j > 0; lim sup

r!0

1

r

4

jB

r

(x; t)n

0

j > 0:

Here B

r

(x; t) � R

4

is the ball with enter (x; t) and radius r and j � j denotes

the Lebesgue measure. For these and other results about the spaes BV

lo

we

refer to [26, 77, 75℄.

Lemma 2.3 Assume that 

0

is of loally �nite perimeter with a unit normal

vetor �eld (m

0

; m

00

) of �

�

pointing from 

0

to . Let � : 
 � R

+

! R be a

funtion satisfying

�(x; t) = 0; (x; t) 2 (
� R

+

)n�

�

:

Then S solves the equation

S

t

= � jr

x

Sj (2.26)

if and only if

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

for �

3

{all (x; t) 2 �

�

; where �

3

denotes the three dimensional Hausdor� mea-

sure.

Sholium. Beause of S 2 BV

lo

(
 � R

+

), both members of the equation

(2.26) are measures, and equality is meant in the sense of measures. The

measures S

t

and r

x

S satisfy S

t

(V ) = r

x

S(V ) = 0 for every open subset

V � (
 � R

+

)n� ; and the produt �jr

x

Sj is the measure orresponding to

the bounded linear form on C

0

(
� R

+

) de�ned by the integral

' 7! (�jr

x

Sj; ') =

Z


�R

+

'(x; t)�(x; t) djr

x

S(x; t)j ;

for ' 2 C

0

(
� R

+

) .

S must satisfy (2.26) with the normal speed of the phase boundary � given

by (2.17) inserted for �. Therefore (2.26) is the evolution equation for S. In
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the proof of Theorem 2.5 we also need the other diretion of the statement

of the lemma: If S is the harateristi funtion of the set 

0

and satis�es an

equation of the form (2.26), then � must neessarily be the normal speed of

the boundary �, along whih S jumps.

Proof of Lemma 2.3: By de�nition of the distribution S

t

and by the Diver-

gene Theorem for funtions of loally bounded variation (f. [26, p. 209℄), we

obtain for ' 2 C

1

0

(
� R

+

)

Z


�R

+

'(x; t) dS

t

(x; t) = �

Z


�R

+

'

t

(x; t)S(x; t) d(x; t)

= �

Z



0

'

t

(x; t) d(x; t) = �

Z

�

�

m

00

(x; t)'(x; t) d�

3

(x; t):

For the measure S

t

this means that

S

t

= �m

00

�

3

b�

�

; (2.27)

where �

3

b�

�

denotes the restrition of the Hausdor� measure �

3

to �

�

. Simi-

larly,

Z


�R

+

'(x; t) dS

x

i

(x; t) = �

Z


�R

+

'

x

i

(x; t)S(x; t) d(x; t)

= �

Z

�

�

m

0

i

(x; t)'(x; t) d�

3

(x; t) ;

hene r

x

S = �m

0

�

3

b�

�

: This equation together with (2.25) implies

jr

x

Sj = jm

0

j�

3

b�

�

:

From this equation and from (2.27) we infer that S

t

= � jr

x

Sj is equivalent

to

�m

00

�

3

b�

�

= �jm

0

j�

3

b�

�

;

whih holds if and only if �m

00

(x; t) = �(x; t)jm

0

(x; t)j for �

3

{all (x; t) 2 �

�

:

This ompletes the proof.

2.4 Weak form of the evolution equation for S

With the result of Lemma 2.3 we obtain an evolution equation for S by inser-

tion of (2.17) into (2.26). Combination of the resulting equation with (2.1){

(2.3) yields a losed system for the unknown funtion (u; T; z; S). This system

is
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�div

x

T (x; t) = b(x; t) (2.28)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))� Bz(x; t)

�

(2.29)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) (2.30)

S

t

(x; t) (2.31)

= 

�

n(x; t) � [C(r

x

u(x; t); S(x; t); z(x; t))℄n(x; t)

�

jr

x

S(x; t)j:

In (2.31), n(x; t) is a normal vetor to the surfae �(t) ; whih bounds the

set 

0

= fx 2 
 j S(x; t) = 1g : Suh a normal vetor �eld an be de�ned

if S belongs to the spae BV

lo

(
 � R

+

). However, for several reasons it is

advantageous to have an evolution equation without normal vetors. In this

setion we transform the evolution equation (2.31) into a form without normal

vetors under the assumption, that the funtion  is linear. In Setion 2.5 it is

shown that this form of the evolution equation an be onsiderably simpli�ed

provided that the solutions are smooth. This is one of the advantages of the

form without normal vetors.

Thus, in the remainder of this artile  denotes a positive onstant.

Lemma 2.4 Assume that (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g

satis�es the assumptions of Theorem 2.1 (ii). Then the following assertions

hold:

(i) The equation

jn � [C℄nj = j[C℄nj (2.32)

is satis�ed on � ; where n(x; t) 2 R

3

is a unit normal vetor to �(t) at

x 2 �(t) :

(ii) Let the distribution [C℄n jr

x

Sj be de�ned by

�

[C℄n jr

x

Sj; '

�

=

Z


�R

+

[C(x; t)℄n(x; t)'(x; t) djr

x

S(x; t)j ;

for ' 2 C

1

0

(
� R

+

;R

3

) ; with

[C(x; t)℄ =

(

[C(r

x

u(x; t); S(x; t); z(x; t))℄ ; (x; t) 2 �

0 ; (x; t) 2 (
� R

+

)n� :

Then, in the sense of distributions,

div

x

C(r

x

u; S; z)� �(r

x

z)

T

r

z

 ("; S; z)� (r

x

u)

T

b

= [C℄njr

x

Sj :

(2.33)
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Remark. Preisely, (2.33) means that

�

Z


�R

+

C(r

x

u; S; z) : r

x

'd(x; t)

�

Z

(
�R

+

)n�

�

�(r

x

z)

T

r

z

 ("; S; z) + (r

x

u)

T

b

�

� 'd(x; t)

=

�

[C℄njr

x

Sj; '

�

for all ' 2 C

1

0

(
 � R

+

;R

3

). The derivatives of r

x

z of z in (2.33) are the

lassial derivatives on (
� R

+

)n�, not the distributional derivatives of z on


 � R

+

. The funtion z an jump aross �, in whih ase the distributional

derivatives on 
�R

+

di�er from the lassial derivatives on (
�R

+

)n� by a

measure on �. This measure does not appear in (2.33).

Proof: (i) The interfae ondition (2.5) yields [T (x; t)℄n(x; t) = 0 for (x; t) 2 �.

(2.15) and the equation [(r

x

u)

T

T ℄ = [(r

x

u)

T

℄hT i+ h(r

x

u)

T

i[T ℄ thus imply

n � [C℄n = n �

�

�[ ℄� [(r

x

u)

T

T ℄

�

n (2.34)

= n �

�

�[ ℄n� [(r

x

u)

T

℄hT in� h(r

x

u)

T

i[T ℄n

�

= n �

�

�[ ℄n� [r

x

u℄

T

hT in

�

:

We now show that the range of the linear mapping [r

x

u℄

T

is ontained in the

subspae of R

3

spanned by n(x; t) : Sine �[ ℄ is a salar, statement (i) is an

obvious onsequene of this result and of (2.34).

Thus, assume that � 2 R

3

is orthogonal to n 2 R

3

: Then � is a tangential

vetor to �(t) : Sine by assumption u is ontinuously di�erentiable on (t) and

on 

0

(t) and ontinuous aross �(t) ; it follows that the limits (r

x

u)

�

exist on

�(t) and that the tangential derivatives on both sides of �(t) oinide. For

every v 2 R

3

we thus obtain

� �

�

[r

x

u℄

T

v

�

=

�

[r

x

u℄�

�

� v

=

��

(r

x

u)�

�

+

�

�

(r

x

u)�

�

�

�

� v

=

��

�

��

u

�

+

�

�

�

��

u

�

�

�

� v = 0 ;

whih proves that the range of [r

x

u℄

T

is ontained in the subspae spanned

by n :

(ii) Letm(x; t) = (m

0

(x; t); m

00

(x; t)) 2 R

4

be a unit normal vetor to � pointing
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from 

0

to  : With the unit normal vetor n(x; t) =

m

0

(x;t)

jm

0

(x;t)j

to �(t) and with

' 2 C

1

0

(
� R

+

;R

3

) we obtain just as in the proof of Lemma 2.3 that

�

[C℄n jr

x

Sj; '

�

=

Z


�R

+

' � [C℄n djr

x

Sj

=

Z

�

'(x; t) � [C(x; t)℄n(x; t)jm

0

(x; t)j d�

3

(x; t)

=

Z

�

�

�[ ℄m

0

� [(r

x

u)

T

T ℄m

0

�

� 'd�

3

(2.35)

=

Z

�

�[ ℄m

0

� 'd�

3

�

Z

�

0

B

B

�

m

0

� [Tu

x

1

℄

.

.

.

m

0

� [Tu

x

3

℄

1

C

C

A

� 'd�

3

=

Z

�

�[ ℄m

0

� 'd�

3

+

Z


�R

+

3

X

i=1

div

x

(Tu

x

i

'

i

) d(x; t) :

Now, beause of the symmetry of T ;

div

x

(Tu

x

i

'

i

) = (div

x

T

T

) � u

x

i

'

i

+ T

T

: (r

x

u

x

i

)'

i

+ (Tu

x

i

) � r

x

'

i

= (div

x

T ) � u

x

i

'

i

+ T : "(r

x

u

x

i

)'

i

+ (Tu

x

i

) � r

x

'

i

: (2.36)

Sine S is onstant on onneted omponents of (
� R

+

)n� ; we obtain from

(2.10) that on (
� R

+

)n�

T : "(r

x

u

x

i

)'

i

= �r

"

 ("(r

x

u); S; z) : "(r

x

u

x

i

)'

i

= �

�

�x

i

 ("; S; z)'

i

� �r

z

 ("; S; z) � z

x

i

'

i

: (2.37)

Using that T solves (2.1), we obtain by insertion of (2.37) into (2.36) that

3

X

i=1

div

x

(Tu

x

i

'

i

)

=

3

X

i=1

�

�

�

�x

i

 ("; S; z)� b � u

x

i

� �r

z

 ("; S; z) � z

x

i

�

'

i

+

3

X

i=1

(Tu

x

i

) � r

x

'

i

=

�

div

x

�

� ("; S; z)I

�

� (r

x

u)

T

b� �(r

x

z)

T

r

z

 ("; S; z)

�

� '

+ (T (r

x

u)) : (r

x

')

T

:
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We insert this equation into (2.35), note that (T (r

x

u)) : (r

x

')

T

=

((r

x

u)

T

T ) : r

x

' and apply the Divergene Theorem to obtain

�

[C℄n jr

x

Sj; '

�

= �

Z


�R

+

�

� ("; S; z)I � (r

x

u)

T

T

�

: r

x

'd(x; t)

�

Z


�R

+

�

(r

x

u)

T

b + �(r

x

z)

T

r

z

 ("; S; z)

�

� 'd(x; t)

=

�

div

x

�

� ("; S; z)I � (r

x

u)

T

T

�

; '

�

�

�

(r

x

u)

T

b+ �(r

x

z)

T

r

z

 ("; S; z); '

�

=

�

div

x

C(r

x

u; S; z)� (r

x

u)

T

b� �(r

x

z)

T

r

z

 ("; S; z); '

�

:

The seond equality sign in this omputation holds by de�nition of the distri-

bution div

x

(� I � (r

x

u)

T

T ) : This proves the lemma.

With this result we obtain the evolution equation for S, whih does not ontain

normal vetors:

Theorem 2.5 Assume that (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g

satis�es the equations (2.28){(2.31), the interfae onditions

[u℄ = [T ℄n = 0

on � and the regularity assumptions of Theorem 2.1. Moreover, assume that

the funtion f in (2.30) ful�lls the dissipation inequality (2.18):

�r

z

 ("; S; z) � f(S; T; z) � 0:

Then the equation

jS

t

j =  jdiv

x

C(r

x

u; S; z)� �(r

x

z)

T

r

z

 ("; S; z)� (r

x

u)

T

bj (2.38)

and the entropy ondition

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

� 0 (2.39)

are satis�ed with

q("; u

t

; S; z) = Tu

t

:

Proof: The equations (2.31), (2.32) and (2.33) together imply

jS

t

j = jn � [C℄nj jr

x

Sj = j[C℄nj jr

x

Sj

= 

�

�

�

[C℄njr

x

Sj

�

�

�

= jdiv

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

bj ;
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whih is (2.38). If (2.31) holds, then it follows from Lemma 2.3 that

(n � [C(r

x

u; S; z)℄n)

must be the normal veloity � of the surfae �, along whih S has a jump.

Therefore equation (2.17) is satis�ed. By Corollary 2.2, the equations (2.17)

and (2.18) together imply that (2.39) holds. This proves the theorem.

Initial-boundary value problem for an inelasti material with evolv-

ing mirostruture. The equation (2.38) does not ontain normal vetors.

However, beause of the absolute values on both sides, this equation allows

more solutions than (2.31) does. We surmise that the entropy ondition (2.39)

singles out the orret solutions of (2.38) and that, therefore, (2.38) and (2.39)

together are equivalent to (2.31). The mathematial model for the inelasti

material with evolving mirostruture thus derived onsists of the equations

(2.28){(2.30), (2.38), of the entropy ondition (2.39) as side ondition, and

of the interfae, boundary and initial onditions (2.4){(2.8). The omplete

initial-boundary value problem is formulated at the beginning of Setion 3.

2.5 Redution of the evolution equation for smooth solutions

In this setion we show that the evolution equation (2.38) an be simpli�ed

onsiderably under the assumption that the funtion (u; T; z; S) does not jump

at the phase boundaries, but varies smoothly in all of 
 � R

+

. In these in-

vestigations we are led by the idea that the initial-boundary value problem

onsisting of the equations (2.1){(2.3), (2.7), (2.8) and of the simpli�ed evolu-

tion equation derived below has smooth solutions, at least for a �nite interval

of time, if smooth funtions are inserted for the initial data z

(0)

, S

(0)

in (2.8).

We surmise that if a sequene of smooth initial data is hosen, whih approx-

imates the original initial data with jumps, a sequene of smooth solutions

is obtained approximating the disontinuous solution to the original initial

data. This would be helpful both to prove existene of solutions of the initial-

boundary value problem (2.1){(2.8), (2.38) to disontinuous initial data, and

to ompute the solution of this problem numerially.

Let J � R be an interval ontaining the numbers 0 and 1 and let

"

�

: J ! S

3

;

f : �(f) � J � S

3

� R

N

! R

N

;

 : �( ) � S

3

� J � R

N

! R

be smooth funtions. We assume that the free energy  satis�es (2.10) and

that f and  satisfy the dissipation inequality (2.18):

�r

z

 ("; S; z) � f(S; T ("; S; z); z) � 0
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for all ("; S; z) 2 �( ) \ f("; S; z) j (S; T ("; S; z); z) 2 �(f)g: Here we set

T ("; S; z) = D(S)("� "

�

(S)� Bz):

Lemma 2.6 Let (u; T; z; S) be a ontinuously di�erentiable solution of the

equations (2.28) and (2.38). Then

jS

t

j = �j 

S

("(r

x

u); S; z)j jr

x

Sj (2.40)

holds in 
� R

+

.

Conversely, if (u; T; z; S) is a ontinuously di�erentiable solution of

�div

x

T = b; (2.41)

T = D(S)

�

"(r

x

u)� "

�

(S)� Bz

�

; (2.42)

z

t

= f(S; T; z); (2.43)

S

t

= ��  

S

("(r

x

u); S; z) jr

x

Sj; (2.44)

then (2.28){(2.30), the evolution equation (2.38) for S and the entropy ondi-

tion (2.39) are satis�ed.

Proof: The de�nition of the Eshelby tensor in (2.15) yields

div

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

b (2.45)

= �r

x

 � div

x

�

(r

x

u)

T

T

�

� �(r

x

z)

T

r

z

 � (r

x

u)

T

b :

Moreover, (2.10) implies

�r

x

 ("; S; z)

=

0

B

B

�

�r

"

 ("; S; z) : "

x

1

+ �r

z

 ("; S; z) � z

x

1

.

.

.

�r

"

 ("; S; z) : "

x

3

+ �r

z

 ("; S; z) � z

x

3

1

C

C

A

+ � 

S

("; S; z)r

x

S

=

0

B

B

�

T : "

x

1

.

.

.

T : "

x

3

1

C

C

A

+ �(r

x

z)

T

r

z

 + � 

S

("; S; z)r

x

S : (2.46)

Also, beause of the symmetry of T ;

�div

x

�

(r

x

u)

T

T

�

= �(r

x

u)

T

div

x

T �

0

B

B

�

T : r

x

(u

x

1

)

.

.

.

T : r

x

(u

x

3

)

1

C

C

A

= �(r

x

u)

T

div

x

T �

0

B

B

�

T : "

x

1

.

.

.

T : "

x

3

1

C

C

A

: (2.47)
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Therefore, if T solves (2.28) (or (2.41)), then we obtain by ombination of

(2.45){(2.47) the equality

div

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

b = � 

S

("; S; z)r

x

S : (2.48)

With this equation the proof of the lemma readily follows: First, if (2.28) and

(2.38) are satis�ed, then insertion of (2.48) in (2.38) yields (2.40). Conversely,

if (2.41){(2.44) are satis�ed, we take absolut values on both sides of (2.44)

and insert (2.48) into the resulting equation to obtain (2.38). The equations

(2.28){(2.30) hold, sine (2.41){(2.43) are restatements of these equations.

To prove that the entropy ondition (2.39) holds, we use (2.20) and (2.41)

to ompute

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

= �(r

"

 ) : "(r

x

u

t

) + � 

S

S

t

+ �r

z

 � z

t

� (div

x

T ) � u

t

� �(r

"

 ) : "(r

x

u

t

)� b � u

t

= � 

S

S

t

+ �r

z

 � z

t

= �� 

S

� 

S

jr

x

Sj+ �r

z

 � f � 0:

The last equality sign follows from (2.43) and (2.44), and the inequality sign

is a onsequene of the dissipation inequality (2.18) for f , whih we assumed

to hold. This shows that the entropy ondition (2.39) is ful�lled.

Sholia. 1. Beause of the produt  

S

jr

x

Sj, the formulation of the system

(2.41){(2.44) is only valid for smooth solutions. Sine a smooth solution of this

system also satis�es the evolution equation (2.38) and the entropy ondition

(2.39), whose formulations are both valid for non-smooth solutions, it is tempt-

ing to assume that for a sequene of smooth solutions tending to a non-smooth

limit funtion, this limit funtion is a solution of (2.38) and (2.39). This would

allow us to onstrut and ompute numerially non-smooth solutions of the

initial-boundary value problem for evolving mirostrutures using the simpler

equations (2.41){(2.44).

2. In this setion we require that the free energy  ("; S; z) is de�ned for all

values of S in an interval J ontaining 0 and 1. As in the derivation of the

Cahn-Allen equation, f. [9℄, it should be required that  is a double well

potential having minima at the values S = 0 and S = 1. The �rst order equa-

tions (2.44) or (2.38) ould be an alternative to the Cahn-Allen equation, an

equation of seond order.

27



3 Homogenization of the equations for materials with

evolving mirostruture

3.1 The mirosopi initial-boundary value problem

In this setion we study the homogenization of the following initial-boundary

value problem for (u; T; z; S) stated and derived in the preeding setion: In


� R

+

the partial di�erential equations

�div

x

T (x; t) = b(x; t) (3.1)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))�Bz(x; t)

�

(3.2)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) (3.3)

jS

t

(x; t)j = �jdiv

x

C(r

x

u; S; z)

��(r

x

z)

T

r

z

 ("(r

x

u); S; z)� (r

x

u)

T

bj (3.4)

must be satis�ed. The entropy ondition

�

�

�t

 ("; S; z)� div

x

(Tu

t

)� bu

t

� 0 ; (3.5)

must be ful�lled as side ondition. The interfae onditions are

[u(x; t)℄ = [T (x; t)℄n(x; t) = 0; z(x; t+) = g(z(x; t�)); (x; t) 2 �; (3.6)

the boundary ondition is

T (x; t)n(x) = 0; x 2 �
; t � 0 ; (3.7)

and the initial onditions are

z(x; 0) = z

(0)

(x) ; S(x; 0) = S

(0)

(x); x 2 
 : (3.8)

In the interfae ondition g : R

N

! R

N

is a given funtion.

At time t = 0 the mirostruture in the material, that is the distribution of

the 

0

{preipitates in the {matrix phase, is determined by the initial funtion

S

(0)

. We shall assume that the mirostruture is approximately periodi at

t = 0 and study the situation when the dimensions of the periodiity ell of

this mirostruture are proportional to a parameter � and thus tend to zero

for � ! 0. If we assume that also the initial funtion z

(0)

is approximately

periodi with the same periodiity ell, then also the solution (u; T; z; S) of

(3.1){(3.8) to these initial data will be periodi. With shrinking periodiity

ell one expets that this solution tends in a suitable sense against the solution
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of a homogenized system of partial di�erential equations. In this setion we

derive this homogenized system.

This derivation will be purely formal, however, sine we do neither prove

that the initial-boundary value problem (3.1){(3.8) has a solution, nor do we

prove that solutions must onverge to solutions of the homogenized system.

Instead, we assume that solutions of this initial-boundary value problem exist

and that these solutions onverge to limit funtions. Our goal is to derive a

system of partial di�erential equations, the homogenized system, whih must

be satis�ed by the limit funtions.

The onstant � in (3.4) determines the speed of propagation of the phase

boundary between the { and 

0

{phases. Sine this speed is proportional to �,

it is also proportional to the dimensions and distanes of the preipitates. The

time sale, on whih the mirostruture evolves, does therefore not hange

if � tends to zero. If the speed of propagation would not derease with �,

then beause of the dereasing distanes of the preipitates the mirostruture

would evolve more and more rapidly, and the interation of the preipitates

would happen in a short time interval with length tending to zero. One ex-

pets that after this short time interval the mirostruture would settle to an

approximately steady state. Homogenization would essentially amount to de-

termine an initial-boundary value problem, whose solutions are asymptoti to

the solution of the original problem at large times.

At present we do not know how to derive suh an initial-boundary value

problem. In fat, in pratial problems the main interest is not to determine

suh a long time asymptotis to the evolution of the mirostruture. Instead,

in a real material the evolution of the mirostruture is slow and typially

needs hundreds or thousands of hours, and it is just this slow evolution before

and during the interation and the formation of the plate-like struture, whih

one wants to study. The hoie of the onstant � in (3.4) is therefore not

only justi�ed by the redution of the mathematial diÆulties; it is in fat a

natural hoie in the problem we want to study.

The evolution equation (3.4) for the order parameter and the equation

resulting from it in the homogenized initial-boundary value problem are dis-

tribution equations. To derive and formulate the homogenized distribution

equation we use a family of solutions of the initial-boundary value problem

(3.1){(3.8) depending on the fast variable. The de�nition of this family is

given below. The homogenized equations for the displaement, the stress and

the internal variables are derived in Setion 3.2 using the method of asymptoti

series. In Setion 3.3 we prove some results for osillating funtions of bounded

variation, whih are used in Setion 3.4 to derive the homogenized equation

for the order parameter. There we also formulate the omplete homogenized

initial-boundary value problem.
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Thus, assume that the initial data are given in the form

z

(0)

(x) = z

(0)

0

(x;

x

�

); S

(0)

(x) = S

(0)

0

(x;

x

�

) ; (3.9)

with a parameter � > 0 and funtions z

(0)

0

: 
 � R

3

! R

N

; S

(0)

0

: 
 � R

3

!

f0; 1g : The funtions y 7! z

(0)

0

(x; y); y 7! S

(0)

0

(x; y) are assumed to be periodi

for every x 2 
 with a bounded periodiity ell Y � R

3

. For simpliity we

assume that

Z

Y

dy = 1: (3.10)

We onsider values of � in the range 0 < � < �

0

with a positive onstant

�

0

. The funtions z

(0)

0

(x;

x

�

) and S

(0)

0

(x;

x

�

) are approximately periodi with a

periodiity ell, whose dimensions derease to zero when � tends to zero.

In the following de�nition the value � > 0 is kept �xed:

De�nition 3.1 Let

((x; y; t) 7! (u; T; z; S)) : 
� R

3

� R

+

! R

3

� S

3

� R

N

� f0; 1g

be a funtion whih satis�es the initial ondition

z(x; y; 0) = z

(0)

0

(x;

x

�

+ y); S(x; y; 0) = S

(0)

0

(x;

x

�

+ y) (3.11)

for almost all (x; y) 2 
 � R

3

, and for whih the funtion (x; t) 7!

(u; T; z; S)(x; y; t) is a solution of (3.1){(3.7) for almost all y 2 R

3

. Then

(u; T; z; S) is alled a family of solutions depending on the fast variable y of

the initial-boundary value problem (3.1){(3.7), (3.11) with parameter � and

initial data (z

(0)

0

; S

(0)

0

).

In the following we �x z

(0)

0

and S

(0)

0

and for brevity avoid to mention the initial

data. Thus, we all (u; T; z; S) a family of solutions of the initial-boundary

value problem depending on the fast variable with parameter �.

3.2 Homogenized equations for u, T and z

In this setion we study the homogenization of the equations (3.1){(3.3). We

assume that for all 0 < � < �

0

a family of solutions (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) of the

initial-boundary value problem depending on the fast variable with parameter

� exists, whih an be asymptotially expanded in the form

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) = (u

�

; T

�

; z

�

; S

�

)(x;

x

�

+ y; t) ; 0 < � < �

0

; (3.12)
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with

u

�

(x; y; t) = u

0

(x; t) + �u

1

(x; y; t) + �

2

u

2

(x; y; t; �) (3.13)

T

�

(x; y; t) = T

0

(x; y; t) + �T

1

(x; y; t; �) (3.14)

z

�

(x; y; t) = z

0

(x; y; t) + z

1

(x; y; t; �) (3.15)

S

�

(x; y; t) = S

0

(x; y; t) + S

1

(x; y; t; �) ; (3.16)

where the funtions

u

�

; u

1

; u

2

(�; �) : 
� R

3

� R

+

! R

3

T

�

; T

0

; T

1

(�; �) : 
� R

3

� R

+

! S

3

z

�

; z

0

; z

1

(�; �) : 
� R

3

� R

+

! R

N

S

�

; S

0

; S

1

(�; �) : 
� R

3

� R

+

! f0; 1g

are assumed to be periodi with respet to the y{argument and have periodiity

ell Y . The remainder terms are assumed to satisfy

lim

�!0

S

1

(x; y; t; �) = 0 (3.17)

lim

�!0

Z




Z

Y

jz

1

(x; y; t; �)j

2

dydx = 0 ; (3.18)

and the boundedness onditions

sup

0<�<�

0

Z




Z

Y

�

jD

�

x;y

u

2

(x; y; t; �)j

2

�

dydx <1 (3.19)

sup

0<�<�

0

Z




Z

Y

�

jD

�

x;y

T

1

(x; y; t; �)j

2

�

dydx <1; (3.20)

for every multi-index � with j�j � 1.

Sholia. 1. The funtion (ẑ

�

;

^

S

�

) satis�es the initial ondition (3.11) if (z

�

; S

�

)

ful�lls

z

�

(x; y; 0) = z

(0)

0

(x; y); S

�

(x; y; 0) = S

(0)

0

(x; y); (x; y) 2 
� R

3

:

2. If the solution of the initial-boundary value problem (3.1){(3.8) is unique,

and if (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of solutions to the initial-boundary value prob-

lem (3.1){(3.7), (3.11) depending on the fast variable with parameter �, then

y 7! (û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) is periodi with periodiity ell Y . For, otherwise a

solution di�erent from

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

) : 
� R

3

� R

+

0

! R

3

� S

3

� R

N

� f0; 1g
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ould be obtained by extending (û

�

;

^

T

�

; ẑ

�

;

^

S

�

)

j


�Y�R

+

0

periodially with peri-

odiity ell 
�Y �R

+

0

to 
�R

3

�R

+

0

. This would ontradit the uniqueness

of the solution.

3. Assume that (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of solutions depending on the fast

variable with parameter �, whih are periodi with respet to the y{argument

and have periodiity ell Y . Let (u

0

; u

1

; T

0

; z

0

; S

0

) = (u

0

; u

1

; T

0

; z

0

; S

0

)(x; y; t)

be a given funtion, whih is periodi with respet to y and has periodiity

ell Y . Then neessarily the remainder (~u;

~

T ; ~z;

~

S) de�ned by

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) (3.21)

= (u

0

+ �u

1

; T

0

; z

0

; S

0

)(x;

x

�

+ y; t) + (�

2

~u; �

~

T ; ~z;

~

S)(x; y; t; �)

is of the form given above:

(~u;

~

T ; ~z;

~

S)(x; y; t; �) = (u

2

; T

1

; z

1

; S

1

)(x;

x

�

+ y; t; �) ; (3.22)

with a funtion

(x; y; t) 7! (u

2

; T

1

; z

1

; S

1

)(x; y; t; �);

whih is periodi with respet to y and has periodiity ell Y . For, the left

hand side of the equation (3.21) and the �rst term on the right hand side are

periodi with periodiity ell Y . Therefore also the seond term on the right

hand side is periodi. De�ne

(u

2

; T

1

; z

1

; S

1

)(x; y; t; �) = (~u;

~

T ; ~z;

~

S)(x; y �

x

�

; t; �):

Clearly, u

2

; T

1

; z

1

; S

1

are periodi with respet to y and satisfy (3.22).

Homogenization. From the hypothesis that (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of so-

lutions of the initial-boundary value problem depending on the fast variable

and under the assumption that the terms u

2

and T

1

in the asymptoti ex-

pansion satisfy (3.19) and (3.20) we derive now a system of three equations

whih must be satis�ed by the limit funtions u

0

; T

0

; z

0

; S

0

. The equations

of this system are the homogenized equations orresponding to the equations

(3.1){(3.3). To formulate this system we need some de�nitions:

By M

Y

: L

2

(Y )! R we denote the mean value operator

M

Y

v =

Z

Y

v(y) dy :

Of ourse,M

Y

an also be onsidered to be a projetor to the spae of onstant

funtions on Y .
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The elastiity tensors D(0) : S

3

! S

3

and D(1) : S

3

! S

3

in the matrix

phase  and in the 

0

{phase, respetively, are by assumption symmetri, pos-

itive de�nite mappings. Sine the inverses D(0)

�1

and D(1)

�1

have the same

properties, to a given funtion S : 
 � Y � R

+

0

! f0; 1g we an therefore

de�ne an (S; x; t){dependent salar produt on L

2

(Y;S

3

) by

[v; w℄

(S;x;t)

=

Z

Y

�

D(S(x; y; t))

�1

v(y)

�

: w(y) dy ;

for v; w 2 L

2

(Y;S

3

). Let

D

0

=

n

w

j

Y

�

�

�

w 2 L

2;lo

(R

3

;S

3

); div

y

w = 0; w is periodi

with periodiity ell Y

o

:

D

0

is a losed subspae of L

2

(Y;S

3

). By

P

(S;x;t)

: L

2

(Y;S

3

)! D

0

� L

2

(Y;S

3

)

we denote the projetor onto D

0

, whih is orthogonal with respet to the salar

produt [v; w℄

(S;x;t)

. Of ourse, P

(S;x;t)

depends on the funtion S and on (x; t).

By H

1

(
 � Y ) we denote the usual Sobolev spae of funtions with weak

derivatives in L

2

(
� Y ) up to order 1.

Theorem 3.2 Assume that for all �

0

> � > 0 the funtion (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) with

the representation (3.12){(3.16) is a family of solutions of the initial-boundary

value problem depending on the fast variable with parameter �. If the funtion

(x; y) 7! (u

0

; u

1

; u

2

; T

0

; T

1

)(x; y; t) belongs to the Sobolev spae H

1

(
 � Y ) for

almost all t, if (x; y) 7! (z

0

; z

1

)(x; y; t) belongs to L

2

(
 � Y ) for almost all t,

and if the onditions (3.17){(3.20) are ful�lled, then the funtion (u

0

; T

0

; z

0

; S

0

)

satis�es

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (3.23)

T

0

(x; �; t) = P

(S

0

;x;t)

n

D(S

0

(x; �; t))

�

"(r

x

u

0

(x; t)) (3.24)

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t)

�o

:

Proof: From (3.12) and (3.14) we obtain

div

x

^

T

�

(x; y; t) = div

x

T

�

(x;

x

�

+ y; t)

= div

x

�

T

0

(x;

x

�

+ y; t) + �T

1

(x;

x

�

+ y; t; �)

�
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=

h

1

�

div

�

T

0

(x; �; t) (3.25)

+ div

x

T

0

(x; �; t) + div

�

T

1

(x; �; t; �)

+ �div

x

T

1

(x; �; t; �)

i

�=

x

�

+y

:

Beause of the periodiity of y 7! T

1

(x; y; t; �), the hypothesis (3.20) implies

�

�

Z




Z

Y

jdiv

x

T

1

(x; �; t; �)

j

�=

x

�

+y

j

2

dydx

�

1=2

= �

�

Z




Z

Y

jdiv

x

T

1

(x; y; t; �)j

2

dydx

�

1=2

� �K

1

;

with a suitable onstant K

1

. This estimate and (3.25) show that (3.1) an only

hold for all 0 < � < �

0

if

Z




Z

Y

jdiv

y

T

0

(x;

x

�

+ y; t)j

2

dydx =

Z




Z

Y

jdiv

y

T

0

(x; y; t)j

2

dydx = 0

and

Z




Z

Y

jdiv

x

T

0

(x; �; t)

j

x

�

+y

+ div

y

T

1

(x;

x

�

+ y; t; �) + b(x; t)j

2

dydx

=

Z




Z

Y

jdiv

x

T

0

(x; y; t) + div

y

T

1

(x; y; t; �) + b(x; t)j

2

dydx = 0;

from whih we onlude that the equations

div

y

T

0

(x; y; t) = 0 (3.26)

�div

x

T

0

(x; y; t)� div

y

T

1

(x; y; t; �) = b(x; t) (3.27)

hold for almost all (x; y; t) 2 
� R

3

� R

+

. Integration of (3.27) with respet

to y yields

�div

x

Z

Y

T

0

(x; y; t) dy�

Z

Y

div

y

T

1

(x; y; t; �) dy =

Z

Y

b(x; t) dy = b(x; t) ;

where in the last step we used (3.10). The Divergene Theorem yields

�div

x

Z

Y

T

0

(x; y; t) dy�

Z

�Y

T

1

(x; y; t; �)n(y) d�(y) = b(x; t) ; (3.28)

34



where n(y) is the exterior unit normal vetor to �Y at y. Sine Y is a period-

iity ell for T

1

, it follows that

Z

�Y

T

1

(x; y; t; �)n(y) d�(y) = 0 :

With the de�nition of the mean value operator equation (3.28) an therefore

be written in the form of equation (3.23).

To prove (3.24), we insert (3.13) and (3.14) into (3.2) and obtain for � =

x

�

+ y

T

0

(x; �; t) + �T

1

(x; �; t; �)

= D(S

�

(x; �; t))

�

"(r

x

u

0

(x; t) +r

�

u

1

(x; �; t)) (3.29)

+ �"(r

x

u

1

(x; �; t) +r

�

u

2

(x; �; t; �))

+ �

2

"(r

x

u

2

(x; �; t; �))� "

�

(S

�

(x; �; t))� Bz

�

(x; �; t)

�

:

With the omponents D

ijkl

(S) of the elastiity tensor D(S) we de�ne

jD(S)j

2

=

X

D

ijkl

(S)

2

:

Sine the hypothesis (3.17) implies

lim

�!0

jD(S

�

(x; y; t))�D(S

0

(x; y; t))j

2

= 0

for almost all (x; y), sine S

�

and S

0

have values in f0; 1g and sine all funtions

are periodi with respet to y, the Dominated Convergene Theorem implies

lim

�!0

Z




Z

Y

�

�

�

�

D(S

�

(x;

x

�

+ y; t))�D(S

0

(x;

x

�

+ y; t))

�

�

"(r

x

u

0

(x; t) +r

y

u

1

(x;

x

�

+ y; t))

�

�

�

�

dydx

= lim

�!0

Z




Z

Y

�

�

�

�

D(S

�

(x; y; t))�D(S

0

(x; y; t))

�

(3.30)

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

�

�

�

�

dydx

� lim

�!0

�

Z




Z

Y

�

�

�

D(S

�

(x; y; t))�D(S

0

(x; y; t))

�

�

�

2

dydx

�

1=2

�

�

Z




Z

Y

�

�

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

�

�

�

2

dydx

�

1=2

= 0 :
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Sine jD(S

�

(x; y; t))j � max(jD(0)j; jD(1)j); the hypothesis (3.19) yields

lim

�!0

Z




Z

Y

�

�

�

D(S

�

(x;

x

�

+ y; t))

�

�"(r

x

u

1

(x; �; t)

+r

�

u

2

(x; �; t; �)) + �

2

"(r

x

u

2

(x; �; t; �))

�

j
x

�

+y

�

�

�

dydx

� lim

�!0

�

Z




Z

Y

jD(S

�

(x; y; t))j

2

dydx

�

1=2

(3.31)

�

Z




Z

Y

j�"(r

x

u

1

+r

y

u

2

) + �

2

"(r

x

u

2

)j

2

dydx

�

1=2

= 0

By a similar reasoning we see that (3.15){(3.18) and the Dominated Conver-

gene Theorem also imply

lim

�!0

Z




Z

Y

�

�

�

D(S

�

(x;

x

�

+ y; t))

�

"

�

(S

�

(x;

x

�

+ y; t))�Bz

�

(x;

x

�

+ y; t)

�

�D(S

0

(x;

x

�

+ y; t))

�

"

�

(S

0

(x;

x

�

+ y; t))�Bz

0

(x;

x

�

+ y; t)

�

�

�

�

dydx = 0:

(3.32)

Finally, (3.20) implies

lim

�!0

Z




Z

Y

j�T

1

(x;

x

�

+ y; t; �)j dx (3.33)

� j
j

1=2

lim

�!0

�

�

Z




Z

Y

jT

1

(x; y; t; �)j

2

dydx

�

1=2

= 0 :

Combination of (3.30){(3.33) with (3.29) shows that (3.2) an hold for all

�

0

> � > 0 only if

Z




Z

Y

�

�

�

T

0

(x; �; t)�D(S

0

(x; �; t))

�

"(r

x

u

0

(x; t) +r

�

u

1

(x; �; t))

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t)

�

�

�

�

�=

x

�

+y

dydx

=

Z




Z

Y

�

�

�

T

0

(x; y; t)�D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

� "

�

(S

0

(x; y; t))� Bz

0

(x; y; t)

�

�

�

�

dydx = 0;

where we again used the periodiity of all funtions of the integrand with

respet to y, whene
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T

0

(x; y; t) = D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t)) (3.34)

� "

�

(S

0

(x; y; t))� Bz

0

(x; y; t)

�

for almost all (x; y; t) 2 
� R

3

� R

+

.

To see that this equation implies (3.24), note that for every w 2 D

0

we

obtain beause of the symmetry of w(y) for the salar produt

[D(S

0

(x; �; t)) "(r

y

u

1

(x; �; t)); w(�)℄

(S

0

;x;t)

=

Z

Y

"(r

y

u

1

(x; y; t)) : w(y) dy =

Z

Y

r

y

u

1

(x; y; t) : w(y) dy

=

Z

Y

u

1

(x; y; t) � divw(y) dy = 0 :

The last integral vanishes sine divw = 0 . The partial integration does not

yield boundary terms, sine u

1

and w both have periodiity ell Y . From this

omputation we onlude that the funtion y 7! D(S

0

(x; y; t)) "(r

y

u

1

(x; y; t))

belongs to the orthogonal spae of D

0

. This orthogonal spae is equal to the

kernel of the projetor P

(S

0

;x;t)

. Moreover, (3.26) implies that y 7! T

0

(x; y; t)

belongs to D

0

. Appliation of P

(S

0

;x;t)

on both sides of (3.34) thus yields the

equation (3.24). This ompletes the proof.

Remark. For use in Setion 3.4 we note that the reasoning at the end of this

proof also shows that appliation of P

?

(S

0

;x;t)

= (I � P

(S

0

;x;t)

) to (3.34) yields

�D(S

0

(x; �; t))"(r

y

u

1

(x; �; t)) (3.35)

= P

?

(S

0

;x;t)

n

D(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))

o

:

De�nition 3.3 We all the equations

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (3.36)

T

0

(x; �; t) = P

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t)) (3.37)

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g

�

�t

z

0

(x; y; t) = f(S

0

(x; y; t); T

0

(x; y; t); z

0

(x; y; t)) (3.38)

homogenized system assoiated to the equations (3.1){(3.3).

Note that we did not require f to satisfy any restriting onditions. In onsti-

tutive models used in the engineering sienes f is in general a funtion growing
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rapidly with respet to several of its variables. Of ourse, for suh general f

the onditions (3.17){(3.20) for the solution (u; T; z; S) of (3.1){(3.3) are not

suÆient to guarantee that the limit funtion (T

0

; z

0

; S

0

) satis�es the equation

(3.38). Clearly, for a given funtion f it is not diÆult to formulate onditions

for (u; T; S; z) assuring that the limit funtion satis�es (3.38). However, suh

investigations are of interest only in onnetion with investigations of existene

and regularity of solutions of the initial-boundary value problem (3.1){(3.8).

The justi�ation of (3.38) in the homogenized system is therefore left to later

works.

3.3 Osillating funtions of bounded variation

It remains to derive the homogenized form of the evolution equation for the

order parameter. The derivatives in this evolution equation are measures. In

this setion we study the measures obtained by insertion of osillating solutions

of the form (3.12) into this equation. The derivation of the homogenized

evolution equation in the next setion is based upon the result obtained in the

following lemma. To state this lemma, we need some de�nitions and notations.

Assume that

((x; y; t) 7! H

�

(x; y; t)) 2 BV

lo

(
� R

3

� R

+

)

for all 0 < � < �

0

. The values of H

�

an lie in R, in R

N

or in the set M

3

of 3� 3{matries. Aordingly, in this setion the salar produt in all three

spaes is uniformly denoted by v � w, and the test funtions are hosen with

values in appropriate spaes. We set

^

H

�

(x; y; t) = H

�

(x;

x

�

+ y; t)

for � > 0: The distribution div

x

^

H

�

is de�ned by

(div

x

^

H

�

; ') = �

Z


�R

3

�R

+

H

�

(x;

x

�

+ y; t) � r

x

'(x; y; t) d(x; y; t);

for ' 2 C

1

0

(
 � R

3

� R

+

): This distribution is a measure. To see this, note

that if V is an open set ompatly ontained in 
� R

3

� R

+

, then also

V

�

= f(x; y; t) j (x; y �

x

�

; t) 2 V g

is open and ompatly ontained in 
�R

3

�R

+

. Sine H

�

2 BV

lo

(
�R

3

�

R

+

), the derivatives div

x

H

�

and div

y

H

�

are measures. This means that there

exist onstants C

1

; C

2

with

j(div

x

H

�

; ')j � C

1

max

V

�

j'j; j(div

y

H

�

; ')j � C

2

max

V

�

j'j (3.39)
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for all ' 2 C

1

0

(V

�

). Sine for all ' 2 C

1

0

(V ) the funtion �'

�

de�ned by

�'

�

(x; y; t) = '(x; y �

x

�

; t)

belongs to C

1

0

(V

�

), we obtain from (3.39) that

j(div

x

^

H

�

; ')j

=

�

�

�

Z

V

H

�

(x;

x

�

+ y; t) � r

x

'(x; y; t) d(x; y; t)

�

�

�

=

�

�

�

Z

V

�

H

�

(x; y; t) � r

x

'(x; �; t)

j

�=y�

x

�

d(x; y; t)

�

�

�

=

�

�

�

Z

V

�

H

�

(x; y; t) �

�

r

x

'(x; y �

x

�

; t) +

1

�

r

y

'

�

(x; y �

x

�

; t)

�

d(x; y; t)

�

�

�

�

�

�

�

Z

V

�

H

�

(x; y; t) � r

x

�'

�

(x; y; t)d(x; y; t)

�

�

�

+

1

�

�

�

�

Z

V

�

H

�

(x; y; t) � r

y

�'

�

(x; y; t) d(x; y; t)

�

�

�

� (C

1

+

1

�

C

2

) max

V

�

j �'

�

j = (C

1

+

1

�

C

2

) max

V

j'j:

This estimate shows that div

x

^

H

�

is a measure.

Consequently, by the Riesz representation theorem (f. [26, pp. 49 and pp.

167℄), to the total variation measure

�̂

�

= jdiv

x

^

H

�

j (3.40)

there exists a �̂

�

{measurable funtion �̂

�

with

div

x

^

H

�

= �̂

�

�̂

�

:

From this theorem it also follows that to the measure

� div

x

H

�

+ div

y

H

�

there exists a non-negative Radon measure �

�

and a �

�

{measurable funtion

�

�

with

� div

x

H

�

+ div

y

H

�

= �

�

�

�

:

We all �

�

the total variation measure of � div

x

H

�

+ div

y

H

�

and write

j� div

x

H

�

+ div

y

H

�

j = �

�

: (3.41)
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Lemma 3.4 For every ' 2 C

1

0

(
� R

3

� R

+

) we have

Z


�R

3

�R

+

'(x;

x

�

+ y; t) � djdiv

x

^

H

�

j (3.42)

=

Z


�R

3

�R

+

'(x; y; t) dj� div

x

H

�

+ div

y

H

�

j

and

Z


�R

3

�R

+

'(x;

x

�

+ y; t) d

�

�

�

�

�t

^

H

�

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�

�t

H

�

�

�

�

: (3.43)

Proof: Let T : 
� R

3

� R

+

! 
� R

3

� R

+

be the map de�ned by

T (x; y; t) = (x;

x

�

+ y; t) :

With the notations from (3.40) and (3.41), equation (3.42) an be written in

the form

Z


�R

3

�R

+

' Æ T (x; y; t) � d�̂

�

=

Z


�R

3

�R

+

'(x; y; t) d�

�

: (3.44)

This formula holds if �

�

= �T

�

�̂

�

, where the measure T

�

�̂

�

is de�ned by

T

�

�̂

�

(A) = �̂

�

(T

�1

(A))

for every measurable subset A. Sine �

�

and �T

�

�̂

�

are Radon measures on


� R

3

� R

+

and sine Radon measures oinide if they oinide on open sets

ompatly ontained in 
� R

3

� R

+

, f. [28, p. 62℄, equation (3.44) follows if

we show that

�

�

(V ) = �T

�

�̂

�

(V ) = ��̂

�

(T

�1

(V )) (3.45)

for all open subsets V ompatly ontained in 
� R

3

� R

+

. For suh sets

�

�

(V ) = sup

n

Z

V

'd(� div

x

H

�

+ div

y

H)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

= sup

n

�

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)'(x; y; t) d(x; y; t)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

(3.46)

and

��̂

�

(T

�1

(V )) = sup

n

Z

T

�1

(V )

' � d(div

x

^

H

�

)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

= sup

n

�

Z

T

�1

(V )

^

H

�

(x; y; t) � �r

x

'(x; y; t) d(x; y; t)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

: (3.47)
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Sine T

�1

(x; y; t) = (x; y �

x

�

; t) and j det(T

�1

)

0

(x; y; t)j = 1, we obtain

Z

T

�1

(V )

^

H

�

(x; y; t) � �r

x

'(x; y; t) d(x; y; t)

=

Z

T

�1

(V )

H

�

(T (x; y; t)) � �r

x

'(x; y; t) d(x; y; t)

=

Z

V

H

�

(x; y; t) � �r

x

'(x; �; t)

j

�=y�

x

�

d(x; y; t) (3.48)

=

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)'(x; y �

x

�

; t) d(x; y; t)

=

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)(' Æ T

�1

)(x; y; t) d(x; y; t) :

Sine the mapping

' 7! ' Æ T

�1

: C

1

0

(T

�1

(V ))! C

1

0

(V )

is bijetive, it follows from (3.48) that

sup

n

�

Z

T

�1

(V )

�

^

H

�

� r

x

'd(x; y; t)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

= sup

n

�

Z

V

H

�

� (�r

x

+r

y

)'d(x; y; t)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

:

(3.45) results from this formula and from (3.46), (3.47). This proves (3.42).

The proof of (3.43) runs exatly along the same lines, but is slightly simpler.

De�nition 3.5 For every 0 � � < �

0

let �

�

be a Radon measure on 
� R

3

�

R

+

0

. If

lim

�!0

Z


�R

3

�R

+

'(x; y; t) d�

�

=

Z


�R

3

�R

+

'(x; y; t) d�

0

(3.49)

for all ' 2 C

1

0

(
� R

3

� R

+

), we write

�

�

1

* �

0

:

If (3.49) holds for all ' 2 C

0

(
� R

3

� R

+

), we write

�

�

�

* �

0

and say that �

�

onverges to �

0

weak*.

Examples show that in general �

�

1

* �

0

does not imply �

�

�

* �

0

. However, the

following simple result holds:
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Lemma 3.6 Assume that for every open subset V ompatly ontained in 
�

R

3

� R

+

sup

�>0

j�

�

j(V ) <1:

Then �

�

1

* �

0

implies �

�

�

* �

0

.

Proof: To ' 2 C

0

(
�R

3

�R

+

) hoose an open set V with supp' � V �� 
�

R

3

�R

+

. To Æ > 0 we next hoose a funtion � 2 C

1

0

(V ) with sup j'��j < Æ.

Then

j(�

�

� �

0

; ')j � j(�

�

� �

0

; �)j+ (j�

�

j+ j�

0

j; j'� �j)

� j(�

�

� �

0

; �)j+ Æ(j�

0

j(V ) + sup

�>0

j�

�

j(V ));

from whih the statement follows, sine Æ was arbitrary.

In Lemma 3.8 we give a riterion for the family fH

�

g

0<�<�

0

whih guaran-

tees that

j�div

x

H

�

+ div

y

H

�

j

�

* jdiv

y

H

0

j;

with a suitable funtion H

0

. This type of onvergene is needed in the deriva-

tion of the homogenized evolution equation for the order parameter. In the

proof of this lemma we rely on the following

Lemma 3.7 Assume that V is a bounded open subset of R

n

and that �

�

is a

Radon measure on V for every 0 � � < �

0

. If

�

�

�

* �

0

and

j�

�

j(V )! j�

0

j(V )

for � ! 0, then

j�

�

j

�

* j�

0

j:

A proof an be found in [75, pp. 141℄. See also [32, pp. 9℄.

We assume that H

�

2 BV

lo

(
 � R

3

� R

+

) for all 0 � � < �

0

and that

additionally for almost all (x; t) and all 0 � � < �

0

the funtions

y 7! H

�

(x; y; t)

are periodi with periodiity ell Y � R

3

. Without loss of generality we assume

that the periodiity ell is the half open ube

Y = fy = (y

1

; y

2

; y

3

) 2 R

3

j 0 � y

i

< 1; i = 1; 2; 3g:
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For Æ > 0 we denote by

(
� R

+

)

Æ

= f(x; t) 2 
� R

+

j dist((x; t); �(
� R

+

)) > Æ; j(x; t)j <

1

Æ

g

the bounded open set of all points with distane from the boundary of 
�R

+

greater than Æ and with norm less than 1=Æ.

Lemma 3.8 Assume that there exists a sequene f


m

� I

m

g

1

m=1

of bounded

open sets with

(
� R

+

)

1

m

� 


m

� I

m

� 
� R

+

;

suh that for all m

lim

�!0

Z




m

�Y�I

m

jH

�

(x; y; t)�H

0

(x; y; t)j d(x; y; t) = 0: (3.50)

sup

0<�<�

0

jdiv

x

H

�

j(


m

� Y � I

m

) <1 (3.51)

lim

�!0

jdiv

y

H

�

j(


m

� Y � I

m

) = jdiv

y

H

0

j(


m

� Y � I

m

): (3.52)

Then

j�div

x

H

�

+ div

y

H

�

j

�

* jdiv

y

H

0

j : (3.53)

Proof: This statement results from Lemma 3.7. Therefore the main part of

the proof onsists in the veri�ation of the assumptions of Lemma 3.7.

In the �rst step of the proof we onstrut a partition of unity on R

3

. We

use the notations s

+

= maxfs; 0g for s 2 R and jyj

1

= max

1�i�3

jy

i

j for

y = (y

1

; y

2

; y

3

) 2 R

3

. De�ne a funtion � 2 C

0

(R

3

;R

+

0

) by

�(y) =

3

Y

i=1

(1� jy

i

j)

+

; y 2 R

3

:

Then � di�ers from zero only in the ube fy 2 R

3

j jyj

1

� 1g onsisting

of 2

3

opies of Y . With this funtion we set �

�

(x) = �(x � �) and obtain

a partition of unity f�

�

g

�2Z

3

0

whih satis�es for every positive integer m and

every periodi funtion p with periodiity ell Y

�

(m)

(x) =

X

j�j

1

�m

�

�

(x) = 1; jxj

1

� m; (3.54)

Z

R

3

�

(m)

(y)p(y)dy = (2m+ 1)

3

Z

Y

p(y)dy: (3.55)
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For the proof of (3.55) note that the de�nition of �

(m)

in (3.54) yields

Z

R

3

X

j�j

1

�m

�

�

(y)p(y) dy =

Z

R

2

m

X

�

2

;�

3

=�m

3

Y

i=2

(1� jy

i

� �

i

j)

+

(3.56)

�

Z

R

m

X

�

1

=�m

(1� jy

1

� �

1

j)

+

p(y) dy

1

d(y

2

; y

3

) :

We use substitution and the periodiity of p to obtain

m

X

�

1

=�m

Z

R

(1� jy

1

� �

1

j)

+

p(y) dy

1

=

m

X

�

1

=�m

Z

1

�1

(1� jy

1

j)

+

p(y

1

+ �

1

; y

2

; y

3

) dy

1

= (2m + 1)

�

Z

1

0

(1� jy

1

j)p(y) dy

1

+

Z

1

0

(1� j� � 1j)p(� � 1; y

2

; y

3

) d�

�

= (2m + 1)

Z

1

0

[(1� y

1

) + (1� (1� y

1

))℄p(y) dy

1

= (2m+ 1)

Z

1

0

p(y) dy

1

:

Insertion of this formula into (3.56) and reursive appliation of it with the

indies i = 2; 3 yields (3.55).

With the funtion �

(m)

just onstruted the proof of the lemma is ob-

tained as follows: For the measures �

(m)

�

(x; y; t) = �

(m)

(y) (� div

x

H

�

+

div

y

H

�

)(x; y; t); � � 0; we prove that

�

(m)

�

1

* �

(m)

0

(3.57)

and

lim

�!0

j�

(m)

�

j(


m

� R

3

� I

m

) = j�

(m)

0

j(


m

� R

3

� I

m

); (3.58)

for all m 2 N . Sine to any open set V ompatly ontained in 
 � R

3

� R

+

there exists m with

V � f(x; y; t) j (x; t) 2 (
� R

+

)

1

m

; y 2 R

3

g � 


m

� R

3

� I

m

;

it follows from (3.58) that

sup

�>0

j�

(m)

�

j(V ) <1:

This relation, (3.57) and Lemma 3.6 together imply

�

(m)

�

�

* �

(m)

0

;
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and this result, (3.58) and Lemma 3.7 yield

j�

(m)

�

j

�

* j�

(m)

0

j

on the set 


m

�R

3

� I

m

for all m. Note that the unbounded set 


m

�R

3

� I

m

an be inserted for the bounded set V in Lemma 3.7, sine the measure �

(m)

�

restrited to the set 


m

� R

3

� I

m

has bounded support. The statement of

Lemma 3.8 is an immediate onsequene of this result, sine (3.54) implies

that to any ' 2 C

0

(
 � R

3

� R

+

) there exists m with supp' � 


m

� fy j

�

(m)

= 1g � I

m

:

To omplete the proof it remains to show (3.57) and (3.58). For the proof

of (3.57) let ' 2 C

1

0

(
 � R

3

� R

+

) and hoose m with supp' � 


m

� R

3

�

I

m

: Using that the funtions '

(m)

(x; y; t) = �

(m)

(y)'(x; y; t) and '

�

(x; y; t) =

�

�

(y)'(x; y; t) have weak derivatives in L

1

, we obtain

�

�

�

Z


�R

3

�R

+

'(x; y; t)�

(m)

(y)

�

d(�div

x

H

�

+ div

y

H

�

)� d(div

y

H

0

)

�

�

�

�

=

=

�

�

�

�

Z


�R

3

�R

+

H

�

(x; y; t) � �r

x

'

(m)

(x; y; t) d(x; y; t)

�

Z


�R

3

�R

+

(H

�

(x; y; t)�H

0

(x; y; t)) � r

y

'

(m)

(x; y; t) d(x; y; t)

�

�

�

�

X

j�j

1

�m

�

Z




m

�supp�

�

�I

m

�jH

�

(x; y; t)j jr

x

'

�

(x; y; t)j d(x; y; t)

+

Z




m

�supp�

�

�I

m

jH

�

(x; y; t)�H

0

(x; y; t)j jr

y

'

�

(x; y; t)j d(x; y; t)

�

�

X

j�j

1

�m

�

max jr

x

'

�

(x; y; t)j+max jr

y

'

�

(x; y; t)j

�

�2

3

Z




m

�Y�I

m

�

�jH

�

(x; y; t)j+ jH

�

(x; y; t)�H

0

(x; y; t)j

�

d(x; y; t)! 0

for � ! 0. To get the last inequality sign we used that the ube supp�

�

onsists

of 2

3

opies of Y , and we applied the periodiity of H

�

. The onvergene to

zero is implied by (3.50) and by

sup

�

0

>�>0

Z




m

�Y�I

m

jH

�

(x; y; t)j d(x; y; t) <1 ;

whih also is a onsequene of (3.50). This proves (3.57).
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To verify (3.58) we note that the equation (3.55) yields for the measures

j�

(m)

�

j by some straightforward onsiderations

j�

(m)

�

j(


m

� R

3

� I

m

) = (2m+ 1)

3

j�

�

j(


m

� Y � I

m

);

for all � � 0. Here the measures �

�

are de�ned by �

�

= � div

x

H

�

+ div

y

H

�

.

Therefore, to prove (3.58) it suÆes to show that

lim

�!0

j�

�

j(


m

� Y � I

m

) = j�

0

j(


m

� Y � I

m

): (3.59)

To verify this relation, note that the inverse triangle inequality and (3.51)

imply

�

�

�

j� div

x

H

�

+ div

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

�

j(


m

� Y � I

m

)

�

�

�

� j�div

x

H

�

j(


m

� Y � I

m

) � �C:

From the hypothesis (3.52) we thus obtain

�

�

�

j�

�

j(


m

� Y � I

m

)� j�

0

j(


m

� Y � I

m

)

�

�

�

�

�

�

�

j� div

x

H

�

+ div

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

�

j(


m

� Y � I

m

)

�

�

�

+

�

�

�

jdiv

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

0

j(


m

� Y � I

m

)

�

�

�

� �C +

�

�

�

jdiv

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

0

j(


m

� Y � I

m

)

�

�

�

! 0

for � ! 0. Therefore (3.59) and also (3.58) hold. This ompletes the proof of

the lemma.

3.4 Homogenized evolution equation for the order parameter and

homogenized initial-boundary value problem

To derive the homogenized form of the equation (3.4) we must insert the fun-

tions û

�

;

^

T

�

; ẑ

�

;

^

S

�

from (3.12) into (3.4) and study the limits of the terms

on both sides of the equation for � ! 0. These are limits in the distribu-

tion sense. Therefore, to study these limits we must generalize De�nition 3.1

and introdue a family of distribution solutions of the initial-boundary value

problem depending on the fast variable. We begin with this de�nition.

The spae BV

lo

(
� R

3

� R

+

) and the total variation measure was intro-

dued before Lemma 2.3. In the following de�nition we also need the spae

BV

lo

(
 � R

3

� R

+

0

), whih onsists of all funtions w on 
 � R

3

� R

+

0

with
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the property that for every open set V ompatly ontained in 
�R

3

�R the

restrition of w to V \ (
� R

3

� R

+

) satis�es

w

j

V \(
�R

3

�R

+

)

2 BV (V \ (
� R

3

� R

+

)) :

For the given initial data z

(0)

0

: 
 � R

3

! R

N

and S

(0)

0

: 
 � R

3

! f0; 1g

we assume as above that y 7! z

(0)

0

(x; y) and y 7! S

(0)

0

(x; y) are periodi with

periodiity ell Y and that this periodiity ell satis�es (3.10).

In the equation (3.4), whih was derived in Lemma 2.4 for pieewise on-

tinuously di�erentiable z, the derivatives r

x

z are the lassial derivatives on

(
 � R

+

)n� and di�er from the distributional derivatives by a measure on �

generated by jumps of z aross �. To avoid regularity problems, we want to

use in the following de�nition only weak or distributional derivatives. r

x

z

ould be omputed from the distributional derivatives by subtration of the

measure on the interfae �. Sine we also want to avoid the disussion of the

regularity of �, whih would be neessary if this measure would expliitely

appear in the de�nition, we require in the following de�nition of a family of

distribution solutions depending on the fast variable that z is ontinuous aross

the interfae. This means that we take the identity for the funtion g in the

interfae ondition (3.6). In this ase the weak and the lassial derivatives

oinide when the latter exist, and for r

x

z in (3.4) we an insert the weak

derivatives. Also for r

x

u we an take the weak derivatives, sine in all our

investigations we assume that u is ontinuous aross �.

De�nition 3.9 a.) Let z

(0)

0

2 L

1;lo

(
 � R

3

), let S

(0)

0

be measurable and let

� > 0 be onstant. The funtion (u; T; z; S) is a distribution solution of the

partial di�erential equations

�div

x

T (x; y; t) = b(x; t) (3.60)

T (x; y; t) = D(S(x; y; t))("(r

x

u(x; y; t))� "

�

(S(x; y; t))

� Bz(x; y; t)) (3.61)

z

t

(x; y; t) = f(S(x; y; t); T (x; y; t); z(x; y; t)) (3.62)

jS

t

(x; y; t)j = �jdiv

x

C(r

x

u; S; z) (3.63)

��(r

x

z)

T

r

z

 ("(r

x

u); S; z)� (r

x

u)

T

bj

de�ned for (x; y; t) 2 
� R

3

� R

+

, of the interfae onditions

[u(x; y; t)℄ = [T (x; y; t)℄n(x) = [z(x; y; t)℄ = 0; (x; y) 2 �(t); t 2 R

+

; (3.64)

of the boundary ondition

T (x; y; t)n(x) = 0 ; (x; y; t) 2 �
 � R

3

� R

+

0

; (3.65)
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and of the initial onditions

z(x; y; 0) = z

(0)

0

(x;

x

�

+ y);

S(x; y; 0) = S

(0)

0

(x;

x

�

+ y);

9

>

=

>

;

(x; y) 2 
� R

3

; (3.66)

if the following onditions (i){(v) are satis�ed:

(i) The funtions u; T; z; S; C; f and b satisfy

S; C(r

x

u; S; z) 2 BV

lo

(
� R

3

� R

+

0

)

u; r

x

u; r

x

z; 2 L

1;lo

(
� R

3

� R

+

)

T; b 2 L

1;lo

(
� R

3

� R

+

)

z; f(S; T; z) 2 L

1;lo

(
� R

3

� R

+

0

);

and also

(r

x

u)

T

b; (r

x

z)

T

r

z

 ("(r

x

u); S; z) 2 L

1;lo

(
� R

3

� R

+

)

(ii) The equation

(T;r

x

') = (b; '); (3.67)

holds for all ' 2 C

1

0

(R

3

� R

3

� R

+

;R

3

), the equation (3.61) holds for

almost all (x; y; t) 2 
� R

3

� R

+

, and the equation

�(z; '

t

) = (f(S; T; z); ') (3.68)

+

Z


�R

3

z

(0)

0

(x;

x

�

+ y) � '(x; y; 0) d(x; y);

is satis�ed for all ' 2 C

1

0

(
� R

3

� R;R

N

)

(iii) The equation (3.63) holds in the sense of measures, where the absolute

values on both sides of this equation denote the total variation measures

(iv) The interfae ondition

[u(x; y; t)℄ = 0 (3.69)

holds for almost all (x; y) 2 �(t)� R

3

; t 2 R

+

(v) The initial ondition

S(x; y; 0) = S

(0)

0

(x;

x

�

+ y) (3.70)

holds for almost all (x; y) 2 
� R

3

.
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b.) We say, that the distribution solution (u; T; z; S) of (3.60){(3.66) de�nes

a family of distribution solutions of the initial-boundary value problem (3.1){

(3.4), (3.6), (3.7), (3.11) depending on the fast variable y with parameter �

and initial data (z

(0)

0

; S

(0)

0

).

Of ourse, the equation (3.67) ombines the equation (3.60), the interfae on-

dition for T and the boundary ondition (3.65), the equation (3.68) ombines

the equation (3.62), the interfae ondition for z and the �rst one of the initial

onditions (3.66), and in (3.70) we use that as a BV -funtion S has a trae on

the part 
� R

3

� f0g of the boundary of 
� R

3

� R

+

.

Now we derive the homogenized evolution equation for the order parameter

S. For 0 < � < �

0

let (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) be a family of distribution solutions of the

initial-boundary value problem depending on the fast variable with parameter

�, whih an be represented in the form (3.12){(3.16). Let C denote the

Eshelby tensor and  the free energy. We de�ne

^

C

�

(x; y; t) = C(r

x

û

�

(x; y; t);

^

S

�

(x; y; t); ẑ

�

(x; y; t));

r

z

^

 

�

(x; y; t) = r

z

 ("(r

x

û

�

(x; y; t));

^

S

�

(x; y; t); ẑ

�

(x; y; t))

and

C

�

(x; y; t) = C(r

x

u

�

(x; y; t) +

1

�

r

y

u

�

(x; y; t); S

�

(x; y; t); z

�

(x; y; t));

r

z

 

�

(x; y; t) =

= r

z

 ("(r

x

u

�

(x; y; t)) +

1

�

"(r

y

u

�

(x; y; t)); S

�

(x; y; t); z

�

(x; y; t));

hene

^

C

�

(x; y; t) = C

�

(x;

x

�

+ y; t); r

z

^

 

�

(x; y; t) = r

z

 

�

(x;

x

�

+ y; t):

Under suitable boundedness onditions for the funtion u

2

in (3.13) and its

derivatives, we have

r

x

u

�

(x; y; t) +

1

�

r

y

u

�

(x; y; t)!r

x

u

0

(x; t) +r

y

u

1

(x; y; t)

for � ! 0. Therefore we assume below that for � ! 0 the funtion C

�

tends

to the funtion

C

0

(x; y; t) = C(r

x

u

0

(x; t) +r

y

u

1

(x; y; t); S

0

(x; y; t); z

0

(x; y; t));

and r

z

 

�

tends to

r

z

 

0

(x; y; t) = r

z

 ("(r

x

u

0

(x; t)) + "(r

y

u

1

(x; y; t)); S

0

(x; y; t); z

0

(x; y; t)) :
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With these de�nitions we an write the equation whih results from insertion

of (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) into the evolution equation (3.63) in the form

�

�

�

�

�t

^

S

�

(x; y; t)

�

�

�

= �

�

�

�

div

x

^

C

�

(x; y; t) (3.71)

� �(r

x

ẑ

�

(x; y; t))

T

r

z

^

 

�

(x; y; t)

� (r

x

û

�

(x; y; t))

T

b(x; t)

�

�

�

:

Lemma 3.10 Assume that

div

x

^

C

�

� �(r

x

ẑ

�

)

T

r

z

^

 

�

� (r

x

û

�

)

T

b

and

�

�t

^

S

�

are measures, and that the orresponding total variation measures

satisfy (3.71). Assume moreover that

�

�

�

�

�t

S

�

�

�

�

�

*

�

�

�

�

�t

S

0

�

�

�

(3.72)

and

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

�

*

�

�

�

div

y

C

0

� �(r

y

z

0

)

T

r

z

 

0

�

�

�

(3.73)

for � ! 0. Then the equation

�

�

�

�

�t

S

0

(x; y; t)

�

�

�

= 

�

�

�

div

y

C

0

(x; y; t)� �(r

y

z

0

(x; y; t))

T

r

z

 

0

(x; y; t)

�

�

�

(3.74)

holds in the sense of measures on 
� R

3

� R

+

:

Remark. Equation (3.74) is the homogenized evolution equation for the order

parameter. Beause of the nonlinear dependene of C and �(r

x

z)

T

r

z

 on

(u; T; z; S), it is lear that weak onvergene of (u

�

; T

�

; z

�

; S

�

) to (u

0

; T

0

; z

0

; S

0

)

is not suÆient to guarantee (3.73). This problem arises in all investigations

of nonlinear partial di�erential equations and in partiular in investigations of

quasilinear hyperboli onservation laws. In the present problem an additional

diÆulty is introdued through the presene of the total variation measure. We

do not investigate this problem any further, but only refer to the riterion for

weak onvergene of total variation measures given in Lemma 3.8.

Proof: If we insert the funtion S for H in the equation (3.43) of the

Lemma 3.4, we obtain for every ' 2 C

1

0

(
� R

3

� R

+

;R) that

Z


�R

3

�R

+

'(x;

x

�

+ y; t) d

�

�

�

�

�t

^

S

�

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�

�t

S

�

�

�

�

: (3.75)

50



Insertion of C for H in (3.42) yields a orresponding result for the measures

jdiv

x

^

C

�

j and j�div

x

C

�

+ div

y

C

�

j. Examination of the proof of (3.42) shows

that the result an be extended to the measure on the right hand side of (3.71)

and that the same proof yields for all ' 2 C

1

0

(
� R

3

� R

+

)

Z


�R

3

�R

+

'(x;

x

�

+ y; t)� d

�

�

�

div

x

^

C

�

� �(r

x

ẑ

�

)

T

r

z

^

 

�

� (r

x

û

�

)

T

b

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

: (3.76)

From (3.71), (3.75) and (3.76) we thus obtain

Z


�R

3

�R

+

'(x; y; t)

�

d

�

�

�

�

�t

S

�

�

�

�

� 

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

�

= 0

for all ' 2 C

1

0

(
� R

3

� R

+

;R), whih implies

�

�

�

�

�t

S

�

�

�

�

= 

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

:

By (3.72) and (3.73), the left hand side tends to j

�

�t

S

0

j and the right hand side

tends to jdiv

y

C

0

� �(r

y

z

0

)

T

r

z

 

0

j . Therefore these limits must oinide,

whih proves (3.74).

Next we de�ne the homogenized initial-boundary value problem. In this

de�nition the mean stress

T

1

(x; t) =M

Y

T

0

(x; �; t) =

Z

Y

T

0

(x; y; t) dy

playes an important part:

De�nition 3.11 The homogenized initial-boundary value problem assoiated

to the initial-boundary value problem (3.1){(3.4), (3.6){(3.8) is onstituted by

the equations

�div

x

T

1

(x; t) = b(x; t); (3.77)

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s); x); (3.78)

T

1

(x; t)n(x) = 0; x 2 �
; t � 0: (3.79)
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Here the history funtional r

x

u

0

(x; �) 7! T

1

(x; �) = F

s�t

(r

x

u

0

(x; s); x) is

de�ned by the equation

T

1

(x; t) =M

Y

T

0

(x; �; t); (3.80)

whih ouples the mean stress to the miro stress T

0

, and by an initial-boundary

value problem in the representative volume element, whih de�nes T

0

and whih

onsists of the four equations

�D(S

0

(x; �; t))"(r

y

u

1

(x; �; t)) = (3.81)

= P

?

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g;

T

0

(x; �; t) = (3.82)

= P

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g;

�

�t

z

0

(x; y; t) = f(S

0

(x; y; t); T

0

(x; y; t); z

0

(x; y; t)); (3.83)

�

�

�

�

�t

S

0

�

�

�

= 

�

�

�

div

y

C(r

x

u

0

+r

y

u

1

; S

0

; z

0

) (3.84)

� �(r

y

z

0

)

T

r

z

 ("(r

x

u

0

+r

y

u

1

); S

0

; z

0

)

�

�

�

;

where P

?

(S

0

;x;t)

= (I � P

(S

0

;x;t)

) : L

2

(Y ) ! D

?

0

� L

2

(Y ) is the orthogonal

projetor onto the orthogonal spae D

?

0

of D

0

,

of the interfae onditions

[u

0

(x; y; t)℄ = [T

0

(x; y; t)℄n(x; t) = [z

0

(x; y; t)℄ = 0; (x; y; t) 2 �; (3.85)

of the boundary ondition

y 7! (u

1

(x; y; t); T

0

(x; y; t); z

0

(x; y; t); S

0

(x; y; t)) (3.86)

has periodiity ell Y;

and of the initial onditions

z

0

(x; y; 0) = z

(0)

0

(x; y); S

0

(x; y; 0) = S

(0)

0

(x; y); (x; y) 2 
� R

3

: (3.87)

Sholia. 1. For every �xed x 2 
 the equations (3.81){(3.87) de�ne an

initial-boundary value problem in the domain Y �R

+

for the unknown funtion

(y; t) 7! (u

1

; T

0

; S

0

; z

0

)(x; y; t), whih has the same form as the initial-boundary

value problem (3.1){(3.8). This is hidden by the introdution of the projetions

P

(S

0

;x;t)

and (I � P

(S

0

;x;t)

) .
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To see that (3.81){(3.87) has this form, note that the pair of equations

(3.81) and (3.82) is equivalent to the pair of equations (3.26) and (3.34).

In fat, at the end of the proof of Theorem 3.2 it was shown that (3.26) and

(3.34) imply the equations (3.35) and (3.24), whih oinide with (3.81) and

(3.82). Conversely, (3.26) is obtained from (3.82), sine P

(S

0

;x;t)

is a projetor

to the spae D

0

of periodi funtions with vanishing divergene, and (3.34) is

obtained from (3.81) and (3.82) by addition of these two equations. Therefore

the equations (3.81) and (3.82) an be replaed by

div

y

T

0

(x; y; t) = 0; (3.88)

T

0

(x; y; t) = D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t)) (3.89)

� "

�

(S

0

(x; y; t))�Bz

0

(x; y; t)

�

;

and the problem onstituted by these two equations and by (3.83){(3.87) is of

the form of (3.1){(3.8). The main di�erene is the presene of the term

r

x

u

0

(x; t)

in (3.89) and in (3.84), whih from the point of view of the initial-boundary

value problem (3.88), (3.89), (3.83){(3.87) is a given funtion. This term im-

poses a deformation �eld on the representative volume element, whih does not

depend on y. Hene, for every given time this deformation �eld is onstant

throughout the representative volume element Y . Besides the miro stress T

0

also u

1

is determined by this initial-boundary value problem. The funtion u

1

playes the part of a miro displaement.

2. The periodiity requirement for u

1

and T

0

in the boundary ondition (3.86)

is not needed in onjuntion with the equations (3.81) and (3.82), sine it is a

onsequene of the de�nition of the projetion P

(S

0

;x;t)

. It is needed, however,

in onjuntion with the equations (3.88) and (3.89).

3. The x{dependene of the history funtional F

s�t

(r

x

u

0

(x; s); x) is intro-

dued by the x{dependene of the initial data z

(0)

0

(x; y) and S

(0)

0

(x; y).

4. By a formal reasoning, from the boundary ondition (3.65) one would obtain

the boundary ondition

T

0

(x; y; t)n(x) = 0; (x; y; t) 2 �
� R

3

� R

+

0

for the homogenized problem, whih is stronger than the boundary ondition

(3.79). However, in aordane with well known results from the theory of ho-

mogenization for linear ellipti problems, f. [7, pp. 87℄, one expets that this

stronger boundary ondition annot be imposed in the homogenized problem

53



and that (3.79) is the right ondition.

5. The funtions u

0

; u

1

; T

0

; z

0

and S

0

determined as solution of the homog-

enized initial-boundary value problem an be used in two ways:

Sine these funtions are the leading terms in the expansions (3.13){(3.16),

the funtions

û

0;�

(x; y; t) = u

0

(x; t) + �u

1

(x;

x

�

+ y; t); (3.90)

^

T

0;�

(x; y; t) = T

0

(x;

x

�

+ y; t);

ẑ

0;�

(x; y; t) = z

0

(x;

x

�

+ y; t);

^

S

0;�

(x; y; t) = S

0

(x;

x

�

+ y; t);

form an asymptoti approximation to the solution (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) of the miro-

sopi initial-boundary value problem (3.1){(3.7), (3.11):

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)� (û

0;�

;

^

T

0;�

; ẑ

0;�

;

^

S

0;�

)! 0 (3.91)

for � ! 0. This is the �rst usage.

For the seond usage we de�ne the mean stress

^

T

�;1

of the exat solution

in the ell �Y = f�y j y 2 Y g by

^

T

�;1

(x; y; t) =

1

j�Y j

Z

�Y

^

T

�

(x + z; y; t) dz

=

1

j�Y j

Z

�Y

T

�

(x+ z;

x+ z

�

+ y; t) dz =

1

j�Y j

Z

�Y

T

�

(x+ z;

x+ z

�

; t) dz;

where j�Y j =

R

�Y

dy : Here we used (3.12) and the periodiity of T

�

. This

omputation shows that

^

T

�;1

(x; y; t) =

^

T

�;1

(x; t): We also use that

T

1

(x; t) =

Z

Y

T

0

(x; y; t) dy =

Z

Y

T

0

(x;

x

�

+ y; t) dy

=

1

j�Y j

Z

�Y

T

0

(x;

x+ y

�

; t) dy

=

1

j�Y j

Z

�Y

T

0

(x+ y;

x + y

�

; t) dy + r(�);

with the remainder

r(�) =

1

j�Y j

Z

�Y

�

T

0

(x;

x+ y

�

; t)� T

0

(x+ y;

x+ y

�

; t)

�

dy! 0
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for � ! 0. From (3.91) we thus have

j

^

T

�;1

(x; t)� T

1

(x; t)j

�

�

�

�

1

j�Y j

Z

�Y

�

T

�

(x+ y;

x+ y

�

; t)� T

0

(x+ y;

x + y

�

; t)

�

dy

�

�

�

+ r(�)! 0

for � ! 0. As seond usage we therefore see from this relation and from (3.90),

(3.91) that u

0

and T

1

, whih are marosopi, non-osillating quantities, are

the limits of the displaement û

�

and of the averaged stress

^

T

�;1

over the ell

�Y for � ! 0:

(û

�

;

^

T

�;1

)! (u

0

; T

1

):

6. The history funtional F

s�t

(r

x

u

0

(x; s); x) has the input funtion s 7!

r

x

u

0

(x; s) and the output funtion t 7! T

1

(x; t). To ompute T

1

(x; �) from

the deformation gradient r

x

u

0

(x; �) for a given �xed x, this deformation gra-

dient is onsidered as a funtion (y; s) 7! r

x

u

0

(x; s) onstant with respet

to y, whih we insert in the initial-boundary value problem (3.88), (3.89),

(3.83){(3.87) posed in the representative volume element Y . Then the fun-

tions u

1

; T

0

; S

0

; z

0

varying with respet to y in the representative volume

element are omputed by solving this initial-boundary value problem. Fi-

nally, we obtain the y{independent value T

1

(x; t) by taking the mean value

of T

0

(x; �; t) over the representative volume element. This omputation of the

y{independent funtion T

1

from the y{independent funtion r

x

u

0

via the de-

termination of y{dependent funtions as solutions of an initial-boundary value

problem is omputationally expensive. An important open problem is there-

fore to devise a method to eliminate the y{variable by homogenization of the

initial-boundary value problem (3.88), (3.89), (3.83){(3.87) posed in the rep-

resentative volume element. The homogenization proedure disussed in this

artile an therefore only be onsidered as a �rst step. The homogenization of

the mirosopi initial-boundary value problem leading to a history funtional

de�ned by an initial-boundary value problem in the representative volume el-

ement should be ompleted by a homogenization proedure, whih replaes

this initial-boundary value problem in the representative volume element by

a onstitutive relation, whih for every x onsists of an ordinary di�erential

equation with respet to the time variable. For a disussion of suh seond

homogenization proedures we have to refer to the literature ited at the end

of the introdution. Closely onneted to the problems studied in this artile

is [52℄, where a seond homogenization proedure for a phase transformation

problem is presented.
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4 Materials with temporally invariant mirostruture

4.1 The mirosopi and the homogenized initial-boundary value

problems

In the remainder of this paper we study the initial-boundary value problem de-

sribing a material with a mirostruture, whih is temporally �xed. As in the

ase of the evolving mirostruture the history funtional in the homogenized

problem is de�ned by an initial-boundary value problem in the representative

volume element. In the ase of �xed mirostruture it is partiularly sug-

gestive to interpret this homogenized problem as a quasi-stati problem for an

inelasti material with a onstitutive equation, whih is an ordinary di�erential

equation in an in�nite dimensional Banah spae.

Existene proofs for initial-boundary value problems to inelasti materials

are often based on the idea to show that under suitable assumptions for the

onstitutive equations the initial-boundary value problem an be written as

an evolution equation to a monotone operator. In [2℄ it is shown that even

if the given onstitutive equations do not satisfy these assumptions, they an

sometimes be brought into a transformed form, in whih the assumptions are

ful�lled. Existene of solutions is then obtained from the general theory of

suh evolution equations if in a seond step it an be shown that the operator

is maximal monotone. This program has been arried out ompletely in [2℄

for some dynami initial-boundary value problems, whereas for quasi-stati

problems only the redution to an evolution equation to a monotone operator

is given there.

The goal of this setion is to show that under the same assumptions for

the onstitutive equations, whih allow to redue the initial-boundary value

problem for an inelasti material with �xed mirostruture to a monotone

evolution equation also the homogenized problem with onstitutive equation in

an in�nite dimensional Banah spae an be redued to a monotone evolution

equation. The redution to an evolution equation is arried out in setion 4.2,

the proof of monotoniity is given in setion 4.3. Monotoniity is not enough

to prove existene of solutions of the evolution equation. In addition it must be

shown that the monotone operator is maximal and that the resulting family

of monotone operators satis�es some regularity onditions. We must leave

the determination of onditions for the onstitutive equations assuring these

properties and thus guaranteeing existene of solutions for the homogenized

problem to later investigations. Also, the problem, to show that solutions of

the mirosopi problem tend to solutions of the homogenized problem if the

sale of the mirostruture goes to zero, is left open in this work.

We begin with the formulation of the mirosopi and the homogenized

initial-boundary value problems. We assume that the elastiity tensor D is

a periodi funtion of the spae variable x, but is independent of the time
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variable t. Moreover, we assume that the mis�t strain "

�

is negligible. In

this ase the order parameter S is not needed to desribe the mirostruture.

Therefore we obtain the mathematial model for a material with temporally

�xed mirostruture from the initial-boundary value problem (3.1){(3.8) by

droping the relations (3.4){(3.6) and omiting the term "

�

in (3.2).

Thus, let 
 � R

3

be a bounded open set with smooth boundary. For

every y 2 R

3

let D(y) : S

3

! S

3

be a linear mapping, whih is symmetri

and positive de�nite. Let f : R

3

�

^

�(f) ! R

N

be a given map with

^

�(f) �

S

3

�R

N

. We assume that y 7! D(y) and y 7! f(y; T; z) are suÆiently smooth

periodi funtions with periodiity ell Y � R

3

. The periodiity ell is assumed

to satisfy (3.10). Let � > 0 be a parameter, B : R

N

! S

3

be a linear mapping

and z

(0)

: 
 ! R

N

be given initial data. The mirosopi initial-boundary

value problem is

�div

x

T (x; t) = b(x; t) (4.1)

T (x; t) = D(

x

�

)("(r

x

u(x; t))�Bz(x; t)) (4.2)

z

t

(x; t) = f(

x

�

; T (x; t); z(x; t)) ; (4.3)

T (x; t)n(x) = 0; x 2 �
; t � 0 (4.4)

z(x; 0) = z

(0)

(x); x 2 
: (4.5)

To study the homogenization of this system we onsider initial data of the

form

z

(0)

(x) = z

(0)

0

(x;

x

�

); x 2 
; (4.6)

with a suÆiently regular funtion z

(0)

0

: 
 � R

3

! R

N

. It is assumed that

for every x 2 
 the funtion y 7! z

(0)

0

(x; y) is periodi with periodiity ell

Y . For suh initial data the analysis of Setion 3.2 an be repeated. The

resulting homogenized system is essentially equal to (3.36){(3.38). To state

the homogenized initial-boundary value problem preisely, let the mean value

operator M

Y

and the spae D

0

be de�ned as in Setion 3.2. A salar produt

on L

2

(Y ) is de�ned by

[v; w℄ =

Z

Y

(D(y)

�1

v(y)) : w(y) dy:

By P : L

2

(Y ) ! D

0

� L

2

(Y ) we denote the projetor onto D

0

, whih is

orthogonal with respet to the salar produt [v; w℄.
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De�nition 4.1 The homogenized initial-boundary value problem assoiated to

the problem (4.1){(4.6) is given by

�div

x

T

1

(x; t) = b(x; t); (4.7)

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s); x); (4.8)

T

1

(x; t)n(x) = 0; x 2 �
; t � 0: (4.9)

Here the history funtional r

x

u

0

(x; �) 7! T

1

(x; �) = F

s�t

(r

x

u

0

(x; s); x) is

de�ned by the equation

T

1

(x; t) =M

Y

T

0

(x; �; t); (4.10)

whih yields the mean stress T

1

as a funtion of the miro stress T

0

, and by

the initial-boundary value problem, whih de�nes T

0

and whih onsists of the

equations

T

0

(x; �; t) = PfD(�)("(r

x

u

0

(x; t))� Bz

0

(x; �; t))g; (4.11)

�

�t

z

0

(x; y; t) = f(y; T

0

(x; y; t); z

0

(x; y; t)); (4.12)

and of the boundary and initial onditions

y 7! (T

0

(x; y; t); z

0

(x; y; t)) is periodi with periodiity ell Y; (4.13)

z

0

(x; y; 0) = z

(0)

0

(x; y); (x; y) 2 
� R

3

: (4.14)

Remark. The periodiity requirement for T

0

in (4.13) an be dropped, sine

it is implied by the de�nition of the projetion P .

From this formulation of the homogenized problem we see that it is a quasi-

stati problem for an inelasti material, whose history funtionalF

s�t

is de�ned

by the system (4.11), (4.12) of ordinary di�erential equations in an in�nite

dimensional Banah spae. Depending on the properties of f , the solution

(y; t) 7! z

0

(x; y; t) of this di�erential equation an for every �xed t lie in the

Banah spae of funtions on R

3

periodi with periodiity ell Y and ontained

in L

p

(Y ) for a suitable p, or it an lie in a Banah spae of measures.

Just as in the homogenized problem to the evolving mirostruture, we

an also take another point of view and replae the equation (4.11) by the

equivalent pair of equations

div

y

T

0

(x; y; t) = 0;

T

0

(x; y; t) = D(y)("(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))� Bz

0

(x; y; t));
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whih must be supplemented by the periodiity ondition

y 7! (u

1

(x; y; t); T

0

(x; y; t)) is periodi with periodiity ell Y:

For every x 2 
, the equations (4.12){(4.14) together with this pair of equa-

tions and with the periodiity ondition onstitute an initial-boundary value

problem for the unknown funtion (y; t) 7! (u

1

; T

0

; z

0

)(x; y; t) in the domain

Y �R

+

, whih has the same form as the problem (4.1){(4.5). The funtion u

1

is the miro deformation.

For all these onsiderations we refer to the sholia after De�nition 3.11.

4.2 Redution of the homogenized system to an evolution equation

In this setion we redue the homogenized initial-boundary value problem to an

evolution equation. The redution follows in all essential details the redution

of quasi-stati initial-boundary value problems to inelasti materials given in

Setion 3.2 of [2℄. However, in the more ompliated ase of the homogenized

problem properties of several linear spaes and linear operators play a role,

whih must �rst be determined. Before we arry out the redution, we �rst

ollet the information needed about these spaes and operators in several

lemmas:

We assume that the symmetri linear mappingD(y) : S

3

! S

3

is uniformly

positive de�nite: There exists a onstant  > 0 with

(D(y)F ) : F � jF j

2

for all y 2 R

3

and all F 2 S

3

. The bounded linear operator P : D

0

! D

0

is

de�ned by

Pv = P (D(�)v(�)); v 2 D

0

:

Lemma 4.2 The operator P is selfadjoint with respet to the salar produt

(v; w) =

Z

Y

v(y) : w(y) dy

on D

0

and positive de�nite.

Proof: D(y) is symmetri and positive de�nite, hene D(y)

�1

exists and is

symmetri. By de�nition the projetion P is orthogonal with respet to the

salar produt [v; w℄ on L

2

(Y ). Hene P is selfadjoint. For v; w 2 D

0

we thus

obtain

(Pv; w) =

Z

Y

[P (D(�)v(�))℄(y) : w(y) dy
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=

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : D(y)w(y) dy

=

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : [P (D(�)w(�))℄(y) dy

=

Z

Y

D(y)

�1

D(y)v(y) : [P (D(�)w(�))℄(y) dy

=

Z

Y

v(y) : [P (D(�)w(�))℄(y) dy = (v;Pw):

Therefore P is selfadjoint. To see that P is positive de�nite, note that the

above alulation also yields

(Pv; v) =

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : [P (D(�)v(�))℄(y) dy = [Pv;Pv℄ � 0 :

It follows that P is positive de�nite if Pv = P (D(�)v(�)) 6= 0 for all v 2 D

0

with

v 6= 0, hene if kerP = f0g. Now, if v 2 kerP, then D(�)v(�) 2 kerP = D

?

0

.

Sine v 2 D

0

, this implies

0 = [v;D(�)v(�)℄ =

Z

Y

(D

�1

(y)v(y)) : D(y)v(y) dy =

Z

Y

v(y) : v(y) dy;

whene v = 0. This proves that P is positive de�nite. The proof is omplete.

Next we need to ollet some information about the kernel of the operator

div

x

M

Y

. First we de�ne preisely how we want to understand this operator.

De�nition 4.3 The domain of de�nition of div

x

M

Y

onsists of all funtions

w 2 L

2

(
� Y;S

3

), for whih v 2 L

2

(
;R

3

) exists satisfying

�

Z




(M

Y

w(x; �)) : r

x

'(x) dx =

Z




v(x) � '(x) dx;

for all ' 2 H

1

(
;R

3

). Obviously, v is uniquely de�ned by this equation. We

thus de�ne

(div

x

M

Y

)w = v:

Clearly, this means that the domain of de�nition of div

x

M

Y

onsists of all

w, for whih div

x

an be applied to x 7! (M

Y

w(x; �)) in the weak sense, and

whih in the weak sense satisfy

[M

Y

w(x; �)℄n(x) = 0; x 2 �
:

By K we denote the kernel of the operator div

x

M

Y

. Then K is the subspae

of all funtions w 2 L

2

(
� Y;S

3

) with

Z




(M

Y

w(x; �)) : r

x

'(x) dx = 0 (4.15)
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for all ' 2 H

1

(
;R

3

). The subspae K is losed. The orthogonal spae of K

in L

2

(
� Y;S

3

) with respet to the salar produt

(v; w)


�Y

=

Z




Z

Y

v(x; y) : w(x; y) dxdy

is denoted by K

?

.

Lemma 4.4 (i) The spae K onsists of all funtions w of the form

w(x; y) = w

0

(x) + w

1

(x; y); (4.16)

where w

0

2 L

2

(
;S

3

) satis�es

div

x

w

0

= 0; w

0

(x)n(x) = 0; x 2 �
 (4.17)

in the weak sense, and where w

1

2 L

2

(
� Y;S

3

) satis�es

M

Y

w

1

(x; �) = 0; x 2 
: (4.18)

(ii) We have

K

?

= f(x; y) 7! "(r

x

v(x)) j v 2 H

1

(
;R

3

)g: (4.19)

Remark. w

0

satis�es (4.17) in the weak sense if

R




w

0

(x) : r'(x) dx = 0 for

all ' 2 H

1

(
;R

3

), of ourse. (ii) means that all funtions of the set K

?

are

onstant with respet to the y-variable.

Proof: (i) Assume that w = w

0

+w

1

with w

0

; w

1

satisfying (4.17), (4.18). For

' 2 H

1

(
;R

3

) we then have beause of (3.10)

Z




(M

Y

w(x; �)) : r

x

'(x) dx =

Z




(M

Y

w

0

(x) +M

Y

w

1

(x; �)) : r

x

'(x) dx

=

Z




w

0

(x) : r

x

'(x) dx = 0;

whene w 2 K. On the other hand, assume that w 2 K. We set w

0

(x) =

M

Y

w(x; �) and w

1

= w�w

0

. Then w(x; y) = w

0

(x)+w

1

(x; y) and w

1

satis�es

(4.18), sine

M

Y

w

1

(x; �) =M

Y

w(x; �)�M

Y

w

0

(x)

=M

Y

w(x; �)� w

0

(x) =M

Y

w(x; �)�M

Y

w(x; �) = 0;
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where we used (3.10) again. Moreover, w

0

satis�es (4.17), sine for ' 2

H

1

(
;R

3

)

Z




w

0

(x) : r

x

'(x) dx =

Z




Z

Y

w

0

(x) dy : r

x

'(x) dx

=

Z




(M

Y

w

0

(x) +M

Y

w

1

(x; �)) : r

x

'(x) dx

=

Z




(M

Y

w(x; �)) : r

x

'(x) dx = 0:

This proves (i).

(ii) Let M

T

Y

: L

2

(
;S

3

) ! L

2

(
 � Y;S

3

) denote the transpose operator of

M

Y

: L

2

(
� Y;S

3

)! L

2

(
;S

3

). It is immediately seen that

(M

T

Y

v)(x; y) = v(x)

for all v 2 L

2

(
;S

3

) and all (x; y) 2 
� Y .

Sine M

Y

w(x; �) is a symmetri matrix for all w 2 L

2

(
�Y;S

3

), it follows

that

(M

Y

w(x; �)) : r

x

'(x) = (M

Y

w(x; �)) : "(r

x

'(x)):

Therefore, by (4.15), K is the set of all w 2 L

2

(
� Y;S

3

) with

0 =

Z




(M

Y

w(x; �)) : r

x

'(x) dx

=

Z




(M

Y

w(x; �)) : "(r

x

'(x)) dx

=

Z




Z

Y

w(x; y) : [M

T

Y

("(r

x

'))℄(x; y) dydx;

for all ' 2 H

1

(
;R

3

). Thus, K is the orthogonal spae of the subspae

fM

T

Y

("(r

x

')) j ' 2 H

1

(
;R

3

)g = f(x; y) 7! "(r

x

'(x)) j ' 2 H

1

(
;R

3

)g:

Sine this subspae is losed, it is equal to K

?

. This proves (ii).

Beause K is a losed subspae of L

2

(
�Y;S

3

), we an de�ne the orthogo-

nal projetion �

1

: L

2

(
�Y;S

3

)! K � L

2

(
�Y;S

3

) onto K. Orthogonality

is meant with respet to the salar produt (v; w)


�Y

. By �

2

= I � �

1

we

denote the orthogonal projetion to the orthogonal spae K

?

of K.

An operator de�ned on a subspae of L

2

(
�Y;S

3

) an be introdued using

the operator P : D

0

! D

0

as follows: Sine this operator is linear, bounded,

selfadjoint and positive de�nite, it de�nes by

((x; y) 7! v(x; y)) 7! ((x; y) 7! (Pv(x; �))(y)) (4.20)
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a bounded linear operator on

L

2

(
;D

0

) = fv 2 L

2

(
� Y;S

3

) j v(x; �) 2 D

0

for almost all xg;

whih is also selfadjoint with respet to the salar produt (v; w)


�Y

and pos-

itive de�nite, and whih we denote by the same symbol P : L

2

(
;D

0

) !

L

2

(
;D

0

). Of ourse, the same onsiderations apply to the inverse P

�1

:

L

2

(
;D

0

)! L

2

(
;D

0

).

The next lemma ontains information about these operators:

Lemma 4.5 (i) We have

�

1

(L

2

(
;D

0

)) � K \ L

2

(
;D

0

); �

2

(L

2

(
� Y;S

3

)) � L

2

(
;D

0

)

(ii) The operator �

1

P

�1

maps the subspae K \ L

2

(
;D

0

) of L

2

(
 � Y;S

3

)

into itself, and

�

1

P

�1

: K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

)

is selfadjoint and positive de�nite.

Proof: (i) Lemma 4.4 (ii) implies for the range R(�

2

) of the projetion �

2

that

R(�

2

) = K

?

= f(x; y) 7! "(r

x

v(x)) j v 2 H

1

(
;R

3

)g � L

2

(
;D

0

);

sine funtions w(x; y) = "(r

x

v(x)) are periodi with respet to y and satisfy

div

y

v(x; y) = 0. For v 2 L

2

(
;D

0

) we thus have

�

1

v = (I � �

2

)v = v � �

2

v 2 L

2

(
;D

0

);

hene �

1

(L

2

(
;D

0

)) � K \ L

2

(
;D

0

). The proof of (i) is omplete.

(ii) Sine P

�1

: L

2

(
;D

0

)! L

2

(
;D

0

) we onlude from (i) that

�

1

P

�1

: K \ L

2

(
;D

0

)! K \ L

2

(
;D

0

):

To see that this operator is selfadjoint and positive de�nite, let v; w 2 K \

L

2

(
;D

0

). Then �

1

v = v and �

1

w = w. Sine the orthogonal projetion �

1

is

selfadjoint on L

2

(
� Y ) and P

�1

is selfadjoint on L

2

(
;D

0

), we thus obtain

(�

1

P

�1

v; w)


�Y

= (P

�1

v;�

1

w)


�Y

= (P

�1

v; w)


�Y

= (v;P

�1

w)


�Y

= (�

1

v;P

�1

w)


�Y

= (v;�

1

P

�1

w)


�Y

:

This shows that �

1

P

�1

is selfadjoint. From this omputation it also follows

that for v 6= 0

(�

1

P

�1

v; v)


�Y

= (P

�1

v; v)


�Y

> 0;
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sine P

�1

is positive de�nite on L

2

(
;D

0

). Consequently, �

1

P

�1

is positive

de�nite. This proves the lemma.

Redution to an evolution equation. With these lemmas we an redue

the homogenized initial-boundary value problem to an evolution equation. We

use the following notation: For funtions v and w de�ned on 
 � R

+

and on


 � Y � R

+

, respetively, whih take values in some spae V , we denote by

v(t) and w(t) the funtions

x 7! v(x; t) : 
! V and (x; y) 7! w(x; y; t) : 
� Y ! V;

respetively.

Sine by Lemma 4.2 the operator P : D

0

! D

0

is selfadjoint and positive

de�nite, it has a selfadjoint and positive de�nite inverse P

�1

: D

0

! D

0

.

Beause P is the projetion to D

0

, the terms on both sides of the equation

(4.11) belong to the domain of de�nition of P

�1

. Therefore we an apply P

�1

to this equation and obtain together with (4.7) and (4.10)

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (4.21)

P

�1

T

0

(x; �; t) = "(r

x

u

0

(x; t))� P

�1

P (D(�)Bz

0

(x; �; t)): (4.22)

Here we used that "(r

x

u

0

(x; t)) an be onsidered to be a funtion of (x; y; t),

whih is onstant with respet to y. Sine onstant funtions belong to D

0

, we

have "(r

x

u

0

(x; t)) 2 D

0

for all (x; t), whih yields

P

�1

P (D(�)"(r

x

u

0

(x; t))) = P

�1

P"(r

x

u

0

(x; t)) = "(r

x

u

0

(x; t)):

In the seond term on the right of (4.22) this simpli�ation is not possible,

sine Bz

0

(x; �; t) =2 D

0

, in general. Hene this funtion does not belong to the

domain of de�nition of P.

In the next step we insert T

0

= �

1

T

0

+ �

2

T

0

into (4.21). Beause �

1

projets to the kernel of the operator div

x

M

Y

, we obtain

�div

x

M

Y

T

0

(t) = �div

x

M

Y

(�

1

T

0

)(t)� div

x

M

Y

(�

2

T

0

)(t)

= �div

x

M

Y

(�

2

T

0

)(t) = b(t): (4.23)

Here we used that T

0

(t) and, as a onsequene, also �

2

T

0

(t) belong to the

domain of de�nition of div

x

M

Y

. This is guaranteed by the boundary ondition

(4.9). We ontinue by applying �

1

to (4.22), whih results in

�

1

P

�1

T

0

(t) = �

1

"(r

x

u

0

(t))� �

1

P

�1

P (DBz

0

(t))

= ��

1

P

�1

P (DBz

0

(t));

sine (4.19) implies "(r

x

u

0

(t)) 2 K

?

and sine K

?

= ker �

1

. Using T

0

(t) 2

L

2

(
;D

0

), we onlude from Lemma 4.5 (i) that �

1

T

0

(t); �

2

T

0

(t) 2 L

2

(
;D

0

),
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whene �

1

T

0

(t) and �

2

T

0

(t) both belong to the domain of de�nition of P

�1

.

Consequently, P

�1

T

0

(t) = P

�1

�

1

T

0

(t) + P

�1

�

2

T

0

(t), whih shows that the

last equation an be written in the form

�

1

P

�1

(�

1

T

0

)(t) = ��

1

P

�1

P (DBz

0

(t))� �

1

P

�1

(�

2

T

0

)(t): (4.24)

Beause the mapping

�

1

P

�1

: K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

)

is selfadjoint and positive de�nite, it has an inverse, whih is also selfadjoint

and positive de�nite. We denote this inverse by (�

1

P

�1

)

�1

. Beause the

three funtions T

0

(t); P

�1

P (DBz

0

(t)) and P

�1

(�

2

T

0

)(t) all are ontained in

L

2

(
;D

0

), we an invoke Lemma 4.5 (i) again to onlude from this fat that

�

1

T

0

(t) and both terms on the right hand side of (4.24) belong to the subspae

K\L

2

(
;D

0

), the domain of de�nition of (�

1

P

�1

)

�1

. Therefore we an apply

this inverse to all terms of the equation (4.24). Di�erentiation of the resulting

equation and insertion of (4.12) for

�

�t

z

0

yields

�

�t

(�

1

T

0

)(�; ��; t) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(��)Bf(��; T

0

(�; ��; t); z

0

(�; ��; t)))

� (�

1

P

�1

)

�1

�

1

P

�1

�

�t

(�

2

T

0

)(�; ��; t): (4.25)

We note that in this equation (�

1

P

�1

)

�1

�

1

P

�1

an not be replaed by the

identity, sine (�

1

P

�1

)

�1

is the inverse of �

1

P

�1

on K \ L

2

(
;D

0

). However,

P (DBf) =2 K \ L

2

(
;D

0

) and (�

2

T

0

)

t

=2 K \ L

2

(
;D

0

), in general.

If we replae T

0

by �

1

T

0

+ �

2

T

0

in the argument of f , then we obtain

from (4.25) the evolution equation for �

1

T

0

whih we sought. We state this

evolution equation and the equation (4.23) for �

2

T

0

in the following

Theorem 4.6 Assume that (u

0

; T

0

; z

0

) is a funtion whih has the properties

u

0

(t) 2 H

1

(
;R

3

) (4.26)

T

0

(t);

�

�t

T

0

(t) 2 L

2

(
� Y;S

3

) (4.27)

z

0

(t);

�

�t

z

0

(t) 2 L

2

(
� Y;S

3

); (4.28)

for almost all t 2 R

+

, and whih satis�es the homogenized initial-boundary

value problem (4.7){(4.14). Then T

0

and z

0

satisfy on 
�Y �R

+

the equations

�div

x

M

Y

(�

2

T

0

) = b(x; t) (4.29)

�

�t

(�

1

T

0

) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�;�

1

T

0

+�

2

T

0

; z

0

))

� (�

1

P

�1

)

�1

�

1

P

�1

(�

2

T

0

)

t

(4.30)

�

�t

z

0

= f(�;�

1

T

0

+�

2

T

0

; z

0

); (4.31)
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on �
� R

+

the boundary ondition

[M

Y

�

2

T

0

(x; �; t)℄n(x) = 0; (4.32)

and on 
� Y the initial onditions

(�

1

T

0

)(x; �; 0) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bz

(0)

0

(x; �))

� (�

1

P

�1

)

�1

�

1

P

�1

(�

2

T

0

)(x; �; 0) (4.33)

z

0

(x; y; 0) = z

(0)

0

(x; y): (4.34)

Conversely, if T

0

and z

0

are periodi with respet to y, ful�ll (4.27), (4.28)

and satisfy (4.29){(4.34), then a unique funtion u

0

exists satisfying (4.26),

suh that the funtion (u

0

; T

0

; z

0

) solves the homogenized initial-boundary value

problem (4.7){(4.14).

Sholium. Before we give the remaining parts of the proof of this theorem,

we interpret the equations (4.29){(4.34). The equations (4.29) and (4.32)

belong together and are meant in the weak sense. Together they mean that for

almost all t the funtion (x; y) 7! (�

2

T

0

)(x; y; t) must belong to the domain

of de�nition of the operator div

x

M

Y

introdued in De�nition 4.3 and that the

appliation of this operator to �

2

T

0

yields x 7! b(x; t). Sine by de�nition �

2

maps to the orthogonal spae of the kernel of div

x

M

Y

, the funtion �

2

T

0

is

uniquely determined by (4.29) and (4.32). Hene, if these two equations an

be solved for almost all t, then the omponent �

2

T

0

of T

0

in the spae K

?

is

known. Thus, the unknowns in (4.30), (4.31) and (4.33), (4.34) are z

0

and the

omponent �

1

T

0

of T

0

in the spae K. Therefore, (4.30), (4.31) is a system

of evolution equations for the funtions �

1

T

0

and z

0

to the initial onditions

(4.33), (4.34). If this system an be solved, then T

0

= �

1

T

0

+ �

2

T

0

and z

0

are known. By the statement of the theorem, u

0

an be determined suh that

(u

0

; T

0

; z

0

) satisfy the homogenized initial-boundary value problem.

Proof: We already proved that (4.29), (4.30) follow from (4.7), (4.11). The

equations (4.31) and (4.34) oinide with (4.12) and (4.14). With T

1

(x; t) =

M

Y

T

0

(x; �; t); the boundary ondition (4.9) an be written in the form

(M

Y

T

0

(x; �; t))n(x) = 0; (x; t) 2 �
 � R

+

:

The boundary ondition (4.32) follows from this equation and from

�

2

T

0

= T

0

� �

1

T

0

;

sine by de�nition �

1

is the projetion to the kernel of the operator div

x

M

Y

;

the funtion �

1

T

0

thus satis�es

[M

Y

�

1

T

0

(x; �; t)℄n(x) = 0

66



on �
� R

+

in the weak sense. Finally, the initial ondition (4.33) for �

1

T

0

is

obtained by appliation of the operator (�

1

P

�1

)

�1

to (4.24) and insertion of

the initial data for z

0

in the resulting equation.

Conversely, assume that (4.29){(4.34) are satis�ed. We use (4.31) to replae

f in (4.30) by

�

�t

z

0

and integrate the resulting equation with respet to t.

Insertion of the initial ondition (4.33) for �

1

T

0

and appliation of the operator

�

1

P

�1

to the resulting equation yields (4.24), whih an be written in the form

�

1

P

�1

T

0

= ��

1

P

�1

P (D(�)Bz

0

):

Sine ker �

1

= K

?

, this equation and Lemma 4.4 (ii) imply that for almost

every t there exists a funtion (x 7! u

0

(x; t)) 2 H

1

(
;R

3

) suh that (4.22) is

satis�ed. Moreover, (4.21) follows diretly from (4.29). From (4.21), (4.22) we

obtain (4.7) and (4.11) by appliation of P to (4.22). The equations (4.12),

(4.14) and (4.9) result diretly from (4.31), (4.34) and (4.32). This proves the

theorem.

Remark. The hypothesis z

0

(t);

�

�t

z

0

(t) 2 L

2

(
 � Y;S

3

) in Theorem 4.6 is

questionable. In fat, from the theory of quasi-stati problems it is known that

z

0

(t) belongs to L

2

only if f satis�es growth restritions, whih are not satis�ed

in most onstitutive models derived in the engineering sienes. In general, z

0

belongs to L

p

or to a spae of measures, depending on the properties of f .

However, we believe that the preeding reasoning an be modi�ed to hold also

in situations where z

0

belongs to these more general spaes.

4.3 Monotoniity of the evolution equation

The ruial diÆulty in proving that the homogenized initial-boundary value

problem has a solution is to show that the evolution system (4.30) and (4.31) is

solvable. Here we prove that if f is a monotone vetor �eld, then this evolution

system an be written as an evolution equation of the form

�

t

(t) = �A(t)�(t) + g(t) (4.35)

with a known funtion g and with a family fA(t)g

t�0

of monotone operators.

This is an essential step in proving existene of solutions for the homogenized

system. Of ourse, monotoniity of A(t) alone is not suÆient for existene

of solutions of (4.35). It is neessary that A(t) is maximal monotone and

that the family fA(t)g

t�0

satis�es additional regularity onditions, f. [16, 23℄.

Whether these additional onditions are satis�ed is an open question, not only

for the homogenized system, but also for the original system, where a similar,

but simpler redution to an evolution equation is possible.

In order to keep the disussion simple, we restrit ourselves in the following

investigations to onstitutive equations (4.3) of the form

z

t

= f(

x

�

; T );
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where the funtion f does not depend on the internal variables z expliitly.

Many simple onstitutive equations used in the engineering sienes are of this

form, f. [2℄. We remark however, that the following onsiderations go through

for onsiderably more general funtions f , whih also depend on the internal

variables z expliitly.

So, assume that

f = f(y; T ):

In this ase (4.29), (4.30) and the boundary ondition (4.32) form a losed

system for �

1

T

0

and �

2

T

0

, and the evolution equation (4.31) for the internal

variables z

0

an be dropped. To simplify the notation we set

� = �

1

T

0

; � = �

2

T

0

:

Then � = �(x; y; t); � = �(x; y; t) and �(t) 2 K \ L

2

(
;D

0

); �(t) 2 K

?

for

almost every t � 0. The equation (4.30) takes the form

�

t

(t) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�; �(t) + �(t)))� (�

1

P

�1

)

�1

�

1

P

�1

�

t

(t) :

(4.36)

Aording to the disussion following Theorem 4.6, the funtion �(t) is

uniquely determined by (4.29) and (4.32). Therefore � and the funtion

g = (�

1

P

�1

)

�1

�

1

P

�1

�

t

an be onsidered to be known. With this funtion

g the equation (4.36) an thus be written in the form (4.35), if we de�ne the

operator A(t) = A(�(t)) by

A(�(t))�̂ = (�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�; �̂ + �(t))); (4.37)

for every �̂ from the domain of de�nition �(�(t)) of A(�(t)). For �(�(t)) we

hoose the set of all funtions �̂ 2 K \ L

2

(
;D

0

), for whih

((x; y) 7! f(y; �̂(x; y) + �(x; y; t))) 2 L

2

(
� Y;R

N

) (4.38)

holds. With this hoie we have

A(�(t)) : �(�(t)) � K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

):

To see this, note that by de�nition of the projetion P , the relation (4.38)

implies

x 7! P (D(�)Bf(�; �̂(x; �) + �(x; �; t))) 2 L

2

(
;D

0

):

Sine P

�1

: L

2

(
;D

0

) ! L

2

(
;D

0

), we thus obtain from Lemma 4.5 (i) that

for �̂ 2 �(�(t))

�

1

P

�1

P (D(�)Bf(�; �̂ + �(t))) 2 K \ L

2

(
;D

0

);
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whih together with Lemma 4.5 (ii) and with the de�nition of A(�(t)) yields

A(�(t))�̂ 2 K \ L

2

(
;D

0

):

This proves the assertion. In passing we note that, as indiated in the notation,

the operator A(t) = A(�(t)) depends on the time t only via the known funtion

�(t).

A mapping A : �(A) � H ! H on a Hilbert spae H with the salar

produt (v; w) is monotone if

(Av � Aw; v � w) � 0

for all v; w 2 �(A). Here �(A) denotes the domain of A. We shall prove that

A(�(t)) is a monotone operator on K\L

2

(
;D

0

) for almost all t, if this Hilbert

spae is equipped with the salar produt de�ned as follows: In Lemma 4.5 it

was proved that �

1

P

�1

is selfadjoint and positive de�nite on the Hilbert spae

K\L

2

(
;D

0

) with the salar produt (v; w)


�Y

=

R




R

Y

v(x; y) : w(x; y) dydx.

Using this, we de�ne the new salar produt on K \ L

2

(
;D

0

) by

hv; wi =

Z




Z

Y

(�

1

P

�1

v) : w dydx : (4.39)

Theorem 4.7 Let f : R

3

�S

3

! R

N

be a given funtion and B : R

N

! S

3

be

a linear mapping. Assume that for every y 2 R

3

the vetor �eld ~� 7! Bf(y; ~�) :

S

3

! S

3

is monotone:

(Bf(y; ~�

1

)� Bf(y; ~�

2

)) : (~�

1

� ~�

2

) � 0; (4.40)

for all ~�

1

; ~�

2

2 S

3

. Then for every � 2 K

?

� L

2

(
� Y;S

3

) the operator A(�)

de�ned in (4.37) is monotone on K \ L

2

(
;D

0

), if this spae is equipped with

the salar produt hv; wi.

Proof: Let �

1

; �

2

2 �(�). Then (4.37) and (4.39) yield

hA(�)�

1

� A(�)�

2

; �

1

� �

2

i

=

Z


�Y

�

�

1

P

�1

[PD(�)Bf(�; �

1

+ �)� PD(�)Bf(�; �

2

+ �)℄

�

: (�

1

� �

2

)d(x; y)

=

Z


�Y

�

�

1

P

�1

PD(�)(Bf(�; �

1

+ �)� Bf(�; �

2

+ �))

�

: (�

1

� �

2

) d(x; y) =: J

1

;

where we used the linearity of �

1

P

�1

and of P . Sine �

1

: L

2

(
 � Y;S

3

) !

K � L

2

(
� Y;S

3

) is orthogonal with respet to the salar produt (v; w)


�Y
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and sine �

1

� �

2

2 K, hene �

1

(�

1

� �

2

) = �

1

� �

2

, we obtain that

J

1

=

Z




Z

Y

�

P

�1

P (D(�)(Bf(�; �

1

+ �)�Bf(�; �

2

+ �)))

�

: (�

1

� �

2

) dydx

=

Z




Z

Y

�

P (D(�)(Bf(�; �

1

+ �)� Bf(�; �

2

+ �)))

�

: P

�1

(�

1

� �

2

) dydx

=: J

2

:

Here we used that P de�ned in (4.20) and also P

�1

are selfadjoint on L

2

(
;D

0

)

with respet to the salar produt (v; w)


�Y

. Note that P projets to D

0

,

hene PD(�)(Bf(�; �

1

+�)�Bf(�; �

2

+�)) 2 L

2

(
;D

0

) and �

1

��

2

2 L

2

(
;D

0

) .

We next use that P : L

2

(Y )! D

0

� L

2

(Y ) is orthogonal with respet to the

salar produt [v; w℄ =

R

Y

(D(y)

�1

v(y)) : w(y) dy. For all v; w 2 L

2

(Y ) we

thus have

Z

Y

[P (Dv)℄ : w dy =

Z

Y

[D(y)

�1

P (D(�)v(�))℄ : D(y)w(y) dy

=

Z

Y

D(y)

�1

D(y)v(y) : P (D(�)w(�)) dy =

Z

Y

v : [P (Dw)℄ dy :

Using this relation, we obtain

J

2

=

Z




Z

Y

�

Bf(y; �

1

+ �)�Bf(y; �

2

+ �)

�

: P (D(�)P

�1

(�

1

� �

2

)) dydx

=

Z




Z

Y

(Bf(y; �

1

+ �)�Bf(y; �

2

+ �)) : (�

1

� �

2

) dydx

=

Z




Z

Y

h

(Bf(y; (�

1

+ �)(x; y))� Bf(y; (�

2

+ �)(x; y))

i

:

h

(�

1

+ �)(x; y)� (�

2

+ �)(x; y)

i

dydx

� 0:

The last inequality sign follows from the assumption (4.40). In this step we

used that for v 2 L

2

(
;D

0

)

P (D(�)v(x; �))(y) = (Pv)(x; y);

by de�nition of P, hene P (D(�)P

�1

(�

1

� �

2

)) = PP

�1

(�

1

� �

2

) = �

1

� �

2

.

This omputation proves that the operator A(�) is monotone. The proof

is omplete.

Conlusion. The ontributions of this artile to the mathematial theory

of phase transformations and to the homogenization of mathematial models

from solid mehanis an be summarized as follows:
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In Setion 2 we derived a new mathematial model for the evolution in time

of phase transitions. In this model the order parameter belongs to the spae

BV

lo

of funtions of bounded variation. Its evolution in time is rate dependent

and is governed by a �rst order partial di�erential equation, a Hamilton-Jaobi

equation. This model ould be an alternative to the Cahn-Allen model.

Sine the order parameter is of bounded variation, to determine the e�etive

equations to this model it was neessary in Setion 3 to study homogenization

in the spae BV

lo

. This made it neessary to introdue the idea of a family of

solutions of the mirosopi initial-boundary value problem depending on the

fast variable.

In Setion 4 we redued the homogenized system of partial di�erential

equations for temporally invariant mirostruture to an evolution equation.

The redution proedure generalizes the redution given in [2℄ for the equations

modeling inelasti solids. As a �rst step in the diretion of an existene proof

we showed that the resulting evolution equation is monotone.

It remains open whether the model suggested in Setion 2 has a solution

and whether the solution is unique. Moreover, it would be important to in-

vestigate this model numerially. Also,the proof of monotoniity in Setion 4

should be extended to an existene proof for the homogenized system to tempo-

rally invariant mirostruture. Subsequently, this homogenized system should

be justi�ed by proving that the solutions of the homogenized problem tend

asymptotially to the solutions of the mirosopi problem. In the last step,

the same program should be arried out for the homogenized problem to evolv-

ing mirostruture. Of these tasks, the existene proof for the homogenized

system to invariant mirostruture and the justi�ation of this system seem to

be the most aessible ones.
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