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Abstra
t

In this arti
le we formulate a mathemati
al model for the temporally

evolving mi
rostru
ture generated by phase 
hanges and study the ho-

mogenization of this model. The investigations are partially formal,

sin
e we do not prove existen
e or 
onvergen
e of solutions of the mi-


rostru
ture model to solutions of the homogenized problem. To model

the mi
rostru
ture, the sharp interfa
e approa
h is used. The evolu-

tion of the interfa
e is governed by an everywhere de�ned distribution

partial di�erential equation for the 
hara
teristi
 fun
tion of one of the

phases. This avoids the disadvantage 
ommonly asso
iated with this ap-

proa
h of an evolution equation only de�ned on the interfa
e. To derive

the homogenized problem, a family of solutions of the mi
rostru
ture

problem depending on the fast variable is introdu
ed. The homoge-

nized problem obtained 
ontains a history fun
tional, whi
h is de�ned

by the solution of a initial-boundary value problem in the representative

volume element. In the spe
ial 
ase of a temporally �xed mi
rostru
-

ture the homogenized problem is redu
ed to an evolution equation to a

monotone operator.

1 Introdu
tion

Alloys used in jet engines display a mi
rostru
ture, whose 
on�guration evolves

in time under loading. This mi
rostru
ture, whi
h is formed by phase 
hanges

of the material, in
uen
es the 
reep behavior of the alloy. A mathemati
al

model des
ribing the stress and deformation behavior of the alloy must there-

fore also a

ount for the evolving mi
rostru
ture. Sin
e in this mi
rostru
ture

the length s
ale of the phase 
hanges is less than 0:5�m, e�e
tive numeri
al


omputations of the stress and strain �elds in metalli
 
omponents, whose

dimensions lie in the range of 
entimeters or meters, 
an not be based on a
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mi
ros
opi
 mathemati
al model whi
h faithfully des
ribes the evolving mi-


rostru
ture. A ma
ros
opi
 model is needed for this purpose. An interesting

idea to develop a ma
ros
opi
 model is to formulate a mi
ros
opi
 model �rst

and then to derive a ma
ros
opi
 model from it by homogenization. In this

arti
le we want to 
ontribute to the development of this idea. We derive and

formulate a mi
ros
opi
 model, whi
h is of the sharp interfa
e type, and study

the homogenization of the partial di�erential equations in this model. The ho-

mogenized problem obtained 
ontains a history fun
tional, whi
h is de�ned via

the solution of an initial-boundary value problem in the representative volume

element. The derivation of the homogenized equations is partly formal, sin
e

neither do we prove existen
e or uniqueness of solutions for the mi
ros
opi


model, nor do we prove 
onvergen
e of solutions of the mi
ros
opi
 model to so-

lutions of the homogenized equations, assuming that su
h solutions exist. Su
h

investigations must be left to later work. However, as a spe
ial 
ase the model

we derive des
ribes mi
rostru
tures, whi
h do not evolve, but are temporally

�xed. In this simpler 
ase we dis
uss the homogenized initial-boundary value

problem more pre
isely and verify some results towards an existen
e proof for

solutions of this initial-boundary value problem.

To understand the mathemati
al investigations in this paper it is helpful

to know the me
hani
al ba
kground of the mathemati
al model. Therefore we

sket
h this me
hani
al ba
kground �rst. Detailed des
riptions and experimen-

tal and theoreti
al investigations 
an be found in [29, 18, 54, 67℄.

Ni
kel based single 
rystal alloys display a mi
rostru
ture after produ
tion.

For simpli
ity, we dis
uss alloys whi
h only 
onsist of the two 
omponents

aluminium and ni
kel. Embedded in a matrix phase 
 are 
ubi
 pre
ipitates




0

. After 
omplete aging the pre
ipitates are distributed in the 
{matrix phase

as a periodi
 array of 
uboids of fairly uniform size. The length of the edges and

the mutual distan
e of the pre
ipitates is in the range of 0:2{0:5�m. The 


0

{

phase is highly ordered: The large aluminium atoms are pla
ed in the 
rystal

latti
e at the eight 
orners of a 
ube and the ni
kel atoms are pla
ed at the


enter of the six sides of this 
ube. In the 
{matrix phase the aluminium and

the ni
kel atoms are distributed randomly over the positions in the 
rystal

latti
e. There is a mismat
h between the latti
e parameters a




and a




0

of the


rystal in the 
{ and 


0

{phases. Typi
ally the mismat
h

Æ =

a




0

� a




a




is of the order of jÆj � 0:005. Nevertheless, this small mismat
h introdu
es a

signi�
ant internal stress in the 
rystal at the phase interfa
es and is 
onsidered

to be the reason for the evolution of the morphology of the pre
ipitates, whi
h

happens at high temperatures under the appli
ation of external stress. Two

di�erent types of evolution have been observed: Either the 
uboids 
oarsen
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preferentially along the dire
tion of the applied stress and form plates whi
h lie

parallel to the stress dire
tion; or the 
oarsening is normal to the applied stress

and plates form with the fa
es normal to the stress dire
tion. The di�eren
e

in the 
oarsening dire
tions is attributed to the di�erent 
rystal stru
tures of

the alloys.

As an important aspe
t, a mathemati
al model for this type of problem

must a

ount for the phase 
hanges. Two approa
hes are used to model tempo-

rally evolving phase 
hanges mathemati
ally; both are employed in the di�er-

ent mathemati
al models, whi
h have been developed to model the mi
rostru
-

ture and the stress-strain behavior of single 
rystal alloys: In the phase �eld

approa
h the di�erent phases are 
hara
terized by an order parameter, whi
h

varies rapidely but smoothly and is assumed to satisfy a di�usion equation.

The two phases are separated by the transition region of the order parame-

ter. In the sharp interfa
e approa
h the di�erent phases are assumed to be

separated by sharp moving interfa
es. The movement of the interfa
es is de-

termined by an equation for the normal speed of the interfa
es. The basi


prin
iple used in all investigations and models to govern the movement of the

interfa
es or the evolution of the order parameter is the se
ond law of ther-

modynami
s, whi
h requires that this movement or evolution tend to de
rease

the free energy.

Mathemati
al models for the evolving mi
rostru
ture in single 
rystal alloys

using the phase �eld approa
h are formulated in [18, 78℄; the sharp interfa
e

approa
h is used in [33, 55, 64, 65, 67℄, for example. Of these referen
es, only

[18℄ 
ontains a 
omplete set of model equations; in the others the main interest

is to 
ompute the equilibrium states of the mi
rostru
ture. They do not give

su
h a 
omplete set of equations, whi
h is not needed for this purpose.

In 
ontinuum me
hani
s and in the material s
ien
es the investigation of

moving interfa
es and phase 
hanges is a very a
tive �eld of resear
h with a

long history. From the large body of literature we only mention [1, 5, 21, 22,

34, 35, 36, 47, 49, 50, 56℄. Together with more arti
les several of these are


olle
ted in the book [6℄. For detailed studies we must refer the reader to the

bibliography 
ontained in these arti
les.

From the mathemati
al literature about moving interfa
es, moving bound-

aries and phase transitions we 
an only mention here [4, 8, 9, 10, 11, 13, 14, 17,

20, 27, 30, 31, 40, 48, 57, 68, 72, 73, 74, 76℄. Many of the mathemati
al inves-

tigations 
on
ern interfa
e problems, where the free energy has a nonvanishing

surfa
e part. This leads to problems of mean 
urvature 
ow or a generalization

of it. Together with the 
onstitutive assumption that the free energy is only

a fun
tion of spa
e, time and normal velo
ity of the interfa
e, the problem


an be redu
ed to the solution of a s
alar partial di�erential equation, whi
h

in most 
ases is paraboli
. An extensive theory also exists for the phase �eld
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approa
h, where the 
oupled evolution of the order parameter and the tem-

perature �eld is studied. We refer in parti
ular to [4℄. This approa
h leads to

initial-boundary value problems for a paraboli
 system or for a paraboli
 sys-

tem 
oupled with other equations. In the re
ent investigation [30℄, the phase

�eld approa
h is used to study temporally evolving phase 
hanges in an elasti


medium. Lo
al existen
e of solutions is proved and the sharp interfa
e limit is

studied in the stationary 
ase.

Con
erning homogenization, we mention the arti
les [19, 46, 51, 53, 59, 60,

61, 62, 66, 69, 70℄, where the engineering view is dominating. A theoreti
al

view predominates in the books and arti
les [3, 7, 12, 15, 24, 25, 37, 38, 39,

41, 42, 43, 44, 45, 52, 58, 63, 71℄. The �rst group of arti
les 
ontains investiga-

tions of the homogenization of problems with evolving mi
rostru
ture as well

as with temporally �xed mi
rostru
ture, and numeri
al algorithms to 
ompute

the overall response of solids with mi
rostru
ture. [12℄ and [58℄ from the se
-

ond group dis
uss homogenization of nonlinear monotone operators, whi
h is

of interest for the investigations in Se
tion 4. There the homogenization of

initial-boundary value problems for inelasti
 materials with temporally �xed

mi
rostru
ture is studied, whi
h, after a suitable transformation, 
an often be

written as an evolution equation to a monotone operator. This is shown in

[2℄. In [52℄ the homogenization of a rate independent model for phase transfor-

mations is investigated. The homogenization of 
ompli
ated time dependent


ow problems from 
hemistry and engineering is dis
ussed in [38, 39, 42℄.

The mathemati
al models studied in these arti
les 
ontain transmission 
ondi-

tions and partial di�erential equations de�ned on the boundary manifold. In

[15, 24, 25, 37℄ the homogenization of Hamilton-Ja
obi equations is dis
ussed

in the frame of the theory of vis
osity solutions.

We �nally summarize the 
ontent of this arti
le: In Se
tion 2 we formulate

a model for the evolving mi
rostru
ture in single 
rystal alloys, whi
h is of the

sharp interfa
e type. The basi
, standard assumptions we use to formulate it

are the same as in the model of So
rate and Parks [67℄. In this model, the

free energy does not have a surfa
e part, but the material is allowed to show

inelasti
 stress-strain behavior. This stress-strain behavior may be di�erent in

the two di�erent phases. It is modeled using internal variables.

To 
hara
terize the two phases we introdu
e an order parameter whi
h only

takes the values 0 and 1 and thus jumps at the fa
e interfa
e. Using an order

parameter is not new in the sharp interfa
e approa
h, sin
e the level set method

uses su
h a parameter, for example. However, the 
hoi
e of a dis
ontinuous

order parameter is in 
ontrast both to the phase �eld approa
h and to the level

set method, where the order parameters are smooth.

We �rst use the se
ond law of thermodynami
s to derive dissipation inequal-

ities, whi
h must be satis�ed by the normal velo
ity of the phase interfa
es and

by the time derivative of the internal variables. These dissipation inequalities
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restri
t the 
onstitutive relations for the normal velo
ity and for the internal

variables. The derivation is standard, but we present it for 
ompleteness and

for de�nitness. As usual, it follows that the driving tra
tion for the phase

interfa
e is generated by a jump of the Eshelby tensor at the interfa
e; this

jump is 
aused by the mis�t strain originating from the di�erent values of the

latti
e parameters in the 
{ and 


0

{phases. Sin
e the free energy does not

have a surfa
e part, the mean 
urvature does not appear in the equations. We

then formulate a 
onstitutive equation for the normal velo
ity of the phase

interfa
es, whi
h is in a

ordan
e with these restri
tions. This equation 
an

be 
onsidered to be an evolution equation for the phase interfa
e. The mathe-

mati
al model thus 
onsists of an initial-boundary value problem to a system,

whi
h 
onsists of partial di�erential equations for the strain and stress �elds

and of evolution equations for the internal variables and the phase interfa
e.

This model is derived in Se
tions 2.1 and 2.2.

Our new 
ontributions to the modelling of moving phase interfa
es are


ontained in Se
tions 2.3 to 2.5. A drawba
k of the sharp interfa
e approa
h

is that the equation for the normal speed of the interfa
e is only de�ned on the

interfa
e, whi
h 
auses diÆ
ulties in theoreti
al investigations and numeri
al


omputations. For example, the 
oales
en
e or the separation of pre
ipitates

will be diÆ
ult to model and to study. However, in a �rst step we show that

the equation for the normal speed of the interfa
e 
an be reformulated as an

evolution equation for the dis
ontinuous order parameter S taking the value

0 on the 
{phase and the value 1 on the 


0

{phase. The evolution equation

holds in the distribution sense and is de�ned everywhere, not only on the

interfa
es. Sin
e knowledge of the interfa
es is not needed to formulate the

equation, the above mentioned drawba
k of the se
ond approa
h is removed.

Still, this equation is 
ompli
ated and will not be easy to use. In a se
ond

step we therefore show that if the solution of this equation is smooth, it 
an

be redu
ed to the �rst order partial di�erential equation

S

t

(x; t) = �
� 

S

("; S; z) jr

x

S(x; t)j

for S, a transport equation or Hamilton-Ja
obi equation. Here  

S

is the partial

derivative of the free energy with respe
t to S, 
 is a 
onstant and �; "; z denote

the density, the strain and the ve
tor of internal variables. We surmise that the

initial-boundary value problem with this equation as evolution equation for the

order parameter has smooth solutions to smooth initial data, and that these

smooth solutions 
an be used to approximate theoreti
ally and numeri
ally

the dis
ontinuous solutions to the original mi
rostru
ture problem.

In Se
tion 3 we formally derive the homogenized initial-boundary value

problem asso
iated to this mi
rostru
ture model. The mi
rostru
ture is intro-

du
ed in the problem by assuming that the initial data for the order parameter
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are given by a fun
tion of the form

S

(0)

(x;

x

�

);

where y ! S

(0)

(x; y) is periodi
 and where � > 0 is a small parameter. x is


alled the slow variable, y the fast variable. This means that the initial data

are approximately periodi
 in spa
e and that the s
ale of the mi
rostru
ture

tends to zero for � ! 0. To derive the homogenized equations, we assume that

the mi
ros
opi
 initial-boundary value problem has solutions to these initial

data with an order parameter of the form

S

�

(x;

x

�

; t);

where S

�

(x; y; t) is periodi
 in the fast variable y and tends to S

0

(x; y; t) for

� ! 0 in a suitable sense. Moreover, it is assumed that the other unknowns

in the initial-boundary value problem have similar representations. By let-

ing tend � ! 0, an initial-boundary value problem is determined whi
h must

be solved by S

0

and by the limit fun
tions of the other unknowns. This is

the homogenized problem. The homogenized problem 
onsists of a ma
ro-

s
opi
 initial-boundary value problem in the ma
ros
opi
 (x; t){variables for

the ma
ros
opi
 deformation u

0

(x; t) and the ma
ros
opi
 mean stress T

1

(x; t),

with a history fun
tional

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s));

whi
h for every x is 
omputed via the solution of an initial-boundary value

problem in the (y; t){variables. y varies in the periodi
ity 
ell. This periodi
ity


ell, or better, the initial-boundary value problem in the periodi
ity 
ell, is


alled representative volume element.

The evolution equation for the order parameter in the mi
ros
opi
 prob-

lem is a partial di�erential equation 
ontaining derivatives with respe
t to x

and t. These derivatives are distribution derivatives. It turns out that in

the initial-boundary value problem of the representative volume element the

fun
tion (y; t)! S

0

(x; y; t) must solve a partial di�erential equation 
ontain-

ing distribution derivatives with respe
t to y and t. As usual in the theory

of distributions, to de�ne distribution derivatives with respe
t to y, an in-

tegration with respe
t to the y{variable must be present. To introdu
e this

integration, we de�ne in Se
tion 3.1 the notion of a family of solutions of

the mi
ros
opi
 initial-boundary value problem depending on the fast variable

and generalize it in Se
tion 3.4 to distribution solutions. For a pre
ise dis
us-

sion of the homogenized initial-boundary value problem we refer to the s
holia

after De�nition 3.11 of this homogenized initial-boundary value problem in

Se
tion 3.4.
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The redu
tion of the mi
ros
opi
 initial-boundary value problem to a ho-

mogenized problem with history fun
tional de�ned via the solution of an

initial-boundary value problem in the representative volume element is not


ompletely satisfa
tory, sin
e, as is dis
ussed more pre
isely in the s
holia af-

ter De�nition 3.11, the determination of su
h a history fun
tional still is of

high 
omputational 
omplexity. Therefore this �rst homogenization should be

followed in a se
ond step by a homogenization of this representative volume

element, whi
h results in the elimination of the y{variable. Ideas have been

developed for su
h a se
ond homogenization, 
f. [46, 52, 59, 60, 61, 62, 69, 70℄.

We 
an not dis
uss these ideas here, but have to refer to these arti
les and to

the literature 
ited there.

In Se
tion 4 we spe
ialize the model to the simpler situation of a temporally

�xed mi
rostru
ture. In this simpler situation it is suggestive to interpret the

homogenized initial-boundary value problem as a quasi-stati
 problem with a


onstitutive equation, whi
h is an ordinary di�erential equation in an in�nite

dimensional Bana
h spa
e. We redu
e the problem to an evolution equation

and show that this is an evolution equation to a monotone operator, if the 
on-

stitutive equation for the original mi
ros
opi
 problem is of monotone type.

This is an important step towards an existen
e proof for solutions of the ho-

mogenized problem.
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2 A mathemati
al model with sharp phase interfa
es

2.1 Equations for the stress, displa
ement and internal variables

In this se
tion we introdu
e the model equations for the stress, displa
ement

and internal variables. These equations 
oin
ide essentially with the equations

for homogeneous inelasti
 materials dis
ussed in the book [2℄. The only dif-

feren
es are that the mi
rostru
ture introdu
es inhomogeneity in the material

and that the equations used here 
ontain a term representing the mis�t strain.

Therefore we only state these equations and refer the reader to [2℄ for a pre
ise

dis
ussion. Also, we formulate interfa
e 
onditions, boundary 
onditions and

initial 
onditions.

To model phase 
hanges evolving in time one needs in addition to the

model equations for inelasti
 materials an evolution equation for the phase

interfa
es. Se
tions 2.2{2.5 are devoted to the formulation and transformation

of this equation.

Let 
 � R

3

be a bounded open set with smooth boundary �
. It represents

the points of a material body. By 
(t) we denote the set of points of 
, whi
h

at time t belong to the 
{phase, whereas 


0

(t) denotes the set of points of 


whi
h at time t belong to the 


0

{phase. We assume that 
(t) is 
losed in 


and that


(t) \ 


0

(t) = ; ; 
(t) [ 


0

(t) = 
 :

The interfa
e between the two phases is

�(t) = 
(t) \ 


0

(t):

These subsets of 
 are the 
ross se
tions at time t of the sets


 = f(x; t) 2 
� R

+

0

j x 2 
(t)g; 


0

= f(x; t) 2 
� R

+

0

j x 2 


0

(t)g

and

� = f(x; t) 2 
� R

+

0

j x 2 �(t)g:

If in the following we do not mention spe
ial assumptions, we shall always

assume that � is a suÆ
iently smooth submanifold of 
 � R

+

0

: To represent

these sets, we introdu
e an order parameter S : 
� R

+

0

! f0; 1g with

S(x; t) =

(

0 ; x 2 
(t)

1 ; x 2 


0

(t) :

Let S

3

denote the set of symmetri
 3�3{matri
es, let u : 
�R

+

0

! R

3

denote

the displa
ement and

"

�

r

x

u(x; t)

�

=

1

2

h

r

x

u(x; t) + (r

x

u(x; t))

T

i

2 S

3
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the linear strain tensor. Here (r

x

u(x; t))

T

denotes the transpose of the 3� 3{

matrix r

x

u(x; t), the matrix of �rst order partial derivatives of u with respe
t

to x = (x

1

; x

2

; x

3

). The fun
tion T : 
 � R

+

0

! S

3

is the Cau
hy stress

tensor and z : 
 � R

+

0

! R

N

is the ve
tor of internal variables. Finally,

b : 
�R

+

0

! R

3

is the given volume for
e. The strain and stress distributions

are governed by the equations

�div

x

T (x; t) = b(x; t) (2.1)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))� Bz(x; t)

�

(2.2)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) ; (2.3)

whi
h must be satis�ed for all t � 0 and for all x 2 
n�(t) : Here D(0); D(1) :

S

3

! S

3

are linear, symmetri
, positiv de�nite mappings. D(0) is the elasti
ity

tensor in the matrix phase 
 ; and D(1) is the elasti
ity tensor in the 


0

{phase.

"

�

(1) 2 S

3

is the mis�t strain in the 


0

{phase. The mis�t strain is equal to

zero in the matrix{phase, hen
e "

�

(0) = 0 :

B : R

N

! S

3

is a linear mapping, whi
h maps the ve
tor of internal

variables to the plasti
 strain tensor:

"

p

(x; t) = Bz(x; t) :

The given fun
tion f : �(f) � f0; 1g � S

3

� R

N

! R

N

in the evolution

equation (2.3) for the ve
tor z of internal variables determines the inelasti


properties of the 
{ and 


0

{phases of the material. Here �(f) denotes the

domain of de�nition of f : This fun
tion depends on S ; sin
e the two phases

behave di�erently. Purely elasti
 behavior in the 


0

{phase is obtained with

f(1; "; z) � 0 :

On the interfa
e �(t) the fun
tions u; T and z must satisfy interfa
e 
ondi-

tions. The fun
tions "(r

x

u); u

t

; T; and z 
an jump a
ross � ; but we assume

that the displa
ement u and the tra
tion ve
tor are 
ontinuous a
ross the in-

terfa
e. Thus, with a given fun
tion g : R

N

! R

N

the interfa
e 
onditions for

u; T and z are

u

+

(x; t) = u

�

(x; t); (2.4)

T

+

(x; t)n(x; t) = T

�

(x; t)n(x; t); (2.5)

z(x; t+) = g(z(x; t�)); (2.6)

whi
h must hold for all (x; t) 2 � : Here n(x; t) 2 R

3

is the unit normal ve
tor

to �(t) pointing from 


0

(t) to 
(t) : Also, T

+

(x; t) and T

�

(x; t) are the limit

values of T if the argument tends to (x; t) 2 � from 
 or from 


0

; respe
tively.

9



Pre
isely, for a fun
tion w and (x; t) 2 � we de�ne

w

+

(x; t) = lim

�!0

�>0

w((x; t) + �m(x; t))

w

�

(x; t) = lim

�!0

�<0

w((x; t)� �m(x; t)) ;

with the unit normal ve
tor m(x; t) 2 R

4

to � pointing from 


0

to 
 : In the

following we assume that this normal ve
tor di�ers everywhere from the ve
tor

(0;�1) 2 R

3

� R :

Finally, the boundary 
ondition is

T (x; t)n(x) = 0; x 2 �
; t � 0; (2.7)

with a unit ve
tor n(x) normal to �
 at x, and the initial 
onditions are

z(x; 0) = z

(0)

(x); S(x; 0) = S

(0)

(x); x 2 
: (2.8)

Under suitable regularity 
onditions for � and b, the equations (2.1) and (2.5),

respe
tively, hold in the 
lassi
al sense in (
� R

+

)n� and on �, respe
tively,

if and only if T is a weak solution of (2.1) in 
 � R

+

: By de�nition, T is a

weak solution if and only if

Z

1

0

Z




T (x; t) : r

x

'(x; t) dxdt =

Z

1

0

Z




b(x; t) � '(x; t) dxdt (2.9)

is satis�ed for every fun
tion ' 2 C

1

0

(
� R

+

;R

3

) :

Remark. Instead of (2.6) we require in Se
tion 3 that z is 
ontinuous a
ross

the interfa
e �. We 
aution the reader that in this arti
le v does not normally

denote velo
ity. Instead, by v we denote fun
tions with values in S

3

or in R

m

with m � 1.

2.2 Evolution equation for the phase interfa
e, dissipation inequal-

ity

The 3 + 9 + N equations (2.1){(2.3) 
ontain the 3 + 9 + N + 1 unknown


omponents of u; T; z und S : Therefore the system (2.1){(2.3) is not 
losed;

an evolution equation for the order parameter S is missing. The evolution of

S is known if and only if the evolution of the sets 
(t) and 


0

(t) is known, and

this evolution is known, if a 
onstitutive equation is known, whi
h determines

the normal speed of the interfa
e between the phases as a fun
tion of u; T

and z. In this se
tion we �rst derive restri
tions for the form of su
h an

equation from the se
ond law of thermodynami
s, essentially following the

standard arguments in thermodynami
s. Our presentation is in
uen
ed by

10



[35℄. We then formulate a 
onstitutive equation for the normal speed, whi
h

is in a

ordan
e with these restri
tions. In Se
tion 2.3 this equation is used to

formulate an evolution equation for the order parameter S.

Let  =  ("; S; z) be the free energy. We assume that

 : �( )! R

is a suÆ
iently smooth fun
tion, whose domain of de�nition �( ) is equal to

the set S

3

� f0; 1g� R

N

or to a suitable subset of it.  must satisfy the basi


equation

�r

"

 ("; S; z) = T ; (2.10)

(
f. [2℄), where � > 0 denotes the mass density. In this arti
le we assume that

� is a 
onstant. Insertion of (2.2) into (2.10) and integration yields

� ("; S; z) =

1

2

h

D(S)

�

"� "

�

(S)�Bz

�i

:

�

"� "

�

(S)� Bz

�

+  

1

(S; z);

with a suitable fun
tion  

1

:

Se
ond law of thermodynami
s. We use the se
ond law of thermodynam-

i
s in the following form: For every subregion R of 
 with suÆ
iently smooth

boundary �R the displa
ement u ; the stress T ; the ve
tor of internal variables

z and the order parameter S must satisfy the inequality

d

dt

Z

R

� ("(r

x

u); S; z) dx �

Z

�R

q("(r

x

u); u

t

; S; z) � n(x) d�(x)

+

Z

R

b � u

t

dx ; (2.11)

with the negative energy 
ow (the stress power)

q("(r

x

u); u

t

; S; z) = T ("(r

x

u); S; z)u

t

:

Here n(x) is a unit ve
tor normal to �R pointing out of R :

Theorem 2.1 (Dissipation inequalities for the internal variables and for the

phase boundary) Let (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g be a

fun
tion, whi
h is 
ontinuously di�erentiable on the 
losed set 
 and on the

set 


0

, and whi
h is su
h that (u; T; z; S)

j




0

has a 
ontinuously di�erentiable

extension to 


0

.

(i) Then (2.11), the se
ond law of thermodynami
s, implies

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

� 0 (2.12)

on 
� R

+

in the weak sense.

11



(ii) Assume in addition that u; T; z; S satisfy (2.1), (2.2) on 
 � R

+

and

(2.4) (2.5) on the phase interfa
e �. Then (2.12) holds if and only if the

following two inequalities are satis�ed:

�r

z

 ("(r

x

u(x; t)); S(x; t); z(x; t)) � z

t

(x; t) � 0 (2.13)

for almost all (x; t) 2 
� R

+

0

, and

m

00

(x; t)

�

m

0

(x; t) �

h

C

�

r

x

u(x; t); S(x; t); z(x; t)

�i

m

0

(x; t)

�

� 0 (2.14)

for all (x; t) 2 � : Here m(x; t) = (m

0

(x; t); m

00

(x; t)) 2 R

3

� R is a unit

normal ve
tor to � pointing from 


0

to 
 ;

C(r

x

u; S; z) = � ("(r

x

u); S; z)I � (r

x

u)

T

T (2.15)

= � ("(r

x

u); S; z)I � (r

x

u)

T

(D(S)("(r

x

u)� "

�

(S)�Bz))

is the Eshelby tensor, and

[C℄ = C

+

� C

�

denotes the jump of C along the phase boundary � : By I we denote the

unit matrix.

Remark. By de�nition, (2.12) is satis�ed in the weak sense if

Z


�R

+

�

� � ("; S; z)'

t

+ q("; u

t

; S; z) � r

x

'� b � u

t

'

�

d(x; t) � 0

for all ' 2 C

1

0

(
� R

+

;R) with '(x; t) � 0.

Sin
e we assumed that m(x; t) 6= (0;�1) ; hen
e m

0

(x; t) 6= 0 ; it follows that

(2.14) is equivalent to

�

�

n �

h

C(r

x

u; S; z)

i

n

�

� 0 ;

with the unit normal ve
tor n =

m

0

jm

0

j

2 R

3

to �(t) and with

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

: (2.16)

�(x; t) is the normal speed of propagation of the phase interfa
e �(t) at the

point x in the dire
tion of n(x; t) : Therefore we have the following

12



Corollary 2.2 (Constitutive equation for the normal speed of the phase in-

terfa
e.) Let 
 : R ! R be a given fun
tion with 
(s)s � 0 for all s 2 R : If

u; T; z; S satisfy (2.1){(2.5), if the normal speed of the phase interfa
e satis�es

�(x; t) = 


�

n(x; t) �

h

C

�

r

x

u(x; t); S(x; t); z(x; t)

�i

n(x; t)

�

(2.17)

for all (x; t) 2 � ; and if the dissipation inequality

�r

z

 ("; S; z) � f(S; T; z) � 0 (2.18)

is satis�ed for all

("; S; z) 2 �( ) \ f("; S; z) j (S; T; z) 2 �(f)g ;

then the inequality (2.12) expressing the se
ond law of thermodynami
s is ful-

�lled.

Remark. Sin
e by assumption (2.2) is satis�ed, we 
onsider here T =

T ("; S; z) to be a fun
tion of ("; S; z). (2.18) is the well known dissipation

inequality for 
onstitutive equations with internal variables, 
f. [2℄.

Proof of the Corollary: The equation (2.17) implies (2.14), and (2.13) is im-

plied by (2.3) and (2.18). Therefore the statement follows from Theorem 2.1.

Proof of Theorem 2.1: (i) Assume that the inequality (2.11) holds. To

every fun
tion ' 2 C

1

0

(
 � R

+

) satisfying '(y; t) � 0 for all (y; t) 2 
 � R

+

we 
an 
hoose a number r 2 R su
h that

0 < r <

1

2

dist

�

supp'; �(
� R

+

)

�

:

Then for every (y; t) 2 supp' the 
losed ball

B

r

(y) = fx 2 R

3

j jx� yj � rg

belongs to 
 : In (2.11) we 
hoose R = B

r

(y) with (y; t) 2 
 � R

+

; multiply

the inequality with '(y; t) and integrate with respe
t to (y; t) : The result is

Z


�R

+

'(y; t)

d

dt

Z

jx�yj<r

� (x; t) dx d(y; t)

�

Z


�R

+

'(y; t)

Z

jx�yj=r

q(x; t) �

x� y

r

d�(x)d(y; t)

+

Z


�R

+

'(y; t)

Z

jx�yj<r

(b � u

t

)(x; t) dxd(y; t);

13



where we used the notations

 (x; t) =  

�

"(r

x

u(x; t)); S(x; t); z(x; t)

�

and

q(x; t) = q

�

"(r

x

u(x; t)); u

t

(x; t); S(x; t); z(x; t)

�

:

Partial integration and inter
hange of the order of integration yields

�

Z


�R

+

Z

jy�xj<r

'

t

(y; t)� (x; t) dy d(x; t)

� �

Z


�R

+

Z

jy�xj=r

'(y; t)

y � x

r

d�(y) � q(x; t) d(x; t)

+

Z


�R

+

Z

jy�xj<r

'(y; t)(b � u

t

)(x; t) dy d(x; t) :

In the �rst term on the right hand side of this inequality we use the Divergen
e

Theorem to obtain

Z


�R

+

Z

jy�xj<r

�

� '

t

(y; t)� (x; t) +r

y

'(y; t) � q(x; t)

� '(y; t)(b � u

t

)(x; t)

�

dyd(x; t) � 0 :

Sin
e

lim

r!0

3

4�r

3

Z

jy�xj<r

r

(y;t)

'(y; t)dy = r

(x;t)

'(x; t) ;

uniformly with respe
t to (x; t) 2 
�R

+

; we 
on
lude from the last inequality

that

Z


�R

+

�

� � (x; t)'

t

(x; t) + q(x; t) � r

x

'(x; t)

� (b � u

t

)(x; t)'(x; t)

�

d(x; t) � 0 (2.19)

for all non-negative ' 2 C

1

0

(
� R

+

) : This proves (i).

(ii) Sin
e S is 
onstant on the sets 
 and 


0

; it follows that on

Æ




and on 


0

;

�

�t

 (x; t) = r

"

 ("; S; z) : "

t

+r

z

 ("; S; z) � z

t

:

Therefore the inequality (2.19) is equivalent to

Z


�R

+

�

�r

"

 ("; S; z) : "

t

+ �r

z

 ("; S; z) � z

t

� div

x

q("; u

t

; S; z)� b � u

t

�

'(x; t)d(x; t)

+

Z

�

�

�[ ("; S; z)℄m

00

� [q("; u

t

; S; z)℄ �m

0

�

'(x; t) d�(x; t) � 0 ;
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where, as above, m(x; t) = (m

0

; m

00

) 2 R

3

� R is a unit normal ve
tor to �

pointing from 


0

to 
 and [ ℄ =  

+

�  

�

, [q℄ = q

+

� q

�

denote the jumps of

 and q along � : Using that

div

x

q = div

x

(Tu

t

) = (div

x

T

T

) � u

t

+ T

T

: r

x

u

t

= (div

x

T ) � u

t

+ �(r

"

 ) : "

t

; (2.20)

where we employed (2.10) and the symmetry of T ; the above inequality is seen

to be equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

� (div

x

T ) � u

t

� b � u

t

�

'(x; t) d(x; t)

+

Z

�

�

�[ ℄m

00

� [Tu

t

℄ �m

0

�

'(x; t) d�(x; t) � 0 :

Be
ause of div

x

T + b = 0 and be
ause of

[Tu

t

℄ = hT i[u

t

℄ + [T ℄hu

t

i

with

hT i =

1

2

(T

+

+ T

�

); hu

t

i =

1

2

(u

+

t

+ u

�

t

) ;

this is equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

�

'(x; t)d(x; t) (2.21)

+

Z

�

�

�[ ℄m

00

� (hT im

0

) � [u

t

℄� ([T ℄m

0

) � hu

t

i

�

'(x; t) d�(x; t) � 0 :

Sin
e m

0

2 R

3

is normal to �(t) ; it follows from (2.5) that [T ℄m

0

= 0 : The

ve
tor �eld

(m

00

m

0

;�jm

0

j

2

)

is tangential to � : Sin
e by assumption u is 
ontinuously di�erentiable on 


and on 


0

and 
ontinuous a
ross � ; it follows that the limits (u

t

)

�

; (r

x

u)

�

on

� exist and that the tangential derivatives on both sides of � 
oin
ide:

�jm

0

j

2

u

+

t

+m

00

(r

x

u)

+

m

0

= �jm

0

j

2

u

�

t

+m

00

(r

x

u)

�

m

0

;

hen
e

[u

t

℄ = [r

x

u℄m

0

m

00

jm

0

j

2

:

Therefore (2.21) is equivalent to

Z


�R

+

�

�r

z

 ("; S; z) � z

t

�

'(x; t)d(x; t)

+

Z

�

�

�[ ℄�

�

hT i

m

0

jm

0

j

�

�

�

[r

x

u℄

m

0

jm

0

j

��

m

00

'(x; t)d�(x; t) � 0 :
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This inequality holds for all ' 2 C

1

0

(
� R

+

) with ' � 0 if and only if

�r

z

 ("; S; z) � z

t

� 0

almost everywhere in 
� R

+

and

�

�[ ℄�

�

hT i

m

0

jm

0

j

�

�

�

[r

x

u℄

m

0

jm

0

j

��

m

00

� 0 (2.22)

almost everywhere on � : We use again that [T ℄m

0

= 0, whi
h implies

[r

x

u℄

T

hT im

0

= [r

x

u℄

T

hT im

0

+ hr

x

ui

T

[T ℄m

0

= [(r

x

u)

T

T ℄m

0

;

when
e (2.22) is equivalent to

m

0

jm

0

j

� (�[ ℄I � [(r

x

u)

T

T ℄)

m

0

jm

0

j

m

00

� 0 on �:

This inequality 
an be written in the form (2.14) using the de�nition of the

Eshelby tensor C in (2.15). The theorem is proven.

2.3 Evolution equation for the order parameter S

The equations (2.1){(2.3), (2.17) form a 
losed system, sin
e the evolution in

time of the phase interfa
e � 
an be determined from the normal velo
ity �

given in (2.17). However, instead of the equation (2.17) for the normal speed

of the phase interfa
e � one would prefer to have an evolution equation for

the order parameter S dire
tly. To derive su
h an equation we start from the

method of 
hara
teristi
s, a 
ustomary way to model moving phase interfa
es,


f. Taylor, Cahn and Handwerker [73℄. The method is based on a partial dif-

ferential equation readily derived from (2.16). We shortly sket
h the iteration

pro
edure whi
h must be used to determine the manifold � with this method.

After this we shall not follow this method any further; instead, we show that

this partial di�erential equation 
an be used dire
tly as an evolution equation

for the order parameter S. This evolution equation is however a distribution

equation.

Assume that � is a suÆ
iently smooth 3{dimensional submanifold of 
 �

R

+

; that (m

0

; m

00

) is a unit normal ve
tor �eld on � ; and that � : � ! R is

the normal velo
ity of �. Then � satis�es the equation (2.16) on all of � :

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

:

Assume moreover that � is given by

� =

n

(x; t) 2 
� R

+

�

�

�

�(x; t) = 0

o

; (2.23)
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with a suitable fun
tion � : Then for all (x; t) 2 � the ve
tor

(r

x

�(x; t); �

t

(x; t)) is normal to � ; and we assume that it has the dire
tion of

�(m

0

(x; t); m

00

(x; t)) ; hen
e

(r

x

�; �

t

) = �j(r

x

�; �

t

)j (m

0

; m

00

) :

From this equation and from (2.16) we infer that the equation

�

t

(x; t)� �(x; t)jr

x

�(x; t)j = 0 (2.24)

holds for all (x; t) 2 � :

Conversely, if � is a suÆ
iently smooth fun
tion whi
h satis�es (2.24) and

whi
h on a 2{dimensional submanifold

~

� of � ful�lls the initial 
ondition

�(x; t) = 0; (x; t) 2

~

�;

then � vanishes on all of �, when
e (2.23) is satis�ed. This follows from the


lassi
al theory of �rst order partial di�erential equations. If for (�; �) 2 R

3

�R

we set

p(x; t; �; �) = � � �(x; t)j�j ;

then the equation (2.24) 
an be written in the form

p(x; t;r

x

�(x; t); �

t

(x; t)) = 0 :

However, the solution � of this di�erential equation 
an not be determined in

the usual manner by solving the 
hara
teristi
 system of ordinary di�erential

equations, sin
e �(x; t) and p(x; t; �; �) are only de�ned for points (x; t) on the

manifold � : The partial derivatives p

t

and r

x

p are therefore not de�ned. To

solve the 
hara
teristi
 system it is ne
essary to extend � smoothly from � to

an open neighborhood of � by a suitable method. Then a solution of (2.24)


an be obtained by solving the 
hara
teristi
 system

dx

ds

= r

�

p(x; t; �; �)

dt

ds

=

�

��

p(x; t; �; �)

d�

ds

= �r

x

p(x; t; �; �)

d�

ds

= �

�

�t

p(x; t; �; �) :

The solution � of (2.24) is 
onstant along the 
hara
teristi
 
urves s 7!

(x(s); t(s)) ; when
e the manifold f�(x; t) = 0g is generated by those 
har-

a
teristi
 
urves s 7! (x(s); t(s)), whi
h pass through

~

�. That (2.23) holds
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an be dedu
ed from (2.24), whi
h implies that the normal ve
tor �eld

( ~m

0

; ~m

00

) = �(r

x

�; �

t

) to the manifold �(x; t) = 0 satis�es

�(x; t) = �

~m

00

(x; t)

j ~m

0

(x; t)j

:

Therefore, sin
e the manifolds � and f�(x; t) = 0g both 
ontain

~

� as a subman-

ifold and sin
e the normal speeds 
oin
ide, it follows that � = f�(x; t) = 0g.

In these 
onsiderations we assumed that � and the normal velo
ity � : �!

R are known from the outset. However, in the initial-boundary value problem

to the equations (2.1){(2.3), (2.17) the unknowns are u; T; z and �. The

normal speed is determined by (2.17) as a fun
tion of (u; T; z;�) and is also

unknown. To determine these unknowns, we must use an iteration pro
edure:

Start with an approximate phase interfa
e �

0

, determine to this approximate

interfa
e a solution (u; T; z) of the partial di�erential equations (2.1){(2.3) with

suitable boundary and initial 
onditions and with suitable interfa
e 
onditions

on �

0

, and insert this solution into (2.17) to 
ompute an approximate normal

speed �

0

on �

0

. Insert �

0

for � into (2.24). After smooth extension of �

0

, a

new approximate phase interfa
e �

1


an be 
omputed by solving this partial

di�erential equation with the method of 
hara
teristi
s. The iteration 
an then

be 
ontinued and one expe
ts that the sequen
e of phase interfa
es f�

0

;�

1

; : : :g

tends to the 
orre
t interfa
e sought.

We will not pursue this method further; instead, in the next lemma we show

that without extending � smoothly, the order parameter S 
an be inserted for

� in (2.24) dire
tly. If � is 
ontinued by zero from the manifold � to 
� R

+

,

then (2.24) 
an be interpreted as a partial di�erential equation, whi
h holds

on all of 
 � R

+

in the sense of measures. This yields an evolution equation

for S.

To formulate this result, we need the spa
e BV

lo


(
 � R

+

) of fun
tions

in L

1;lo


(
 � R

+

), whose weak �rst derivatives are Radon measures. More

pre
isely, a fun
tion h belongs to the spa
e BV

lo


(
�R

+

;R) if h 2 L

1;lo


(
�

R

+

;R) and if for any open subset V 
ompa
tly 
ontained in 
� R

+

sup

n

Z

V

h(x; t) div'(x; t) d(x; t)

�

�

�

' 2 C

1

0

(V;R

4

); j'j � 1

o

<1:

Here C

1

0

(
� R

+

) denotes the spa
e of all 
ontinuous mappings with 
ompa
t

support in 
� R

+

. A fun
tion belonging to the spa
e BV

lo


(
 � R

+

) is said

to have lo
ally bounded variation.

The derivatives h

t

and h

x

i

are signed measures. To these measures the total

variation measures jh

t

j and jr

x

hj 
an be introdu
ed: For a measure � on an

open subset U and a measureable subset R of U the total variation measure

18



j�j is de�ned by

j�(R)j = sup

n

X

i=1

j�(R

i

)j ; (2.25)

where the supremum is taken over all �nite 
olle
tions fR

i

g of �{measurable,

pairwise disjoint sets with R

i

� R.

The set 


0

is said to be of lo
ally �nite perimeter if the 
hara
teristi


fun
tion S of this set belongs to the spa
e BV

lo


(
 � R

+

;R). In this 
ase a

unit normal ve
tor �eld (m

0

; m

00

) pointing from 


0

to 
 
an be de�ned on the

measure theoreti
 boundary �

�

� �, whi
h 
onsists of all points (x; t) 2 � with

lim sup

r!0

1

r

4

jB

r

(x; t) \ 


0

j > 0; lim sup

r!0

1

r

4

jB

r

(x; t)n


0

j > 0:

Here B

r

(x; t) � R

4

is the ball with 
enter (x; t) and radius r and j � j denotes

the Lebesgue measure. For these and other results about the spa
es BV

lo


we

refer to [26, 77, 75℄.

Lemma 2.3 Assume that 


0

is of lo
ally �nite perimeter with a unit normal

ve
tor �eld (m

0

; m

00

) of �

�

pointing from 


0

to 
. Let � : 
 � R

+

! R be a

fun
tion satisfying

�(x; t) = 0; (x; t) 2 (
� R

+

)n�

�

:

Then S solves the equation

S

t

= � jr

x

Sj (2.26)

if and only if

�(x; t) = �

m

00

(x; t)

jm

0

(x; t)j

for �

3

{all (x; t) 2 �

�

; where �

3

denotes the three dimensional Hausdor� mea-

sure.

S
holium. Be
ause of S 2 BV

lo


(
 � R

+

), both members of the equation

(2.26) are measures, and equality is meant in the sense of measures. The

measures S

t

and r

x

S satisfy S

t

(V ) = r

x

S(V ) = 0 for every open subset

V � (
 � R

+

)n� ; and the produ
t �jr

x

Sj is the measure 
orresponding to

the bounded linear form on C

0

(
� R

+

) de�ned by the integral

' 7! (�jr

x

Sj; ') =

Z


�R

+

'(x; t)�(x; t) djr

x

S(x; t)j ;

for ' 2 C

0

(
� R

+

) .

S must satisfy (2.26) with the normal speed of the phase boundary � given

by (2.17) inserted for �. Therefore (2.26) is the evolution equation for S. In
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the proof of Theorem 2.5 we also need the other dire
tion of the statement

of the lemma: If S is the 
hara
teristi
 fun
tion of the set 


0

and satis�es an

equation of the form (2.26), then � must ne
essarily be the normal speed of

the boundary �, along whi
h S jumps.

Proof of Lemma 2.3: By de�nition of the distribution S

t

and by the Diver-

gen
e Theorem for fun
tions of lo
ally bounded variation (
f. [26, p. 209℄), we

obtain for ' 2 C

1

0

(
� R

+

)

Z


�R

+

'(x; t) dS

t

(x; t) = �

Z


�R

+

'

t

(x; t)S(x; t) d(x; t)

= �

Z




0

'

t

(x; t) d(x; t) = �

Z

�

�

m

00

(x; t)'(x; t) d�

3

(x; t):

For the measure S

t

this means that

S

t

= �m

00

�

3

b�

�

; (2.27)

where �

3

b�

�

denotes the restri
tion of the Hausdor� measure �

3

to �

�

. Simi-

larly,

Z


�R

+

'(x; t) dS

x

i

(x; t) = �

Z


�R

+

'

x

i

(x; t)S(x; t) d(x; t)

= �

Z

�

�

m

0

i

(x; t)'(x; t) d�

3

(x; t) ;

hen
e r

x

S = �m

0

�

3

b�

�

: This equation together with (2.25) implies

jr

x

Sj = jm

0

j�

3

b�

�

:

From this equation and from (2.27) we infer that S

t

= � jr

x

Sj is equivalent

to

�m

00

�

3

b�

�

= �jm

0

j�

3

b�

�

;

whi
h holds if and only if �m

00

(x; t) = �(x; t)jm

0

(x; t)j for �

3

{all (x; t) 2 �

�

:

This 
ompletes the proof.

2.4 Weak form of the evolution equation for S

With the result of Lemma 2.3 we obtain an evolution equation for S by inser-

tion of (2.17) into (2.26). Combination of the resulting equation with (2.1){

(2.3) yields a 
losed system for the unknown fun
tion (u; T; z; S). This system

is
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�div

x

T (x; t) = b(x; t) (2.28)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))� Bz(x; t)

�

(2.29)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) (2.30)

S

t

(x; t) (2.31)

= 


�

n(x; t) � [C(r

x

u(x; t); S(x; t); z(x; t))℄n(x; t)

�

jr

x

S(x; t)j:

In (2.31), n(x; t) is a normal ve
tor to the surfa
e �(t) ; whi
h bounds the

set 


0

= fx 2 
 j S(x; t) = 1g : Su
h a normal ve
tor �eld 
an be de�ned

if S belongs to the spa
e BV

lo


(
 � R

+

). However, for several reasons it is

advantageous to have an evolution equation without normal ve
tors. In this

se
tion we transform the evolution equation (2.31) into a form without normal

ve
tors under the assumption, that the fun
tion 
 is linear. In Se
tion 2.5 it is

shown that this form of the evolution equation 
an be 
onsiderably simpli�ed

provided that the solutions are smooth. This is one of the advantages of the

form without normal ve
tors.

Thus, in the remainder of this arti
le 
 denotes a positive 
onstant.

Lemma 2.4 Assume that (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g

satis�es the assumptions of Theorem 2.1 (ii). Then the following assertions

hold:

(i) The equation

jn � [C℄nj = j[C℄nj (2.32)

is satis�ed on � ; where n(x; t) 2 R

3

is a unit normal ve
tor to �(t) at

x 2 �(t) :

(ii) Let the distribution [C℄n jr

x

Sj be de�ned by

�

[C℄n jr

x

Sj; '

�

=

Z


�R

+

[C(x; t)℄n(x; t)'(x; t) djr

x

S(x; t)j ;

for ' 2 C

1

0

(
� R

+

;R

3

) ; with

[C(x; t)℄ =

(

[C(r

x

u(x; t); S(x; t); z(x; t))℄ ; (x; t) 2 �

0 ; (x; t) 2 (
� R

+

)n� :

Then, in the sense of distributions,

div

x

C(r

x

u; S; z)� �(r

x

z)

T

r

z

 ("; S; z)� (r

x

u)

T

b

= [C℄njr

x

Sj :

(2.33)
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Remark. Pre
isely, (2.33) means that

�

Z


�R

+

C(r

x

u; S; z) : r

x

'd(x; t)

�

Z

(
�R

+

)n�

�

�(r

x

z)

T

r

z

 ("; S; z) + (r

x

u)

T

b

�

� 'd(x; t)

=

�

[C℄njr

x

Sj; '

�

for all ' 2 C

1

0

(
 � R

+

;R

3

). The derivatives of r

x

z of z in (2.33) are the


lassi
al derivatives on (
� R

+

)n�, not the distributional derivatives of z on


 � R

+

. The fun
tion z 
an jump a
ross �, in whi
h 
ase the distributional

derivatives on 
�R

+

di�er from the 
lassi
al derivatives on (
�R

+

)n� by a

measure on �. This measure does not appear in (2.33).

Proof: (i) The interfa
e 
ondition (2.5) yields [T (x; t)℄n(x; t) = 0 for (x; t) 2 �.

(2.15) and the equation [(r

x

u)

T

T ℄ = [(r

x

u)

T

℄hT i+ h(r

x

u)

T

i[T ℄ thus imply

n � [C℄n = n �

�

�[ ℄� [(r

x

u)

T

T ℄

�

n (2.34)

= n �

�

�[ ℄n� [(r

x

u)

T

℄hT in� h(r

x

u)

T

i[T ℄n

�

= n �

�

�[ ℄n� [r

x

u℄

T

hT in

�

:

We now show that the range of the linear mapping [r

x

u℄

T

is 
ontained in the

subspa
e of R

3

spanned by n(x; t) : Sin
e �[ ℄ is a s
alar, statement (i) is an

obvious 
onsequen
e of this result and of (2.34).

Thus, assume that � 2 R

3

is orthogonal to n 2 R

3

: Then � is a tangential

ve
tor to �(t) : Sin
e by assumption u is 
ontinuously di�erentiable on 
(t) and

on 


0

(t) and 
ontinuous a
ross �(t) ; it follows that the limits (r

x

u)

�

exist on

�(t) and that the tangential derivatives on both sides of �(t) 
oin
ide. For

every v 2 R

3

we thus obtain

� �

�

[r

x

u℄

T

v

�

=

�

[r

x

u℄�

�

� v

=

��

(r

x

u)�

�

+

�

�

(r

x

u)�

�

�

�

� v

=

��

�

��

u

�

+

�

�

�

��

u

�

�

�

� v = 0 ;

whi
h proves that the range of [r

x

u℄

T

is 
ontained in the subspa
e spanned

by n :

(ii) Letm(x; t) = (m

0

(x; t); m

00

(x; t)) 2 R

4

be a unit normal ve
tor to � pointing
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from 


0

to 
 : With the unit normal ve
tor n(x; t) =

m

0

(x;t)

jm

0

(x;t)j

to �(t) and with

' 2 C

1

0

(
� R

+

;R

3

) we obtain just as in the proof of Lemma 2.3 that

�

[C℄n jr

x

Sj; '

�

=

Z


�R

+

' � [C℄n djr

x

Sj

=

Z

�

'(x; t) � [C(x; t)℄n(x; t)jm

0

(x; t)j d�

3

(x; t)

=

Z

�

�

�[ ℄m

0

� [(r

x

u)

T

T ℄m

0

�

� 'd�

3

(2.35)

=

Z

�

�[ ℄m

0

� 'd�

3

�

Z

�

0

B

B

�

m

0

� [Tu

x

1

℄

.

.

.

m

0

� [Tu

x

3

℄

1

C

C

A

� 'd�

3

=

Z

�

�[ ℄m

0

� 'd�

3

+

Z


�R

+

3

X

i=1

div

x

(Tu

x

i

'

i

) d(x; t) :

Now, be
ause of the symmetry of T ;

div

x

(Tu

x

i

'

i

) = (div

x

T

T

) � u

x

i

'

i

+ T

T

: (r

x

u

x

i

)'

i

+ (Tu

x

i

) � r

x

'

i

= (div

x

T ) � u

x

i

'

i

+ T : "(r

x

u

x

i

)'

i

+ (Tu

x

i

) � r

x

'

i

: (2.36)

Sin
e S is 
onstant on 
onne
ted 
omponents of (
� R

+

)n� ; we obtain from

(2.10) that on (
� R

+

)n�

T : "(r

x

u

x

i

)'

i

= �r

"

 ("(r

x

u); S; z) : "(r

x

u

x

i

)'

i

= �

�

�x

i

 ("; S; z)'

i

� �r

z

 ("; S; z) � z

x

i

'

i

: (2.37)

Using that T solves (2.1), we obtain by insertion of (2.37) into (2.36) that

3

X

i=1

div

x

(Tu

x

i

'

i

)

=

3

X

i=1

�

�

�

�x

i

 ("; S; z)� b � u

x

i

� �r

z

 ("; S; z) � z

x

i

�

'

i

+

3

X

i=1

(Tu

x

i

) � r

x

'

i

=

�

div

x

�

� ("; S; z)I

�

� (r

x

u)

T

b� �(r

x

z)

T

r

z

 ("; S; z)

�

� '

+ (T (r

x

u)) : (r

x

')

T

:
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We insert this equation into (2.35), note that (T (r

x

u)) : (r

x

')

T

=

((r

x

u)

T

T ) : r

x

' and apply the Divergen
e Theorem to obtain

�

[C℄n jr

x

Sj; '

�

= �

Z


�R

+

�

� ("; S; z)I � (r

x

u)

T

T

�

: r

x

'd(x; t)

�

Z


�R

+

�

(r

x

u)

T

b + �(r

x

z)

T

r

z

 ("; S; z)

�

� 'd(x; t)

=

�

div

x

�

� ("; S; z)I � (r

x

u)

T

T

�

; '

�

�

�

(r

x

u)

T

b+ �(r

x

z)

T

r

z

 ("; S; z); '

�

=

�

div

x

C(r

x

u; S; z)� (r

x

u)

T

b� �(r

x

z)

T

r

z

 ("; S; z); '

�

:

The se
ond equality sign in this 
omputation holds by de�nition of the distri-

bution div

x

(� I � (r

x

u)

T

T ) : This proves the lemma.

With this result we obtain the evolution equation for S, whi
h does not 
ontain

normal ve
tors:

Theorem 2.5 Assume that (u; T; z; S) : 
 � R

+

0

! R

3

� S

3

� R

N

� f0; 1g

satis�es the equations (2.28){(2.31), the interfa
e 
onditions

[u℄ = [T ℄n = 0

on � and the regularity assumptions of Theorem 2.1. Moreover, assume that

the fun
tion f in (2.30) ful�lls the dissipation inequality (2.18):

�r

z

 ("; S; z) � f(S; T; z) � 0:

Then the equation

jS

t

j = 
 jdiv

x

C(r

x

u; S; z)� �(r

x

z)

T

r

z

 ("; S; z)� (r

x

u)

T

bj (2.38)

and the entropy 
ondition

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

� 0 (2.39)

are satis�ed with

q("; u

t

; S; z) = Tu

t

:

Proof: The equations (2.31), (2.32) and (2.33) together imply

jS

t

j = 
jn � [C℄nj jr

x

Sj = 
j[C℄nj jr

x

Sj

= 


�

�

�

[C℄njr

x

Sj

�

�

�

= 
jdiv

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

bj ;
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whi
h is (2.38). If (2.31) holds, then it follows from Lemma 2.3 that


(n � [C(r

x

u; S; z)℄n)

must be the normal velo
ity � of the surfa
e �, along whi
h S has a jump.

Therefore equation (2.17) is satis�ed. By Corollary 2.2, the equations (2.17)

and (2.18) together imply that (2.39) holds. This proves the theorem.

Initial-boundary value problem for an inelasti
 material with evolv-

ing mi
rostru
ture. The equation (2.38) does not 
ontain normal ve
tors.

However, be
ause of the absolute values on both sides, this equation allows

more solutions than (2.31) does. We surmise that the entropy 
ondition (2.39)

singles out the 
orre
t solutions of (2.38) and that, therefore, (2.38) and (2.39)

together are equivalent to (2.31). The mathemati
al model for the inelasti


material with evolving mi
rostru
ture thus derived 
onsists of the equations

(2.28){(2.30), (2.38), of the entropy 
ondition (2.39) as side 
ondition, and

of the interfa
e, boundary and initial 
onditions (2.4){(2.8). The 
omplete

initial-boundary value problem is formulated at the beginning of Se
tion 3.

2.5 Redu
tion of the evolution equation for smooth solutions

In this se
tion we show that the evolution equation (2.38) 
an be simpli�ed


onsiderably under the assumption that the fun
tion (u; T; z; S) does not jump

at the phase boundaries, but varies smoothly in all of 
 � R

+

. In these in-

vestigations we are led by the idea that the initial-boundary value problem


onsisting of the equations (2.1){(2.3), (2.7), (2.8) and of the simpli�ed evolu-

tion equation derived below has smooth solutions, at least for a �nite interval

of time, if smooth fun
tions are inserted for the initial data z

(0)

, S

(0)

in (2.8).

We surmise that if a sequen
e of smooth initial data is 
hosen, whi
h approx-

imates the original initial data with jumps, a sequen
e of smooth solutions

is obtained approximating the dis
ontinuous solution to the original initial

data. This would be helpful both to prove existen
e of solutions of the initial-

boundary value problem (2.1){(2.8), (2.38) to dis
ontinuous initial data, and

to 
ompute the solution of this problem numeri
ally.

Let J � R be an interval 
ontaining the numbers 0 and 1 and let

"

�

: J ! S

3

;

f : �(f) � J � S

3

� R

N

! R

N

;

 : �( ) � S

3

� J � R

N

! R

be smooth fun
tions. We assume that the free energy  satis�es (2.10) and

that f and  satisfy the dissipation inequality (2.18):

�r

z

 ("; S; z) � f(S; T ("; S; z); z) � 0
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for all ("; S; z) 2 �( ) \ f("; S; z) j (S; T ("; S; z); z) 2 �(f)g: Here we set

T ("; S; z) = D(S)("� "

�

(S)� Bz):

Lemma 2.6 Let (u; T; z; S) be a 
ontinuously di�erentiable solution of the

equations (2.28) and (2.38). Then

jS

t

j = 
�j 

S

("(r

x

u); S; z)j jr

x

Sj (2.40)

holds in 
� R

+

.

Conversely, if (u; T; z; S) is a 
ontinuously di�erentiable solution of

�div

x

T = b; (2.41)

T = D(S)

�

"(r

x

u)� "

�

(S)� Bz

�

; (2.42)

z

t

= f(S; T; z); (2.43)

S

t

= �
�  

S

("(r

x

u); S; z) jr

x

Sj; (2.44)

then (2.28){(2.30), the evolution equation (2.38) for S and the entropy 
ondi-

tion (2.39) are satis�ed.

Proof: The de�nition of the Eshelby tensor in (2.15) yields

div

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

b (2.45)

= �r

x

 � div

x

�

(r

x

u)

T

T

�

� �(r

x

z)

T

r

z

 � (r

x

u)

T

b :

Moreover, (2.10) implies

�r

x

 ("; S; z)

=

0

B

B

�

�r

"

 ("; S; z) : "

x

1

+ �r

z

 ("; S; z) � z

x

1

.

.

.

�r

"

 ("; S; z) : "

x

3

+ �r

z

 ("; S; z) � z

x

3

1

C

C

A

+ � 

S

("; S; z)r

x

S

=

0

B

B

�

T : "

x

1

.

.

.

T : "

x

3

1

C

C

A

+ �(r

x

z)

T

r

z

 + � 

S

("; S; z)r

x

S : (2.46)

Also, be
ause of the symmetry of T ;

�div

x

�

(r

x

u)

T

T

�

= �(r

x

u)

T

div

x

T �

0

B

B

�

T : r

x

(u

x

1

)

.

.

.

T : r

x

(u

x

3

)

1

C

C

A

= �(r

x

u)

T

div

x

T �

0

B

B

�

T : "

x

1

.

.

.

T : "

x

3

1

C

C

A

: (2.47)
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Therefore, if T solves (2.28) (or (2.41)), then we obtain by 
ombination of

(2.45){(2.47) the equality

div

x

C � �(r

x

z)

T

r

z

 � (r

x

u)

T

b = � 

S

("; S; z)r

x

S : (2.48)

With this equation the proof of the lemma readily follows: First, if (2.28) and

(2.38) are satis�ed, then insertion of (2.48) in (2.38) yields (2.40). Conversely,

if (2.41){(2.44) are satis�ed, we take absolut values on both sides of (2.44)

and insert (2.48) into the resulting equation to obtain (2.38). The equations

(2.28){(2.30) hold, sin
e (2.41){(2.43) are restatements of these equations.

To prove that the entropy 
ondition (2.39) holds, we use (2.20) and (2.41)

to 
ompute

�

�

�t

 ("; S; z)� div

x

q("; u

t

; S; z)� b � u

t

= �(r

"

 ) : "(r

x

u

t

) + � 

S

S

t

+ �r

z

 � z

t

� (div

x

T ) � u

t

� �(r

"

 ) : "(r

x

u

t

)� b � u

t

= � 

S

S

t

+ �r

z

 � z

t

= �� 

S


� 

S

jr

x

Sj+ �r

z

 � f � 0:

The last equality sign follows from (2.43) and (2.44), and the inequality sign

is a 
onsequen
e of the dissipation inequality (2.18) for f , whi
h we assumed

to hold. This shows that the entropy 
ondition (2.39) is ful�lled.

S
holia. 1. Be
ause of the produ
t  

S

jr

x

Sj, the formulation of the system

(2.41){(2.44) is only valid for smooth solutions. Sin
e a smooth solution of this

system also satis�es the evolution equation (2.38) and the entropy 
ondition

(2.39), whose formulations are both valid for non-smooth solutions, it is tempt-

ing to assume that for a sequen
e of smooth solutions tending to a non-smooth

limit fun
tion, this limit fun
tion is a solution of (2.38) and (2.39). This would

allow us to 
onstru
t and 
ompute numeri
ally non-smooth solutions of the

initial-boundary value problem for evolving mi
rostru
tures using the simpler

equations (2.41){(2.44).

2. In this se
tion we require that the free energy  ("; S; z) is de�ned for all

values of S in an interval J 
ontaining 0 and 1. As in the derivation of the

Cahn-Allen equation, 
f. [9℄, it should be required that  is a double well

potential having minima at the values S = 0 and S = 1. The �rst order equa-

tions (2.44) or (2.38) 
ould be an alternative to the Cahn-Allen equation, an

equation of se
ond order.
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3 Homogenization of the equations for materials with

evolving mi
rostru
ture

3.1 The mi
ros
opi
 initial-boundary value problem

In this se
tion we study the homogenization of the following initial-boundary

value problem for (u; T; z; S) stated and derived in the pre
eding se
tion: In


� R

+

the partial di�erential equations

�div

x

T (x; t) = b(x; t) (3.1)

T (x; t) = D(S(x; t))

�

"(r

x

u(x; t))� "

�

(S(x; t))�Bz(x; t)

�

(3.2)

z

t

(x; t) = f(S(x; t); T (x; t); z(x; t)) (3.3)

jS

t

(x; t)j = �
jdiv

x

C(r

x

u; S; z)

��(r

x

z)

T

r

z

 ("(r

x

u); S; z)� (r

x

u)

T

bj (3.4)

must be satis�ed. The entropy 
ondition

�

�

�t

 ("; S; z)� div

x

(Tu

t

)� bu

t

� 0 ; (3.5)

must be ful�lled as side 
ondition. The interfa
e 
onditions are

[u(x; t)℄ = [T (x; t)℄n(x; t) = 0; z(x; t+) = g(z(x; t�)); (x; t) 2 �; (3.6)

the boundary 
ondition is

T (x; t)n(x) = 0; x 2 �
; t � 0 ; (3.7)

and the initial 
onditions are

z(x; 0) = z

(0)

(x) ; S(x; 0) = S

(0)

(x); x 2 
 : (3.8)

In the interfa
e 
ondition g : R

N

! R

N

is a given fun
tion.

At time t = 0 the mi
rostru
ture in the material, that is the distribution of

the 


0

{pre
ipitates in the 
{matrix phase, is determined by the initial fun
tion

S

(0)

. We shall assume that the mi
rostru
ture is approximately periodi
 at

t = 0 and study the situation when the dimensions of the periodi
ity 
ell of

this mi
rostru
ture are proportional to a parameter � and thus tend to zero

for � ! 0. If we assume that also the initial fun
tion z

(0)

is approximately

periodi
 with the same periodi
ity 
ell, then also the solution (u; T; z; S) of

(3.1){(3.8) to these initial data will be periodi
. With shrinking periodi
ity


ell one expe
ts that this solution tends in a suitable sense against the solution
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of a homogenized system of partial di�erential equations. In this se
tion we

derive this homogenized system.

This derivation will be purely formal, however, sin
e we do neither prove

that the initial-boundary value problem (3.1){(3.8) has a solution, nor do we

prove that solutions must 
onverge to solutions of the homogenized system.

Instead, we assume that solutions of this initial-boundary value problem exist

and that these solutions 
onverge to limit fun
tions. Our goal is to derive a

system of partial di�erential equations, the homogenized system, whi
h must

be satis�ed by the limit fun
tions.

The 
onstant �
 in (3.4) determines the speed of propagation of the phase

boundary between the 
{ and 


0

{phases. Sin
e this speed is proportional to �,

it is also proportional to the dimensions and distan
es of the pre
ipitates. The

time s
ale, on whi
h the mi
rostru
ture evolves, does therefore not 
hange

if � tends to zero. If the speed of propagation would not de
rease with �,

then be
ause of the de
reasing distan
es of the pre
ipitates the mi
rostru
ture

would evolve more and more rapidly, and the intera
tion of the pre
ipitates

would happen in a short time interval with length tending to zero. One ex-

pe
ts that after this short time interval the mi
rostru
ture would settle to an

approximately steady state. Homogenization would essentially amount to de-

termine an initial-boundary value problem, whose solutions are asymptoti
 to

the solution of the original problem at large times.

At present we do not know how to derive su
h an initial-boundary value

problem. In fa
t, in pra
ti
al problems the main interest is not to determine

su
h a long time asymptoti
s to the evolution of the mi
rostru
ture. Instead,

in a real material the evolution of the mi
rostru
ture is slow and typi
ally

needs hundreds or thousands of hours, and it is just this slow evolution before

and during the intera
tion and the formation of the plate-like stru
ture, whi
h

one wants to study. The 
hoi
e of the 
onstant �
 in (3.4) is therefore not

only justi�ed by the redu
tion of the mathemati
al diÆ
ulties; it is in fa
t a

natural 
hoi
e in the problem we want to study.

The evolution equation (3.4) for the order parameter and the equation

resulting from it in the homogenized initial-boundary value problem are dis-

tribution equations. To derive and formulate the homogenized distribution

equation we use a family of solutions of the initial-boundary value problem

(3.1){(3.8) depending on the fast variable. The de�nition of this family is

given below. The homogenized equations for the displa
ement, the stress and

the internal variables are derived in Se
tion 3.2 using the method of asymptoti


series. In Se
tion 3.3 we prove some results for os
illating fun
tions of bounded

variation, whi
h are used in Se
tion 3.4 to derive the homogenized equation

for the order parameter. There we also formulate the 
omplete homogenized

initial-boundary value problem.
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Thus, assume that the initial data are given in the form

z

(0)

(x) = z

(0)

0

(x;

x

�

); S

(0)

(x) = S

(0)

0

(x;

x

�

) ; (3.9)

with a parameter � > 0 and fun
tions z

(0)

0

: 
 � R

3

! R

N

; S

(0)

0

: 
 � R

3

!

f0; 1g : The fun
tions y 7! z

(0)

0

(x; y); y 7! S

(0)

0

(x; y) are assumed to be periodi


for every x 2 
 with a bounded periodi
ity 
ell Y � R

3

. For simpli
ity we

assume that

Z

Y

dy = 1: (3.10)

We 
onsider values of � in the range 0 < � < �

0

with a positive 
onstant

�

0

. The fun
tions z

(0)

0

(x;

x

�

) and S

(0)

0

(x;

x

�

) are approximately periodi
 with a

periodi
ity 
ell, whose dimensions de
rease to zero when � tends to zero.

In the following de�nition the value � > 0 is kept �xed:

De�nition 3.1 Let

((x; y; t) 7! (u; T; z; S)) : 
� R

3

� R

+

! R

3

� S

3

� R

N

� f0; 1g

be a fun
tion whi
h satis�es the initial 
ondition

z(x; y; 0) = z

(0)

0

(x;

x

�

+ y); S(x; y; 0) = S

(0)

0

(x;

x

�

+ y) (3.11)

for almost all (x; y) 2 
 � R

3

, and for whi
h the fun
tion (x; t) 7!

(u; T; z; S)(x; y; t) is a solution of (3.1){(3.7) for almost all y 2 R

3

. Then

(u; T; z; S) is 
alled a family of solutions depending on the fast variable y of

the initial-boundary value problem (3.1){(3.7), (3.11) with parameter � and

initial data (z

(0)

0

; S

(0)

0

).

In the following we �x z

(0)

0

and S

(0)

0

and for brevity avoid to mention the initial

data. Thus, we 
all (u; T; z; S) a family of solutions of the initial-boundary

value problem depending on the fast variable with parameter �.

3.2 Homogenized equations for u, T and z

In this se
tion we study the homogenization of the equations (3.1){(3.3). We

assume that for all 0 < � < �

0

a family of solutions (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) of the

initial-boundary value problem depending on the fast variable with parameter

� exists, whi
h 
an be asymptoti
ally expanded in the form

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) = (u

�

; T

�

; z

�

; S

�

)(x;

x

�

+ y; t) ; 0 < � < �

0

; (3.12)
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with

u

�

(x; y; t) = u

0

(x; t) + �u

1

(x; y; t) + �

2

u

2

(x; y; t; �) (3.13)

T

�

(x; y; t) = T

0

(x; y; t) + �T

1

(x; y; t; �) (3.14)

z

�

(x; y; t) = z

0

(x; y; t) + z

1

(x; y; t; �) (3.15)

S

�

(x; y; t) = S

0

(x; y; t) + S

1

(x; y; t; �) ; (3.16)

where the fun
tions

u

�

; u

1

; u

2

(�; �) : 
� R

3

� R

+

! R

3

T

�

; T

0

; T

1

(�; �) : 
� R

3

� R

+

! S

3

z

�

; z

0

; z

1

(�; �) : 
� R

3

� R

+

! R

N

S

�

; S

0

; S

1

(�; �) : 
� R

3

� R

+

! f0; 1g

are assumed to be periodi
 with respe
t to the y{argument and have periodi
ity


ell Y . The remainder terms are assumed to satisfy

lim

�!0

S

1

(x; y; t; �) = 0 (3.17)

lim

�!0

Z




Z

Y

jz

1

(x; y; t; �)j

2

dydx = 0 ; (3.18)

and the boundedness 
onditions

sup

0<�<�

0

Z




Z

Y

�

jD

�

x;y

u

2

(x; y; t; �)j

2

�

dydx <1 (3.19)

sup

0<�<�

0

Z




Z

Y

�

jD

�

x;y

T

1

(x; y; t; �)j

2

�

dydx <1; (3.20)

for every multi-index � with j�j � 1.

S
holia. 1. The fun
tion (ẑ

�

;

^

S

�

) satis�es the initial 
ondition (3.11) if (z

�

; S

�

)

ful�lls

z

�

(x; y; 0) = z

(0)

0

(x; y); S

�

(x; y; 0) = S

(0)

0

(x; y); (x; y) 2 
� R

3

:

2. If the solution of the initial-boundary value problem (3.1){(3.8) is unique,

and if (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of solutions to the initial-boundary value prob-

lem (3.1){(3.7), (3.11) depending on the fast variable with parameter �, then

y 7! (û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) is periodi
 with periodi
ity 
ell Y . For, otherwise a

solution di�erent from

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

) : 
� R

3

� R

+

0

! R

3

� S

3

� R

N

� f0; 1g
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ould be obtained by extending (û

�

;

^

T

�

; ẑ

�

;

^

S

�

)

j


�Y�R

+

0

periodi
ally with peri-

odi
ity 
ell 
�Y �R

+

0

to 
�R

3

�R

+

0

. This would 
ontradi
t the uniqueness

of the solution.

3. Assume that (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of solutions depending on the fast

variable with parameter �, whi
h are periodi
 with respe
t to the y{argument

and have periodi
ity 
ell Y . Let (u

0

; u

1

; T

0

; z

0

; S

0

) = (u

0

; u

1

; T

0

; z

0

; S

0

)(x; y; t)

be a given fun
tion, whi
h is periodi
 with respe
t to y and has periodi
ity


ell Y . Then ne
essarily the remainder (~u;

~

T ; ~z;

~

S) de�ned by

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)(x; y; t) (3.21)

= (u

0

+ �u

1

; T

0

; z

0

; S

0

)(x;

x

�

+ y; t) + (�

2

~u; �

~

T ; ~z;

~

S)(x; y; t; �)

is of the form given above:

(~u;

~

T ; ~z;

~

S)(x; y; t; �) = (u

2

; T

1

; z

1

; S

1

)(x;

x

�

+ y; t; �) ; (3.22)

with a fun
tion

(x; y; t) 7! (u

2

; T

1

; z

1

; S

1

)(x; y; t; �);

whi
h is periodi
 with respe
t to y and has periodi
ity 
ell Y . For, the left

hand side of the equation (3.21) and the �rst term on the right hand side are

periodi
 with periodi
ity 
ell Y . Therefore also the se
ond term on the right

hand side is periodi
. De�ne

(u

2

; T

1

; z

1

; S

1

)(x; y; t; �) = (~u;

~

T ; ~z;

~

S)(x; y �

x

�

; t; �):

Clearly, u

2

; T

1

; z

1

; S

1

are periodi
 with respe
t to y and satisfy (3.22).

Homogenization. From the hypothesis that (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) is a family of so-

lutions of the initial-boundary value problem depending on the fast variable

and under the assumption that the terms u

2

and T

1

in the asymptoti
 ex-

pansion satisfy (3.19) and (3.20) we derive now a system of three equations

whi
h must be satis�ed by the limit fun
tions u

0

; T

0

; z

0

; S

0

. The equations

of this system are the homogenized equations 
orresponding to the equations

(3.1){(3.3). To formulate this system we need some de�nitions:

By M

Y

: L

2

(Y )! R we denote the mean value operator

M

Y

v =

Z

Y

v(y) dy :

Of 
ourse,M

Y


an also be 
onsidered to be a proje
tor to the spa
e of 
onstant

fun
tions on Y .
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The elasti
ity tensors D(0) : S

3

! S

3

and D(1) : S

3

! S

3

in the matrix

phase 
 and in the 


0

{phase, respe
tively, are by assumption symmetri
, pos-

itive de�nite mappings. Sin
e the inverses D(0)

�1

and D(1)

�1

have the same

properties, to a given fun
tion S : 
 � Y � R

+

0

! f0; 1g we 
an therefore

de�ne an (S; x; t){dependent s
alar produ
t on L

2

(Y;S

3

) by

[v; w℄

(S;x;t)

=

Z

Y

�

D(S(x; y; t))

�1

v(y)

�

: w(y) dy ;

for v; w 2 L

2

(Y;S

3

). Let

D

0

=

n

w

j

Y

�

�

�

w 2 L

2;lo


(R

3

;S

3

); div

y

w = 0; w is periodi


with periodi
ity 
ell Y

o

:

D

0

is a 
losed subspa
e of L

2

(Y;S

3

). By

P

(S;x;t)

: L

2

(Y;S

3

)! D

0

� L

2

(Y;S

3

)

we denote the proje
tor onto D

0

, whi
h is orthogonal with respe
t to the s
alar

produ
t [v; w℄

(S;x;t)

. Of 
ourse, P

(S;x;t)

depends on the fun
tion S and on (x; t).

By H

1

(
 � Y ) we denote the usual Sobolev spa
e of fun
tions with weak

derivatives in L

2

(
� Y ) up to order 1.

Theorem 3.2 Assume that for all �

0

> � > 0 the fun
tion (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) with

the representation (3.12){(3.16) is a family of solutions of the initial-boundary

value problem depending on the fast variable with parameter �. If the fun
tion

(x; y) 7! (u

0

; u

1

; u

2

; T

0

; T

1

)(x; y; t) belongs to the Sobolev spa
e H

1

(
 � Y ) for

almost all t, if (x; y) 7! (z

0

; z

1

)(x; y; t) belongs to L

2

(
 � Y ) for almost all t,

and if the 
onditions (3.17){(3.20) are ful�lled, then the fun
tion (u

0

; T

0

; z

0

; S

0

)

satis�es

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (3.23)

T

0

(x; �; t) = P

(S

0

;x;t)

n

D(S

0

(x; �; t))

�

"(r

x

u

0

(x; t)) (3.24)

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t)

�o

:

Proof: From (3.12) and (3.14) we obtain

div

x

^

T

�

(x; y; t) = div

x

T

�

(x;

x

�

+ y; t)

= div

x

�

T

0

(x;

x

�

+ y; t) + �T

1

(x;

x

�

+ y; t; �)

�
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=

h

1

�

div

�

T

0

(x; �; t) (3.25)

+ div

x

T

0

(x; �; t) + div

�

T

1

(x; �; t; �)

+ �div

x

T

1

(x; �; t; �)

i

�=

x

�

+y

:

Be
ause of the periodi
ity of y 7! T

1

(x; y; t; �), the hypothesis (3.20) implies

�

�

Z




Z

Y

jdiv

x

T

1

(x; �; t; �)

j

�=

x

�

+y

j

2

dydx

�

1=2

= �

�

Z




Z

Y

jdiv

x

T

1

(x; y; t; �)j

2

dydx

�

1=2

� �K

1

;

with a suitable 
onstant K

1

. This estimate and (3.25) show that (3.1) 
an only

hold for all 0 < � < �

0

if

Z




Z

Y

jdiv

y

T

0

(x;

x

�

+ y; t)j

2

dydx =

Z




Z

Y

jdiv

y

T

0

(x; y; t)j

2

dydx = 0

and

Z




Z

Y

jdiv

x

T

0

(x; �; t)

j

x

�

+y

+ div

y

T

1

(x;

x

�

+ y; t; �) + b(x; t)j

2

dydx

=

Z




Z

Y

jdiv

x

T

0

(x; y; t) + div

y

T

1

(x; y; t; �) + b(x; t)j

2

dydx = 0;

from whi
h we 
on
lude that the equations

div

y

T

0

(x; y; t) = 0 (3.26)

�div

x

T

0

(x; y; t)� div

y

T

1

(x; y; t; �) = b(x; t) (3.27)

hold for almost all (x; y; t) 2 
� R

3

� R

+

. Integration of (3.27) with respe
t

to y yields

�div

x

Z

Y

T

0

(x; y; t) dy�

Z

Y

div

y

T

1

(x; y; t; �) dy =

Z

Y

b(x; t) dy = b(x; t) ;

where in the last step we used (3.10). The Divergen
e Theorem yields

�div

x

Z

Y

T

0

(x; y; t) dy�

Z

�Y

T

1

(x; y; t; �)n(y) d�(y) = b(x; t) ; (3.28)
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where n(y) is the exterior unit normal ve
tor to �Y at y. Sin
e Y is a period-

i
ity 
ell for T

1

, it follows that

Z

�Y

T

1

(x; y; t; �)n(y) d�(y) = 0 :

With the de�nition of the mean value operator equation (3.28) 
an therefore

be written in the form of equation (3.23).

To prove (3.24), we insert (3.13) and (3.14) into (3.2) and obtain for � =

x

�

+ y

T

0

(x; �; t) + �T

1

(x; �; t; �)

= D(S

�

(x; �; t))

�

"(r

x

u

0

(x; t) +r

�

u

1

(x; �; t)) (3.29)

+ �"(r

x

u

1

(x; �; t) +r

�

u

2

(x; �; t; �))

+ �

2

"(r

x

u

2

(x; �; t; �))� "

�

(S

�

(x; �; t))� Bz

�

(x; �; t)

�

:

With the 
omponents D

ijkl

(S) of the elasti
ity tensor D(S) we de�ne

jD(S)j

2

=

X

D

ijkl

(S)

2

:

Sin
e the hypothesis (3.17) implies

lim

�!0

jD(S

�

(x; y; t))�D(S

0

(x; y; t))j

2

= 0

for almost all (x; y), sin
e S

�

and S

0

have values in f0; 1g and sin
e all fun
tions

are periodi
 with respe
t to y, the Dominated Convergen
e Theorem implies

lim

�!0

Z




Z

Y

�

�

�

�

D(S

�

(x;

x

�

+ y; t))�D(S

0

(x;

x

�

+ y; t))

�

�

"(r

x

u

0

(x; t) +r

y

u

1

(x;

x

�

+ y; t))

�

�

�

�

dydx

= lim

�!0

Z




Z

Y

�

�

�

�

D(S

�

(x; y; t))�D(S

0

(x; y; t))

�

(3.30)

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

�

�

�

�

dydx

� lim

�!0

�

Z




Z

Y

�

�

�

D(S

�

(x; y; t))�D(S

0

(x; y; t))

�

�

�

2

dydx

�

1=2

�

�

Z




Z

Y

�

�

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

�

�

�

2

dydx

�

1=2

= 0 :
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Sin
e jD(S

�

(x; y; t))j � max(jD(0)j; jD(1)j); the hypothesis (3.19) yields

lim

�!0

Z




Z

Y

�

�

�

D(S

�

(x;

x

�

+ y; t))

�

�"(r

x

u

1

(x; �; t)

+r

�

u

2

(x; �; t; �)) + �

2

"(r

x

u

2

(x; �; t; �))

�

j
x

�

+y

�

�

�

dydx

� lim

�!0

�

Z




Z

Y

jD(S

�

(x; y; t))j

2

dydx

�

1=2

(3.31)

�

Z




Z

Y

j�"(r

x

u

1

+r

y

u

2

) + �

2

"(r

x

u

2

)j

2

dydx

�

1=2

= 0

By a similar reasoning we see that (3.15){(3.18) and the Dominated Conver-

gen
e Theorem also imply

lim

�!0

Z




Z

Y

�

�

�

D(S

�

(x;

x

�

+ y; t))

�

"

�

(S

�

(x;

x

�

+ y; t))�Bz

�

(x;

x

�

+ y; t)

�

�D(S

0

(x;

x

�

+ y; t))

�

"

�

(S

0

(x;

x

�

+ y; t))�Bz

0

(x;

x

�

+ y; t)

�

�

�

�

dydx = 0:

(3.32)

Finally, (3.20) implies

lim

�!0

Z




Z

Y

j�T

1

(x;

x

�

+ y; t; �)j dx (3.33)

� j
j

1=2

lim

�!0

�

�

Z




Z

Y

jT

1

(x; y; t; �)j

2

dydx

�

1=2

= 0 :

Combination of (3.30){(3.33) with (3.29) shows that (3.2) 
an hold for all

�

0

> � > 0 only if

Z




Z

Y

�

�

�

T

0

(x; �; t)�D(S

0

(x; �; t))

�

"(r

x

u

0

(x; t) +r

�

u

1

(x; �; t))

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t)

�

�

�

�

�=

x

�

+y

dydx

=

Z




Z

Y

�

�

�

T

0

(x; y; t)�D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))

� "

�

(S

0

(x; y; t))� Bz

0

(x; y; t)

�

�

�

�

dydx = 0;

where we again used the periodi
ity of all fun
tions of the integrand with

respe
t to y, when
e
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T

0

(x; y; t) = D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t)) (3.34)

� "

�

(S

0

(x; y; t))� Bz

0

(x; y; t)

�

for almost all (x; y; t) 2 
� R

3

� R

+

.

To see that this equation implies (3.24), note that for every w 2 D

0

we

obtain be
ause of the symmetry of w(y) for the s
alar produ
t

[D(S

0

(x; �; t)) "(r

y

u

1

(x; �; t)); w(�)℄

(S

0

;x;t)

=

Z

Y

"(r

y

u

1

(x; y; t)) : w(y) dy =

Z

Y

r

y

u

1

(x; y; t) : w(y) dy

=

Z

Y

u

1

(x; y; t) � divw(y) dy = 0 :

The last integral vanishes sin
e divw = 0 . The partial integration does not

yield boundary terms, sin
e u

1

and w both have periodi
ity 
ell Y . From this


omputation we 
on
lude that the fun
tion y 7! D(S

0

(x; y; t)) "(r

y

u

1

(x; y; t))

belongs to the orthogonal spa
e of D

0

. This orthogonal spa
e is equal to the

kernel of the proje
tor P

(S

0

;x;t)

. Moreover, (3.26) implies that y 7! T

0

(x; y; t)

belongs to D

0

. Appli
ation of P

(S

0

;x;t)

on both sides of (3.34) thus yields the

equation (3.24). This 
ompletes the proof.

Remark. For use in Se
tion 3.4 we note that the reasoning at the end of this

proof also shows that appli
ation of P

?

(S

0

;x;t)

= (I � P

(S

0

;x;t)

) to (3.34) yields

�D(S

0

(x; �; t))"(r

y

u

1

(x; �; t)) (3.35)

= P

?

(S

0

;x;t)

n

D(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))

o

:

De�nition 3.3 We 
all the equations

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (3.36)

T

0

(x; �; t) = P

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t)) (3.37)

� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g

�

�t

z

0

(x; y; t) = f(S

0

(x; y; t); T

0

(x; y; t); z

0

(x; y; t)) (3.38)

homogenized system asso
iated to the equations (3.1){(3.3).

Note that we did not require f to satisfy any restri
ting 
onditions. In 
onsti-

tutive models used in the engineering s
ien
es f is in general a fun
tion growing
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rapidly with respe
t to several of its variables. Of 
ourse, for su
h general f

the 
onditions (3.17){(3.20) for the solution (u; T; z; S) of (3.1){(3.3) are not

suÆ
ient to guarantee that the limit fun
tion (T

0

; z

0

; S

0

) satis�es the equation

(3.38). Clearly, for a given fun
tion f it is not diÆ
ult to formulate 
onditions

for (u; T; S; z) assuring that the limit fun
tion satis�es (3.38). However, su
h

investigations are of interest only in 
onne
tion with investigations of existen
e

and regularity of solutions of the initial-boundary value problem (3.1){(3.8).

The justi�
ation of (3.38) in the homogenized system is therefore left to later

works.

3.3 Os
illating fun
tions of bounded variation

It remains to derive the homogenized form of the evolution equation for the

order parameter. The derivatives in this evolution equation are measures. In

this se
tion we study the measures obtained by insertion of os
illating solutions

of the form (3.12) into this equation. The derivation of the homogenized

evolution equation in the next se
tion is based upon the result obtained in the

following lemma. To state this lemma, we need some de�nitions and notations.

Assume that

((x; y; t) 7! H

�

(x; y; t)) 2 BV

lo


(
� R

3

� R

+

)

for all 0 < � < �

0

. The values of H

�


an lie in R, in R

N

or in the set M

3

of 3� 3{matri
es. A

ordingly, in this se
tion the s
alar produ
t in all three

spa
es is uniformly denoted by v � w, and the test fun
tions are 
hosen with

values in appropriate spa
es. We set

^

H

�

(x; y; t) = H

�

(x;

x

�

+ y; t)

for � > 0: The distribution div

x

^

H

�

is de�ned by

(div

x

^

H

�

; ') = �

Z


�R

3

�R

+

H

�

(x;

x

�

+ y; t) � r

x

'(x; y; t) d(x; y; t);

for ' 2 C

1

0

(
 � R

3

� R

+

): This distribution is a measure. To see this, note

that if V is an open set 
ompa
tly 
ontained in 
� R

3

� R

+

, then also

V

�

= f(x; y; t) j (x; y �

x

�

; t) 2 V g

is open and 
ompa
tly 
ontained in 
�R

3

�R

+

. Sin
e H

�

2 BV

lo


(
�R

3

�

R

+

), the derivatives div

x

H

�

and div

y

H

�

are measures. This means that there

exist 
onstants C

1

; C

2

with

j(div

x

H

�

; ')j � C

1

max

V

�

j'j; j(div

y

H

�

; ')j � C

2

max

V

�

j'j (3.39)
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for all ' 2 C

1

0

(V

�

). Sin
e for all ' 2 C

1

0

(V ) the fun
tion �'

�

de�ned by

�'

�

(x; y; t) = '(x; y �

x

�

; t)

belongs to C

1

0

(V

�

), we obtain from (3.39) that

j(div

x

^

H

�

; ')j

=

�

�

�

Z

V

H

�

(x;

x

�

+ y; t) � r

x

'(x; y; t) d(x; y; t)

�

�

�

=

�

�

�

Z

V

�

H

�

(x; y; t) � r

x

'(x; �; t)

j

�=y�

x

�

d(x; y; t)

�

�

�

=

�

�

�

Z

V

�

H

�

(x; y; t) �

�

r

x

'(x; y �

x

�

; t) +

1

�

r

y

'

�

(x; y �

x

�

; t)

�

d(x; y; t)

�

�

�

�

�

�

�

Z

V

�

H

�

(x; y; t) � r

x

�'

�

(x; y; t)d(x; y; t)

�

�

�

+

1

�

�

�

�

Z

V

�

H

�

(x; y; t) � r

y

�'

�

(x; y; t) d(x; y; t)

�

�

�

� (C

1

+

1

�

C

2

) max

V

�

j �'

�

j = (C

1

+

1

�

C

2

) max

V

j'j:

This estimate shows that div

x

^

H

�

is a measure.

Consequently, by the Riesz representation theorem (
f. [26, pp. 49 and pp.

167℄), to the total variation measure

�̂

�

= jdiv

x

^

H

�

j (3.40)

there exists a �̂

�

{measurable fun
tion �̂

�

with

div

x

^

H

�

= �̂

�

�̂

�

:

From this theorem it also follows that to the measure

� div

x

H

�

+ div

y

H

�

there exists a non-negative Radon measure �

�

and a �

�

{measurable fun
tion

�

�

with

� div

x

H

�

+ div

y

H

�

= �

�

�

�

:

We 
all �

�

the total variation measure of � div

x

H

�

+ div

y

H

�

and write

j� div

x

H

�

+ div

y

H

�

j = �

�

: (3.41)
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Lemma 3.4 For every ' 2 C

1

0

(
� R

3

� R

+

) we have

Z


�R

3

�R

+

'(x;

x

�

+ y; t) � djdiv

x

^

H

�

j (3.42)

=

Z


�R

3

�R

+

'(x; y; t) dj� div

x

H

�

+ div

y

H

�

j

and

Z


�R

3

�R

+

'(x;

x

�

+ y; t) d

�

�

�

�

�t

^

H

�

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�

�t

H

�

�

�

�

: (3.43)

Proof: Let T : 
� R

3

� R

+

! 
� R

3

� R

+

be the map de�ned by

T (x; y; t) = (x;

x

�

+ y; t) :

With the notations from (3.40) and (3.41), equation (3.42) 
an be written in

the form

Z


�R

3

�R

+

' Æ T (x; y; t) � d�̂

�

=

Z


�R

3

�R

+

'(x; y; t) d�

�

: (3.44)

This formula holds if �

�

= �T

�

�̂

�

, where the measure T

�

�̂

�

is de�ned by

T

�

�̂

�

(A) = �̂

�

(T

�1

(A))

for every measurable subset A. Sin
e �

�

and �T

�

�̂

�

are Radon measures on


� R

3

� R

+

and sin
e Radon measures 
oin
ide if they 
oin
ide on open sets


ompa
tly 
ontained in 
� R

3

� R

+

, 
f. [28, p. 62℄, equation (3.44) follows if

we show that

�

�

(V ) = �T

�

�̂

�

(V ) = ��̂

�

(T

�1

(V )) (3.45)

for all open subsets V 
ompa
tly 
ontained in 
� R

3

� R

+

. For su
h sets

�

�

(V ) = sup

n

Z

V

'd(� div

x

H

�

+ div

y

H)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

= sup

n

�

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)'(x; y; t) d(x; y; t)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

(3.46)

and

��̂

�

(T

�1

(V )) = sup

n

Z

T

�1

(V )

' � d(div

x

^

H

�

)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

= sup

n

�

Z

T

�1

(V )

^

H

�

(x; y; t) � �r

x

'(x; y; t) d(x; y; t)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

: (3.47)
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Sin
e T

�1

(x; y; t) = (x; y �

x

�

; t) and j det(T

�1

)

0

(x; y; t)j = 1, we obtain

Z

T

�1

(V )

^

H

�

(x; y; t) � �r

x

'(x; y; t) d(x; y; t)

=

Z

T

�1

(V )

H

�

(T (x; y; t)) � �r

x

'(x; y; t) d(x; y; t)

=

Z

V

H

�

(x; y; t) � �r

x

'(x; �; t)

j

�=y�

x

�

d(x; y; t) (3.48)

=

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)'(x; y �

x

�

; t) d(x; y; t)

=

Z

V

H

�

(x; y; t) � (�r

x

+r

y

)(' Æ T

�1

)(x; y; t) d(x; y; t) :

Sin
e the mapping

' 7! ' Æ T

�1

: C

1

0

(T

�1

(V ))! C

1

0

(V )

is bije
tive, it follows from (3.48) that

sup

n

�

Z

T

�1

(V )

�

^

H

�

� r

x

'd(x; y; t)

�

�

�

' 2 C

1

0

(T

�1

(V )); j'j � 1

o

= sup

n

�

Z

V

H

�

� (�r

x

+r

y

)'d(x; y; t)

�

�

�

' 2 C

1

0

(V ); j'j � 1

o

:

(3.45) results from this formula and from (3.46), (3.47). This proves (3.42).

The proof of (3.43) runs exa
tly along the same lines, but is slightly simpler.

De�nition 3.5 For every 0 � � < �

0

let �

�

be a Radon measure on 
� R

3

�

R

+

0

. If

lim

�!0

Z


�R

3

�R

+

'(x; y; t) d�

�

=

Z


�R

3

�R

+

'(x; y; t) d�

0

(3.49)

for all ' 2 C

1

0

(
� R

3

� R

+

), we write

�

�

1

* �

0

:

If (3.49) holds for all ' 2 C

0

(
� R

3

� R

+

), we write

�

�

�

* �

0

and say that �

�


onverges to �

0

weak*.

Examples show that in general �

�

1

* �

0

does not imply �

�

�

* �

0

. However, the

following simple result holds:
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Lemma 3.6 Assume that for every open subset V 
ompa
tly 
ontained in 
�

R

3

� R

+

sup

�>0

j�

�

j(V ) <1:

Then �

�

1

* �

0

implies �

�

�

* �

0

.

Proof: To ' 2 C

0

(
�R

3

�R

+

) 
hoose an open set V with supp' � V �� 
�

R

3

�R

+

. To Æ > 0 we next 
hoose a fun
tion � 2 C

1

0

(V ) with sup j'��j < Æ.

Then

j(�

�

� �

0

; ')j � j(�

�

� �

0

; �)j+ (j�

�

j+ j�

0

j; j'� �j)

� j(�

�

� �

0

; �)j+ Æ(j�

0

j(V ) + sup

�>0

j�

�

j(V ));

from whi
h the statement follows, sin
e Æ was arbitrary.

In Lemma 3.8 we give a 
riterion for the family fH

�

g

0<�<�

0

whi
h guaran-

tees that

j�div

x

H

�

+ div

y

H

�

j

�

* jdiv

y

H

0

j;

with a suitable fun
tion H

0

. This type of 
onvergen
e is needed in the deriva-

tion of the homogenized evolution equation for the order parameter. In the

proof of this lemma we rely on the following

Lemma 3.7 Assume that V is a bounded open subset of R

n

and that �

�

is a

Radon measure on V for every 0 � � < �

0

. If

�

�

�

* �

0

and

j�

�

j(V )! j�

0

j(V )

for � ! 0, then

j�

�

j

�

* j�

0

j:

A proof 
an be found in [75, pp. 141℄. See also [32, pp. 9℄.

We assume that H

�

2 BV

lo


(
 � R

3

� R

+

) for all 0 � � < �

0

and that

additionally for almost all (x; t) and all 0 � � < �

0

the fun
tions

y 7! H

�

(x; y; t)

are periodi
 with periodi
ity 
ell Y � R

3

. Without loss of generality we assume

that the periodi
ity 
ell is the half open 
ube

Y = fy = (y

1

; y

2

; y

3

) 2 R

3

j 0 � y

i

< 1; i = 1; 2; 3g:
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For Æ > 0 we denote by

(
� R

+

)

Æ

= f(x; t) 2 
� R

+

j dist((x; t); �(
� R

+

)) > Æ; j(x; t)j <

1

Æ

g

the bounded open set of all points with distan
e from the boundary of 
�R

+

greater than Æ and with norm less than 1=Æ.

Lemma 3.8 Assume that there exists a sequen
e f


m

� I

m

g

1

m=1

of bounded

open sets with

(
� R

+

)

1

m

� 


m

� I

m

� 
� R

+

;

su
h that for all m

lim

�!0

Z




m

�Y�I

m

jH

�

(x; y; t)�H

0

(x; y; t)j d(x; y; t) = 0: (3.50)

sup

0<�<�

0

jdiv

x

H

�

j(


m

� Y � I

m

) <1 (3.51)

lim

�!0

jdiv

y

H

�

j(


m

� Y � I

m

) = jdiv

y

H

0

j(


m

� Y � I

m

): (3.52)

Then

j�div

x

H

�

+ div

y

H

�

j

�

* jdiv

y

H

0

j : (3.53)

Proof: This statement results from Lemma 3.7. Therefore the main part of

the proof 
onsists in the veri�
ation of the assumptions of Lemma 3.7.

In the �rst step of the proof we 
onstru
t a partition of unity on R

3

. We

use the notations s

+

= maxfs; 0g for s 2 R and jyj

1

= max

1�i�3

jy

i

j for

y = (y

1

; y

2

; y

3

) 2 R

3

. De�ne a fun
tion � 2 C

0

(R

3

;R

+

0

) by

�(y) =

3

Y

i=1

(1� jy

i

j)

+

; y 2 R

3

:

Then � di�ers from zero only in the 
ube fy 2 R

3

j jyj

1

� 1g 
onsisting

of 2

3


opies of Y . With this fun
tion we set �

�

(x) = �(x � �) and obtain

a partition of unity f�

�

g

�2Z

3

0

whi
h satis�es for every positive integer m and

every periodi
 fun
tion p with periodi
ity 
ell Y

�

(m)

(x) =

X

j�j

1

�m

�

�

(x) = 1; jxj

1

� m; (3.54)

Z

R

3

�

(m)

(y)p(y)dy = (2m+ 1)

3

Z

Y

p(y)dy: (3.55)
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For the proof of (3.55) note that the de�nition of �

(m)

in (3.54) yields

Z

R

3

X

j�j

1

�m

�

�

(y)p(y) dy =

Z

R

2

m

X

�

2

;�

3

=�m

3

Y

i=2

(1� jy

i

� �

i

j)

+

(3.56)

�

Z

R

m

X

�

1

=�m

(1� jy

1

� �

1

j)

+

p(y) dy

1

d(y

2

; y

3

) :

We use substitution and the periodi
ity of p to obtain

m

X

�

1

=�m

Z

R

(1� jy

1

� �

1

j)

+

p(y) dy

1

=

m

X

�

1

=�m

Z

1

�1

(1� jy

1

j)

+

p(y

1

+ �

1

; y

2

; y

3

) dy

1

= (2m + 1)

�

Z

1

0

(1� jy

1

j)p(y) dy

1

+

Z

1

0

(1� j� � 1j)p(� � 1; y

2

; y

3

) d�

�

= (2m + 1)

Z

1

0

[(1� y

1

) + (1� (1� y

1

))℄p(y) dy

1

= (2m+ 1)

Z

1

0

p(y) dy

1

:

Insertion of this formula into (3.56) and re
ursive appli
ation of it with the

indi
es i = 2; 3 yields (3.55).

With the fun
tion �

(m)

just 
onstru
ted the proof of the lemma is ob-

tained as follows: For the measures �

(m)

�

(x; y; t) = �

(m)

(y) (� div

x

H

�

+

div

y

H

�

)(x; y; t); � � 0; we prove that

�

(m)

�

1

* �

(m)

0

(3.57)

and

lim

�!0

j�

(m)

�

j(


m

� R

3

� I

m

) = j�

(m)

0

j(


m

� R

3

� I

m

); (3.58)

for all m 2 N . Sin
e to any open set V 
ompa
tly 
ontained in 
 � R

3

� R

+

there exists m with

V � f(x; y; t) j (x; t) 2 (
� R

+

)

1

m

; y 2 R

3

g � 


m

� R

3

� I

m

;

it follows from (3.58) that

sup

�>0

j�

(m)

�

j(V ) <1:

This relation, (3.57) and Lemma 3.6 together imply

�

(m)

�

�

* �

(m)

0

;
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and this result, (3.58) and Lemma 3.7 yield

j�

(m)

�

j

�

* j�

(m)

0

j

on the set 


m

�R

3

� I

m

for all m. Note that the unbounded set 


m

�R

3

� I

m


an be inserted for the bounded set V in Lemma 3.7, sin
e the measure �

(m)

�

restri
ted to the set 


m

� R

3

� I

m

has bounded support. The statement of

Lemma 3.8 is an immediate 
onsequen
e of this result, sin
e (3.54) implies

that to any ' 2 C

0

(
 � R

3

� R

+

) there exists m with supp' � 


m

� fy j

�

(m)

= 1g � I

m

:

To 
omplete the proof it remains to show (3.57) and (3.58). For the proof

of (3.57) let ' 2 C

1

0

(
 � R

3

� R

+

) and 
hoose m with supp' � 


m

� R

3

�

I

m

: Using that the fun
tions '

(m)

(x; y; t) = �

(m)

(y)'(x; y; t) and '

�

(x; y; t) =

�

�

(y)'(x; y; t) have weak derivatives in L

1

, we obtain

�

�

�

Z


�R

3

�R

+

'(x; y; t)�

(m)

(y)

�

d(�div

x

H

�

+ div

y

H

�

)� d(div

y

H

0

)

�

�

�

�

=

=

�

�

�

�

Z


�R

3

�R

+

H

�

(x; y; t) � �r

x

'

(m)

(x; y; t) d(x; y; t)

�

Z


�R

3

�R

+

(H

�

(x; y; t)�H

0

(x; y; t)) � r

y

'

(m)

(x; y; t) d(x; y; t)

�

�

�

�

X

j�j

1

�m

�

Z




m

�supp�

�

�I

m

�jH

�

(x; y; t)j jr

x

'

�

(x; y; t)j d(x; y; t)

+

Z




m

�supp�

�

�I

m

jH

�

(x; y; t)�H

0

(x; y; t)j jr

y

'

�

(x; y; t)j d(x; y; t)

�

�

X

j�j

1

�m

�

max jr

x

'

�

(x; y; t)j+max jr

y

'

�

(x; y; t)j

�

�2

3

Z




m

�Y�I

m

�

�jH

�

(x; y; t)j+ jH

�

(x; y; t)�H

0

(x; y; t)j

�

d(x; y; t)! 0

for � ! 0. To get the last inequality sign we used that the 
ube supp�

�


onsists

of 2

3


opies of Y , and we applied the periodi
ity of H

�

. The 
onvergen
e to

zero is implied by (3.50) and by

sup

�

0

>�>0

Z




m

�Y�I

m

jH

�

(x; y; t)j d(x; y; t) <1 ;

whi
h also is a 
onsequen
e of (3.50). This proves (3.57).
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To verify (3.58) we note that the equation (3.55) yields for the measures

j�

(m)

�

j by some straightforward 
onsiderations

j�

(m)

�

j(


m

� R

3

� I

m

) = (2m+ 1)

3

j�

�

j(


m

� Y � I

m

);

for all � � 0. Here the measures �

�

are de�ned by �

�

= � div

x

H

�

+ div

y

H

�

.

Therefore, to prove (3.58) it suÆ
es to show that

lim

�!0

j�

�

j(


m

� Y � I

m

) = j�

0

j(


m

� Y � I

m

): (3.59)

To verify this relation, note that the inverse triangle inequality and (3.51)

imply

�

�

�

j� div

x

H

�

+ div

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

�

j(


m

� Y � I

m

)

�

�

�

� j�div

x

H

�

j(


m

� Y � I

m

) � �C:

From the hypothesis (3.52) we thus obtain

�

�

�

j�

�

j(


m

� Y � I

m

)� j�

0

j(


m

� Y � I

m

)

�

�

�

�

�

�

�

j� div

x

H

�

+ div

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

�

j(


m

� Y � I

m

)

�

�

�

+

�

�

�

jdiv

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

0

j(


m

� Y � I

m

)

�

�

�

� �C +

�

�

�

jdiv

y

H

�

j(


m

� Y � I

m

)� jdiv

y

H

0

j(


m

� Y � I

m

)

�

�

�

! 0

for � ! 0. Therefore (3.59) and also (3.58) hold. This 
ompletes the proof of

the lemma.

3.4 Homogenized evolution equation for the order parameter and

homogenized initial-boundary value problem

To derive the homogenized form of the equation (3.4) we must insert the fun
-

tions û

�

;

^

T

�

; ẑ

�

;

^

S

�

from (3.12) into (3.4) and study the limits of the terms

on both sides of the equation for � ! 0. These are limits in the distribu-

tion sense. Therefore, to study these limits we must generalize De�nition 3.1

and introdu
e a family of distribution solutions of the initial-boundary value

problem depending on the fast variable. We begin with this de�nition.

The spa
e BV

lo


(
� R

3

� R

+

) and the total variation measure was intro-

du
ed before Lemma 2.3. In the following de�nition we also need the spa
e

BV

lo


(
 � R

3

� R

+

0

), whi
h 
onsists of all fun
tions w on 
 � R

3

� R

+

0

with
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the property that for every open set V 
ompa
tly 
ontained in 
�R

3

�R the

restri
tion of w to V \ (
� R

3

� R

+

) satis�es

w

j

V \(
�R

3

�R

+

)

2 BV (V \ (
� R

3

� R

+

)) :

For the given initial data z

(0)

0

: 
 � R

3

! R

N

and S

(0)

0

: 
 � R

3

! f0; 1g

we assume as above that y 7! z

(0)

0

(x; y) and y 7! S

(0)

0

(x; y) are periodi
 with

periodi
ity 
ell Y and that this periodi
ity 
ell satis�es (3.10).

In the equation (3.4), whi
h was derived in Lemma 2.4 for pie
ewise 
on-

tinuously di�erentiable z, the derivatives r

x

z are the 
lassi
al derivatives on

(
 � R

+

)n� and di�er from the distributional derivatives by a measure on �

generated by jumps of z a
ross �. To avoid regularity problems, we want to

use in the following de�nition only weak or distributional derivatives. r

x

z


ould be 
omputed from the distributional derivatives by subtra
tion of the

measure on the interfa
e �. Sin
e we also want to avoid the dis
ussion of the

regularity of �, whi
h would be ne
essary if this measure would expli
itely

appear in the de�nition, we require in the following de�nition of a family of

distribution solutions depending on the fast variable that z is 
ontinuous a
ross

the interfa
e. This means that we take the identity for the fun
tion g in the

interfa
e 
ondition (3.6). In this 
ase the weak and the 
lassi
al derivatives


oin
ide when the latter exist, and for r

x

z in (3.4) we 
an insert the weak

derivatives. Also for r

x

u we 
an take the weak derivatives, sin
e in all our

investigations we assume that u is 
ontinuous a
ross �.

De�nition 3.9 a.) Let z

(0)

0

2 L

1;lo


(
 � R

3

), let S

(0)

0

be measurable and let

� > 0 be 
onstant. The fun
tion (u; T; z; S) is a distribution solution of the

partial di�erential equations

�div

x

T (x; y; t) = b(x; t) (3.60)

T (x; y; t) = D(S(x; y; t))("(r

x

u(x; y; t))� "

�

(S(x; y; t))

� Bz(x; y; t)) (3.61)

z

t

(x; y; t) = f(S(x; y; t); T (x; y; t); z(x; y; t)) (3.62)

jS

t

(x; y; t)j = �
jdiv

x

C(r

x

u; S; z) (3.63)

��(r

x

z)

T

r

z

 ("(r

x

u); S; z)� (r

x

u)

T

bj

de�ned for (x; y; t) 2 
� R

3

� R

+

, of the interfa
e 
onditions

[u(x; y; t)℄ = [T (x; y; t)℄n(x) = [z(x; y; t)℄ = 0; (x; y) 2 �(t); t 2 R

+

; (3.64)

of the boundary 
ondition

T (x; y; t)n(x) = 0 ; (x; y; t) 2 �
 � R

3

� R

+

0

; (3.65)
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and of the initial 
onditions

z(x; y; 0) = z

(0)

0

(x;

x

�

+ y);

S(x; y; 0) = S

(0)

0

(x;

x

�

+ y);

9

>

=

>

;

(x; y) 2 
� R

3

; (3.66)

if the following 
onditions (i){(v) are satis�ed:

(i) The fun
tions u; T; z; S; C; f and b satisfy

S; C(r

x

u; S; z) 2 BV

lo


(
� R

3

� R

+

0

)

u; r

x

u; r

x

z; 2 L

1;lo


(
� R

3

� R

+

)

T; b 2 L

1;lo


(
� R

3

� R

+

)

z; f(S; T; z) 2 L

1;lo


(
� R

3

� R

+

0

);

and also

(r

x

u)

T

b; (r

x

z)

T

r

z

 ("(r

x

u); S; z) 2 L

1;lo


(
� R

3

� R

+

)

(ii) The equation

(T;r

x

') = (b; '); (3.67)

holds for all ' 2 C

1

0

(R

3

� R

3

� R

+

;R

3

), the equation (3.61) holds for

almost all (x; y; t) 2 
� R

3

� R

+

, and the equation

�(z; '

t

) = (f(S; T; z); ') (3.68)

+

Z


�R

3

z

(0)

0

(x;

x

�

+ y) � '(x; y; 0) d(x; y);

is satis�ed for all ' 2 C

1

0

(
� R

3

� R;R

N

)

(iii) The equation (3.63) holds in the sense of measures, where the absolute

values on both sides of this equation denote the total variation measures

(iv) The interfa
e 
ondition

[u(x; y; t)℄ = 0 (3.69)

holds for almost all (x; y) 2 �(t)� R

3

; t 2 R

+

(v) The initial 
ondition

S(x; y; 0) = S

(0)

0

(x;

x

�

+ y) (3.70)

holds for almost all (x; y) 2 
� R

3

.
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b.) We say, that the distribution solution (u; T; z; S) of (3.60){(3.66) de�nes

a family of distribution solutions of the initial-boundary value problem (3.1){

(3.4), (3.6), (3.7), (3.11) depending on the fast variable y with parameter �

and initial data (z

(0)

0

; S

(0)

0

).

Of 
ourse, the equation (3.67) 
ombines the equation (3.60), the interfa
e 
on-

dition for T and the boundary 
ondition (3.65), the equation (3.68) 
ombines

the equation (3.62), the interfa
e 
ondition for z and the �rst one of the initial


onditions (3.66), and in (3.70) we use that as a BV -fun
tion S has a tra
e on

the part 
� R

3

� f0g of the boundary of 
� R

3

� R

+

.

Now we derive the homogenized evolution equation for the order parameter

S. For 0 < � < �

0

let (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) be a family of distribution solutions of the

initial-boundary value problem depending on the fast variable with parameter

�, whi
h 
an be represented in the form (3.12){(3.16). Let C denote the

Eshelby tensor and  the free energy. We de�ne

^

C

�

(x; y; t) = C(r

x

û

�

(x; y; t);

^

S

�

(x; y; t); ẑ

�

(x; y; t));

r

z

^

 

�

(x; y; t) = r

z

 ("(r

x

û

�

(x; y; t));

^

S

�

(x; y; t); ẑ

�

(x; y; t))

and

C

�

(x; y; t) = C(r

x

u

�

(x; y; t) +

1

�

r

y

u

�

(x; y; t); S

�

(x; y; t); z

�

(x; y; t));

r

z

 

�

(x; y; t) =

= r

z

 ("(r

x

u

�

(x; y; t)) +

1

�

"(r

y

u

�

(x; y; t)); S

�

(x; y; t); z

�

(x; y; t));

hen
e

^

C

�

(x; y; t) = C

�

(x;

x

�

+ y; t); r

z

^

 

�

(x; y; t) = r

z

 

�

(x;

x

�

+ y; t):

Under suitable boundedness 
onditions for the fun
tion u

2

in (3.13) and its

derivatives, we have

r

x

u

�

(x; y; t) +

1

�

r

y

u

�

(x; y; t)!r

x

u

0

(x; t) +r

y

u

1

(x; y; t)

for � ! 0. Therefore we assume below that for � ! 0 the fun
tion C

�

tends

to the fun
tion

C

0

(x; y; t) = C(r

x

u

0

(x; t) +r

y

u

1

(x; y; t); S

0

(x; y; t); z

0

(x; y; t));

and r

z

 

�

tends to

r

z

 

0

(x; y; t) = r

z

 ("(r

x

u

0

(x; t)) + "(r

y

u

1

(x; y; t)); S

0

(x; y; t); z

0

(x; y; t)) :
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With these de�nitions we 
an write the equation whi
h results from insertion

of (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) into the evolution equation (3.63) in the form

�

�

�

�

�t

^

S

�

(x; y; t)

�

�

�

= �


�

�

�

div

x

^

C

�

(x; y; t) (3.71)

� �(r

x

ẑ

�

(x; y; t))

T

r

z

^

 

�

(x; y; t)

� (r

x

û

�

(x; y; t))

T

b(x; t)

�

�

�

:

Lemma 3.10 Assume that

div

x

^

C

�

� �(r

x

ẑ

�

)

T

r

z

^

 

�

� (r

x

û

�

)

T

b

and

�

�t

^

S

�

are measures, and that the 
orresponding total variation measures

satisfy (3.71). Assume moreover that

�

�

�

�

�t

S

�

�

�

�

�

*

�

�

�

�

�t

S

0

�

�

�

(3.72)

and

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

�

*

�

�

�

div

y

C

0

� �(r

y

z

0

)

T

r

z

 

0

�

�

�

(3.73)

for � ! 0. Then the equation

�

�

�

�

�t

S

0

(x; y; t)

�

�

�

= 


�

�

�

div

y

C

0

(x; y; t)� �(r

y

z

0

(x; y; t))

T

r

z

 

0

(x; y; t)

�

�

�

(3.74)

holds in the sense of measures on 
� R

3

� R

+

:

Remark. Equation (3.74) is the homogenized evolution equation for the order

parameter. Be
ause of the nonlinear dependen
e of C and �(r

x

z)

T

r

z

 on

(u; T; z; S), it is 
lear that weak 
onvergen
e of (u

�

; T

�

; z

�

; S

�

) to (u

0

; T

0

; z

0

; S

0

)

is not suÆ
ient to guarantee (3.73). This problem arises in all investigations

of nonlinear partial di�erential equations and in parti
ular in investigations of

quasilinear hyperboli
 
onservation laws. In the present problem an additional

diÆ
ulty is introdu
ed through the presen
e of the total variation measure. We

do not investigate this problem any further, but only refer to the 
riterion for

weak 
onvergen
e of total variation measures given in Lemma 3.8.

Proof: If we insert the fun
tion S for H in the equation (3.43) of the

Lemma 3.4, we obtain for every ' 2 C

1

0

(
� R

3

� R

+

;R) that

Z


�R

3

�R

+

'(x;

x

�

+ y; t) d

�

�

�

�

�t

^

S

�

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�

�t

S

�

�

�

�

: (3.75)

50



Insertion of C for H in (3.42) yields a 
orresponding result for the measures

jdiv

x

^

C

�

j and j�div

x

C

�

+ div

y

C

�

j. Examination of the proof of (3.42) shows

that the result 
an be extended to the measure on the right hand side of (3.71)

and that the same proof yields for all ' 2 C

1

0

(
� R

3

� R

+

)

Z


�R

3

�R

+

'(x;

x

�

+ y; t)� d

�

�

�

div

x

^

C

�

� �(r

x

ẑ

�

)

T

r

z

^

 

�

� (r

x

û

�

)

T

b

�

�

�

=

Z


�R

3

�R

+

'(x; y; t) d

�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

: (3.76)

From (3.71), (3.75) and (3.76) we thus obtain

Z


�R

3

�R

+

'(x; y; t)

�

d

�

�

�

�

�t

S

�

�

�

�

� 


�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

�

= 0

for all ' 2 C

1

0

(
� R

3

� R

+

;R), whi
h implies

�

�

�

�

�t

S

�

�

�

�

= 


�

�

�

�div

x

C

�

+ div

y

C

�

� �(�r

x

z

�

+r

y

z

�

)

T

r

z

 

�

� (�r

x

u

�

+r

y

u

�

)

T

b

�

�

�

:

By (3.72) and (3.73), the left hand side tends to j

�

�t

S

0

j and the right hand side

tends to 
jdiv

y

C

0

� �(r

y

z

0

)

T

r

z

 

0

j . Therefore these limits must 
oin
ide,

whi
h proves (3.74).

Next we de�ne the homogenized initial-boundary value problem. In this

de�nition the mean stress

T

1

(x; t) =M

Y

T

0

(x; �; t) =

Z

Y

T

0

(x; y; t) dy

playes an important part:

De�nition 3.11 The homogenized initial-boundary value problem asso
iated

to the initial-boundary value problem (3.1){(3.4), (3.6){(3.8) is 
onstituted by

the equations

�div

x

T

1

(x; t) = b(x; t); (3.77)

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s); x); (3.78)

T

1

(x; t)n(x) = 0; x 2 �
; t � 0: (3.79)
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Here the history fun
tional r

x

u

0

(x; �) 7! T

1

(x; �) = F

s�t

(r

x

u

0

(x; s); x) is

de�ned by the equation

T

1

(x; t) =M

Y

T

0

(x; �; t); (3.80)

whi
h 
ouples the mean stress to the mi
ro stress T

0

, and by an initial-boundary

value problem in the representative volume element, whi
h de�nes T

0

and whi
h


onsists of the four equations

�D(S

0

(x; �; t))"(r

y

u

1

(x; �; t)) = (3.81)

= P

?

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g;

T

0

(x; �; t) = (3.82)

= P

(S

0

;x;t)

fD(S

0

(x; �; t))("(r

x

u

0

(x; t))� "

�

(S

0

(x; �; t))� Bz

0

(x; �; t))g;

�

�t

z

0

(x; y; t) = f(S

0

(x; y; t); T

0

(x; y; t); z

0

(x; y; t)); (3.83)

�

�

�

�

�t

S

0

�

�

�

= 


�

�

�

div

y

C(r

x

u

0

+r

y

u

1

; S

0

; z

0

) (3.84)

� �(r

y

z

0

)

T

r

z

 ("(r

x

u

0

+r

y

u

1

); S

0

; z

0

)

�

�

�

;

where P

?

(S

0

;x;t)

= (I � P

(S

0

;x;t)

) : L

2

(Y ) ! D

?

0

� L

2

(Y ) is the orthogonal

proje
tor onto the orthogonal spa
e D

?

0

of D

0

,

of the interfa
e 
onditions

[u

0

(x; y; t)℄ = [T

0

(x; y; t)℄n(x; t) = [z

0

(x; y; t)℄ = 0; (x; y; t) 2 �; (3.85)

of the boundary 
ondition

y 7! (u

1

(x; y; t); T

0

(x; y; t); z

0

(x; y; t); S

0

(x; y; t)) (3.86)

has periodi
ity 
ell Y;

and of the initial 
onditions

z

0

(x; y; 0) = z

(0)

0

(x; y); S

0

(x; y; 0) = S

(0)

0

(x; y); (x; y) 2 
� R

3

: (3.87)

S
holia. 1. For every �xed x 2 
 the equations (3.81){(3.87) de�ne an

initial-boundary value problem in the domain Y �R

+

for the unknown fun
tion

(y; t) 7! (u

1

; T

0

; S

0

; z

0

)(x; y; t), whi
h has the same form as the initial-boundary

value problem (3.1){(3.8). This is hidden by the introdu
tion of the proje
tions

P

(S

0

;x;t)

and (I � P

(S

0

;x;t)

) .
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To see that (3.81){(3.87) has this form, note that the pair of equations

(3.81) and (3.82) is equivalent to the pair of equations (3.26) and (3.34).

In fa
t, at the end of the proof of Theorem 3.2 it was shown that (3.26) and

(3.34) imply the equations (3.35) and (3.24), whi
h 
oin
ide with (3.81) and

(3.82). Conversely, (3.26) is obtained from (3.82), sin
e P

(S

0

;x;t)

is a proje
tor

to the spa
e D

0

of periodi
 fun
tions with vanishing divergen
e, and (3.34) is

obtained from (3.81) and (3.82) by addition of these two equations. Therefore

the equations (3.81) and (3.82) 
an be repla
ed by

div

y

T

0

(x; y; t) = 0; (3.88)

T

0

(x; y; t) = D(S

0

(x; y; t))

�

"(r

x

u

0

(x; t) +r

y

u

1

(x; y; t)) (3.89)

� "

�

(S

0

(x; y; t))�Bz

0

(x; y; t)

�

;

and the problem 
onstituted by these two equations and by (3.83){(3.87) is of

the form of (3.1){(3.8). The main di�eren
e is the presen
e of the term

r

x

u

0

(x; t)

in (3.89) and in (3.84), whi
h from the point of view of the initial-boundary

value problem (3.88), (3.89), (3.83){(3.87) is a given fun
tion. This term im-

poses a deformation �eld on the representative volume element, whi
h does not

depend on y. Hen
e, for every given time this deformation �eld is 
onstant

throughout the representative volume element Y . Besides the mi
ro stress T

0

also u

1

is determined by this initial-boundary value problem. The fun
tion u

1

playes the part of a mi
ro displa
ement.

2. The periodi
ity requirement for u

1

and T

0

in the boundary 
ondition (3.86)

is not needed in 
onjun
tion with the equations (3.81) and (3.82), sin
e it is a


onsequen
e of the de�nition of the proje
tion P

(S

0

;x;t)

. It is needed, however,

in 
onjun
tion with the equations (3.88) and (3.89).

3. The x{dependen
e of the history fun
tional F

s�t

(r

x

u

0

(x; s); x) is intro-

du
ed by the x{dependen
e of the initial data z

(0)

0

(x; y) and S

(0)

0

(x; y).

4. By a formal reasoning, from the boundary 
ondition (3.65) one would obtain

the boundary 
ondition

T

0

(x; y; t)n(x) = 0; (x; y; t) 2 �
� R

3

� R

+

0

for the homogenized problem, whi
h is stronger than the boundary 
ondition

(3.79). However, in a

ordan
e with well known results from the theory of ho-

mogenization for linear ellipti
 problems, 
f. [7, pp. 87℄, one expe
ts that this

stronger boundary 
ondition 
annot be imposed in the homogenized problem
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and that (3.79) is the right 
ondition.

5. The fun
tions u

0

; u

1

; T

0

; z

0

and S

0

determined as solution of the homog-

enized initial-boundary value problem 
an be used in two ways:

Sin
e these fun
tions are the leading terms in the expansions (3.13){(3.16),

the fun
tions

û

0;�

(x; y; t) = u

0

(x; t) + �u

1

(x;

x

�

+ y; t); (3.90)

^

T

0;�

(x; y; t) = T

0

(x;

x

�

+ y; t);

ẑ

0;�

(x; y; t) = z

0

(x;

x

�

+ y; t);

^

S

0;�

(x; y; t) = S

0

(x;

x

�

+ y; t);

form an asymptoti
 approximation to the solution (û

�

;

^

T

�

; ẑ

�

;

^

S

�

) of the mi
ro-

s
opi
 initial-boundary value problem (3.1){(3.7), (3.11):

(û

�

;

^

T

�

; ẑ

�

;

^

S

�

)� (û

0;�

;

^

T

0;�

; ẑ

0;�

;

^

S

0;�

)! 0 (3.91)

for � ! 0. This is the �rst usage.

For the se
ond usage we de�ne the mean stress

^

T

�;1

of the exa
t solution

in the 
ell �Y = f�y j y 2 Y g by

^

T

�;1

(x; y; t) =

1

j�Y j

Z

�Y

^

T

�

(x + z; y; t) dz

=

1

j�Y j

Z

�Y

T

�

(x+ z;

x+ z

�

+ y; t) dz =

1

j�Y j

Z

�Y

T

�

(x+ z;

x+ z

�

; t) dz;

where j�Y j =

R

�Y

dy : Here we used (3.12) and the periodi
ity of T

�

. This


omputation shows that

^

T

�;1

(x; y; t) =

^

T

�;1

(x; t): We also use that

T

1

(x; t) =

Z

Y

T

0

(x; y; t) dy =

Z

Y

T

0

(x;

x

�

+ y; t) dy

=

1

j�Y j

Z

�Y

T

0

(x;

x+ y

�

; t) dy

=

1

j�Y j

Z

�Y

T

0

(x+ y;

x + y

�

; t) dy + r(�);

with the remainder

r(�) =

1

j�Y j

Z

�Y

�

T

0

(x;

x+ y

�

; t)� T

0

(x+ y;

x+ y

�

; t)

�

dy! 0
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for � ! 0. From (3.91) we thus have

j

^

T

�;1

(x; t)� T

1

(x; t)j

�

�

�

�

1

j�Y j

Z

�Y

�

T

�

(x+ y;

x+ y

�

; t)� T

0

(x+ y;

x + y

�

; t)

�

dy

�

�

�

+ r(�)! 0

for � ! 0. As se
ond usage we therefore see from this relation and from (3.90),

(3.91) that u

0

and T

1

, whi
h are ma
ros
opi
, non-os
illating quantities, are

the limits of the displa
ement û

�

and of the averaged stress

^

T

�;1

over the 
ell

�Y for � ! 0:

(û

�

;

^

T

�;1

)! (u

0

; T

1

):

6. The history fun
tional F

s�t

(r

x

u

0

(x; s); x) has the input fun
tion s 7!

r

x

u

0

(x; s) and the output fun
tion t 7! T

1

(x; t). To 
ompute T

1

(x; �) from

the deformation gradient r

x

u

0

(x; �) for a given �xed x, this deformation gra-

dient is 
onsidered as a fun
tion (y; s) 7! r

x

u

0

(x; s) 
onstant with respe
t

to y, whi
h we insert in the initial-boundary value problem (3.88), (3.89),

(3.83){(3.87) posed in the representative volume element Y . Then the fun
-

tions u

1

; T

0

; S

0

; z

0

varying with respe
t to y in the representative volume

element are 
omputed by solving this initial-boundary value problem. Fi-

nally, we obtain the y{independent value T

1

(x; t) by taking the mean value

of T

0

(x; �; t) over the representative volume element. This 
omputation of the

y{independent fun
tion T

1

from the y{independent fun
tion r

x

u

0

via the de-

termination of y{dependent fun
tions as solutions of an initial-boundary value

problem is 
omputationally expensive. An important open problem is there-

fore to devise a method to eliminate the y{variable by homogenization of the

initial-boundary value problem (3.88), (3.89), (3.83){(3.87) posed in the rep-

resentative volume element. The homogenization pro
edure dis
ussed in this

arti
le 
an therefore only be 
onsidered as a �rst step. The homogenization of

the mi
ros
opi
 initial-boundary value problem leading to a history fun
tional

de�ned by an initial-boundary value problem in the representative volume el-

ement should be 
ompleted by a homogenization pro
edure, whi
h repla
es

this initial-boundary value problem in the representative volume element by

a 
onstitutive relation, whi
h for every x 
onsists of an ordinary di�erential

equation with respe
t to the time variable. For a dis
ussion of su
h se
ond

homogenization pro
edures we have to refer to the literature 
ited at the end

of the introdu
tion. Closely 
onne
ted to the problems studied in this arti
le

is [52℄, where a se
ond homogenization pro
edure for a phase transformation

problem is presented.
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4 Materials with temporally invariant mi
rostru
ture

4.1 The mi
ros
opi
 and the homogenized initial-boundary value

problems

In the remainder of this paper we study the initial-boundary value problem de-

s
ribing a material with a mi
rostru
ture, whi
h is temporally �xed. As in the


ase of the evolving mi
rostru
ture the history fun
tional in the homogenized

problem is de�ned by an initial-boundary value problem in the representative

volume element. In the 
ase of �xed mi
rostru
ture it is parti
ularly sug-

gestive to interpret this homogenized problem as a quasi-stati
 problem for an

inelasti
 material with a 
onstitutive equation, whi
h is an ordinary di�erential

equation in an in�nite dimensional Bana
h spa
e.

Existen
e proofs for initial-boundary value problems to inelasti
 materials

are often based on the idea to show that under suitable assumptions for the


onstitutive equations the initial-boundary value problem 
an be written as

an evolution equation to a monotone operator. In [2℄ it is shown that even

if the given 
onstitutive equations do not satisfy these assumptions, they 
an

sometimes be brought into a transformed form, in whi
h the assumptions are

ful�lled. Existen
e of solutions is then obtained from the general theory of

su
h evolution equations if in a se
ond step it 
an be shown that the operator

is maximal monotone. This program has been 
arried out 
ompletely in [2℄

for some dynami
 initial-boundary value problems, whereas for quasi-stati


problems only the redu
tion to an evolution equation to a monotone operator

is given there.

The goal of this se
tion is to show that under the same assumptions for

the 
onstitutive equations, whi
h allow to redu
e the initial-boundary value

problem for an inelasti
 material with �xed mi
rostru
ture to a monotone

evolution equation also the homogenized problem with 
onstitutive equation in

an in�nite dimensional Bana
h spa
e 
an be redu
ed to a monotone evolution

equation. The redu
tion to an evolution equation is 
arried out in se
tion 4.2,

the proof of monotoni
ity is given in se
tion 4.3. Monotoni
ity is not enough

to prove existen
e of solutions of the evolution equation. In addition it must be

shown that the monotone operator is maximal and that the resulting family

of monotone operators satis�es some regularity 
onditions. We must leave

the determination of 
onditions for the 
onstitutive equations assuring these

properties and thus guaranteeing existen
e of solutions for the homogenized

problem to later investigations. Also, the problem, to show that solutions of

the mi
ros
opi
 problem tend to solutions of the homogenized problem if the

s
ale of the mi
rostru
ture goes to zero, is left open in this work.

We begin with the formulation of the mi
ros
opi
 and the homogenized

initial-boundary value problems. We assume that the elasti
ity tensor D is

a periodi
 fun
tion of the spa
e variable x, but is independent of the time
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variable t. Moreover, we assume that the mis�t strain "

�

is negligible. In

this 
ase the order parameter S is not needed to des
ribe the mi
rostru
ture.

Therefore we obtain the mathemati
al model for a material with temporally

�xed mi
rostru
ture from the initial-boundary value problem (3.1){(3.8) by

droping the relations (3.4){(3.6) and omiting the term "

�

in (3.2).

Thus, let 
 � R

3

be a bounded open set with smooth boundary. For

every y 2 R

3

let D(y) : S

3

! S

3

be a linear mapping, whi
h is symmetri


and positive de�nite. Let f : R

3

�

^

�(f) ! R

N

be a given map with

^

�(f) �

S

3

�R

N

. We assume that y 7! D(y) and y 7! f(y; T; z) are suÆ
iently smooth

periodi
 fun
tions with periodi
ity 
ell Y � R

3

. The periodi
ity 
ell is assumed

to satisfy (3.10). Let � > 0 be a parameter, B : R

N

! S

3

be a linear mapping

and z

(0)

: 
 ! R

N

be given initial data. The mi
ros
opi
 initial-boundary

value problem is

�div

x

T (x; t) = b(x; t) (4.1)

T (x; t) = D(

x

�

)("(r

x

u(x; t))�Bz(x; t)) (4.2)

z

t

(x; t) = f(

x

�

; T (x; t); z(x; t)) ; (4.3)

T (x; t)n(x) = 0; x 2 �
; t � 0 (4.4)

z(x; 0) = z

(0)

(x); x 2 
: (4.5)

To study the homogenization of this system we 
onsider initial data of the

form

z

(0)

(x) = z

(0)

0

(x;

x

�

); x 2 
; (4.6)

with a suÆ
iently regular fun
tion z

(0)

0

: 
 � R

3

! R

N

. It is assumed that

for every x 2 
 the fun
tion y 7! z

(0)

0

(x; y) is periodi
 with periodi
ity 
ell

Y . For su
h initial data the analysis of Se
tion 3.2 
an be repeated. The

resulting homogenized system is essentially equal to (3.36){(3.38). To state

the homogenized initial-boundary value problem pre
isely, let the mean value

operator M

Y

and the spa
e D

0

be de�ned as in Se
tion 3.2. A s
alar produ
t

on L

2

(Y ) is de�ned by

[v; w℄ =

Z

Y

(D(y)

�1

v(y)) : w(y) dy:

By P : L

2

(Y ) ! D

0

� L

2

(Y ) we denote the proje
tor onto D

0

, whi
h is

orthogonal with respe
t to the s
alar produ
t [v; w℄.
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De�nition 4.1 The homogenized initial-boundary value problem asso
iated to

the problem (4.1){(4.6) is given by

�div

x

T

1

(x; t) = b(x; t); (4.7)

T

1

(x; t) = F

s�t

(r

x

u

0

(x; s); x); (4.8)

T

1

(x; t)n(x) = 0; x 2 �
; t � 0: (4.9)

Here the history fun
tional r

x

u

0

(x; �) 7! T

1

(x; �) = F

s�t

(r

x

u

0

(x; s); x) is

de�ned by the equation

T

1

(x; t) =M

Y

T

0

(x; �; t); (4.10)

whi
h yields the mean stress T

1

as a fun
tion of the mi
ro stress T

0

, and by

the initial-boundary value problem, whi
h de�nes T

0

and whi
h 
onsists of the

equations

T

0

(x; �; t) = PfD(�)("(r

x

u

0

(x; t))� Bz

0

(x; �; t))g; (4.11)

�

�t

z

0

(x; y; t) = f(y; T

0

(x; y; t); z

0

(x; y; t)); (4.12)

and of the boundary and initial 
onditions

y 7! (T

0

(x; y; t); z

0

(x; y; t)) is periodi
 with periodi
ity 
ell Y; (4.13)

z

0

(x; y; 0) = z

(0)

0

(x; y); (x; y) 2 
� R

3

: (4.14)

Remark. The periodi
ity requirement for T

0

in (4.13) 
an be dropped, sin
e

it is implied by the de�nition of the proje
tion P .

From this formulation of the homogenized problem we see that it is a quasi-

stati
 problem for an inelasti
 material, whose history fun
tionalF

s�t

is de�ned

by the system (4.11), (4.12) of ordinary di�erential equations in an in�nite

dimensional Bana
h spa
e. Depending on the properties of f , the solution

(y; t) 7! z

0

(x; y; t) of this di�erential equation 
an for every �xed t lie in the

Bana
h spa
e of fun
tions on R

3

periodi
 with periodi
ity 
ell Y and 
ontained

in L

p

(Y ) for a suitable p, or it 
an lie in a Bana
h spa
e of measures.

Just as in the homogenized problem to the evolving mi
rostru
ture, we


an also take another point of view and repla
e the equation (4.11) by the

equivalent pair of equations

div

y

T

0

(x; y; t) = 0;

T

0

(x; y; t) = D(y)("(r

x

u

0

(x; t) +r

y

u

1

(x; y; t))� Bz

0

(x; y; t));
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whi
h must be supplemented by the periodi
ity 
ondition

y 7! (u

1

(x; y; t); T

0

(x; y; t)) is periodi
 with periodi
ity 
ell Y:

For every x 2 
, the equations (4.12){(4.14) together with this pair of equa-

tions and with the periodi
ity 
ondition 
onstitute an initial-boundary value

problem for the unknown fun
tion (y; t) 7! (u

1

; T

0

; z

0

)(x; y; t) in the domain

Y �R

+

, whi
h has the same form as the problem (4.1){(4.5). The fun
tion u

1

is the mi
ro deformation.

For all these 
onsiderations we refer to the s
holia after De�nition 3.11.

4.2 Redu
tion of the homogenized system to an evolution equation

In this se
tion we redu
e the homogenized initial-boundary value problem to an

evolution equation. The redu
tion follows in all essential details the redu
tion

of quasi-stati
 initial-boundary value problems to inelasti
 materials given in

Se
tion 3.2 of [2℄. However, in the more 
ompli
ated 
ase of the homogenized

problem properties of several linear spa
es and linear operators play a role,

whi
h must �rst be determined. Before we 
arry out the redu
tion, we �rst


olle
t the information needed about these spa
es and operators in several

lemmas:

We assume that the symmetri
 linear mappingD(y) : S

3

! S

3

is uniformly

positive de�nite: There exists a 
onstant 
 > 0 with

(D(y)F ) : F � 
jF j

2

for all y 2 R

3

and all F 2 S

3

. The bounded linear operator P : D

0

! D

0

is

de�ned by

Pv = P (D(�)v(�)); v 2 D

0

:

Lemma 4.2 The operator P is selfadjoint with respe
t to the s
alar produ
t

(v; w) =

Z

Y

v(y) : w(y) dy

on D

0

and positive de�nite.

Proof: D(y) is symmetri
 and positive de�nite, hen
e D(y)

�1

exists and is

symmetri
. By de�nition the proje
tion P is orthogonal with respe
t to the

s
alar produ
t [v; w℄ on L

2

(Y ). Hen
e P is selfadjoint. For v; w 2 D

0

we thus

obtain

(Pv; w) =

Z

Y

[P (D(�)v(�))℄(y) : w(y) dy
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=

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : D(y)w(y) dy

=

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : [P (D(�)w(�))℄(y) dy

=

Z

Y

D(y)

�1

D(y)v(y) : [P (D(�)w(�))℄(y) dy

=

Z

Y

v(y) : [P (D(�)w(�))℄(y) dy = (v;Pw):

Therefore P is selfadjoint. To see that P is positive de�nite, note that the

above 
al
ulation also yields

(Pv; v) =

Z

Y

D(y)

�1

[P (D(�)v(�))℄(y) : [P (D(�)v(�))℄(y) dy = [Pv;Pv℄ � 0 :

It follows that P is positive de�nite if Pv = P (D(�)v(�)) 6= 0 for all v 2 D

0

with

v 6= 0, hen
e if kerP = f0g. Now, if v 2 kerP, then D(�)v(�) 2 kerP = D

?

0

.

Sin
e v 2 D

0

, this implies

0 = [v;D(�)v(�)℄ =

Z

Y

(D

�1

(y)v(y)) : D(y)v(y) dy =

Z

Y

v(y) : v(y) dy;

when
e v = 0. This proves that P is positive de�nite. The proof is 
omplete.

Next we need to 
olle
t some information about the kernel of the operator

div

x

M

Y

. First we de�ne pre
isely how we want to understand this operator.

De�nition 4.3 The domain of de�nition of div

x

M

Y


onsists of all fun
tions

w 2 L

2

(
� Y;S

3

), for whi
h v 2 L

2

(
;R

3

) exists satisfying

�

Z




(M

Y

w(x; �)) : r

x

'(x) dx =

Z




v(x) � '(x) dx;

for all ' 2 H

1

(
;R

3

). Obviously, v is uniquely de�ned by this equation. We

thus de�ne

(div

x

M

Y

)w = v:

Clearly, this means that the domain of de�nition of div

x

M

Y


onsists of all

w, for whi
h div

x


an be applied to x 7! (M

Y

w(x; �)) in the weak sense, and

whi
h in the weak sense satisfy

[M

Y

w(x; �)℄n(x) = 0; x 2 �
:

By K we denote the kernel of the operator div

x

M

Y

. Then K is the subspa
e

of all fun
tions w 2 L

2

(
� Y;S

3

) with

Z




(M

Y

w(x; �)) : r

x

'(x) dx = 0 (4.15)
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for all ' 2 H

1

(
;R

3

). The subspa
e K is 
losed. The orthogonal spa
e of K

in L

2

(
� Y;S

3

) with respe
t to the s
alar produ
t

(v; w)


�Y

=

Z




Z

Y

v(x; y) : w(x; y) dxdy

is denoted by K

?

.

Lemma 4.4 (i) The spa
e K 
onsists of all fun
tions w of the form

w(x; y) = w

0

(x) + w

1

(x; y); (4.16)

where w

0

2 L

2

(
;S

3

) satis�es

div

x

w

0

= 0; w

0

(x)n(x) = 0; x 2 �
 (4.17)

in the weak sense, and where w

1

2 L

2

(
� Y;S

3

) satis�es

M

Y

w

1

(x; �) = 0; x 2 
: (4.18)

(ii) We have

K

?

= f(x; y) 7! "(r

x

v(x)) j v 2 H

1

(
;R

3

)g: (4.19)

Remark. w

0

satis�es (4.17) in the weak sense if

R




w

0

(x) : r'(x) dx = 0 for

all ' 2 H

1

(
;R

3

), of 
ourse. (ii) means that all fun
tions of the set K

?

are


onstant with respe
t to the y-variable.

Proof: (i) Assume that w = w

0

+w

1

with w

0

; w

1

satisfying (4.17), (4.18). For

' 2 H

1

(
;R

3

) we then have be
ause of (3.10)

Z




(M

Y

w(x; �)) : r

x

'(x) dx =

Z




(M

Y

w

0

(x) +M

Y

w

1

(x; �)) : r

x

'(x) dx

=

Z




w

0

(x) : r

x

'(x) dx = 0;

when
e w 2 K. On the other hand, assume that w 2 K. We set w

0

(x) =

M

Y

w(x; �) and w

1

= w�w

0

. Then w(x; y) = w

0

(x)+w

1

(x; y) and w

1

satis�es

(4.18), sin
e

M

Y

w

1

(x; �) =M

Y

w(x; �)�M

Y

w

0

(x)

=M

Y

w(x; �)� w

0

(x) =M

Y

w(x; �)�M

Y

w(x; �) = 0;
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where we used (3.10) again. Moreover, w

0

satis�es (4.17), sin
e for ' 2

H

1

(
;R

3

)

Z




w

0

(x) : r

x

'(x) dx =

Z




Z

Y

w

0

(x) dy : r

x

'(x) dx

=

Z




(M

Y

w

0

(x) +M

Y

w

1

(x; �)) : r

x

'(x) dx

=

Z




(M

Y

w(x; �)) : r

x

'(x) dx = 0:

This proves (i).

(ii) Let M

T

Y

: L

2

(
;S

3

) ! L

2

(
 � Y;S

3

) denote the transpose operator of

M

Y

: L

2

(
� Y;S

3

)! L

2

(
;S

3

). It is immediately seen that

(M

T

Y

v)(x; y) = v(x)

for all v 2 L

2

(
;S

3

) and all (x; y) 2 
� Y .

Sin
e M

Y

w(x; �) is a symmetri
 matrix for all w 2 L

2

(
�Y;S

3

), it follows

that

(M

Y

w(x; �)) : r

x

'(x) = (M

Y

w(x; �)) : "(r

x

'(x)):

Therefore, by (4.15), K is the set of all w 2 L

2

(
� Y;S

3

) with

0 =

Z




(M

Y

w(x; �)) : r

x

'(x) dx

=

Z




(M

Y

w(x; �)) : "(r

x

'(x)) dx

=

Z




Z

Y

w(x; y) : [M

T

Y

("(r

x

'))℄(x; y) dydx;

for all ' 2 H

1

(
;R

3

). Thus, K is the orthogonal spa
e of the subspa
e

fM

T

Y

("(r

x

')) j ' 2 H

1

(
;R

3

)g = f(x; y) 7! "(r

x

'(x)) j ' 2 H

1

(
;R

3

)g:

Sin
e this subspa
e is 
losed, it is equal to K

?

. This proves (ii).

Be
ause K is a 
losed subspa
e of L

2

(
�Y;S

3

), we 
an de�ne the orthogo-

nal proje
tion �

1

: L

2

(
�Y;S

3

)! K � L

2

(
�Y;S

3

) onto K. Orthogonality

is meant with respe
t to the s
alar produ
t (v; w)


�Y

. By �

2

= I � �

1

we

denote the orthogonal proje
tion to the orthogonal spa
e K

?

of K.

An operator de�ned on a subspa
e of L

2

(
�Y;S

3

) 
an be introdu
ed using

the operator P : D

0

! D

0

as follows: Sin
e this operator is linear, bounded,

selfadjoint and positive de�nite, it de�nes by

((x; y) 7! v(x; y)) 7! ((x; y) 7! (Pv(x; �))(y)) (4.20)
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a bounded linear operator on

L

2

(
;D

0

) = fv 2 L

2

(
� Y;S

3

) j v(x; �) 2 D

0

for almost all xg;

whi
h is also selfadjoint with respe
t to the s
alar produ
t (v; w)


�Y

and pos-

itive de�nite, and whi
h we denote by the same symbol P : L

2

(
;D

0

) !

L

2

(
;D

0

). Of 
ourse, the same 
onsiderations apply to the inverse P

�1

:

L

2

(
;D

0

)! L

2

(
;D

0

).

The next lemma 
ontains information about these operators:

Lemma 4.5 (i) We have

�

1

(L

2

(
;D

0

)) � K \ L

2

(
;D

0

); �

2

(L

2

(
� Y;S

3

)) � L

2

(
;D

0

)

(ii) The operator �

1

P

�1

maps the subspa
e K \ L

2

(
;D

0

) of L

2

(
 � Y;S

3

)

into itself, and

�

1

P

�1

: K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

)

is selfadjoint and positive de�nite.

Proof: (i) Lemma 4.4 (ii) implies for the range R(�

2

) of the proje
tion �

2

that

R(�

2

) = K

?

= f(x; y) 7! "(r

x

v(x)) j v 2 H

1

(
;R

3

)g � L

2

(
;D

0

);

sin
e fun
tions w(x; y) = "(r

x

v(x)) are periodi
 with respe
t to y and satisfy

div

y

v(x; y) = 0. For v 2 L

2

(
;D

0

) we thus have

�

1

v = (I � �

2

)v = v � �

2

v 2 L

2

(
;D

0

);

hen
e �

1

(L

2

(
;D

0

)) � K \ L

2

(
;D

0

). The proof of (i) is 
omplete.

(ii) Sin
e P

�1

: L

2

(
;D

0

)! L

2

(
;D

0

) we 
on
lude from (i) that

�

1

P

�1

: K \ L

2

(
;D

0

)! K \ L

2

(
;D

0

):

To see that this operator is selfadjoint and positive de�nite, let v; w 2 K \

L

2

(
;D

0

). Then �

1

v = v and �

1

w = w. Sin
e the orthogonal proje
tion �

1

is

selfadjoint on L

2

(
� Y ) and P

�1

is selfadjoint on L

2

(
;D

0

), we thus obtain

(�

1

P

�1

v; w)


�Y

= (P

�1

v;�

1

w)


�Y

= (P

�1

v; w)


�Y

= (v;P

�1

w)


�Y

= (�

1

v;P

�1

w)


�Y

= (v;�

1

P

�1

w)


�Y

:

This shows that �

1

P

�1

is selfadjoint. From this 
omputation it also follows

that for v 6= 0

(�

1

P

�1

v; v)


�Y

= (P

�1

v; v)


�Y

> 0;
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sin
e P

�1

is positive de�nite on L

2

(
;D

0

). Consequently, �

1

P

�1

is positive

de�nite. This proves the lemma.

Redu
tion to an evolution equation. With these lemmas we 
an redu
e

the homogenized initial-boundary value problem to an evolution equation. We

use the following notation: For fun
tions v and w de�ned on 
 � R

+

and on


 � Y � R

+

, respe
tively, whi
h take values in some spa
e V , we denote by

v(t) and w(t) the fun
tions

x 7! v(x; t) : 
! V and (x; y) 7! w(x; y; t) : 
� Y ! V;

respe
tively.

Sin
e by Lemma 4.2 the operator P : D

0

! D

0

is selfadjoint and positive

de�nite, it has a selfadjoint and positive de�nite inverse P

�1

: D

0

! D

0

.

Be
ause P is the proje
tion to D

0

, the terms on both sides of the equation

(4.11) belong to the domain of de�nition of P

�1

. Therefore we 
an apply P

�1

to this equation and obtain together with (4.7) and (4.10)

�div

x

(M

Y

T

0

(x; �; t)) = b(x; t) (4.21)

P

�1

T

0

(x; �; t) = "(r

x

u

0

(x; t))� P

�1

P (D(�)Bz

0

(x; �; t)): (4.22)

Here we used that "(r

x

u

0

(x; t)) 
an be 
onsidered to be a fun
tion of (x; y; t),

whi
h is 
onstant with respe
t to y. Sin
e 
onstant fun
tions belong to D

0

, we

have "(r

x

u

0

(x; t)) 2 D

0

for all (x; t), whi
h yields

P

�1

P (D(�)"(r

x

u

0

(x; t))) = P

�1

P"(r

x

u

0

(x; t)) = "(r

x

u

0

(x; t)):

In the se
ond term on the right of (4.22) this simpli�
ation is not possible,

sin
e Bz

0

(x; �; t) =2 D

0

, in general. Hen
e this fun
tion does not belong to the

domain of de�nition of P.

In the next step we insert T

0

= �

1

T

0

+ �

2

T

0

into (4.21). Be
ause �

1

proje
ts to the kernel of the operator div

x

M

Y

, we obtain

�div

x

M

Y

T

0

(t) = �div

x

M

Y

(�

1

T

0

)(t)� div

x

M

Y

(�

2

T

0

)(t)

= �div

x

M

Y

(�

2

T

0

)(t) = b(t): (4.23)

Here we used that T

0

(t) and, as a 
onsequen
e, also �

2

T

0

(t) belong to the

domain of de�nition of div

x

M

Y

. This is guaranteed by the boundary 
ondition

(4.9). We 
ontinue by applying �

1

to (4.22), whi
h results in

�

1

P

�1

T

0

(t) = �

1

"(r

x

u

0

(t))� �

1

P

�1

P (DBz

0

(t))

= ��

1

P

�1

P (DBz

0

(t));

sin
e (4.19) implies "(r

x

u

0

(t)) 2 K

?

and sin
e K

?

= ker �

1

. Using T

0

(t) 2

L

2

(
;D

0

), we 
on
lude from Lemma 4.5 (i) that �

1

T

0

(t); �

2

T

0

(t) 2 L

2

(
;D

0

),
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when
e �

1

T

0

(t) and �

2

T

0

(t) both belong to the domain of de�nition of P

�1

.

Consequently, P

�1

T

0

(t) = P

�1

�

1

T

0

(t) + P

�1

�

2

T

0

(t), whi
h shows that the

last equation 
an be written in the form

�

1

P

�1

(�

1

T

0

)(t) = ��

1

P

�1

P (DBz

0

(t))� �

1

P

�1

(�

2

T

0

)(t): (4.24)

Be
ause the mapping

�

1

P

�1

: K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

)

is selfadjoint and positive de�nite, it has an inverse, whi
h is also selfadjoint

and positive de�nite. We denote this inverse by (�

1

P

�1

)

�1

. Be
ause the

three fun
tions T

0

(t); P

�1

P (DBz

0

(t)) and P

�1

(�

2

T

0

)(t) all are 
ontained in

L

2

(
;D

0

), we 
an invoke Lemma 4.5 (i) again to 
on
lude from this fa
t that

�

1

T

0

(t) and both terms on the right hand side of (4.24) belong to the subspa
e

K\L

2

(
;D

0

), the domain of de�nition of (�

1

P

�1

)

�1

. Therefore we 
an apply

this inverse to all terms of the equation (4.24). Di�erentiation of the resulting

equation and insertion of (4.12) for

�

�t

z

0

yields

�

�t

(�

1

T

0

)(�; ��; t) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(��)Bf(��; T

0

(�; ��; t); z

0

(�; ��; t)))

� (�

1

P

�1

)

�1

�

1

P

�1

�

�t

(�

2

T

0

)(�; ��; t): (4.25)

We note that in this equation (�

1

P

�1

)

�1

�

1

P

�1


an not be repla
ed by the

identity, sin
e (�

1

P

�1

)

�1

is the inverse of �

1

P

�1

on K \ L

2

(
;D

0

). However,

P (DBf) =2 K \ L

2

(
;D

0

) and (�

2

T

0

)

t

=2 K \ L

2

(
;D

0

), in general.

If we repla
e T

0

by �

1

T

0

+ �

2

T

0

in the argument of f , then we obtain

from (4.25) the evolution equation for �

1

T

0

whi
h we sought. We state this

evolution equation and the equation (4.23) for �

2

T

0

in the following

Theorem 4.6 Assume that (u

0

; T

0

; z

0

) is a fun
tion whi
h has the properties

u

0

(t) 2 H

1

(
;R

3

) (4.26)

T

0

(t);

�

�t

T

0

(t) 2 L

2

(
� Y;S

3

) (4.27)

z

0

(t);

�

�t

z

0

(t) 2 L

2

(
� Y;S

3

); (4.28)

for almost all t 2 R

+

, and whi
h satis�es the homogenized initial-boundary

value problem (4.7){(4.14). Then T

0

and z

0

satisfy on 
�Y �R

+

the equations

�div

x

M

Y

(�

2

T

0

) = b(x; t) (4.29)

�

�t

(�

1

T

0

) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�;�

1

T

0

+�

2

T

0

; z

0

))

� (�

1

P

�1

)

�1

�

1

P

�1

(�

2

T

0

)

t

(4.30)

�

�t

z

0

= f(�;�

1

T

0

+�

2

T

0

; z

0

); (4.31)
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on �
� R

+

the boundary 
ondition

[M

Y

�

2

T

0

(x; �; t)℄n(x) = 0; (4.32)

and on 
� Y the initial 
onditions

(�

1

T

0

)(x; �; 0) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bz

(0)

0

(x; �))

� (�

1

P

�1

)

�1

�

1

P

�1

(�

2

T

0

)(x; �; 0) (4.33)

z

0

(x; y; 0) = z

(0)

0

(x; y): (4.34)

Conversely, if T

0

and z

0

are periodi
 with respe
t to y, ful�ll (4.27), (4.28)

and satisfy (4.29){(4.34), then a unique fun
tion u

0

exists satisfying (4.26),

su
h that the fun
tion (u

0

; T

0

; z

0

) solves the homogenized initial-boundary value

problem (4.7){(4.14).

S
holium. Before we give the remaining parts of the proof of this theorem,

we interpret the equations (4.29){(4.34). The equations (4.29) and (4.32)

belong together and are meant in the weak sense. Together they mean that for

almost all t the fun
tion (x; y) 7! (�

2

T

0

)(x; y; t) must belong to the domain

of de�nition of the operator div

x

M

Y

introdu
ed in De�nition 4.3 and that the

appli
ation of this operator to �

2

T

0

yields x 7! b(x; t). Sin
e by de�nition �

2

maps to the orthogonal spa
e of the kernel of div

x

M

Y

, the fun
tion �

2

T

0

is

uniquely determined by (4.29) and (4.32). Hen
e, if these two equations 
an

be solved for almost all t, then the 
omponent �

2

T

0

of T

0

in the spa
e K

?

is

known. Thus, the unknowns in (4.30), (4.31) and (4.33), (4.34) are z

0

and the


omponent �

1

T

0

of T

0

in the spa
e K. Therefore, (4.30), (4.31) is a system

of evolution equations for the fun
tions �

1

T

0

and z

0

to the initial 
onditions

(4.33), (4.34). If this system 
an be solved, then T

0

= �

1

T

0

+ �

2

T

0

and z

0

are known. By the statement of the theorem, u

0


an be determined su
h that

(u

0

; T

0

; z

0

) satisfy the homogenized initial-boundary value problem.

Proof: We already proved that (4.29), (4.30) follow from (4.7), (4.11). The

equations (4.31) and (4.34) 
oin
ide with (4.12) and (4.14). With T

1

(x; t) =

M

Y

T

0

(x; �; t); the boundary 
ondition (4.9) 
an be written in the form

(M

Y

T

0

(x; �; t))n(x) = 0; (x; t) 2 �
 � R

+

:

The boundary 
ondition (4.32) follows from this equation and from

�

2

T

0

= T

0

� �

1

T

0

;

sin
e by de�nition �

1

is the proje
tion to the kernel of the operator div

x

M

Y

;

the fun
tion �

1

T

0

thus satis�es

[M

Y

�

1

T

0

(x; �; t)℄n(x) = 0
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on �
� R

+

in the weak sense. Finally, the initial 
ondition (4.33) for �

1

T

0

is

obtained by appli
ation of the operator (�

1

P

�1

)

�1

to (4.24) and insertion of

the initial data for z

0

in the resulting equation.

Conversely, assume that (4.29){(4.34) are satis�ed. We use (4.31) to repla
e

f in (4.30) by

�

�t

z

0

and integrate the resulting equation with respe
t to t.

Insertion of the initial 
ondition (4.33) for �

1

T

0

and appli
ation of the operator

�

1

P

�1

to the resulting equation yields (4.24), whi
h 
an be written in the form

�

1

P

�1

T

0

= ��

1

P

�1

P (D(�)Bz

0

):

Sin
e ker �

1

= K

?

, this equation and Lemma 4.4 (ii) imply that for almost

every t there exists a fun
tion (x 7! u

0

(x; t)) 2 H

1

(
;R

3

) su
h that (4.22) is

satis�ed. Moreover, (4.21) follows dire
tly from (4.29). From (4.21), (4.22) we

obtain (4.7) and (4.11) by appli
ation of P to (4.22). The equations (4.12),

(4.14) and (4.9) result dire
tly from (4.31), (4.34) and (4.32). This proves the

theorem.

Remark. The hypothesis z

0

(t);

�

�t

z

0

(t) 2 L

2

(
 � Y;S

3

) in Theorem 4.6 is

questionable. In fa
t, from the theory of quasi-stati
 problems it is known that

z

0

(t) belongs to L

2

only if f satis�es growth restri
tions, whi
h are not satis�ed

in most 
onstitutive models derived in the engineering s
ien
es. In general, z

0

belongs to L

p

or to a spa
e of measures, depending on the properties of f .

However, we believe that the pre
eding reasoning 
an be modi�ed to hold also

in situations where z

0

belongs to these more general spa
es.

4.3 Monotoni
ity of the evolution equation

The 
ru
ial diÆ
ulty in proving that the homogenized initial-boundary value

problem has a solution is to show that the evolution system (4.30) and (4.31) is

solvable. Here we prove that if f is a monotone ve
tor �eld, then this evolution

system 
an be written as an evolution equation of the form

�

t

(t) = �A(t)�(t) + g(t) (4.35)

with a known fun
tion g and with a family fA(t)g

t�0

of monotone operators.

This is an essential step in proving existen
e of solutions for the homogenized

system. Of 
ourse, monotoni
ity of A(t) alone is not suÆ
ient for existen
e

of solutions of (4.35). It is ne
essary that A(t) is maximal monotone and

that the family fA(t)g

t�0

satis�es additional regularity 
onditions, 
f. [16, 23℄.

Whether these additional 
onditions are satis�ed is an open question, not only

for the homogenized system, but also for the original system, where a similar,

but simpler redu
tion to an evolution equation is possible.

In order to keep the dis
ussion simple, we restri
t ourselves in the following

investigations to 
onstitutive equations (4.3) of the form

z

t

= f(

x

�

; T );
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where the fun
tion f does not depend on the internal variables z expli
itly.

Many simple 
onstitutive equations used in the engineering s
ien
es are of this

form, 
f. [2℄. We remark however, that the following 
onsiderations go through

for 
onsiderably more general fun
tions f , whi
h also depend on the internal

variables z expli
itly.

So, assume that

f = f(y; T ):

In this 
ase (4.29), (4.30) and the boundary 
ondition (4.32) form a 
losed

system for �

1

T

0

and �

2

T

0

, and the evolution equation (4.31) for the internal

variables z

0


an be dropped. To simplify the notation we set

� = �

1

T

0

; � = �

2

T

0

:

Then � = �(x; y; t); � = �(x; y; t) and �(t) 2 K \ L

2

(
;D

0

); �(t) 2 K

?

for

almost every t � 0. The equation (4.30) takes the form

�

t

(t) = �(�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�; �(t) + �(t)))� (�

1

P

�1

)

�1

�

1

P

�1

�

t

(t) :

(4.36)

A

ording to the dis
ussion following Theorem 4.6, the fun
tion �(t) is

uniquely determined by (4.29) and (4.32). Therefore � and the fun
tion

g = (�

1

P

�1

)

�1

�

1

P

�1

�

t


an be 
onsidered to be known. With this fun
tion

g the equation (4.36) 
an thus be written in the form (4.35), if we de�ne the

operator A(t) = A(�(t)) by

A(�(t))�̂ = (�

1

P

�1

)

�1

�

1

P

�1

P (D(�)Bf(�; �̂ + �(t))); (4.37)

for every �̂ from the domain of de�nition �(�(t)) of A(�(t)). For �(�(t)) we


hoose the set of all fun
tions �̂ 2 K \ L

2

(
;D

0

), for whi
h

((x; y) 7! f(y; �̂(x; y) + �(x; y; t))) 2 L

2

(
� Y;R

N

) (4.38)

holds. With this 
hoi
e we have

A(�(t)) : �(�(t)) � K \ L

2

(
;D

0

)! K\ L

2

(
;D

0

):

To see this, note that by de�nition of the proje
tion P , the relation (4.38)

implies

x 7! P (D(�)Bf(�; �̂(x; �) + �(x; �; t))) 2 L

2

(
;D

0

):

Sin
e P

�1

: L

2

(
;D

0

) ! L

2

(
;D

0

), we thus obtain from Lemma 4.5 (i) that

for �̂ 2 �(�(t))

�

1

P

�1

P (D(�)Bf(�; �̂ + �(t))) 2 K \ L

2

(
;D

0

);
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whi
h together with Lemma 4.5 (ii) and with the de�nition of A(�(t)) yields

A(�(t))�̂ 2 K \ L

2

(
;D

0

):

This proves the assertion. In passing we note that, as indi
ated in the notation,

the operator A(t) = A(�(t)) depends on the time t only via the known fun
tion

�(t).

A mapping A : �(A) � H ! H on a Hilbert spa
e H with the s
alar

produ
t (v; w) is monotone if

(Av � Aw; v � w) � 0

for all v; w 2 �(A). Here �(A) denotes the domain of A. We shall prove that

A(�(t)) is a monotone operator on K\L

2

(
;D

0

) for almost all t, if this Hilbert

spa
e is equipped with the s
alar produ
t de�ned as follows: In Lemma 4.5 it

was proved that �

1

P

�1

is selfadjoint and positive de�nite on the Hilbert spa
e

K\L

2

(
;D

0

) with the s
alar produ
t (v; w)


�Y

=

R




R

Y

v(x; y) : w(x; y) dydx.

Using this, we de�ne the new s
alar produ
t on K \ L

2

(
;D

0

) by

hv; wi =

Z




Z

Y

(�

1

P

�1

v) : w dydx : (4.39)

Theorem 4.7 Let f : R

3

�S

3

! R

N

be a given fun
tion and B : R

N

! S

3

be

a linear mapping. Assume that for every y 2 R

3

the ve
tor �eld ~� 7! Bf(y; ~�) :

S

3

! S

3

is monotone:

(Bf(y; ~�

1

)� Bf(y; ~�

2

)) : (~�

1

� ~�

2

) � 0; (4.40)

for all ~�

1

; ~�

2

2 S

3

. Then for every � 2 K

?

� L

2

(
� Y;S

3

) the operator A(�)

de�ned in (4.37) is monotone on K \ L

2

(
;D

0

), if this spa
e is equipped with

the s
alar produ
t hv; wi.

Proof: Let �

1

; �

2

2 �(�). Then (4.37) and (4.39) yield

hA(�)�

1

� A(�)�

2

; �

1

� �

2

i

=

Z


�Y

�

�

1

P

�1

[PD(�)Bf(�; �

1

+ �)� PD(�)Bf(�; �

2

+ �)℄

�

: (�

1

� �

2

)d(x; y)

=

Z


�Y

�

�

1

P

�1

PD(�)(Bf(�; �

1

+ �)� Bf(�; �

2

+ �))

�

: (�

1

� �

2

) d(x; y) =: J

1

;

where we used the linearity of �

1

P

�1

and of P . Sin
e �

1

: L

2

(
 � Y;S

3

) !

K � L

2

(
� Y;S

3

) is orthogonal with respe
t to the s
alar produ
t (v; w)


�Y
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and sin
e �

1

� �

2

2 K, hen
e �

1

(�

1

� �

2

) = �

1

� �

2

, we obtain that

J

1

=

Z




Z

Y

�

P

�1

P (D(�)(Bf(�; �

1

+ �)�Bf(�; �

2

+ �)))

�

: (�

1

� �

2

) dydx

=

Z




Z

Y

�

P (D(�)(Bf(�; �

1

+ �)� Bf(�; �

2

+ �)))

�

: P

�1

(�

1

� �

2

) dydx

=: J

2

:

Here we used that P de�ned in (4.20) and also P

�1

are selfadjoint on L

2

(
;D

0

)

with respe
t to the s
alar produ
t (v; w)


�Y

. Note that P proje
ts to D

0

,

hen
e PD(�)(Bf(�; �

1

+�)�Bf(�; �

2

+�)) 2 L

2

(
;D

0

) and �

1

��

2

2 L

2

(
;D

0

) .

We next use that P : L

2

(Y )! D

0

� L

2

(Y ) is orthogonal with respe
t to the

s
alar produ
t [v; w℄ =

R

Y

(D(y)

�1

v(y)) : w(y) dy. For all v; w 2 L

2

(Y ) we

thus have

Z

Y

[P (Dv)℄ : w dy =

Z

Y

[D(y)

�1

P (D(�)v(�))℄ : D(y)w(y) dy

=

Z

Y

D(y)

�1

D(y)v(y) : P (D(�)w(�)) dy =

Z

Y

v : [P (Dw)℄ dy :

Using this relation, we obtain

J

2

=

Z




Z

Y

�

Bf(y; �

1

+ �)�Bf(y; �

2

+ �)

�

: P (D(�)P

�1

(�

1

� �

2

)) dydx

=

Z




Z

Y

(Bf(y; �

1

+ �)�Bf(y; �

2

+ �)) : (�

1

� �

2

) dydx

=

Z




Z

Y

h

(Bf(y; (�

1

+ �)(x; y))� Bf(y; (�

2

+ �)(x; y))

i

:

h

(�

1

+ �)(x; y)� (�

2

+ �)(x; y)

i

dydx

� 0:

The last inequality sign follows from the assumption (4.40). In this step we

used that for v 2 L

2

(
;D

0

)

P (D(�)v(x; �))(y) = (Pv)(x; y);

by de�nition of P, hen
e P (D(�)P

�1

(�

1

� �

2

)) = PP

�1

(�

1

� �

2

) = �

1

� �

2

.

This 
omputation proves that the operator A(�) is monotone. The proof

is 
omplete.

Con
lusion. The 
ontributions of this arti
le to the mathemati
al theory

of phase transformations and to the homogenization of mathemati
al models

from solid me
hani
s 
an be summarized as follows:
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In Se
tion 2 we derived a new mathemati
al model for the evolution in time

of phase transitions. In this model the order parameter belongs to the spa
e

BV

lo


of fun
tions of bounded variation. Its evolution in time is rate dependent

and is governed by a �rst order partial di�erential equation, a Hamilton-Ja
obi

equation. This model 
ould be an alternative to the Cahn-Allen model.

Sin
e the order parameter is of bounded variation, to determine the e�e
tive

equations to this model it was ne
essary in Se
tion 3 to study homogenization

in the spa
e BV

lo


. This made it ne
essary to introdu
e the idea of a family of

solutions of the mi
ros
opi
 initial-boundary value problem depending on the

fast variable.

In Se
tion 4 we redu
ed the homogenized system of partial di�erential

equations for temporally invariant mi
rostru
ture to an evolution equation.

The redu
tion pro
edure generalizes the redu
tion given in [2℄ for the equations

modeling inelasti
 solids. As a �rst step in the dire
tion of an existen
e proof

we showed that the resulting evolution equation is monotone.

It remains open whether the model suggested in Se
tion 2 has a solution

and whether the solution is unique. Moreover, it would be important to in-

vestigate this model numeri
ally. Also,the proof of monotoni
ity in Se
tion 4

should be extended to an existen
e proof for the homogenized system to tempo-

rally invariant mi
rostru
ture. Subsequently, this homogenized system should

be justi�ed by proving that the solutions of the homogenized problem tend

asymptoti
ally to the solutions of the mi
ros
opi
 problem. In the last step,

the same program should be 
arried out for the homogenized problem to evolv-

ing mi
rostru
ture. Of these tasks, the existen
e proof for the homogenized

system to invariant mi
rostru
ture and the justi�
ation of this system seem to

be the most a

essible ones.
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