
Theory-driven Logical Scaling

Conceptual Information Systems meet Description Logics

Susanne Prediger, Gerd Stumme

Technische Universit�at Darmstadt, Fachbereich Mathematik, Schlo�gartenstr. 7,

D{64289 Darmstadt; fprediger, stummeg@mathematik.tu-darmstadt.de

To be published in:

P. Lambrix et al.: Proceedings DL'99. CEUR Workshop Proceedings Vol. 22, 1999

and in E. Franconi et al.: Proceedings KRDB'99. CEUR Workshop Proceedings Vol. 21, 1999

(http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/)

1 Introduction

Conceptual Information Systems ([8]) have been developed for conceptual data

analysis and are based on the mathematical theory of Formal Concept Analysis

([4]). A Conceptual Information System provides a front-end for a (relational)

database. It uses conceptual hierarchies to unfold the conceptual structure of the

data and to support on-line navigation through the data. By so-called conceptual

scales ([3]), the relevant information can be extracted from the database and

stored in a table with an object-attribute-relation (called formal context) from

which one can derive a conceptual hierarchy (called concept lattice) for the actual

part of the data. As far as they are needed in this paper, the basics of Conceptual

Information Systems and conceptual scales are provided in Section 2.

For a conceptual scale, there is always a trade-o� between its size and its

soundness with respect to future updates of the database. There are two ap-

proaches of designing conceptual scales: data-driven design and theory-driven

design.

In theory-driven design, knowledge about the application domain is used to

exclude impossible combinations of attributes. This keeps the conceptual scales

small { and their concept lattices easier to interpret. Theory-driven design is

only applicable if there is enough knowledge about which types of objects may

occur in the database. If this information is missing, the diagrams may become

unnecessarily large.

The second approach is called data-driven design. If there is no (or only few)

knowledge available, the scales are designed to �t the actual data only, and not

to conform to all possible updates of the database. If an update violates the

structure of the scale, the user is warned, and the scale has to be redesigned.

Hence, data-driven design is not applicable if the database is frequently updated.

1



A more general approach than conceptual scaling is presented in [5]: (data-

driven) logical scaling. Instead of using conceptual scales, it uses the terminology

of a formal language like Description Logic for extracting information. Logical

scaling is shortly recalled in Section 2.

While data-driven logical scaling has the advantage of a more powerful lan-

guage for de�ning scales, it has the same drawbacks as data-driven design of

ordinary conceptual scales. In Section 3, we introduce theory-driven logical scal-

ing which combines both e�orts. It determines typical objects and excludes all

combinations of attributes which cannot occur because of the semantics of the

applied Description Logic.

Theory-driven logical scaling combines three ideas: the use of a terminology

for scaling ([5]), the application of Attribute Exploration ([2]) { a knowledge

acquisition tool { for bridging the gap between data-driven and theory-driven

design of conceptual scales ([7]), and the utilization of a subsumption algorithm

of Description Logics as an `expert' for Attribute Exploration ([1]). Theory-

driven logical scaling can be used to set up a Conceptual Information System

even when the database is only partially given in the beginning.

2 Conceptual Information Systems

and Data-Driven Logical Scaling

De�nition. A (formal) context is a triple K := (G;M; I) where G and M are

sets and I is a relation between G and M . The elements of G and M are called

objects and attributes, resp., and (g;m) 2 I is read \object g has attribute m".

A (formal) concept is a pair (A;B) with A � G and B �M such that A and

B are maximal with A�B � I . The set A is called the extent and the set B the

intent of the concept. The concept lattice of K (denoted by B(K )) is the set of

all its concepts together with the hierarchical subconcept{superconcept{relation

(A;B) � (C;D) :() A � C (() B � D) :

Figure 1 shows a formal context. It has four persons as objects, which are

described by six attributes. In the line diagram of its concept lattice the name

of an object g is always attached to the circle representing the smallest concept

with g in its extent; dually, the name of an attributem is always attached to the

circle representing the largest concept with m in its intent. This allows us to

read the context relation from the diagram because an object g has an attribute

m if and only if there is an ascending path from the circle labeled by g to the

circle labeled by m. The extent of a concept consists of all objects whose labels

are below in the diagram, and the intent consists of all attributes attached to

concepts above in the hierarchy.

2



Mr. Smith

Mrs. Miller

Miss Cooper

Mr. Davis

p
e
rs

o
n

w
in

e
 d

ri
n
k
e
r

re
d
 w

in
e
 d

ri
n
k
e
r

w
h
it
e
 w

in
e
 d

ri
n
k
e
r

B
o
rd

e
a
u
x
 d

ri
n
k
e
r

re
d
 B

o
rd

e
a
u
x
 d

ri
n
k
e
r

person

wine drinker

red wine drinker

white wine drinker
Bordeaux drinker

red Bordeaux drinker

Mr. Smith

Mrs. Miller

Miss Cooper

Mr. Davis

Figure 1: A formal context about wine drinkers and a line diagram of its concept

lattice

For example, the concept labeled by Mr. Smith and red wine drinker has

fMr. Smith, Miss Cooper, Mr. Davisg as extent, and fred wine drinker, wine

drinker, persong as intent. In the diagram, one can for instance see that the

two attributes Bordeaux drinker and red Bordeaux drinker generate the same

concept. This indicates that among the four persons there is no-one drinking

white Bordeaux. (�)

A Conceptual Information System consists of a many-valued context and a

set of conceptual scales. A many-valued context may not only have crosses (i. e.,

yes/no) as entries, but values of attributes pairs. It can be seen as a table of

a relational database with the column containing the objects being a primary

key.

De�nition. A many-valued context is a tuple K := (G ;M ; (W

m

)

m2M

; I) where

G is a set of objects, M a set of attributes, each W

m

a set of possible values

for the attribute m 2 M , and I � G � f(m;w) j m 2 M;w 2 W

m

g a relation

with (g;m;w

1

) 2; (g;m;w

2

) 2 I ) w

1

= w

2

. (g;m;w) 2 I is read \object g has

value w for attribute m".

A conceptual scale is a one-valued context which has as objects possible

values of the database attributes. It is used to extract the relevant information

from the many-valued context such that a concept lattice can be generated.

The choice of the attributes of the scale is purpose-oriented and reects the

understanding of an expert of the domain.

De�nition. A conceptual scale for a subset B � M of attributes is a (one-

valued) formal context S

B

:= (G

B

;M

B

; I

B

) with G

B

��

m2B

W

m

. The realized

scale S

B

(K ) is de�ned by S

B

(K ) := (G ;M

B

; J) with (g; n) 2 J if and only if there

exists w = (w

m

)

m2B

2 G

B

with (g;m;w) 2 I , for m 2 B, and (w; n) 2 I

B

.

The idea is to replace the attribute values in W

m

which are often too speci�c

3



drinks

Person Wine

Mr. Smith Casa Solar

Mrs. Miller Staehle

Miss Cooper Figeac

Mr. Davis Figeac

Mr. Davis Casa Solar

Wines

r

e

d

w

i

n

e

w

h

i

t

e

w

i

n

e

B

o

r

d

e

a

u

x

P

r

i

c

e

Figeac � � 49,90

Staehle � 14,90

Casa Solar � 5,95

Figure 2: Data Base Wines and Clients

by binary, more general attributes which are provided in M

B

. For an example,

see below.

In implemented Conceptual Information Systems, the many-valued context

is realized as a table in a relational database. The set G

B

of a conceptual scale

S

B

is then replaced by corresponding SQL statements. In the realized scale, the

objects of the conceptual scale (i. e. the values of the database attributes) are

replaced by the corresponding objects of the many-valued context.

Figure 2 shows a small database of a (�ctive) wine retailer. For this in-

troductory example, we consider only the table wines as many-valued context

K . The diagram in Figure 3 shows the realized scale S

fPriceg

(K ). The chosen

attributes reect the view of the analyst about prices. It divides the price range

in four (non-disjoint!) categories: below 5 DM (by the attribute very cheap),

below 10 DM (cheap), above 10 DM (expensive), above 20 DM (very expensive).

The objects of the corresponding conceptual scale are all possible prices. In the

realized scale, each price is replaced by those objects which have this price.

The design of this scale is theory-driven. It reects the understanding that

a wine is either cheap or expensive, that each very cheap wine is also cheap,

and that each very expensive wine is also expensive. This understanding ex-

cludes ten out of 16 possible combinations of the attributes as concept intents.

With the current data, the concept labeled by very cheap is not realized. That

means that, at the moment, there are no wines in the database which are very

cheap. Data-driven design of the scale would have omitted this concept, but

might not be consistent with future updates of the database. Hence data-driven

design corresponds to the Closed World Assumption, while theory-driven design

corresponds to the Open World Assumption.

cheap

Casa Solar

expensive

Staehle

Figeac

very expensivevery cheap

Figure 3: The realized scale for the price

4



wine drinker := person u 9 drinks.(red wine t white wine)

red wine drinker := person u 9 drinks.red wine

white wine drinker := person u 9 drinks.white wine

Bordeaux drinker := person u 9 drinks.Bordeaux

red Bordeaux drinker := person u 9 drinks.(red wine u Bordeaux)

Figure 4: Terminology Wine drinkers

With `traditional' conceptual scaling, the context shown in Figure 1 cannot

be obtained as a realized scale of the given database. In the sequel, we show how

it can be obtained by data-driven logical scaling. Its theory-driven counterpart

is introduced in Section 3.

In [5], we presented (data-driven) logical scaling as an alternative method

that allows a more explicit and more powerful description of the attributes which

are introduced for the scaling process. The basic idea of logical scaling consists

of using a formal language like Description Logic to de�ne a terminology with

attributes (called concepts (!) in DL) out of the attributes and relations of

di�erent tables of the database.

In the terminology (TBox), a set of attributes is de�ned by terms of the

Description Logic like it is done in Figure 4. The formal context in Figure 1

is the realized scale that we can derive from the database (ABox) in Figure 2

with the terminology in Figure 4. Its objects are the persons, its attributes

are the attributes de�ned in the terminology, and the relation I is given by the

semantics of the formal language: an object g is in relation with an attribute m

if g satis�es the term de�ning m. (For a formal de�nition, refer to [5].)

If the conceptual scale is supposed to conform to updates of the database,

for example to the introduction of a white Bordeaux drinker (see (�)), a larger

conceptual scale must be created. This is done by theory-driven scaling.

3 Creating Conceptual Scales

by Theory-Driven Logical Scaling

For creating a conceptual scale that is large enough for all possible updates of the

database, we use Attribute Exploration ([2]), a knowledge acquisition algorithm.

In order to exclude impossible combinations of the attributes, the algorithm

generates questions of the form `Is a wine drinker who is also a Bordeaux drinker

and a red wine drinker always a red Bordeaux drinker?'. If the question is denied,

then the user has to provide a counter-example. In [7], Attribute Exploration

is used for extending data-driven to theory-driven conceptual scales with as few

interaction of the domain expert as possible.

In logical scaling, the necessary expert knowledge is already explicitly for-

malized in the terminology. That is why Attribute Exploration can be combined

5



wine drinker

Bordeaux drinker

white wine drinker
red wine drinker

red Bordeaux drinker

Mrs. MillerMr. Smith

Miss Cooper

Mr. Davis

Figure 5: Concept lattice of the theory-driven scale

with a subsumption algorithm of Description Logic as `expert' ([1]). This can

be done with each logic that has a complete subsumption algorithm which gen-

erates a counter-example for each non-valid subsumption. In this paper, we use

the language ALC ([6]).

For answering the question mentioned above, the subsumption algorithm

solves the equivalent question if

P :� wine drinker u Bordeaux drinker u red wine drinker u: red Bordeaux drinker

is inconsistent with respect to the terminology in Figure 4. In order to show

that P is inconsistent, the subsumption algorithm tries to generate a counter-

example. If this fails, P is consistent (and the question is a�rmed). Here the

question is denied because the algorithm returns three new (dummy) objects

as counter-example: P7, W5, and W6 with W5 having only the attribute red

wine, W6 having only the attributes Bordeaux and white wine, an the relations

drinks(P7,W5) and drinks(P7,W6). The counter-example is added (temporarily,

just for creating the conceptual scale) to the database in Figure 2 and to the

context in Figure 1. Then Attribute Exploration generates the next open ques-

tion and passes it to the subsumption algorithm. In total, Attribute Exploration

generates eight questions. The subsumption algorithm denies four of them. For

the others, it provides four counter-examples.

The �nal result is a list of counter-examples which determines the structure

of the conceptual scale. (Equivalently, the structure is determined by the list of

a�rmed questions.)

The (theory-driven) conceptual scale is derived from the concept lattice of

the extended context. For each concept, one clause consisting of the attributes

of the terminology is introduced which describes the intent of the concept. For

instance, P7 is replaced by red wine drinker u Bordeaux drinker u: red Bordeaux

6



drinker. These objects are used for deriving the realized scale at runtime. The

line diagram of the concept lattice of the realized scale is shown in Figure 5.

Here one can see which attribute combinations can principally exist according

to the terminology, and which of them are realized by the actual data. For

instance one can see that the observation made in Section 2 that there is no

white Bordeaux drinker (see (�)) does not hold in general, but only for the four

listed persons.

If one starts the generation of the conceptual scale from an empty data-

base, the same scale will arise, but in its realized scale there will be no realized

concepts (beside the bottom concept). As the database grows, more and more

concepts become realized. Hence, theory-driven logical scales can also be used

for analyzing the degree of completeness of the database with regard to `typical'

objects of the terminology.

In contrast to the terminology in Figure 4, the concept lattice in Figure 5

visualizes the subsumption hierarchy. It combines the intensional part of a

Description Logic (the TBox) with its extensional part (the ABox).

We conclude with the observation that, in theory-driven logical scaling, De-

scription Logics and Formal Concept Analysis enrich each other. From the

viewpoint of Formal Concept Analysis, the use of a Description Logic allows to

extend the scaling process in Conceptual Information Systems to more compli-

cated data structures than just one many-valued context. From the viewpoint

of Description Logics, Conceptual Information Systems provide a graphical user

interface which supports the navigation through and exploration of the knowl-

edge captured by a Description Logic.

7



References

[1] F. Baader: Computing a minimal representation of the subsumption lat-

tice of all conjunctions of concept de�ned in a terminology. In: G. Ellis,

R. A. Levinson, A. Fall, V. Dahl (eds.): Proc. Intl. KRUSE Symposium,

August 11{13, 1995, UCSC, Santa Cruz 1995, 168{178.

[2] B. Ganter: Two basic algorithms in concept analysis. FB4-Preprint 831,

TH Darmstadt 1984.

[3] B. Ganter, R. Wille: Conceptual scaling. In: F. Roberts (ed.): Applications

of combinatorics and graph theory to the biological and social sciences,

Springer, New York 1989, 139{167.

[4] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Founda-

tions. Springer, Berlin 1999.

[5] S. Prediger: Logical Scaling in Formal Concept Analysis. In: D. Lukose

et.al. (eds.): Conceptual Structures: Ful�lling Peirce's Dream, LNAI 1257,

Springer, Berlin 1997, 332{341.

[6] M. Schmidt{Schau�, G. Smolka: Attributive concept descriptions with

complements. In: Arti�cial Intelligence 48, 1991.

[7] G. Stumme: Acquiring Expert Knowledge for the Design of Conceptual

Scales. In: D. Fensel, R. Studer (Hrsg.): Knowledge Acquisition, Modeling,

and Management. Proc. EKAW'99, LNAI 1621, Springer, Heidelberg 1999,

271{286

[8] F. Vogt, R. Wille: TOSCANA { A graphical tool for analyzing and ex-

ploring data. In: R. Tamassia, I. G. Tollis (eds.): Graph Drawing '94, In:

LNCS 894, Springer, Heidelberg 1995, 226{233.

8


