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Abstract. The aim of this paper is to contribute to Data Analysis by

clarifying how concept graphs may be derived from data tables. First

it is shown how, by the method of relational scaling, a many-valued

data context can be transformed into a power context family. Then it is

proved that the concept graphs of a power context family form a lattice

which can be described as a subdirect product of speci�c intervals of the

concept lattices of the power context family (each extended by a new

top-element). How this may become practical is demonstrated using a

data table about the domestic 
ights in Austria. Finally, the lattice of

syntactic concept graphs over an alphabet of object, concept, and relation

names is determined and related to the lattices of concept graphs of the

power context families which are semantic models of the given contextual

syntax.
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1 Introduction

Conceptual Graphs have been introduced by J. F. Sowa as a system of logic

\to express meaning in a form that is logically precise, humanly readable, and

computationally tractable" [So92]. In [Wi97] and [Pr98b] Sowa's Theory of Con-

ceptual Graphs has been used in combination with Formal Concept Analysis

[GW99] to design a mathematical logic of judgment as part of a contextual logic.

This \Contextual Logic" is understood as a mathematization of the traditional

philosophical logic which is based on \the three essential main functions of think-

ing - concepts, judgments, and conclusions" [Ka88]. Contextual Logic, which is



philosophically supported by Peirce's pragmatic epistemology, is grounded on

families of related formal contexts whose formal concepts allow a mathematical

representation of the concepts and relations of conceptual graphs. Such rep-

resentation of a conceptual graph is called a \Concept Graph" of the context

family from which it is derived. To indicate the speci�c relationship between

the considered contexts, such a family of contexts is named a \Power Context

Family".

The aim of this paper is to contribute to Data Analysis by clarifying how

concept graphs may be derived from data tables. Since data tables mostly relate

objects, attributes, and atttribute values, our approach starts with many-valued

contexts which have been introduced to formalize such data tables (see [Wi82],

[GW99]). In Section 2 we explain �rst how to turn a many-valued context into a

power context family. This transformation, called \Relational Scaling", is guided

by the speci�c purpose of the data analysis to perform. We demonstrate the

method of relational scaling by data about the domestic 
ights in Austria. In

Section 3 we show how to determine all concept graphs of a power context family.

For this task it is useful that the concept graphs of a power context family

form a lattice which is isomorphic to a subdirect product of speci�c intervals

of the concept lattices of the power context family (each extended by a new

top-element). How this may become practical is demonstrated by the example

of the domestic 
ights in Austria. In Section 4, more generally, the lattice of

syntactic concept graphs, de�ned on a contextual alphabet, is determined. Its

connection to the lattices of concept graphs of power context families is also

clari�ed. Further research is discussed in the �nal section.

The following explanations presuppose some knowledge about Formal Con-

cept Analysis for which we refer to the monograph [GW99]. For a better un-

derstanding of the connection between Conceptual Graphs and Formal Concept

Analysis, the papers [Wi97] and [Pr98a] might be helpful.

2 From a Many-valued Context

to a Power Context Family

Data tables representing relationships between objects, attributes, and attribute

values are mathematized by many-valued contexts. A many-valued context is

de�ned as a set structure (G;M;W; I) where G is a set of (formal) objects,M is a

set of (formal) attributes,W is a set of (formal) attribute values, and I is a ternary

relation between G, M , and W (i.e. I � G�M�W ) for which (g;m; v) 2 I and

(g;m;w) 2 I always imply that v = w; (g;m;w) 2 I is read: the object g has the

attribute value w for the attribute m. The data table in Figure 1 (see [OAG98])

may be understood as a many-valued context (G;M;W; I) for which G is the set

of all listed 
ights, M is the set consisting of the attributes \Airline", \Departure

Airport", \Departure Time", \Arrival Airport", \Arrival Time", \Days", and \Aircraft",

while W is a set containing all attribute values described by the entries in the

columns of the table.
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Departure Arrival

Flight Airline Airport Time Airport Time Days Aircraft

070 VO Vienna 07.50 Innsbruck 08.40 1-6 F70

071 VO Innsbruck 06.25 Vienna 07.20 1-5 F70

072a VO Vienna 10.20 Innsbruck 11.35 6 DH8

072b VO Vienna 10.50 Innsbruck 12.05 1-5, 7 DH8

073a VO Innsbruck 08.35 Vienna 09.45 67 DH8

073b VO Innsbruck 09.05 Vienna 09.55 1-5 F70

074 VO Vienna 13.55 Innsbruck 15.10 2-5 DH8

075 VO Innsbruck 11.40 Vienna 12.50 1-5 DH8

076a VO Vienna 17.45 Innsbruck 18.40 1-6 F70

076b VO Vienna 18.40 Innsbruck 19.55 7 DH8

077 VO Innsbruck 15.35 Vienna 16.45 2-5 DH8

078a VO Vienna 20.35 Innsbruck 21.25 1-4 F70

078b VO Vienna 21.30 Innsbruck 22.45 7 DH8

078c VO Vienna 21.40 Innsbruck 22.35 5 CRJ

330 VO Linz 06.20 Salzburg 06.50 1-6 CRJ

331 VO Salzburg 11.20 Linz 11.45 1-5 CRJ

332 VO Linz 16.05 Salzburg 16.35 1-5 CRJ

333 VO Salzburg 21.50 Linz 22.15 1-5, 7 CRJ

409 VO Graz 12.10 Linz 12.45 1-5 CRJ

410 VO Linz 16.10 Graz 16.50 1-5 CRJ

412 VO Linz 10.35 Graz 11.10 1-5 CRJ

413 VO Graz 06.15 Salzburg 06.50 1-5 CRJ

415 VO Graz 17.30 Salzburg 18.10 1-5 CRJ

416 VO Salzburg 21.50 Graz 22.25 1-5, 7 CRJ

417 VO Graz 17.15 Linz 17.45 7 CRJ

501 VO Klagenfurt 06.00 Salzburg 06.45 1-5 DH8

502 VO Salzburg 21.55 Klagenfurt 22.40 1-5, 7 DH8

531* VO-OS Linz 06.00 Vienna 06.45 1-6 DH8

532* VO-OS Vienna 10.40 Linz 11.20 1-5, 7 DH8

533* VO-OS Linz 08.35 Vienna 09.25 1-7 DH8

534* VO-OS Vienna 22.15 Linz 23.00 1-5, 7 DH8

536a* VO-OS Vienna 17.10 Linz 17.55 5 DH8

536b* VO-OS Vienna 17.15 Linz 17.55 1-4, 7 DH8

537* VO-OS Linz 12.00 Vienna 12.50 1-5, 7 DH8

538* VO-OS Vienna 20.30 Linz 21.15 1-7 DH8

539* VO-OS Linz 18.15 Vienna 19.00 1-5, 7 DH8

540* VO-OS Vienna 10.45 Graz 11.30 1-7 DH8

541* VO-OS Graz 06.05 Vienna 06.45 1-6 DH8

542* VO-OS Vienna 13.50 Graz 14.35 1-5 DH8

543* VO-OS Graz 08.50 Vienna 09.35 1-7 DH8

544* VO-OS Vienna 17.20 Graz 18.00 1-7 DH8

545* VO-OS Graz 11.55 Vienna 12.35 1-5 DH8

546* VO-OS Vienna 19.40 Graz 20.20 1-7 DH8

547* VO-OS Graz 15.30 Vienna 16.15 1-5, 7 DH8

548* VO-OS Vienna 22.30 Graz 23.10 1-5, 7 DH8

549* VO-OS Graz 15.30 Vienna 16.15 1-5, 7 DH8

550* VO-OS Vienna 07.25 Klagenfurt 08.15 1-5 DH8

551* VO-OS Klagenfurt 06.00 Vienna 06.50 1-6 DH8

552* VO-OS Vienna 10.40 Klagenfurt 11.30 1-7 DH8

553* VO-OS Klagenfurt 08.40 Vienna 09.30 1-7 DH8

554* VO-OS Vienna 13.55 Klagenfurt 14.50 1-5 DH8

555* VO-OS Klagenfurt 11.55 Vienna 12.45 1-7 DH8

556* VO-OS Vienna 17.10 Klagenfurt 18.00 1-7 DH8

557* VO-OS Klagenfurt 15.15 Vienna 16.10 1-5 DH8

558* VO-OS Vienna 19.50 Klagenfurt 20.45 1-7 DH8

559* VO-OS Klagenfurt 18.20 Vienna 19.10 1-7 DH8

560* VO-OS Vienna 22.30 Klagenfurt 23.20 457 DH8

561* VO-OS Klagenfurt 21.00 Vienna 22.00 457 DH8

590* VO-OS Vienna 10.25 Salzburg 11.20 1-7 DH8

591* VO-OS Salzburg 17.15 Vienna 18.10 7 DH8

593* VO-OS Salzburg 08.15 Vienna 09.15 1-7 DH8

594* VO-OS Vienna 17.35 Salzburg 18.35 1-7 DH8

595* VO-OS Salzburg 11.45 Vienna 12.40 1-7 DH8

596a* VO-OS Vienna 20.25 Salzburg 21.20 6 DH8

596b* VO-OS Vienna 20.35 Salzburg 21.30 1-5, 7 DH8

597* VO-OS Salzburg 19.05 Vienna 20.00 1-7 DH8

1557 VO Klagenfurt 16.00 Vienna 16.50 7 DH8

1583 VO Innsbruck 15.10 Graz 15.55 7 CRJ

1596 VO Vienna 14.05 Salzburg 15.05 5 DH8

2980 VO Innsbruck 06.10 Salzburg 06.40 1-7 DH8

2981 VO Salzburg 12.30 Innsbruck 13.00 1-7 DH8

2983 VO Salzburg 16.40 Linz 17.05 1-5 CRJ

2984 VO Innsbruck 14.35 Salzburg 15.10 1-7 DH8

2985 VO Salzburg 21.40 Innsbruck 22.05 1-7 DH8

2986 VO Innsbruck 10.20 Salzburg 10.55 7 DH8

Fig. 1. A Many-valued Context about Domestic 
ights in Austria
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Fig. 2. Conceptual Scale Airports and its Concept Lattice

Conceptual Scaling [GW89] has been established as a useful method for the

conceptual analysis of many-valued data contexts. For such data analysis it is

desirable to make available, besides structures of formal concepts, also structures

of formal judgments. Therefore we extend the method of conceptual scaling to

that of \Relational Scaling" for deriving structures of concept graphs from many-

valued contexts in addition to concept lattices.

Before describing this in general, we explain the idea of relational scaling by

our example of the domestic 
ights in Austria. The aim is to turn the many-

valued context represented in Figure 1 into a family of formal contexts whose

formal concepts also yield binary relations. Such transformation should be guided

by some purpose which we assume to be the support of 
ight information. In

the formal context represented in Figure 2, for the six airports given in Figure 1,

the minimum connecting time between domestic 
ights and the distance from

the airport to the city are indicated (in this scale, additional information from

[OAG98] is coded); the concept lattice of this formal context is shown next

to it. The concept lattice in Figure 4 yields, for the 75 domestic 
ights given
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Fig. 4. Concept Lattice of the Conceptual Scale Flights

in Figure 1, the information about the airline, the aircraft, and the days of

operating. The lattice of time intervals is represented in Figure 3. Connections

between formal attributes in Figure 1 are coded by the binary relations \Flight -

Departure Airport", \Flight - Departure Time", \Flight - Arrival Airport", \Flight - Arrival

Time", and represented with respect to the attributes \From", \To", \a.m.", \p.m.",

\Graz", \Innsbruck", \Klagenfurt", \Linz", \Salzburg", and \Vienna" by the nested line

diagram in Figure 5.

If the underlying contexts of the concept lattices in Figure 2, 3, and 4 are

associated as a union K

0

and if K

2

is the underlying context of the concept

lattice in Figure 5, then the contexts K

0

and K

2

form a power context family.

In general, a power context family is a sequence

~

K := (K

k

)

k=0;::: ;n

of formal

contexts K

k

:= (G

k

;M

k

; I

k

) (k = 0; : : : ; n) with G

k

� (G

0

)

k

for k � 1. The

formal concepts of K

k

with k = 1; : : : ; n represent by their extents k-ary relations

on the object set G

0

; they are therefore called \relation concepts".

To derive a power context family from a many-valued context (G;M;W; I),

several contexts are formed (guided by some purpose) in combining elements of

G andW to object sets of formal contexts where the objects of each one of these

contexts have always to be k-tuples for a �xed natural number k; these contexts

are called relational scales. Object sets of formal contexts may also be formed by
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Fig. 5. Concept Lattice of the Relational Scale Flight Schedule

single elements of G andW ; those contexts are called conceptual scales. Then the

many-valued context together with the chosen conceptual and relational scales

is said to be a relationally scaled context. Now, a power context family can be

derived from a relationally scaled context by associating the conceptual scales

to a formal context K

0

and the relational scales to formal contexts K

1

; : : : ;K

n

where the resulting power context family

~

K := (K

k

)

k=0;::: ;n

should represent the

same information as the relationally scaled context from which it is obtained.

In order to analyze the structure of the data given in the resulting power con-

text family, concept lattices and concept graphs are derived from it. In [VW95],

it is shown how the software tool TOSCANA helps to determine and visualize

concept lattices from conceptually scaled contexts. For deriving concept graphs

from power context families, the �rst steps are done in [Wi97] and [Pr98b]. In

the next section it is explained how all concept graphs and specially their natural

order can be derived from a power context family.

3 The Lattice of Concept Graphs

of a Power Context Family

Concept graphs of a power context family are �nite directed multi-hypergraphs

whose vertices and edges are speci�cally labelled by concepts and objects taken

from the given power context family. A �nite directed multi-hypergraph is de�ned

as a set structure (V;E; �) consisting of two �nite sets V and E and a mapping

� : E !

S

n

k=1

V

k

(n � 2); the elements of V and E are called vertices and edges,

respectively, and, if �(e) = (v

1

; : : : ; v

k

), we say that v

1

; : : : ; v

k

are the adjacent

vertices of the k-ary edge e. We write jvj = 0 for v 2 V and jej = k for e 2 E

with �(e) = (v

1

; : : : ; v

k

).
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A (simple) concept graph of a power context family

~

K := (K

k

)

k=0;::: ;n

with

K

k

:= (G

k

;M

k

; I

k

) for k = 0; : : : ; n is a set structure G := (V;E; �; �; �) where

(V;E; �) is a �nite directed multi-hypergraph, � assigns to each vertex v a formal

concept �(v) of K

0

and to each k-ary edge e a formal concept �(e) of K

k

, and �

yields �nite sets �(v) of references from the extents of the �(v) so that the extents

of the �(e) consist of the k-tuples formed by the references of the adjacent vertices

of e, respectively; more precisely,

� � : V [ E !

S

k=0;::: ;n

B(K

k

) is a mapping such that �(u) 2 B(K

k

) for all

u 2 V [ E with juj = k, and

� � : V [E !

S

k=0;::: ;n

P

fin

(G

k

)nf;g is a mapping such that �(u) � Ext(�(u))

for all u 2 V [ E and, if juj = k > 0 and �(u) = (v

1

; : : : ; v

k

), �(u) =

�(v

1

)� � � � � �(v

k

).

An example for a concept graph of the derived power context family pre-

sented above, is given in Figure 6 where the 
ight connection of a commuter

living in Innsbruck and working in Vienna is formalized. The concepts of this

concept graph are taken from the conceptual scales described above and the

relations are relation concepts of the relational scale in Figure 5 (the concepts

having the same name as the attributes in the scales are the attribute concepts

of the corresponding attribute). The commuter has to be in Vienna at about

8 o'clock (we took the concept representing the interval 7.00 - 9.00) and can

go back as soon as possible after 17 o'clock. Therefore, he takes the 
ights no.

071 and 076a. For the organization of the 
ight, it might be interesting to know

more specialized concept graphs, having all information given in the concept

graph above and additional information (for example about the distances of the

airports to the city). For �nding a suitable concept graph, a characterization of

the generalization is needed.

Therefore, we consider the natural quasi-order

<

�

of generalization on the

set � (

~

K ) of all concept graphs of a power context family

~

K . For two concept

graphs G

1

:= (V

1

; E

1

; �

1

; �

1

; �

1

) and G

2

:= (V

2

; E

2

; �

2

; �

2

; �

2

), we say G

1

is

7



more general than G

2

(in symbols: G

1

<

�

G

2

) if for all u 2 V

2

[ E

2

there exist

u

1

; : : : ; u

j

2 V

1

[ E

1

with juj = ju

1

j = � � � = ju

j

j and �(u

1

); : : : ; �(u

j

) � �(u)

and �(u) � �(u

1

) [ � � � [ �(u

j

). The concept graphs G

1

and G

2

are said to be

equivalent in

~

K (in symbols: G

1

� G

2

) if G

1

<

�

G

2

and G

2

<

�

G

1

. The class of all

concept graphs of

~

K which are equivalent to a given concept graph G is denoted

by

e

G .

The set of all equivalence classes of concept graphs in

~

K together with the

order induced by the quasi-order

<

�

is an ordered set denoted by

e

� (

~

K ). For

the purpose-oriented search of suitable concept graphs, humanly readable rep-

resentations of

e

� (

~

K ) are desirable. For this it is useful that

e

� (

~

K ) is always a

lattice which is isomorphic to a subdirect product of speci�c sublattices of the

concept lattices B(K

k

) (k = 0; : : : ; n), each extended by a new top element, as

Proposition 1 states.

Proposition 1. Let

~

K := (K

k

)

k=0;::: ;n

be a power context family with K

k

:=

(G

k

;M

k

; I

k

) for k = 0; : : : ; n; furthermore, for each g 2 G

k

, let

L

g

k

:= fc 2 B(K

k

) j g 2 Ext(c)g [ f>

g

k

g

be the interval of all superconcepts of (g

00

; g

0

) in B(K

k

), together with a new top-

element >

g

k

. Then

e

� (

~

K ) is isomorphic to the subdirect product of the lattices L

g

k

with k 2 f0; : : : ; ng and g 2 G

k

consisting of all elements

~

a := (a

g

k

)

g2G

k

k=0;::: ;n

of

the directed product with only �nitely many non-top components satisfying the

following condition:

(?) If a

g

k

6= >

g

k

and g = (g

1

; : : : ; g

k

) then a

g

i

0

6= >

g

i

0

for i = 1; : : : ; k.

Proof. By de�nition, a concept graph G := (V;E; �; �; �) is equivalent to the

disjoint union of all its elementary subgraphs consisting of at most one edge. If

an elementary subgraph H has an edge e and an adjacent vertex v with �(v) 6=

>

0

:= (G

0

; G

0

0

), then H is equivalent to the disjoint union of the subgraph that

is only consisting of the single vertex v and of H, modi�ed by setting �(v) := >

0

.

This argument shows that a concept graph G is always equivalent to the disjoint

union of all its elementary subgraphs consisting of only one vertex and of all

concept graphs derived from the elementary subgraphs with exactly one edge

by replacing the images of the adjacent vertices under � by >

0

. Further, we

use that a concept graph consisting of only one vertex v with object set �(v) is

equivalent to the disjoint union of j�(v)j-many of its copies having just one object

out of �(v) as reference; analogously, a concept graph consisting of only one edge

(having adjacent >

0

-vertices) with object set �(e) is equivalent to the disjoint

union of j�(e)j-many of its copies having just one object out of �(e) as reference.

In this way we obtain that the concept graph G is equivalent to the disjoint

union of the derived atomic concept graphs which are either single vertices with

only one reference or single edges whose adjacent vertices have assigned only one

reference and concepts >

0

.

Now, for g 2 G

k

, let c

g

k

(G) be the element >

g

k

if there is no u 2 V [ E with

g 2 �(u), and let it otherwise be the in�mum of all �(u) with g 2 �(u) (and

8



juj = k). In the second case we construct the concept graph consisting only of

û with �(û) = c

g

k

(G) and �(û) = fgg and, if g = (g

1

; : : : ; g

k

), also of v̂

1

; : : : ; v̂

k

with �(û) = (v̂

1

; : : : ; v̂

k

), �(v̂

i

) = >

0

and �(v̂

i

) = g

i

for i = 1; : : : ; k. The

constructed concept graph is equivalent to the disjoint union of all the derived

atomic concept graphs having g as reference.

To sum up, the concept graph G := (V;E; �; �; �) is equivalent to the disjoint

union of the atomic concept graphs G(c

g

0

(G)) := (fvg; ;; �

g

0

; �

g

0

; �

g

0

) (g 2 G

0

and

v 2 V ) with �

g

0

(v) = c

g

0

(G) and �

g

0

(v) = fgg and of the atomic concept graphs

G(c

g

k

(G)) := (fv

1

; : : : ; v

k

g; feg; �

g

k

; �

g

k

; �

g

k

) (with k 2 f1; : : : ; ng, g 2 G

k

, e 2 E

and �(e) = (v

1

; : : : ; v

k

)) with �

g

k

(e) = c

g

k

(G) and �

g

k

(e) = fgg. It follows that

�

~

K

:

e

� (

~

K ) !

Q

(L

g

k

j k 2 f0; : : : ; ng and g 2 G

k

) with

�

~

K

(

e

G ) := (c

g

k

(G) j k 2 f0; : : : ; ng and g 2 G

k

)

is a mapping, the image of which consists of all elements of the direct product

with only �nitely many non-top components satisfying condition (?). It can be

easily seen that this image is a subdirect product. For concept graphs G

1

and

G

2

, we have the equivalences

G

1

<

�

G

2

, 8k 2 f0; : : : ; ng 8g 2 G

k

: c

g

k

(G

1

) � c

g

k

(G

2

)

, �

~

K

(

e

G

1

) � �

~

K

(

e

G

2

):

Therefore, �

~

K

is an injective homomorphism from the set

e

� (

~

K ) into the product

Q

(L

g

k

j k 2 f0; : : : ; ng and g 2 G

k

). Thus, the assertion of the proposition is

proved. ut

Proposition 1 yields, for the concept graphs of a power context family, a sys-

tem of representatives for their equivalence classes which makes the ordering of

generalization transparent. These representatives are described by the elements

of all the direct products

Y

(k;g)2U

L

g

k

n f>

g

k

g

for which U is a �nite subset of

S

k=0;::: ;n

fkg �G

k

satisfying the implication

(g; k) 2 U and g = (g

1

; : : : ; g

k

)) (0; g

1

); : : : ; (0; g

k

) 2 U:

An element

~

a := (a

g

k

)

(k;g)2U

of the product represents the concept graph which

is the disjoint union of the atomic concept graphs G(a

g

k

) with (k; g) 2 U . In the

full direct product

Q

(L

g

k

j k 2 f0; : : : ; ng and g 2 G

k

) this concept graph is

represented by the element which coincides with

~

a on U and has outside U the

corresponding top-elements as components (the top-element >

g

k

as a component

indicates that g is not a reference in the represented graph).

Proposition 1 clari�es how to deduce concept graphs from the concept lattices

of a power context family. This shall be demonstrated by our 
ight example. In

Figure 7 the lattice of concept graphs is shown so far that the representation of

the concept graph in Figure 6 becomes visible, i.e. for each vertex and edge of

the concept graph in Figure 6, we have considered its reference g and represented

9
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the lattice L

g

k

(where k = 0 if g is reference of a vertex and k = 2 if g is a pair

of objects, i. e. a reference of an edge). Theses lattices are obtained by adding a

new top element to the interval of all superconcepts of the object concept (g

00

; g

0

)

of the reference g in B(K

k

). For example, for the vertice of the concept graph

in Figure 6 being labbeled with Flight and referenced with 071, the lattice L

071

0

,

without the top element, is a sublattice of the lattice in Figure 4.

For deducing the concept graph from the product of all lattices L

g

k

, we take,

for each g, a component a

g

k

that is represented as an element of L

g

k

. For exam-

ple, the component Flight

071

0

is represented by the attribute concept of Flight

in the lattice L

071

0

. For our concept graph in Figure 6, we choose the following

components (and the top elements for all other g):

AIRPORT

Vienna

0

;AIRPORT

Innsbruck

0

; 7.00-9.00

7.20

0

; 17.00-19.00

18.40

0

;

FLIGHT

071

0

;FLIGHT

076a

0

; from

(071,Innsbruck)

2

; arrv

(071,7.20)

2

;

to

(071,Vienna)

2

; from

(076a,Vienna)

2

; dept

(076a,18.40)

2

; to

(076a,Innsbruck)

2

:

Their representations in the corresponding lattices are marked by a second

circle. This may justify hopes that line diagrams could support the �nding of

meaningful concept graphs for interpreting data. If, for example, the commuter

wants a concept graph that is more speci�ed than the one in Figure 6, he can take

each graph that is represented by elements being under the marked components.

Since the lattices L

g

k

can be easily represented as concept lattices of suitable

contexts so that their product becomes the concept lattice of the sum of those

contexts, it is possible to use the TOSCANA software [VW95] for navigating

visually through the lattice of concept graphs of a given power context family

(corresponding to a relationally scaled data context).

4 The Lattice of Concept Graphs of a Contextual Syntax

So far, we have studied the lattice of concept graphs of a power context family.

The results change slightly when we start with a contextual syntax and examine

all concept graphs over the given alphabet, independent of a concrete model.

For this, we consider concept graphs as syntactical constructs with semantics in

power context families. This has been presented in [Pr98a]; here, we only repeat

brie
y the main de�nitions.

Considering a contextual syntax, we start with a conceptual alphabet which is

a triple (G; C;R) where G is a �nite set of object names, (C;�

C

) is a �nite ordered

set of concept names, and (R;�

R

) is a set, partitioned into �nite ordered sets

(R

k

;�

R

k

) of relation names (with k = 1; : : : ; n). These orders are determined by

the taxonomies of the domains in view; they formalize background knowledge.

A (syntactic) concept graph over the alphabet (G; C;R) is a structure G :=

(V;E; �; �; �) where � and � map into G; C and R. Thus, it is a directed multi-

hypergraph with vertices and edges labelled by object, concept and relation

names. More precisely,
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� � : V [ E ! C [ R is a mapping such that �(V ) � C and �(E) � R, and

all e 2 E with �(e) = (v

1

; : : : ; v

k

) satisfy �(e) 2 R

k

, and

� � : V [ E !

S

k=0;:::;n

P(G

k

)nf;g is a mapping with �(V ) � P(G) and

�(e) = �(v

1

)� � � � � �(v

k

) for all e 2 E with �(e) = (v

1

; : : : ; v

k

).

For this syntactical construct, a semantics is given in a power context family

~

K := (K

k

)

k=0;:::;n

with K

k

:= (G

k

;M

k

; I

k

) for each k. The object names are

interpreted by objects of G

0

, the concept names by concepts of K

0

and the

relation names of R

k

by relation concepts of K

k

. This interpretation is described

by an order-preserving mapping � : G [ C [R ! G

0

[B(K

0

)[

S

k=1;:::;n

B(K

k

):

The context-interpretation (

~

K ; �) is called a model if � is consistent with all

information given by the concept graph, i.e. all u 2 V [ E satisfy �(�(u)) �

Ext (�(�(u)).

An interesting model for our purpose is the so-called standard model of a

given concept graph. We recall the de�nition: The standard model of the con-

cept graph G := (V;E; �; �; �) over the alphabet (G; C;R) is de�ned by

~

K

G

:=

(G

G

k

;M

G

k

; I

G

k

)

k=0;::: ;n

with G

G

0

:= G;M

G

0

:= C, G

G

k

:= G

k

, and M

G

k

:= R

k

for

all k = 1; : : : ; n. The incidence relation I

G

0

is de�ned in such a way that all g 2 G

and c 2 C satisfy gI

G

0

c if there exists a v 2 V with �(v) �

C

c and g 2 �(v).

Analogously, all (g

1

; : : : ; g

k

) 2 G

k

and all R 2 R

k

with k = 1; : : : ; n satisfy

(g

1

; : : : ; g

k

)I

G

k

R if there exists an e 2 E with �(e) �

R

R and (g

1

; : : : ; g

k

) 2 �(e).

In this power context family, the object names of G are interpreted by them-

selves, the concept and relation names by the corresponding attribute concepts.

We can use the standard model as an interesting tool for the problem of

entailment of concept graphs. By de�nition, G

1

entails G

2

if G

2

is valid in every

model for G

1

. The notion of entailment corresponds to a sound and complete set

of derivation rules (see [Pr98a]) and the de�nition of generalization given above.

Thus, entailment of two concept graphs can be characterized by subsumption of

the incidence relations of their standard models. This is stated in the following

proposition that is proved in [Pr98b].

Proposition 2. Let G

1

and G

2

be two concept graphs over the same alphabet

and let (G

G

i

k

;M

G

i

k

; I

G

i

k

)

k=0;:::;n

for i = 1; 2 be their standard models. Then, we

have

G

1

j= G

2

() I

G

1

k

� I

G

2

k

for all k = 0; : : : ; n:

The proposition implies that equivalent concept graphs have equal standard

models. With it, we can characterize the lattice (

e

� (A); j=) of (equivalence classes

of) concept graphs of a given alphabetA by means of the incidence relation in the

corresponding standard models. The greatest lower bound of the two equivalence

classes

e

G

1

and

e

G

2

is the equivalence class of the concept graph G

1

_

[G

2

which

is the disjoint union of both parts. The incidence relations of its standard model

are I

G

1

_

[G

2

k

= I

G

1

k

[ I

G

2

k

for all k = 0; : : : ; n. The lowest upper bound (i.e.

the least common generalization) of two concept graphs (resp. their equivalence

classes) is given by the intersection of the incidence relations. By this means, we

can easily get that the least common generalization is obtained by the disjoint

union of all common generalizations.
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Furthermore, we can derive from Proposition 2 that the lattice of equivalence

classes of concept graphs of a given alphabet is complete and distributive be-

cause intersection and union are. For �nite distributive lattices, we know from

Birkho�'s Theorem (cf. eg. [GW99]) that they are isomorphic to the lattice of

the order�lters of the ordered set of all ^-irreducible elements of the lattice.

Since the ^-irreducible elements of

e

� (A) are exactly the equivalence classes of

the atomic concept graphs (those that consist of only one isolated vertex with a

single reference or one edge with its adjacent vertices labelled with > and only

one reference), we obtain the following result:

Proposition 3. The lattice (

e

� (A); j=) of all equivalence classes of concept

graphs of an alphabet A is the free ^-semilattice over the ordered set of the

atomic concept graphs of the contextual syntax.

This proposition helps us to clarify how the lattice

e

� (A) of concept graphs

of a given alphabet A is related to the lattice

e

� (

~

K ) of concept graphs of a power

context family

~

K for a context-interpretation (

~

K ; �) of A. With Proposition 1 and

e

� (A) being the free ^-semilattice over the ordered set of atomic concept graphs,

we obtain that there exists a �-faithful ^-homomorphism from

e

� (A) to

e

� (

~

K ).

Thus, whereas the order of

e

� (A) is only determined by the orders �

C

and �

R

of the alphabet, the

e

� (

~

K ) is restricted by additional dependencies given in

~

K .

To sum up, the lattice of concept graphs of a power context family as well

as the lattice of concept graphs of a contextual syntax can completely be de-

scribed by structural considerations. This gives us additional methods to deter-

mine logical dependencies of concept graphs besides the inference tools presented

in [Pr98a].

5 Further Research

During the work on this paper, \Relational Scaling" of many-valued contexts has

been created as an extension of Conceptual Scaling. It seems worth to investigate

the range of applications of this new method in Data Analysis. Relational Scaling

especially allows to activate the Theory of Conceptual Graphs for analyzing

and interpreting data. This stimulates many research questions. An important

one asks for methods of �nding meaningful concept graphs contributing to the

ful�llment of speci�c purposes of data analysis. In particular, graphical methods

are desirable for which the TOSCANA software should be further elaborated.

Another research problem is how to use conceptual graphs for purpose-

oriented retrieval on relationally scaled databases. For this, the theory of concept

graphs with quanti�ers should be further developed.

From such a development, the general research program of establishing a

comprehensive contextual logic would beni�t too. Contextual Logic in its support

of conceptual knowledge representation and processing will gain from further

research about concept graphs of relationally scaled contexts. In particular, the

development of conceptual knowledge and information systems should integrate

such research on relational scaling and concept graphs.
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