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Abstract

In this article we compare the two plate theories in the sense of Kirchhoff-Love
and Reissner—Mindlin for several different settings of the physical system. We
establish existence, uniqueness and regularity of solutions to the respective
boundary and initial boundary value problems. Moreover, we give asymptotic
expansions of the solutions in the limit of a vanishing plate thickness, ¢ — 0,
whenever this is possible. Finally, we compare the solutions in the sense of
Kirchhoff-Love and Reissner—Mindlin in that very limit.

!The following results constitute a major part of a PhD thesis (see [9]).
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1 Introduction

In this article we consider a thin elastic plate which is clamped at its lateral boundary and
submitted to an exterior body force. Our starting point is the linear three dimensional
elasticity theory. Here, the motion of the plate is described by the deformation mapping
@ Qe x R — R3, where Q. := Q x (—¢,¢) C R® is the reference configuration. We
assume that Hamilton’s variational principle holds, i.e.

T
~ L. L e = :
J[g] = p/ /Q [5\6,5@]2 —U(VY) + f(&) - g| dedt — min,
0 <

where the free energy ¥ is given by the linearized Lamé law (8). This yields the corre-
sponding Euler-Lagrange equations (10) and natural boundary conditions (11).

Next, we consider plate theories. Here, we linearize the deformation ¢ with respect to the
variable z € (—¢,¢), i.e. we make an ansatz of the form

37, x,t) == W(F,t) + 2¥(Z, 1),

see (12). Now, we insert this ansatz into the action functional J[g] and apply Hamilton’s
variational principle, i.e. we vary J[g] with respect to the independent components of «
and ¢. It turns out that this procedure is not unique. Actually, the various plate theories
are distinguished by the different ways to consider the natural boundary conditions (11).
In a plate theory in the sense of Kirchhoff-Love we assume that « and ¢ are constrained
by Kirchhoft’s normal hypothesis (15) such that (14) holds. Then we obtain the Euler—
Lagrange equations (21). On the other hand, in a plate theory in the sense of Reissner—
Mindlin we assume that ¢ and ¢ are independent fields. Then we obtain the Euler—
Lagrange equations (22).

The goal of this article is to compare these two plate theories for several different settings
of the physical system, namely the static problem, the simplified dynamic problem and the
full dynamic problem. We establish existence, uniqueness and regularity of solutions (, ¥)
to the respective problems. Moreover, for W = 4, ¥ we consider asymptotic expansions



with respect to ¢, i.e.
o0
W(E,t) = Y ().
k=0

Finally, we compare the respective solutions in the sense of Kirchhoff-Love and Reissner—
Mindlin in the limit ¢ — 0.

This article is purely analytic in character. A numerical comparison of the two plate
theories can be found in [8]. Moreover, in this article we derive the basic equations of
plate theory from three dimensional elasticity postulating a plate theoretical ansatz for
the deformation. A rigorous study of the passage from three dimensional elasticity to
plate theory can be found in [4] and [5], [6], [7].

2 Three—dimensional Elasticity

In this section we consider the three-dimensional elasticity theory for a thin plate. We
postulate the existence of an action functional for the system such that we obtain the
equations of motion together with natural boundary conditions from a variational princi-
ple. This description of the problem will underly the various plate theoretical approaches
that we will introduce in the next section.

Throughout this article we will use the following notations for the elements of R, R? R3:
a€R, e R, ic R and q= <a> (1)

In particular the row vector of partial derivatives with respect to & € R? is denoted by v
and the row vector of partial derivatives with respect to & € R? is denoted by V. 2
Furthermore, the unit vectors of R* are denoted by &; (i = 1,2, 3).

Now, let & C R? be a bounded domain with a smooth boundary A0 and let ¢ > 0. We
assume that the natural reference configuration of the plate is given by

Q. = Q x (—¢,¢). (2)
Then, the deformation of the plate is given by a function
G:Q. xR — R : (&,t) — 3(T,1). (3)

We assume that the lateral boundary of the plate is clamped, i.e. we prescribe the
following Dirichlet boundary conditions:

3(i,t — 4
QO(:I: )563S~2><(7&,5) v ( )

2 As usual, for functions g : R x R — R¥, A : R? x R — R¥ the Jacobian matrices with recpect to
the space variables are denoted by Vg(Z,t) and Vh(Z,t) respectively.



Furthermore, at time ¢t = 0 we prescribe the following initial conditions:

B(Z,0) = Go(7), 0:5(Z,0) = g1 (2) (5)
where the functions gy, @1 : . — R® will be chosen appropriately in the next section.
Next, we fix our constitutive Model. We assume that the mass density is given by a
constant p > 0.

Furthermore, we assume that the specific body force is acting in 3—direction and does
not depend on z € (—¢e,¢) and t € R explicitly, i.e. we assume that there is a function

f € C*®(Q,R) such that the specific body force is given by

F:iQ. — R F— f(7) = <f(0§:>>. (6)

Furthermore, we assume that the specific stress tensor is given by the linearized Lamé
law

T:Q xR — R (%,t) — T(Z,1) (7a)
where

T@1) = e (VE@1) 1)1 +u|(Ve@ 1)+ (Ve@n 1) |. (@)
Then, the corresponding specific free energy reads

U:Q. xR —R: (&t)— ¥(&,1) (8a)
where

T2

W(E 1) = %tr (v - 1) +2|(va@n - 1) + (v, - 1) (8b)

Here, A, > 0 denote the Lamé constants, I € R3**® denotes the unit matrix, and |- |
denotes the Euklidian norm.

Next, we fix our dynamic principle. The action of the system for the time interval [0, 7] C
R is given by

J[@]:Zp/OT/QE [%

An application of Hamilton’s variational principle yields the corresponding Euler-La-
grange equations

092G — W(div g?)’) - u[ﬁ(div g?)’) + Aga} — f(@) (10)

and the corresponding natural boundary conditions

2 —

0,8(7,t)| — W(&t)+ f(7) - ¢(@,¢)|dadt. 9)

T(Z,t)és

=0. 11
T=%e¢ ( )

Physically, equation (11) means that the normal stress vanishes on the upper and lower
side of the plate.



3 Plate Theory

In this section we postulate a particular plate theoretical ansatz for the deformation .
Then, we derive the equations of motion for the plate from the variational principle of
three—dimensional elasticity.

The basic assumption of plate theory is, that the deformation ¢ is linear with respect
to € (—¢,¢). Furthermore, we assume that during the process of deformation material
points of the middle surface will be shifted only in 3—direction but not in 1,2—direction
and that the plate thickness remains constant. This yields the following ansatz:

B(7,1) = (u(j t)> b (f’("i’ t>> (12a)

where u: QxR — Rand 7: Q x R — R2. ¢ is called the director of the plate.
In particular, we have

5 (#, ) = (6)5”83, t>> bo (aﬁ%’}’”) | (12b)

VE(E, ) — I = <W<0i,, " 17(% t>> b (W(O‘%’t) 8) | (12¢)

Next, we fix our constitutive model. We insert (12) into (9) and carry out the integration
with respect to z € (—¢,¢). Then, the action of the system reads

J[u, 7] = 2¢p /0 ' /Q [% (@ 1)) — Wo(@.1) + F(&, Hyu(z, )| dads

4 28;” /0 ' /Q [% ata(.f;,wf (&, 1)] deds (13a)

where
Wo(i, 1) = 4 [Ful, 1) + i, 1 g (13b)
Uy (1) = %(divf;(i,t)>2 + %‘Vf)(i,t) + (W(:i;,t))T : (13¢)

From the variational principle of three dimensional elasticity we have obtained natural
boundary conditions (11). Now, in a plate theory there are at least two different ways to
deal with them and actually this distinguishes the various plate theories. One way to deal
with the natural boundary conditions is to ignore them. This leads to a plate theory in the
sense of Reissner—Mindlin. A second way to deal with the natural boundary conditions
is to insert (12) into (7) and to replace (11) with

1 €
o / T t)ésde = 0. (14)



This yields Kirchhoff’s normal hypothesis
3(2,t) + Vu(i, t) = 0. (15)

Physically, equation (14) means that the mean normal stress of the plate vanishes and
this leads to a plate theory in the sense of Kirchhoff-Love.

Next, we fix the boundary and initial conditions. We insert (12) into (4). This yields the
following boundary conditions:

u(@ 1) =0, 0@ =0 (16)

Now, we insert (12) into (5) and we assume that the initial data are compatible with both
the ansatz (12) and Kirchhoff’s normal hypothesis (15). Furthermore, we assume that at

time ¢ = 0 an environment of the lateral boundary is in its natural state. This yields the
following initial conditions:

u(z,0) = uoga?), ou(Z,0) = ui (), (17a)
9(2,0) = —Vue(Z), 8,(%,0) = —Vuy (&) (17b)
where u;, uy € C°(Q, R).

Next, we fix our dynamical principle. From three—dimensional elasticity we have Hamil-
ton’s variational principle postulating that the physical deformation ¢ is a critical point
of the action functional J. Now, we apply this principle to the action functional (13).

Plate Theory in the Sense of Kirchhoff-Love

The basic assumption of a plate theory in the sense of Kirchhoff-Love is, that Kirchhoft’s
normal hypothesis (15) holds, i.e. that the director is constrained by

754 (2,1) := —VuSH(Z,1). (18)

We insert (18) into (16), (17). This yields the following boundary and initial conditions:

“(&,0)| =0 Vai (@8] =0, (19)

WS4, 0) = uo(E), DR (7,0) = uy (7). (19b)

u

Now, we insert (18) into (13). Then, the action of the system reads
2
TSR] = 2ep / / (9tuKL t)) + f(jc,t)uKL(i:,t)]da:dt
2
: "/ / [adus @, 0| - v, o) deds (20a)

where
2

KL/ =, >‘ KL/ ~, 2 2 KL/(~
UEY (7 1) ::§<Au (a:,t)) —I—M‘V u™H(Z, t)

(20b)
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An application of Hamilton’s variational principle yields the corresponding Euler-La-
grange equation

2

O2usv — % B2AUSE — (A + 20) AAuS| = f(2). (21)

Plate Theory in the Sense of Reissner—Mindlin

The basic assumption of a plate theory in the sense of Reissner—Mindlin is, that the
director is not constrained. In particular, Kirchhoft’s normal hypothesis does not hold.

Then, the boundary and initial conditions for «™, #"" are given by (16), (17). Further-
more, the action of the system is given by (13).

An application of Hamilton’s variational principle yields the corresponding Euler-La-
grange equations

A2y — ,u(AuRM +div aRM) = £(7), (22a)
%2 [afaRM )V ( div @RM) . MMRM} + u(wRM n @RM) —0. (22b)

Comparison of the Initial Boundary Value Problems

Both, the plate theory in the sense or Kirchhoff-Love and the plate theory in the sense of
Reissner—Mindlin, are assumed to be approximations to the same three—dimensional elas-
ticity theory. ®* Therefore, the Kirchhoff-Love PDE system (18), (21) and the Reissner—
Mindlin PDE system (22) should be in some sense approximately equivalent.

Now, we compare the PDE systems in the sense of Kirchhoff-Love and Reissner—-Mindlin.
For further use the next theorem is a little more general than it was necessary in this
place.

Theorem 1 (Comparison Theorem)
Let a € D'(Q x R, R) and B € D'(2 x R, R?) be distributions.
Then, in the distributional sense the following PDE systems are equivalent:

02u — u(Au + div v) = £(&) + (4, 1), (23a)
2 ~ ~ ~
‘% 05— (\+ @)V ((divd) — pad] +p(Vu+ ) = 45,1) (23b)
3See [51, (6], [7]-



and
2 & [0
Ohu— [at Au— (A + ZM)AAu]

= (&) + al@, t) + div (3, t) — % [af ( div 3(%, t)) (A 2u)A<divB(§:, t))}

+ % [a;* ( div U) — 20X + 20)AD? ( div U) 4 (At 20)2AA ( div v)} . (24a)
7= —Vu+ %B(a}, t) — % [6,?17 (A u)@(div @) - MAT;]. (24b)

In particular, the Kirchhoff-Love PDE system (18), (21) and the Reissner—-Mindlin PDE
system (22) are equivalent up to higher order terms in €.

Proof.

Obviously, the equations (23b) and (24b) are equivalent. Furthermore, with the help of
(23b), (24b) we find that both equations, (23a) and (24a), are equivalent to



82

dFu + 3

[af ( div v) — (A +2u)A ( div v)} = (%) + a(&, t) + div (3, t). (25)
O

The above theorem suggests that the Kirchhoff-Love solution (u**, 7%") and the Reiss-
ner—Mindlin solution (u™,%"™) coincide as ¢ — 0. Nevertheless, since in the equations
the terms of highest order in ¢ do also contain the highest order derivatives of «™*" and
0™ this result is not obvious.

In the remaining sections we will give a rigorous asymptotic analysis of the plate theories
in the sense of Kirchhoff-Love and Reissner—Mindlin for various physical settings of the
system.

4 The Static Problem

In this section we investigate the static problems in the sense of Kirchhoff-Love and
Reissner-Mindlin, i.e. we consider time independent solutions (u®",o*%), (u™, ") to
the respective partial differential equations and boundary conditions.

In particular, in order to obtain a suitable normalization we replace f(Z) by £2f(Z).

The Static Problem in the Sense of Kirchhoff-Love
The static problem in the sense of Kirchhoff-Love reads

A+ 2u0

AAUS = £(7), (26a)

KL(% =0 KL(% =0. 26b
W (@) #coh ’ Vut(2) #cof (26b)

Furthermore, Kirchhoff’s nornal hypothesis reads

TEE(F) = — Vi (7). (27)

Theorem 2 (Existence, Uniqueness, Regularity) B
The static Kirchhoff-Love problem (26) possesses a unique weak solution u** € COO(Q, R).
Proof.

This is a well known fact from elliptic theory. a

We remark that by our normalization the problem (26) is independent of ¢ and conse-
quently the solution u*" does not depend on ¢ either.

10



The Static Problem in the Sense of Reissner—Mindlin

The static problem in the sense of Reissner—-Mindlin reads

. u(AuRM + div z")RM> — £2f(3), (28a)
_ i |:()\ + )6<d ~RM A“'RM @ RM ~RM o 0 28b
3 i iv o + pAT 4+ p Vet + 0 =0, (28b)

R (7 =0 5 (7 = 0. 28
woAr o ) o (28¢)

By theorem 1 the PDE system (28a), (28b) is equivalent to

2 2
AT 21 A Ay = f(7) + MAA(OHV 7)), (29)
e
g ey & [+ )9 (dive™) + pai™] (29h)
oM = u 3 i iv o PATM

Theorem 3 (Existence, Uniqueness, Regularity)

The static Reissner—Mindlin problem (28) possesses a unique weak solution

(u™, 5™¥) € C®(Q, R) x C=®(Q, R?).

Proof.

This is a well known fact from elliptic theory. O

Next, we consider an asymptotic expansion of the solution (u™,7™") with respect to ¢.
We make the formal ansatz

o0

ut™(z) = eFu(z), TM(E) =) MM (E) (30)

k=0

and insert it into the Reissner—Mindlin problem (28) where we use (29) instead of (28a),
(28b). Then, we obtain

At 2 .
%AA%RM — 1(®), M = i, (31a)
u" ()] =0 O ()| _ =0 (31b)
and
2
Adu, — A;EJAA(OHV ). (322)
7
- 1 -
o = Vit + 5 [(A + )V ( div @;:M) n HM,?M} , (32b)

11



(@) =0 an@| =0 (32c)
Now, let 7i2(%) be the positively oriented tangent unit vector on dQ and let 72(Z) be the
outward normal unit vector on Q. Then, with the help of (32b) and the first boundary
condition in (32c) we can rewrite the second boundary condition in (32c) as

% SIS 31un( 7) - [()\ + )V (div @,SM> + MNRM] . (32d)
and
w(E) [()\ + u)@(div @;:M) + MA”*M] =0 (33)

Furthermore, let n € N be fix. Then, we define a formal approximate solution to the
static Reissner—-Mindlin problem (28) by

2k RM ~RM 2k ~ RM
GPP Z € app Z € ’ (34)

Theorem 4 (Asymptotic Expansion)

1. The zero-order term in the formal expansion (30) of the Reissner—Mindlin solution
1s exactly the Kirchhoff-Love solution, i.e. we have

(ug™, 0g™) = (u*, %), (35)

2. When we exclude the constraint (33) from (32), then the remaining boundary value

problem possesses a unique weak solution (uf¥, of) € C®(Q,R) x C®(Q, R?).

3. For k =0 the constraint (33) is satisfied if and only if

Au*(z)| = C = constant. (36)
#eof
Then, the solution to the static Reissner—Mindlin problem (28) is given by
e2(A +2p)
3p
—Vur(%). (37b)

u™(Z) = u(Z) +
i}RM(j})

In particular, in case of radial symmetry the condition (36) is satisfied.

(0 - Au“(:z)), (37a)

4. The formal approzimate solution (ugy,, Uay,) satisfies the following boundary value
problem:
2= M+2 [~
— u(Augj,V; + div vf%) = f(%) + e a(2), (38a)

2

— % [()\ + u)@(dlv vapp> + uAvapp} ,u(V Ugpy, + Ué%) = 52””3(57)7 (38D)

12



wt@)| = 0, n(z) - v™(%) I 0, (38c¢)
n(z) - o™"(z =e2y(z 38d
(E) ()| =) (350)
where
. A+2p .
a(Z) = 3 A(dlvvn ), (39a)
2( 1 v s ~RM ~RM
B(z) := _§[()\ + ,u)V(dlv oy ) + AT ] (39b)

1@ 1= (@) - (30 - 5p(@)) (39¢)

€00

In particular, (ugy,, Us,) satisfies the Reissner—-Mindlin PDE system (28a), (28b)
up to terms of order "2 and the corresponding boundary conditions (28c) up to

terms of order 2.

Proof.
1. This follows from (26), (27) and (31).

2. For o™ € Coo(ﬁ, R?) this is a well known fact from elliptic theory. Since by theorem

2 and point 1 we have og™ = X" € Coo(ﬁ, R?), the statement follows by induction.

. For k = 0 the constraint (33) reads

n(Z) v(AugM)

~0. (40)

€80
By point 1 this is equivalent to (36). Then, the solution to the static Reissner—
Mindlin problem (28) is obviously given by (37).

. By construction the formal approximate solution (ug,,, 7g,y,) satisfies the boundary
conditions (38c) and the following PDE system:
A+2 2N+ 2p)? o
3 MAAUZI;’;) = f(&)+ <97MN)AA<d1V vzxj)
2n+2 A 2 2
¢ (9 *21) A (divap), (41a)
L

~ 2 ~

M = VM 4 c [(/\ + u)V(div @RM) + MMRM]

app — app 3“ app app
2n+-2 ~
-5 [()\ + )V ( div a,f;M) + MAT;;}M] . (41b)
W

With the help of theorem 1 we obtain (38a), (38b). Furthermore, (38d) follows from
(31b).

13



Comparison of the Static Problems

In theorem 4 we have seen that the zero—order term in the formal expansion (30) of the
Reissner—Mindlin solution coincides with the Kirchhoff-Love solution. On the other hand,
in general condition (36) of the theorem does not hold and consequently the series does
not converge. Furthermore, the theorem shows that in general the formal expansion (30)
is not even an asymptotic expansion. It remains to show, that the Kirchhoff-Love solution
(u®*, %) and the Reissner—-Mindlin solution (u™, 7™") coincide as ¢ — 0.

Here and in the followig, C, C,...> 0 denote generic constants independent of the func-
tions and parameters under consideration. Furthermore, as usual H*(Q,R*) (s € R)
denotes the scale of L?-Sobolev spaces.

Theorem 5 (Comparison Theorem)

Let (u®*,0%") be the solution to the static Kirchhoff-Love problem (26), (27) and let
(u™ 0%M) be the solution to the static Reissner—Mindlin problem (28).

Then, the following a—priori estimates hold for all € > 0:

Hﬁu}aM—{_ o L($2,R?) < Ce 11z (42a)

lu™ = ™| 2@ py < C(* 1f 2@y T 1f 2@y ) (42b)
(,R) (Q,R) (,R)

™ = ™| oy < C M ey + 1 2@y ) (42¢)
() (R) (R)

[0 = 0% 2y < CEllfll -2y » (42d)

18 = 0% a2y < C 1) (42e)
(€2,R?) (€2,R)

In particular, the Kirchhoff-Love solution (u®*,0%*) and the Reissner—Mindlin solution

(u™ 9"M) coincide as € — 0.
Proof. _ —
We define r € C*(Q,R) and § € C*(Q, R?) by

RM(

) — uk(3), §(7) = T™(F) — TH(E). (43)

2

r(Z) = u

Then, with the help of (26), (27) and (28) we find that (r,5) satisfies the following
boundary value problem:

2
- ,u(Ar + div §> = MAA@LKL, (44a)
3

2 ~ 5 2 5
_c [(A + u)V(div s) + uAé'] + u(w + s) GRS (44b)

3 3

T = S(T =0. 44

(@) 2o 0 5(3) 200 0 (44c)

We multiply (44a) by = in L*(Q, R) and (44b) by 5 in L*(Q, R?) and then add the two

14



equations. With the help of integration by parts we obtain

52 2 L2 - N 2
T+ 1) 151y + V5 ey |+ [ 3]

20+ 20) /e 3
— _M <VT+§ VAUKL> ~

3 L2(Q,R2?)

- 2 YN+ 2u)2 11 ~ 2

<Bloras] +EAE G (45)
2 L2(f),R?) 18u L2(2,R?)

Furthermore, with the help of (26) and elliptic regularity theory we obtain the following
a—priori estimates for u®":

[ | gnre@ry < Ok l1f | ez vk € N. (46)

Then, with the help of (45), (46) and Poincaré’s inequality we obtain

Vr+35§ :
L2(Q

181l 12y < Ce lfll1(ap) » <CEIfllr ey (47)

R2)
This yields (42a) and (42d). Next, we rewrite (44b) as
- 3u /= -
A+ @)V ((div 5) + pAs = - (V7 +35) + (A + 2 VA (48)
Then, with the help of elliptic regularity theory and (46), (47) we obtain
. ~ (1
8l < € (5

@r+§H

| v <CNflgrge - (49)

L2({},R? L2(1,R?) )

This yields the second inequality in (42e). Next, we rewrite (44a) as
— pAr = 2 f(%) + pdivs. (50)

Then, with the help of elliptic regularity theory and (47), (49) we obtain

(

17 lsey < € (2 1F lmay + 15l )
< O 1 fllxamy + 2 Il ) (51a)
I las@sey < € (21 ey + 15 msn) )
< C(E 1l ma + 1l )- (51b)
This yields (42b) and (42c). O

5 The Simplified Dynamic Problem

In this section we consider the dynamic problems in the sense of Kirchhoff-Love and
Reissner-Mindlin under the simplifying assumptions that the Lamé constants A, p are so

15



large and that ¢ is so small, that in the equations the terms of order €% can be neglected
in comparison with the terms of order e2), €2u, A\, 4 and 1.
Furthermore, we assume that the external body force vanishes, i.e. f(Z) = 0.

The Simpilfied Dynamic Problem in the Sense of Kirchhoff-Love

The simpilfied dynamic problem in the sense of Kirchhoft-Love reads

2(\ + 2
D2 + wAAUKL =0, (52a)
KL(F ¢ = Vus* (7, t =0 52b
uw(E, )azeas’z 0, w(Z, >ieaﬁ ’ (52b)
u(Z,0) = up(F), Opu™™(2,0) = uy (7). (52c¢)

Furthermore, Kirchhoff’s normal hypothesis reads

TEE(E, ) = — VR (3, t). (53)

Theorem 6 (Existence, Uniqueness, Regularity)

The simpli_ﬁed dynamic Kirchhoff-Love problem (52) possesses a unique weak solution
u € C®°(Q x R R).

Proof.

This is a well known fact from the theory of evolution equations. O

Next, we consider an asymptotic expansion of the solution u®" with respect to e. We
make the formal ansatz

WHE ) = Y e, 1) (54)
k=0

and insert it into the Kirchhoff-Love problem (52). Then, we obtain

Olul™ =0, (55a)
KL/( ~ _ = KL/~ _ 55b
ug (2, t) ceod 0, Vug®(z,t) ceod 0, (55b)
ug (Z,0) = up(), Orug™(Z,0) = uq(T) (55¢)
and
A+2
Pk, + %Am? 0, (56a)
uﬁl(iz,t) seod =0, Vuﬁl(a”:, t) seod =0, (56b)
uﬁl(f, 0) =0, (9tuﬁ1(a~r, 0) =0. (56¢)

16



Furthermore, let n € N be fix. Then, we define a formal approximate solution to the
simplified dynamic Kirchhoff-Love problem (52) by

app ZE% KL it (57)

Theorem 7 (Asymptotic Expansion)

1. The recursion problem (55), (56) possesses a unique solution given by

uf (@)= (- A 22“ )k((i)!ﬁkuo(a?) +

t2k+1

2k + 1)

A2ku1(5:)> . (58)
2. LetT >0, p,q € N and let s € N be sufficiently large.
Then, the following a—priori estimate holds for all ¢ > 0:

HUKL_

appHcP T T (OR) S C€2n+2( [woll g ,my + N1uall s @ my ) (59)

In particular, the formal expansion (54) is actually an asymptotic expansion.

Proof.

1. Obviously, the unique solution to the equations (55a), (55¢) and (56a), (56¢) is given
by (58). Since ug and u; have compact support, the constraints (55b) and (56b) are
also satisfied.

2. Let m € N. We define r<t € C(Q x [~T, T, R) by
i (,1) = 282’“ K3, (60)

Let 0 < ¢ < 2m. We show that 0!rK" satisfies the following initial boundary value

problem:
. 20042 . 2m+2() 4 9
oty TAT2) A ngipa  ETTAT )\ p g (612)
7 KL[ ~ _ = i KL/~ _
oprit(z,t) I 0, Vo t(Z,t) I 0, (61b)
rE(z,0) = 0, Ot rEL(3,0) = 0. (61c)
For i = 0 the statement follows from (52) and the construction of u;*.
For i =1,...,2m the statement follows by induction, since by (58) we have
AAOIT UEE(7,0) = 0. (62)
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Next, we multiply (61a) by 0:'rkt in L2(Q,R) and integrate with respect to t.

m

With the help of integration by parts we obtain for all t € [T, T

o AT .

A+2
u Hvzaz m ( HL2 (©,R2x2)
g2m+2(

A+2 ' :

- _ 5 + 2p) / (O o (T AAG U (7)) 1o 6 )

_ R0+ 2)

= 3
Lo

Haz+1 KL ‘AAaz KL

HCO ~T,T],L2(1,R)) ‘ HLl ~T,T],L2(4,R))

Hco [-T,T],L2(Q,R)) —|—Cs4m+4HAA81 KLHLl [-T,7],L2(Q,R)) © (63)

Now, let s € N be sufficiently large. Then, with the help of (58), (63) and Poincaré’s
inequality we obtain

Haz-i—l KL S C€2m+2(HU0’

e ) (64a)

e@m) ) (64b)

HCO [-T,T],L2(,R)) Hs () +Hul‘

Haz KL S C€2m+1<]|u0\

HCO [-T,T],H?(Q,R)) Hs (0 "‘HUl,

Next, we rewrite (61a) as

2 ) i 2m+-2
€ ()\+2M)AA05TTI;L: _6Z+2TKL_ € ()‘+2u)

m

AAOuEE, (65)

Let j € N and s € N be sufficiently large. Then, with the help of elliptic regularity
theory and (58) we obtain

Hal KLHCO [—T,T),H2 ($,R))
< Ce 2oy KLHCO LT E @Ry T 052m< ol sy + HulHHS(fZ,R)>‘ (66)
Furthermore, let 0 <1 < 2m + 1. Then, with the help of (61c) we obtain

17 m ety 2 @y < € HaérrIZL"CO([,T’T],H%(Q,R)) (67)

Now, we choose i = 2m in (64) and apply (66) inductively. Then, with the help of
(67) we obtain

17 et oy, ram a2t my) < Cng( ol =@y + lwall s e m) ) (68)
Finally, we estimate u** — ug>,. By construction we have for m > n
usr — app — pKL _|_ Z €2k KL' (69)
k=n+1

Now, we choose m, [ sufficiently large, | > max{p,2n + 1} and 4m + 2 — 2l > 2q.
Then, the desired statement (59) follows from (58), (68) and (69).
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The Simplified Dynamic Problem in the Sense of Reissner—Mindlin

The simplified dynamic problem in the sense of Reissner-Mindlin reads

g2y — u(AuRM + div z")RM> —0, (70a)
2
_ 5_ ~ . ~RM ~RM 7. RM ~RM | __
. [(A+u)v(dm )+MAU ]—i—,u(Vu + B )_o, (70b)
RM /[ ~, — ~RM /[ ~ t —
u™(Z,t seod 0, oM(E, t) seod 0, (70c)
W, 0) = uo(E), Du™ (&, 0) = i (7). (70d)

We remark that by our simplifying assumption the term §?%™* has vanished from equation
(70b). Consequently, we can no longer impose the initial conditions (17b) on 7™
Furthermore, from (70a) and ug € C§°(2, R) we formally obtain

O2u™(z,0) (71)

(@@ o)|
€00 M( v (w ) 500

But, in general this contradicts the first boundary condition in (70c). Consequently, we
can not expect that the regularity of the solution (v™, 7™) will allow us to take the trace
of O2u™(-,t) on Of).

Theorem 8 (Existence, Uniqueness, Regularity)

The simplified dynamic Reissner—Mindlin problem (70) possesses a unique weak solution
(u®, 574) € i, C* (R, H* *(Q,R)) x C*(R, H* *(Q,R?)).

Proof.

We define a continuous linear operator A : H*+1(Q, R?) N H}(Q, R?) — H*1(Q, R?) by

2

At = —% (A )V ((dived) + pAd]| + b, (72)

With the help of elliptic theory we find that A is bijective for all £ € N. Now, we can
rewrite the PDE system (70a), (70b) as

T = —pATH(Va™), (73)
Pu™™ — pAu™ + p? div A7 Ve™ = 0. (74)

With the help of the theory of evolution equations we find that the initial boundary value
problem (74), (70a), (70b) possesses a unique solution u™ € ();_, C* (R, H* *(Q,R)).
Furthermore, with the help of (73) we obtain o™ € ();_, C*(R, H*> ¥ (Q, R)). O

Next, we consider an asymptotic expansion of the solution (u"™,7"") with respect to ¢.

We make the formal ansatz

ZE% RM ~RM Z€2k RM (75)
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and insert it into the Reissner—-Mindlin problem (70). Then, we obtain

Oug™ = 0, M = —Vui™ (76a)
RM“'t :0 ~RM~t :0 76b
U (2, zeaf ’ % (&) zeaft (76b)
ug™(Z,0) = uo(7), Oyug™(Z,0) = uy (Z) (76¢)
and
2
Q2ul, = uA(div 6,§M), (77a)
3
. ~ 1 (L .
vy = —Vut, + 3 [()\ + u)V(dlv v,?M> + pAD RM}, (77b)
m (s g 0 SRM (= ~0 77
uk+l(w7 ) ieafl ) vk+1( ) 5:68(2 ) ( C)
ut,(%,0) =0, Opupi(£,0) = 0. (77d)

Furthermore, let n € N be fix. Then, we define a formal approximate solution to the
simplified dynamic Reissner—Mindlin problem (70) by

2k RM ~RM 2k ~ RM
app ZE T,t app ZE ) (78)

Theorem 9 (Asymptotic Expansion)

1. The recursion problem (76), (77) possesses a unique solution given by

ug"(Z,t) = uo(Z) + tuq (Z), (79a)
k
_ )‘+2/'L k+1 k (_1)1—1—1
U]}:fl(ﬂf,t) = < 3 ) Z <l) ,U,kfl
1=0
AR 2 e
——A ) ———A T ) 79b
8 ((2z+2)! w(@) 5 3, u(@)), (79b)
k
e - A+ 2\ k E\ (—1)4t
e = (52 S0 () S
3 ZZ:(; [ ,uk l
t k+, 2 ke
VA g (§) o VAR (7)) 79
((21) o) G 1) (®) (79¢)
2. Let T >0 and let s € N be sufficiently large.
Then, the following a—priori estimate holds for all € > 0:
[Ju™ — appHﬂ2 JCE(=T,T], H2=F (52, R))
< O 2ol oy + 1 ey ) (80a)
15 = 3l e_ e
Yapp |ln2 _ ck(|-T,1),H3-k (2, ]R2))
< O JJuol| oy + 1 ey ) (80b)
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In particular, the formal expansion (75) is actually an asymptotic expansion.

Proof.
1. Obviously, the unique solution to the equations (76a), (76¢) and (77a), (77b), (77d)

is given by (79). Since uy and u; have compact support, the constraints (76b) and
(77c) are also satisfied.

. Let m € N. We define (ri%,5%) € {_,C*(R, H* *(Q,R)) x C*(R, H* *(, R?))
by

M _ zm:&‘%ugM, ~RM Zs% RM. (81)

RM
m7 m

OZrEM — u(ATﬁlM + div 52’1) =0, (82a)

2

_ % [(A + u)@(div §3M) + uM?ﬂ + NW@M + §3M>

By construction (r "M satisfies the following initial boundary value problem:

= M23(% 1), (82b)
RM( ~ t — O SERM (% t = 0 82
@), =0, ), =0 (820)
ro(Z,0) =0, Orp(2,0) =0 (82d)
where
2 1 = i ~RM ~RM
g = g[()\—{—u)V(dlvvm > + pAv,, } (83)

We multiply (82a) by 8,5 (-, ) in L*(Q, R) and (82b) by 9,5%%(-,¢) in L*(Q, R?).
Then, we add the two equations and integrate with respect to t. With the help of
integration by parts we obtain for all ¢t € [T, T

1 ~ ~ 2
B(t) i= S 10 () gy + 5 | V7 8) + 80, 1)

L2(Q,R2)
e2)\
~ 2
+—Hd1v S (02 @m)

2 2

€7 |\ arny arnf. )
+ = HVsm(,t)—l—(Vsm(,t)>

2((2 R2%2)

2m+2 t 5
N L
= B(0) +" (Ve () + 834, 0)| B

— e (5, 0) | 0)>Lz(fz,r&2>
_ om /t <@T2M('77) +5m (1)
0

+82m+2/t<8tr71§lM(-,7')‘divB(-,7')> _ o dr
0

L2(9,R)

> L2(),R?)

atB(': T)>L2(fl R?2) dr
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1 t
< §E(t> + E(0) —1—/ E(r)dr
0
112
O( ~RM _,0 2 4m+4H ) 84
+ O 15 ¢ 02 @me +€ g (T T (.8%)) (84)
By construction we have
2
W . N,
E(0) = 5 15", 0)lza@me) + - 141V 5, 0)] 22,z
2 6
82/’[/ ~RM ~RM 2
+ — [|VEM(-,0) + [ V&(-,0) : (85)
12 L2(Q,R2X2)
Furthermore, 5(-,0) satisfies the following boundary value problem:
2
= S|+ 0 (div (-, 0)) + pAT(C,0)| + sk, 0)
= 2™23(%,0), (86a)
SRM ([~ 0 — O 86b
o), (s6b)
With the help of elliptic regularity theory we obtain
. 2
2 185 ) s ey 85, O g < O B0,y (68)
Now, we insert (85), (87) into (84). This yields
t <112
B(t g2/ETdT+Cs4m+4H o 88
(t) i (7) | O —— (88)
With the help of Gronwall’s inequality we obtain
112
B(t) < cetmt | Wt € [-T,T). 89
(t) < Ce g CL([-T,T],H!($,R2)) €77 (89)

Furthermore, with the help of Poincaré’s inequality and Korn’s inequality we obtain

| e g < cem2|p o (90a)
CO([-T,T],L2(2,R)) cY([-T,T],H({2,R?))
RM . 2m+1 || 3
1752 ey s rman-siain S O Bl oy o0
~RM . 2m+1 || 3
15 llcoqerm,m@ry < C€ ‘5 (T ) (90c)

Next, we formally differentiate the initial boundary value problem (82) with respect
to t and note that

OZriM(%,0) = pdiv EM(z,0). (91)

22



Then, with the help of a Galerkin approximation procedure we can apply the same
arguments as above. This yields

< C€2m+1

H@TRM_i_gRM
" " ller(-ra),Lr@R) —

) , (92a)
C([-T.,T),HL(Q,R?))

o (92b)
C%([-T,T],H'(Q,R?))

HTTI;MHﬂi:lck([fTvT}vH2_k(QaR)) S 052m H

(92¢)

~RM . 2m || 3
15 Hcl([—T,T},Hl(Q,R)) < Ce Hﬁ (T T HYG,R?))

Next, we rewrite (82a) as

1
ArfM = Z2piM _ diy §EM, (93)
i

m

Then, with the help of elliptic regularity theory and (90), (92) we obtain

HTEMHCO [-T,T],H2(},R))

< C( Haz RMHCO [—T,T],L2(,R)) + |[div §7P;1MHC°([7T,TLL2(Q,R)))

<csm 5

. 94
c2([-T,T),H (§1,R?)) ( )

Next, we rewrite (82b) as

2 ~
- [(A + u)v(aw ggM) + uAggM} FpE = MR ) — pVrL (95)
Then, with the help of elliptic regularity theory and (92), (94) we obtain

e N8m ez m@rey T 15w ez rry22(0.82)

2m+2 || 3 —1(|,.RM .
< C<5 g (T LR) +e rm HCZ([—T,T],LZ(Q,RZ))>

< et ‘ (96a)

~1,7],HY(Q,R))
2 ~
HSSzM"ﬁ}gzock’([—T,T],H3—R(Q,R2))
< O(s2m+2 B .+ HW;M + gRM ) )
CH([=T, T, H (2R)) Mh—oCF([=T,T],H"*(Q,R))
<C 3 i . (96b)
C2([-T,T],H' (2R))
Finally, we estimate u™ — up, and 0™ — o5, By construction we have
n+2 n+2
utM — app _ Tn—|—2 + Z €2kuzM7 GRM _ app _ sn—|—2 + Z €2k RM. (97)
k=n+1 k=n-+1

Now, the desired statement (80) follows from (79), (83), (92), (94), (96) and (97).
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Comparison of the Simplified Dynamic Problems

Theorem 10 (Comparison Theorem)

Let (u**, 9%*) be the solution to the simplified dynamic Kirchhoff-Love problem (52), (53),
let (u™, 9™™) be the solution to the simplified dynamic Reissner—Mindlin problem (70) and
let s € N be sufficiently large.

Then, the following a—priori estimates hold for all ¢ > 0:

H@URM + /ERM

< ce*(uo

s+ lolgs ), (982)

NL_ Cr([-T,T],HL-#(Q,R))

RM _

Hs(,R) + [Jua | (98b)

™ — w s exrane sy < Ce*(lluol

H@’RM _

: (98¢)

H*(Q,R) >=
. 2
UKLHﬂizock([fT,T},H*k(fl,R)) < Ce < HUUHHS(Q,R) + Huluﬂs(Q,R))

In particular, the Kirchhoff-Love solution (u**,0**) and the Reissner—Mindlin solution
(u™™, ™M) coincide as ¢ — 0.

Proof.

By (53), (58) and (79) we have

KL __ _ RM KL __ _RM ~KL _ ~RM __ v, RM
ug®t = ug™, urt = ui™, Ug- = g™ = —Vug™. (99)

Now, the desired statement (98) follows from (59), (80). O

6 The Full Dynamic Problem

In this section we consider the full dynamic problems in the sense of Kirchhoff-Love and
Reissner—-Mindlin. As in the previous section we assume that the external body force
vanishes, i.e. f(Z) = 0.

The Full Dynamic Problem in the Sense of Kirchhoff-Love

The full dynamic problem in the sense of Kirchhoff-Love reads

2

o2 — %[afAuKL — (A 2,u)AAuKL] ~0, (100a)
KL~ _ UK (7 = 1

u™(Z,t) ceod 0, Vu*(Z,t) ceod 0, (100b)

u*t(Z,0) = uo(Z), Ot (Z,0) = uy(Z). (100c)

Furthermore, Kirchhoff’s normal hypothesis reads
754 (2,1) := —VuSH(Z,1). (101)

From (100) we formally obtain that §7u*"(-,0) satisfies the following boundary value
problem:

e2(A + 2p)

T AAufH (@), (102a)

2
02k (-, 0) — %afAuKL(-,m _
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82 KL ( 7, 0 = 0. 102b
t U (37, ) Feof) ( )
But, in general this contradicts the second boundary condition in (100b). Consequently,

we can not expect that the regularity of the solution u*" will allow us to take the trace
of 9?u*"(-,t) on ON.

Theorem 11 (Existence, Uniqueness, Regularity)

The full dynamic Kirchhoff-Love problem (100) possesses a unique weak solution

u¥t € i, C* (R, H>"*(, R)).

Proof.

Let $ := HY(Q,R), U := H2(Q,R). With the help of Poincaré’s inequality we can define
equivalent scalar products on ), U by

(o), = (u]0) 2y ) + <Vu‘Vn>L2 e Yu, 0 € 9, (103a)

(u]b)y := M

Then, for test functions y € C§ ([0, 00), V) the weak formulation of the Kirchhoff-Love
problem (100) reads

(V2u|V?0) 1 4 ey Yu,0 € V. (103b)

- /Ooo Oy (-, )| 0™ (-, 1)) dt = (y(+, 0)[ur) g + /OOO (Y1) [ (- 8))g dt
=0, (104a)

U, 0) = ug(F). (104b)

With the help of the theory of evolution equations we find that (104) possesses a unique
solution u** € C°([0, 00), W) NC ([0, 00), $H) and with the help of a time reversal argument
we find that actually u** € C°(R, ) NC*(R, $).

Furthermore, the boundary value problem (102) possesses a unique weak solution

uy = u¥"(-,0) € . But this is a compatibility condition to the Kirchhoff-Love problem
(100). Consequently, with the help of the theory of evolution equations we find that
actually u** € C*(R, ) NC*(R, $).

Next, we rewrite (100a) as

e2(A + 2p)

2
e
3 AAURE = —92u" " + gafAuKL = a(7,t) (105)

where a € C° (R, H‘l(Q,R)). With the help of elliptic regularity theory we find that
Wt e CO(R, H*(Q,R)). O

Next, we consider an asymptotic expansion of the solution u®" with respect to e. We
make the formal ansatz

Z €2k KL (106)
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and insert it into the Kirchhoff-Love problem (100). Then, we obtain

and

6t2u§L =0,

KL{ ~ o KL/ ~ o
ug (2, t I 0, Vug“(z,t) oo 0,
ugt(Z,0) = up(2), Opug™(Z,0) = u1(Z)
Oty = 5 [Fdug — (0 + 20 A A,
u;c{il(f t) scof =0, Vuk+1(x ) zcof =0,
uyi1(Z,0) =0, Oyuyy1(Z,0) = 0.

(107a)

(107b)
(107c)

(108a)

(108b)
(108c)

Furthermore, let n € N be fix. Then, we define a formal approximate solution to the full
dynamic Kirchhoff-Love problem (100) by

2k KL
Ugpp( Z < T, b

Theorem 12 (Asymptotic Expansion)

1. The recursion problem (107), (108) possesses a unique solution given by

U(I){L(IZ’, t) = U()(i') + tul(a":),

KL [~ 1 k
W@ = g 2 (1) GO0 2

=0
t2l+2 t2l+3

AR+2,, (7
. ((21+—2ﬂ wl@) + 5

2. Let T >0 and let s € N be sufficiently large.

Then, the following a—priori estimate holds for all € > 0:

[u —u appHmz JCH (=TT, B3k (2, R))

< 082"+2< || o] e (QR) T I

HﬁﬁlR))-

Al+k+2u1(£>>‘

(109)

(110a)

(110D)

(111)

In particular, the formal expansion (106) is actually an asymptotic expansion.
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Proof.

1. Obviously, the unique solution to the equations (107a), (107c) and (108a), (108c) is
given by (110). Since ug and u; have compact support, the constraints (107b) and
(107b) are also satisfied.

2. Let m € N. We define rX* € (;_, C* (R, H*>~*(Q, R)) by

(1) = Z e uRt (3, ¢ (112)

By construction r5" satisfies the following initial boundary value problem:

2
Oprit — | GRANE — (A + 20 AATS | = 7 2a (1) (113a)
KL“‘t :0 ~KL~t :O ]_]_3b
@], =0, V@) =0, (113b)
r&4(F,0) = 0, Byr<(#,0) = 0 (113c)
where
1
=3 [afAu;L (A + ZN)AAuTIﬂ . (114)

We multiply (113) by 8,7%%(-,¢) in L*(Q, R) and integrate with respect to t. With
the help of integration by parts we obtain for all t € [T, T

2

VrEE(- 1)

1 2
5 10 ()22 ey

e?(A +2p)
6

t
:€2m+2/ (O ()|, 1)) oy dE
0

§5m+2Hat7'KLHc0 ~T,7],L2($,R)) HaHLl —T.T],L2(QR))

L2(1,R?)

V2, 1)}

Iz2(@ 5o

1
<7 HatTKLHco 1@y + O HOéHLl 7,11, L2(D,R)) * (115)
With the help of (115) and Poincaré’s inequality we obtain
10 ooy re@my < CE™ P el oy 2@y - (116a)
10, HCO([—T,T],Hl(Q,R)) < ettt HaHLl([—T,T],Lz(Q,R)) ) (116b)
HTTI;LHCO([fT,T},HZ(Q,R)) < Cerml HaHLl([—T,T},L2(Q,R)) : (116¢)

Next, we formally differentiate the initial boundary value problem (113) with respect
to t and note that 07rX%(-,0) satisfies the following boundary value problem:

2
GFrit(-,0) — ZOFATS(-,0) = 2™+ 2a(&,0), (117a)
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O

O (#,0)

= 0. (117b)

€80
With the help of elliptic regularity theory and (110) we obtain
Hafrrlle('a O) HLZ(Q,R) +e Hafrrlle(a O) HHl(S:Z,R) < C€2m+2 HO[(', O)HLZ(Q,R)) : (118)

Now, with the help of a Galerkin approximation procedure we can apply the same
arguments as above. This yields

HaETTI;LHCO([fT,T},N(Q,R)) < Gt HO‘HCO(PT,T},P(Q,R)) ’ (119a)
HafTTI:lLHCO([fT,T},Hl(ﬁ,R)) < Gt HaHCO([fT,T],L%Q,R)) ’ (119b)
187 ooy @ry < CE T latlleoqommy r2@,my) - (119¢)

Next, we rewrite (113a) as

e2(A + 2p)
3

2

AATEr = —97rit + %afm;% + 22 a(F, t). (120)

Then, with the help of elliptic regularity theory and (119) we obtain
HTTI:LL’|CO([—T,T},H3(Q,R))

< C (10 s¥ loogo.zy -2y *+ 10 oo 2y

+em lelleo oz, m-1(0,1)) )

2
< Ce™™ [leleo 7y 2, - (121)
Finally, we estimate u*" — ugy,. By construction we have
U — ug, =Tk + g2 . (122)

Now, the desired statement (111) follows from (110), (114) (119), (121) and (122).

The Full Dynamic Problem in the Sense of Reissner—Mindlin

The full dynamic problem in the sense of Reissner-Mindlin reads

OFu™™ — ,u(AuRM + div 17RM> =0, (123a)
2 ~ ~
c [afaRM ~ A+ u)V(div @RM) - MMRM} + ,u(VuRM + @RM) =0, (123b)
3
RM ( ~ _ oRM (7 = 12
u™(Z,t o 0, oM(Z, t) ceod 0, (123c)
u™(Z,0) = uo(Z), O™ (Z,0) = uy (), (123d)
™(%,0) = —Vug(Z), O™ (%,0) = —Vuy (Z). (123e)
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Theorem 13 (Existence, Uniqueness, Regularity)
The full dynamic problem in the sense of Reissner—Mindlin possesses a unique weak so-

lution (u™,5%") € C*(R x Q,R) x C* (R x 6, R?).

Proof.
This is a well known fact from the theory of evolution equations. a
Next, we consider an asymptotic expansion of the solution («™,3"") with respect to ¢.

We make the formal ansatz

ZE% RM ~RM Z€2k RM (124)

and insert it into the Reissner—-Mindlin problem (123). Then, we obtain

Puf™ = 0, TEM = —VyiM (125a)

RM “'t :0 7 RM ~t :0 125b
U (xa ) Fcof ) Yo (xa ) Fcof ) ( )
ug™(Z,0) = uo(Z), Orug™(Z,0) = uy (), (125¢)
TEM(%,0) = —Vug (%), B E™(%,0) = —Vuy (%) (125d)

and
A+2u I 1 -

2 B — gEM) _ 2 RM
Gty = == A(d O ) 30 (dw ) (126a)
PR = R o [(A + u)V(div f;;;M) AT af&;;M], (126b)
w0 =0 [, =0 (126¢)
ugt1(Z,0) =0, Orug,(2,0) =0, (126d)
Upy (£,0) =0, Oy, (£,0) = 0. (126e)

Furthermore, let n € N be fix. Then, we define a formal approximate solution to the full
dynamic Reissner—-Mindlin problem (123) by

app ZE% RM ~§1§;{7 ZE% RM (127)

Theorem 14 (Asymptotic Expansion)

1. The recursion problem (125) possesses a unique solution given by

uEM(F, ) = up(F) + tuy (7), (128a)
58M(%,t) = —Vue(Z) — tVuy (Z). (128b)
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In particular, the zero—order terms in the formal expansion (124) of the Reissner—
Mindlin solution are exactly the zero—order terms in the asymptotic expansion (106)
of the Kirchhoff-Love solution, i.e. we have

(ug™, 05™) = (ug”, 75")- (129)

. When we exclude the constraint (126e) from (126), then the remaining recursion
problem possesses a unique solution given by

upi1(,t)
st 42 1
= / / [ + /’LAAU)]{;<5:7 S2> - _6)52 <Awk<§j, S2)>:|d$2d$1, (130a>
0 Jo 3 3

B (8,1) = Vwea (2,0 (130b)

where wy, s given recursively by

wo(Z,t) = —up(Z) — tuy (&), (131a)

. ! g A+2 .
Wi (Z,t) = [gaf (Awk(ar, 82)> -3 'uAAwk(a:,32) dsadsy
o Jo

1
Awy(%,t) — @afwk(aé,t). (131Db)

. For k =0 the constraint (126e) is satisfied if and only if
Aug = constant, Auy = constant. (132)

Then, the solution to the full dynamic Reissner—Mindlin problem (123) is given by
the zero—order terms in the formal expansion (124), i.e. we have

(@™, 8™) = (ug", 55™). (133)

. The formal approximate solution (ugzﬁ/zf,, 1751%) satisfies the following initial boundary
value problem:

Dur — M(Aug;g + div vgo) =0, (134a)
2

|0 — O+ WV (divagy ) — udagy| +u(Vugy + a5y)

= ™2 3(,1), (134b)
RM (5 — ~RM ( ~, _

Ugpp (T, 1) I 0, Topp (T 1) I 0, (134c)

Ugpp (T, 0) = uo(Z), Oyt g (,0) = u1(Z), (134d)

651])\;[)(j7 0) = _6u0(j> + 825/(577 0)7 (1346)

Oyt (,0) = —Vuy () + £20,7(%,0) (134f)
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where

_lore A+2p <
g = Bat (an> i V(Awn>, (135a)
Fi=Y 2V (135b)

In particular, (ugy, U0v) satisfies the Reissner-Mindlin PDE system (123a), (123b)
up to terms of order €2 and the corresponding boundary and initial conditions
(123c), (123d) ezactly. Furthermore, (uzy,, Us,) satisfies the corresponding initial
conditions (123e) up to terms of order *.

Proof.

1. Obviously, the unique solution to the equations (125a), (125c) is given by (128).
By construction and since g, u; have compact support, the constraints (125b) and
(125d) are also satisfied. Furthermore, (129) follows from (101), (110a) and (128).

2. Obviously, the unique solution to the equations (126a), (126b), (126d) is given
by (130), (131). Since wg, u; have compact support, the constraint (126¢) is also
satisfied.

3. With the help of (130), (131) we obtain

A+ 20~ 20 ~
FM(E 0) = —2 G A (F), O (F,0) = — ;u“vml(.f;). (136)

Consequently, (126e) is equivalent to (132). Furthermore, let (132) hold. Then, the
unique solution to the full dynamic Reissner—-Mindlin problem (123) is obviously
given by (133).

4. The first statement (134) follows from the construction of (ugy, 7g,;) and (128),

(130), (131). The second statement follows from a comparison of (123) and (134).

a
Comparison of the Full Dynamic Problems

In theorem 14 we have seen that the zero—order terms in the formal expansion (127) of the
Reissner—Mindlin solution coincide with the zero—order terms in the asymptotic expansion
(101), (106) of the Kirchhoff-Love solution.

On the other hand, in general condition (132) of the theorem does not hold and con-
sequently the series in (127) do not converge. Furthermore, the theorem shows that in
general (127) is not even an asymptotic expansion.

It remains to show, that the Kirchhoff-Love solution (u**, #**) and the Reissner-Mindlin
solution (u™, ™) coincide as € — 0.
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Theorem 15 (Comparison Theorem)

Let (u®*,0**) be the solution to the full dynamic Kirchhoff-Love problem (100), (101),
let (u™, ™) be the solution to the full dynamic Reissner—Mindlin problem (123) and let
s € N be sufficiently large.

Then, the following a—priori estimates hold for all ¢ > 0:

H@URM o CO([-T,T],L2(,R)) = 082( ol sz + el )’ (1372)
905 sy = ol + Nl ) 37)
Ju™ — UKLHcl([—T,T},LZ(Q,R)) < 052< o] He(r) T [a] He(SR) )’ (137¢)
™ = oy ey < O (ol + g ), (137)
[w™ = W lor (1, m@r) < C( [toll grs g,y + 1l ey >7 (137e)
1% — 5y enrmmamr@ey < O luollmgm + s ) (1371)
||[o™ — ﬁKLHmizock([_T’TLHz—k(Q’R)) < C( ol gre (@ ry + Uil e (e ) (137g)
In particular, the Kirchhoff-Love solution (u**,9**) and the Reissner—Mindlin solution

(u™ 9"M) coincide as € — 0.
Proof.
With the help of (101) and (110a), (111) we obtain

KL

[u

— uo — turlz_ ok(_rmyma-r (@) S 052( lwoll s a,my + Nluallge () >, (138a)

7" + Vug + tVuy

r-\'izock ([_TvT] 7H27k (QJR))

< 02 (ol ey + 1 vy ) (138b)

Next, we define (r™, §) € C*(R x 6, R) x C*®(R x 6, R?) by

M= ™ — g — tug, F™M = ™ + Vg + tVu,. (139)
By construction, (r™, §*") satisfies the following initial boundary value problem:
G — p(Ar™ o+ divs™) = 0, (140a)
2
‘% 925 — (A )V (div ™) — pAF] 4 po (T M)
2N +2u) 1= .

OB (aua(@)) + 69 (20 (3)) ] = 2B ), (1400)
RM(Et =0 s"M(Z,t =0 140
rE ) geod Y geod (140c)
r*™(z,0) =0, Oyr™(2,0) =0, (1404)
§™M(E,0) =0, 8,5 (%, 0) = 0. (140e)
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We multiply (140a) by 8,7™(-,t) in L*(Q,R) and (140b) by 8,52 (-, ) in L*(2, R?). Then,
we add the two equations and integrate with respect to ¢t. With the help of integration
by parts we obtain for all ¢t € [T, T

1 = » 2
B(t) i= 5 100, Dllfaa + 5 || V78 + 5 )

L2(Q,R?)
2 ~RM 82)‘ ~RM 2

+ = Hat ()17 (@r2) T 5 [div §* (-, ) L2 p)

2

+€—“H (., )+(V§RM(-,t)>

252/0t<a§RM ‘ﬁ >L2(QR2)dT

- Fen e fien),

LZ(ﬁ,R2X2)

t
22 7, . RM [ SRM (| 18
. /0 (Fr(,7) + 8, 7)| 0 ,T)>L2(Q,R2) dr
2 [ 7
RM [, : .
+e /0 <8tr ( ,7')‘ div 5( ’T>>L2(Q,R) dr
1 t
< ZB(t E(r)dr +C ‘ . 141
-2 <)+/0 (r)dr +Ce [~T,T),H((,R2)) (141)
With the help of Gronwall’s inequality we obtain
112
B(t <O4H Vt e [-T,T). 142
By < Ce|s CH{([~T,T],H*(,R?)) <l | (142)

Furthermore, with the help of Poincaré’s inequality and Korn’s inequality we obtain

HﬁrRM & CO([~T,T7,L2(QLR)) <ce Cl([~T,T),H (2,R2)) (143a)
17 lo-zmraoen < O B oag_py ooy (43
I ooy < O 3] — (1430)
H§RMHm1 JCE(T,T) IR (QR)) = Ce (L TTLE () (143d)

Next, we differentiate the initial boundary value problem (140) with respect to ¢ and note
that

925 (z,0) = 33(%,0). (144)
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Then, we can apply the same arguments as above. This yields

Y

H@TRM + gRM
[-T,T),H(,R?))

<ee]],

CY([-T,T],L2(Q,R))

Y

2([~T,1],H (2,R2))

| ch [—T,T],L2($),R)) <C€H

Y

RM
17 er - r @y < CH (T 5)

~RM
15 ngzlck([ T,T],H2—k({},R)) 1] HA(,R2)
Next, we rewrite (140a) as

1 N
Ar™ = Z92p™™M _ diy §M

Then, with the help of elliptic regularity theory and (143), (145) we obtain

(145a)
(145b)
(145¢)

(145d)

(146)

HTRMHCO(PT,T},H%QR < C( HaerMHCO([fT,T],LZ(Q,R)) + HdiV §RMHCO([—T,T},L2(Q,R)) )

<C’5H

[-T,T],H (Q,R2))

Next, we rewrite (140b) as
. 3u _
0 i )+ i = sy 2 (e o) 33,0,
Then, with the help of elliptic regularity theory and (143), (145) we obtain

HgRM Hco [-T,T),H2({},R))

111~
2 ~RM - RM ghM
<C(H6 Hco ~T,T] L2(QR))+52 v ts CO([~T,T},L2(Q,R))
* ‘5 CO([T,T},Lz(Q»R))>
<CH ~
[—-T,T),H(Q,R?))

Now, the desired statement (137) follows from (143), (145) and (147), (149).
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