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Abstract

In this article we compare the two plate theories in the sense of Kirchho�{Love

and Reissner{Mindlin for several di�erent settings of the physical system. We

establish existence, uniqueness and regularity of solutions to the respective

boundary and initial boundary value problems. Moreover, we give asymptotic

expansions of the solutions in the limit of a vanishing plate thickness, " ! 0,

whenever this is possible. Finally, we compare the solutions in the sense of

Kirchho�{Love and Reissner{Mindlin in that very limit.
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The following results constitute a major part of a PhD thesis (see [9]).
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1 Introduction

In this article we consider a thin elastic plate which is clamped at its lateral boundary and

submitted to an exterior body force. Our starting point is the linear three dimensional

elasticity theory. Here, the motion of the plate is described by the deformation mapping

~' : 


"

� R �! R

3

, where 


"

:=

~


 � (�"; ") � R

3

is the reference con�guration. We

assume that Hamilton's variational principle holds, i.e.

J [~'] := �

Z

T

0

Z




"

h

1

2

j@

t

~'j

2

�	(r~') +

~

f(~x) � ~'

i

dxdt �! min.;

where the free energy 	 is given by the linearized Lam�e law (8). This yields the corre-

sponding Euler{Lagrange equations (10) and natural boundary conditions (11).

Next, we consider plate theories. Here, we linearize the deformation ~' with respect to the

variable x 2 (�"; "), i.e. we make an ansatz of the form

~'(~x; x; t) := ~u(~x; t) + x~v(~x; t);

see (12). Now, we insert this ansatz into the action functional J [~'] and apply Hamilton's

variational principle, i.e. we vary J [~'] with respect to the independent components of ~u

and ~v. It turns out that this procedure is not unique. Actually, the various plate theories

are distinguished by the di�erent ways to consider the natural boundary conditions (11).

In a plate theory in the sense of Kirchho�{Love we assume that ~u and ~v are constrained

by Kirchho�'s normal hypothesis (15) such that (14) holds. Then we obtain the Euler{

Lagrange equations (21). On the other hand, in a plate theory in the sense of Reissner{

Mindlin we assume that ~u and ~v are independent �elds. Then we obtain the Euler{

Lagrange equations (22).

The goal of this article is to compare these two plate theories for several di�erent settings

of the physical system, namely the static problem, the simpli�ed dynamic problem and the

full dynamic problem. We establish existence, uniqueness and regularity of solutions (~u;~v)

to the respective problems. Moreover, for ~w = ~u;~v we consider asymptotic expansions

3



with respect to ", i.e.

~w(~x; t) =

1

X

k=0

"

2k

~w

k

(~x; t):

Finally, we compare the respective solutions in the sense of Kirchho�{Love and Reissner{

Mindlin in the limit "! 0.

This article is purely analytic in character. A numerical comparison of the two plate

theories can be found in [8]. Moreover, in this article we derive the basic equations of

plate theory from three dimensional elasticity postulating a plate theoretical ansatz for

the deformation. A rigorous study of the passage from three dimensional elasticity to

plate theory can be found in [4] and [5], [6], [7].

2 Three{dimensional Elasticity

In this section we consider the three{dimensional elasticity theory for a thin plate. We

postulate the existence of an action functional for the system such that we obtain the

equations of motion together with natural boundary conditions from a variational princi-

ple. This description of the problem will underly the various plate theoretical approaches

that we will introduce in the next section.

Throughout this article we will use the following notations for the elements of R, R

2

, R

3

:

a 2 R; ~a 2 R

2

; ~a 2 R

3

and ~a =

�

~a

a

�

: (1)

In particular the row vector of partial derivatives with respect to ~x 2 R

3

is denoted by

~

r

and the row vector of partial derivatives with respect to ~x 2 R

2

is denoted by

~

r.

2

Furthermore, the unit vectors of R

3

are denoted by ê

i

(i = 1; 2; 3).

Now, let

~


 � R

2

be a bounded domain with a smooth boundary @

~


 and let " > 0. We

assume that the natural reference con�guration of the plate is given by




"

:=

~


� (�"; "): (2)

Then, the deformation of the plate is given by a function

~' : 


"

� R �! R

3

: (~x; t) 7�! ~'(~x; t): (3)

We assume that the lateral boundary of the plate is clamped, i.e. we prescribe the

following Dirichlet boundary conditions:

~'(~x; t)

�

�

�

~x2@

~


�(�";")

= ~x: (4)

2

As usual, for functions g : R

3

� R �! R

k

, h : R

2

� R �! R

k

the Jacobian matrices with recpect to

the space variables are denoted by rg(~x; t) and rh(~x; t) respectively.
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Furthermore, at time t = 0 we prescribe the following initial conditions:

~'(~x; 0) = ~'

0

(~x); @

t

~'(~x; 0) = ~'

1

(~x) (5)

where the functions ~'

0

; ~'

1

: 


"

�! R

3

will be chosen appropriately in the next section.

Next, we �x our constitutive Model. We assume that the mass density is given by a

constant � > 0.

Furthermore, we assume that the speci�c body force is acting in 3{direction and does

not depend on x 2 (�"; ") and t 2 R explicitly, i.e. we assume that there is a function

f 2 C

1

(

~


;R) such that the speci�c body force is given by

~

f : 


"

�! R

3

: ~x 7�!

~

f(~x) :=

�

0

f(~x)

�

: (6)

Furthermore, we assume that the speci�c stress tensor is given by the linearized Lam�e

law

T : 


"

� R �! R

3�3

: (~x; t) 7�! T (~x; t) (7a)

where

T (~x; t) := � tr

�

r~'(~x; t)� I

�

I + �

h�

r~'(~x; t)� I

�

+

�

r~'(~x; t)� I

�

T

i

: (7b)

Then, the corresponding speci�c free energy reads

	 : 


"

� R �! R : (~x; t) 7�! 	(~x; t) (8a)

where

	(~x; t) :=

�

2

tr

�

r~'(~x; t)� I

�

2

+

�

4

�

�

�

�

r~'(~x; t)� I

�

+

�

r~'(~x; t)� I

�

T

�

�

�

2

: (8b)

Here, �; � > 0 denote the Lam�e constants, I 2 R

3�3

denotes the unit matrix, and j � j

denotes the Euklidian norm.

Next, we �x our dynamic principle. The action of the system for the time interval [0; T ] �

R is given by

J [~'] := �

Z

T

0

Z




"

h

1

2

�

�

�

@

t

~'(~x; t)

�

�

�

2

� 	(~x; t) +

~

f(~x) � ~'(~x; t)

i

dxdt: (9)

An application of Hamilton's variational principle yields the corresponding Euler{La-

grange equations

@

2

t

~'� �

~

r

�

div ~'

�

� �

h

~

r

�

div ~'

�

+�~'

i

=

~

f(~x) (10)

and the corresponding natural boundary conditions

T (~x; t)ê

3

�

�

�

x=�"

= 0: (11)

Physically, equation (11) means that the normal stress vanishes on the upper and lower

side of the plate.
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3 Plate Theory

In this section we postulate a particular plate theoretical ansatz for the deformation ~'.

Then, we derive the equations of motion for the plate from the variational principle of

three{dimensional elasticity.

The basic assumption of plate theory is, that the deformation ~' is linear with respect

to x 2 (�"; "). Furthermore, we assume that during the process of deformation material

points of the middle surface will be shifted only in 3{direction but not in 1,2{direction

and that the plate thickness remains constant. This yields the following ansatz:

~'(~x; t) :=

�

~x

u(~x; t)

�

+ x

�

~v(~x; t)

1

�

(12a)

where u :

~


� R �! R and ~v :

~


� R �! R

2

. ~v is called the director of the plate.

In particular, we have

@

t

~'(~x; t) =

�

0

@

t

u(~x; t)

�

+ x

�

@

t

~v(~x; t)

0

�

; (12b)

r~'(~x; t)� I =

�

0 ~v(~x; t)

ru(~x; t) 0

�

+ x

�

r~v(~x; t) 0

0 0

�

: (12c)

Next, we �x our constitutive model. We insert (12) into (9) and carry out the integration

with respect to x 2 (�"; "). Then, the action of the system reads

J

p

[u; ~v] := 2"�

Z

T

0

Z

~




h

1

2

�

@

t

u(~x; t)

�

2

�	

0

(~x; t) + f(~x; t)u(~x; t)

i

dxdt

+

2"

3

�

3

Z

T

0

Z

~




h

1

2

�

�

�

@

t

~v(~x; t)

�

�

�

2

�	

1

(~x; t)

i

dxdt (13a)

where

	

0

(~x; t) :=

�

2

�

�

�

~

ru(~x; t) + ~v(~x; t)

�

�

�

2

; (13b)

	

1

(~x; t) :=

�

2

�

div ~v(~x; t)

�

2

+

�

4

�

�

�

r~v(~x; t) +

�

r~v(~x; t)

�

T

�

�

�

2

: (13c)

From the variational principle of three dimensional elasticity we have obtained natural

boundary conditions (11). Now, in a plate theory there are at least two di�erent ways to

deal with them and actually this distinguishes the various plate theories. One way to deal

with the natural boundary conditions is to ignore them. This leads to a plate theory in the

sense of Reissner{Mindlin. A second way to deal with the natural boundary conditions

is to insert (12) into (7) and to replace (11) with

1

2"

Z

"

�"

T (~x; t)ê

3

dx = 0: (14)
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This yields Kirchho�'s normal hypothesis

~v(~x; t) +

~

ru(~x; t) = 0: (15)

Physically, equation (14) means that the mean normal stress of the plate vanishes and

this leads to a plate theory in the sense of Kirchho�{Love.

Next, we �x the boundary and initial conditions. We insert (12) into (4). This yields the

following boundary conditions:

u(~x; t)

�

�

�

~x2@

~




= 0; ~v(~x; t)

�

�

�

~x2@

~




= 0: (16)

Now, we insert (12) into (5) and we assume that the initial data are compatible with both

the ansatz (12) and Kirchho�'s normal hypothesis (15). Furthermore, we assume that at

time t = 0 an environment of the lateral boundary is in its natural state. This yields the

following initial conditions:

u(~x; 0) = u

0

(~x); @

t

u(~x; 0) = u

1

(~x); (17a)

~v(~x; 0) = �

~

ru

0

(~x); @

t

~v(~x; 0) = �

~

ru

1

(~x) (17b)

where u

1

; u

2

2 C

1

0

(

~


;R).

Next, we �x our dynamical principle. From three{dimensional elasticity we have Hamil-

ton's variational principle postulating that the physical deformation ~' is a critical point

of the action functional J . Now, we apply this principle to the action functional (13).

Plate Theory in the Sense of Kirchho�{Love

The basic assumption of a plate theory in the sense of Kirchho�{Love is, that Kirchho�'s

normal hypothesis (15) holds, i.e. that the director is constrained by

~v

KL

(~x; t) := �

~

ru

KL

(~x; t): (18)

We insert (18) into (16), (17). This yields the following boundary and initial conditions:

u

KL

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

(~x; t)

�

�

�

~x2@

~




= 0; (19a)

u

KL

(~x; 0) = u

0

(~x); @

t

u

KL

(~x; 0) = u

1

(~x): (19b)

Now, we insert (18) into (13). Then, the action of the system reads

J

KL

p

[u

KL

] := 2"�

Z

T

0

Z

~




h

1

2

�

@

t

u

KL

(~x; t)

�

2

+ f(~x; t)u

KL

(~x; t)

i

dxdt

+

2"

3

�

3

Z

T

0

Z

~




h

1

2

�

�

�

@

t

~

ru

KL

(~x; t)

�

�

�

2

�	

KL

1

(~x; t)

i

dxdt (20a)

where

	

KL

1

(~x; t) :=

�

2

�

�u

KL

(~x; t)

�

2

+ �

�

�

�

r

2

u

KL

(~x; t)

�

�

�

2

: (20b)
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An application of Hamilton's variational principle yields the corresponding Euler{La-

grange equation

@

2

t

u

KL

�

"

2

3

h

@

2

t

�u

KL

� (�+ 2�)��u

KL

i

= f(~x): (21)

Plate Theory in the Sense of Reissner{Mindlin

The basic assumption of a plate theory in the sense of Reissner{Mindlin is, that the

director is not constrained. In particular, Kirchho�'s normal hypothesis does not hold.

Then, the boundary and initial conditions for u

RM

, ~v

RM

are given by (16), (17). Further-

more, the action of the system is given by (13).

An application of Hamilton's variational principle yields the corresponding Euler{La-

grange equations

@

2

t

u

RM

� �

�

�u

RM

+ div ~v

RM

�

= f(~x); (22a)

"

2

3

h

@

2

t

~v

RM

� (�+ �)

~

r

�

div ~v

RM

�

� ��~v

RM

i

+ �

�

~

ru

RM

+ ~v

RM

�

= 0: (22b)

Comparison of the Initial Boundary Value Problems

Both, the plate theory in the sense or Kirchho�{Love and the plate theory in the sense of

Reissner{Mindlin, are assumed to be approximations to the same three{dimensional elas-

ticity theory.

3

Therefore, the Kirchho�{Love PDE system (18), (21) and the Reissner{

Mindlin PDE system (22) should be in some sense approximately equivalent.

Now, we compare the PDE systems in the sense of Kirchho�{Love and Reissner{Mindlin.

For further use the next theorem is a little more general than it was necessary in this

place.

Theorem 1 (Comparison Theorem)

Let � 2 D

0

(

~


� R;R) and

~

� 2 D

0

(

~


� R;R

2

) be distributions.

Then, in the distributional sense the following PDE systems are equivalent:

@

2

t

u� �

�

�u+ div ~v

�

= f(~x) + �(~x; t); (23a)

"

2

3

h

@

2

t

~v � (�+ �)

~

r

�

div ~v

�

� ��~v

i

+ �

�

~

ru+ ~v

�

=

~

�(~x; t) (23b)

3

See [5], [6], [7].
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and

@

2

t

u�

"

2

3

h

@

2

t

�u� (�+ 2�)��u

i

= f(~x) + �(~x; t) + div

~

�(~x; t)�

"

2

3�

h

@

2

t

�

div

~

�(~x; t)

�

� (�+ 2�)�

�

div

~

�(~x; t)

�i

+

"

4

9�

h

@

4

t

�

div ~v

�

� 2(�+ 2�)�@

2

t

�

div ~v

�

+ (�+ 2�)

2

��

�

div ~v

�i

; (24a)

~v = �

~

ru+

1

�

~

�(~x; t)�

"

2

3�

h

@

2

t

~v � (�+ �)

~

r

�

div ~v

�

� ��~v

i

: (24b)

In particular, the Kirchho�{Love PDE system (18), (21) and the Reissner{Mindlin PDE

system (22) are equivalent up to higher order terms in ".

Proof.

Obviously, the equations (23b) and (24b) are equivalent. Furthermore, with the help of

(23b), (24b) we �nd that both equations, (23a) and (24a), are equivalent to

9



@

2

t

u+

"

2

3

h

@

2

t

�

div ~v

�

� (�+ 2�)�

�

div ~v

�i

= f(~x) + �(~x; t) + div

~

�(~x; t): (25)

2

The above theorem suggests that the Kirchho�{Love solution (u

KL

; ~v

KL

) and the Reiss-

ner{Mindlin solution (u

RM

; ~v

RM

) coincide as " ! 0. Nevertheless, since in the equations

the terms of highest order in " do also contain the highest order derivatives of u

RM

and

~v

RM

this result is not obvious.

In the remaining sections we will give a rigorous asymptotic analysis of the plate theories

in the sense of Kirchho�{Love and Reissner{Mindlin for various physical settings of the

system.

4 The Static Problem

In this section we investigate the static problems in the sense of Kirchho�{Love and

Reissner{Mindlin, i.e. we consider time independent solutions (u

KL

; ~v

KL

), (u

RM

; ~v

RM

) to

the respective partial di�erential equations and boundary conditions.

In particular, in order to obtain a suitable normalization we replace f(~x) by "

2

f(~x).

The Static Problem in the Sense of Kirchho�{Love

The static problem in the sense of Kirchho�{Love reads

�+ 2�

3

��u

KL

= f(~x); (26a)

u

KL

(~x)

�

�

�

~x2@

~




= 0;

~

ru

KL

(~x)

�

�

�

~x2@

~




= 0: (26b)

Furthermore, Kirchho�'s nornal hypothesis reads

~v

KL

(~x) = �

~

ru

KL

(~x): (27)

Theorem 2 (Existence, Uniqueness, Regularity)

The static Kirchho�{Love problem (26) possesses a unique weak solution u

KL

2 C

1

(

~


;R).

Proof.

This is a well known fact from elliptic theory. 2

We remark that by our normalization the problem (26) is independent of " and conse-

quently the solution u

KL

does not depend on " either.
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The Static Problem in the Sense of Reissner{Mindlin

The static problem in the sense of Reissner{Mindlin reads

� �

�

�u

RM

+ div ~v

RM

�

= "

2

f(~x); (28a)

�

"

2

3

h

(�+ �)

~

r

�

div ~v

RM

�

+ ��~v

RM

i

+ �

�

~

ru

RM

+ ~v

RM

�

= 0; (28b)

u

RM

(~x)

�

�

�

~x2@

~




= 0; ~v

RM

(~x)

�

�

�

~x2@

~




= 0: (28c)

By theorem 1 the PDE system (28a), (28b) is equivalent to

�+ 2�

3

��u

RM

= f(~x) +

"

2

(�+ 2�)

2

9�

��

�

div ~v

RM

�

; (29a)

~v

RM

= �

~

ru

RM

+

"

2

3�

h

(�+ �)

~

r

�

div ~v

RM

�

+ ��~v

RM

i

: (29b)

Theorem 3 (Existence, Uniqueness, Regularity)

The static Reissner{Mindlin problem (28) possesses a unique weak solution

(u

RM

; ~v

RM

) 2 C

1

(

~


;R) � C

1

(

~


;R

2

).

Proof.

This is a well known fact from elliptic theory. 2

Next, we consider an asymptotic expansion of the solution (u

RM

; ~v

RM

) with respect to ".

We make the formal ansatz

u

RM

(~x) :=

1

X

k=0

"

2k

u

RM

k

(~x); ~v

RM

(~x) :=

1

X

k=0

"

2k

~v

RM

k

(~x) (30)

and insert it into the Reissner{Mindlin problem (28) where we use (29) instead of (28a),

(28b). Then, we obtain

�+ 2�

3

��u

RM

0

= f(~x); ~v

RM

0

= �

~

ru

RM

0

; (31a)

u

RM

0

(~x)

�

�

�

~x2@

~




= 0; ~v

RM

0

(~x)

�

�

�

~x2@

~




= 0 (31b)

and

��u

RM

k+1

=

�+ 2�

3�

��

�

div ~v

RM

k

�

; (32a)

~v

RM

k+1

= �

~

ru

RM

k+1

+

1

3�

h

(�+ �)

~

r

�

div ~v

RM

k

�

+ ��~v

RM

k

i

; (32b)
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u

RM

k+1

(~x)

�

�

�

~x2@

~




= 0; ~v

RM

k+1

(~x)

�

�

�

~x2@

~




= 0: (32c)

Now, let m̂(~x) be the positively oriented tangent unit vector on @

~


 and let n̂(~x) be the

outward normal unit vector on @

~


. Then, with the help of (32b) and the �rst boundary

condition in (32c) we can rewrite the second boundary condition in (32c) as

@u

RM

k+1

@n

(~x)

�

�

�

~x2@

~




=

1

3�

n̂(~x) �

h

(�+ �)

~

r

�

div ~v

RM

k

�

+ ��~v

RM

k

i

�

�

�

~x2@

~




(32d)

and

m̂(~x) �

h

(�+ �)

~

r

�

div ~v

RM

k

�

+ ��~v

RM

k

i

�

�

�

~x2@

~




= 0: (33)

Furthermore, let n 2 N be �x. Then, we de�ne a formal approximate solution to the

static Reissner{Mindlin problem (28) by

u

RM

app

(~x) :=

n

X

k=0

"

2k

u

RM

k

(~x); ~v

RM

app

(~x) :=

n

X

k=0

"

2k

~v

RM

k

(~x): (34)

Theorem 4 (Asymptotic Expansion)

1. The zero{order term in the formal expansion (30) of the Reissner{Mindlin solution

is exactly the Kirchho�{Love solution, i.e. we have

(u

RM

0

; ~v

RM

0

) = (u

KL

; ~v

KL

): (35)

2. When we exclude the constraint (33) from (32), then the remaining boundary value

problem possesses a unique weak solution (u

RM

k+1

; ~v

RM

k+1

) 2 C

1

(

~


;R) � C

1

(

~


;R

2

).

3. For k = 0 the constraint (33) is satis�ed if and only if

�u

KL

(~x)

�

�

�

~x2@

~




= C = constant: (36)

Then, the solution to the static Reissner{Mindlin problem (28) is given by

u

RM

(~x) = u

KL

(~x) +

"

2

(�+ 2�)

3�

�

C ��u

KL

(~x)

�

; (37a)

~v

RM

(~x) = �

~

ru

KL

(~x): (37b)

In particular, in case of radial symmetry the condition (36) is satis�ed.

4. The formal approximate solution (u

RM

app

; ~v

RM

app

) satis�es the following boundary value

problem:

� �

�

�u

RM

app

+ div ~v

RM

app

�

= "

2

f(~x) + "

2n+2

�(~x); (38a)

�

"

2

3

h

(�+ �)

~

r

�

div ~v

RM

app

�

+ ��~v

RM

app

i

+ �

�

~

ru

RM

app

+ ~v

RM

app

�

= "

2n+2

~

�(~x); (38b)
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u

RM

(~x)

�

�

�

~x2@

~




= 0; n̂(~x) � ~v

RM

(~x)

�

�

�

~x2@

~




= 0; (38c)

m̂(~x) � ~v

RM

(~x)

�

�

�

~x2@

~




= "

2


(~x) (38d)

where

�(~x) :=

�+ 2�

3

�

�

div ~v

RM

n

�

; (39a)

~

�(~x) := �

1

3

h

(�+ �)

~

r

�

div ~v

RM

n

�

+ ��~v

RM

n

i

: (39b)


(~x) := m̂(~x) �

�

n

X

k=1

"

2k�2

~v

RM

k

(~x)

�

�

�

�

~x2@

~




(39c)

In particular, (u

RM

app

; ~v

RM

app

) satis�es the Reissner{Mindlin PDE system (28a), (28b)

up to terms of order "

2n+2

and the corresponding boundary conditions (28c) up to

terms of order "

2

.

Proof.

1. This follows from (26), (27) and (31).

2. For ~v

RM

k

2 C

1

(

~


;R

2

) this is a well known fact from elliptic theory. Since by theorem

2 and point 1 we have ~v

RM

0

= ~v

KL

2 C

1

(

~


;R

2

), the statement follows by induction.

3. For k = 0 the constraint (33) reads

m̂(~x) �

~

r

�

�u

RM

0

�

�

�

�

~x2@

~




= 0: (40)

By point 1 this is equivalent to (36). Then, the solution to the static Reissner{

Mindlin problem (28) is obviously given by (37).

4. By construction the formal approximate solution (u

RM

app

; ~v

RM

app

) satis�es the boundary

conditions (38c) and the following PDE system:

�+ 2�

3

��u

RM

app

= f(~x) +

"

2

(�+ 2�)

2

9�

��

�

div ~v

RM

app

�

�

"

2n+2

(�+ 2�)

2

9�

��

�

div ~v

RM

n

�

; (41a)

~v

RM

app

= �

~

ru

RM

app

+

"

2

3�

h

(�+ �)

~

r

�

div ~v

RM

app

�

+ ��~v

RM

app

i

�

"

2n+2

3�

h

(�+ �)

~

r

�

div ~v

RM

n

�

+ ��~v

RM

n

i

: (41b)

With the help of theorem 1 we obtain (38a), (38b). Furthermore, (38d) follows from

(31b).

2
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Comparison of the Static Problems

In theorem 4 we have seen that the zero{order term in the formal expansion (30) of the

Reissner{Mindlin solution coincides with the Kirchho�{Love solution. On the other hand,

in general condition (36) of the theorem does not hold and consequently the series does

not converge. Furthermore, the theorem shows that in general the formal expansion (30)

is not even an asymptotic expansion. It remains to show, that the Kirchho�{Love solution

(u

KL

; ~v

KL

) and the Reissner{Mindlin solution (u

RM

; ~v

RM

) coincide as "! 0.

Here and in the followig, C;

^

C; : : : > 0 denote generic constants independent of the func-

tions and parameters under consideration. Furthermore, as usual H

s

(

~


;R

k

) (s 2 R)

denotes the scale of L

2

{Sobolev spaces.

Theorem 5 (Comparison Theorem)

Let (u

KL

; ~v

KL

) be the solution to the static Kirchho�{Love problem (26), (27) and let

(u

RM

; ~v

RM

) be the solution to the static Reissner{Mindlin problem (28).

Then, the following a{priori estimates hold for all " > 0:










~

ru

RM

+ ~v

RM










L

2

(

~


;R

2

)

� C"

2

kfk

H

�1

(

~


;R)

; (42a)

ku

RM

� u

KL

k

H

2

(

~


;R)

� C

�

"

2

kfk

L

2

(

~


;R)

+ " kfk

H

�1

(

~


;R)

�

; (42b)

ku

RM

� u

KL

k

H

3

(

~


;R)

� C

�

"

2

kfk

H

1

(

~


;R)

+ kfk

H

�1

(

~


;R)

�

; (42c)

k~v

RM

� ~v

KL

k

H

1

(

~


;R

2

)

� C" kfk

H

�1

(

~


;R)

; (42d)

k~v

RM

� ~v

KL

k

H

2

(

~


;R

2

)

� C kfk

H

�1

(

~


;R)

: (42e)

In particular, the Kirchho�{Love solution (u

KL

; ~v

KL

) and the Reissner{Mindlin solution

(u

RM

; ~v

RM

) coincide as "! 0.

Proof.

We de�ne r 2 C

1

(

~


;R) and ~s 2 C

1

(

~


;R

2

) by

r(~x) := u

RM

(~x)� u

KL

(~x); ~s(~x) := ~v

RM

(~x)� ~v

KL

(~x): (43)

Then, with the help of (26), (27) and (28) we �nd that (r; ~s) satis�es the following

boundary value problem:

� �

�

�r + div ~s

�

=

"

2

(�+ 2�)

3

��u

KL

; (44a)

�

"

2

3

h

(�+ �)

~

r

�

div ~s

�

+ ��~s

i

+ �

�

~

rr + ~s

�

= �

"

2

(�+ 2�)

3

~

r�u

KL

; (44b)

r(~x)

�

�

�

~x2@

~




= 0; ~s(~x)

�

�

�

~x2@

~




= 0: (44c)

We multiply (44a) by r in L

2

(

~


;R) and (44b) by ~s in L

2

(

~


;R

2

) and then add the two
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equations. With the help of integration by parts we obtain

"

2

3

h

(�+ �) kdiv ~sk

2

L

2

(

~


;R)

+ � kr~sk

2

L

2

(

~


;R

2�2

)

i

+ �










~

rr + ~s










2

L

2

(

~


;R

2

)

= �

"

2

(�+ 2�)

3

D

~

rr + ~s

~

r�u

KL

E

L

2

(

~


;R

2

)

�

�

2










~

rr + ~s










2

L

2

(

~


;R

2

)

+

"

4

(�+ 2�)

2

18�










~

r�u

KL










2

L

2

(

~


;R

2

)

: (45)

Furthermore, with the help of (26) and elliptic regularity theory we obtain the following

a{priori estimates for u

KL

:

ku

KL

k

H

k+2

(

~


;R)

� C

k

kfk

H

k�2

(

~


;R)

8k 2 N : (46)

Then, with the help of (45), (46) and Poincar�e's inequality we obtain

k~sk

H

1

(

~


;R

2

)

� C" kfk

H

�1

(

~


;R)

;










~

rr + ~s










L

2

(

~


;R

2

)

� C"

2

kfk

H

�1

(

~


;R)

: (47)

This yields (42a) and (42d). Next, we rewrite (44b) as

(�+ �)

~

r

�

div ~s

�

+ ��~s =

3�

"

2

�

~

rr + ~s

�

+ (�+ 2�)

~

r�u

KL

: (48)

Then, with the help of elliptic regularity theory and (46), (47) we obtain

k~sk

H

2

(

~


;R

2

)

�

^

C

�

1

"

2










~

rr + ~s










L

2

(

~


;R

2

)

+










~

r�u

KL










L

2

(

~


;R

2

)

�

� C kfk

H

�1

(

~


;R)

: (49)

This yields the second inequality in (42e). Next, we rewrite (44a) as

� ��r = "

2

f(~x) + � div ~s: (50)

Then, with the help of elliptic regularity theory and (47), (49) we obtain

krk

H

2

(

~


;R)

�

^

C

�

"

2

kfk

L

2

(

~


;R)

+ k~sk

H

1

(

~


;R

2

)

�

� C

�

"

2

kfk

L

2

(

~


;R)

+ " kfk

H

�1

(

~


;R)

�

; (51a)

krk

H

3

(

~


;R)

�

^

C

�

"

2

kfk

H

1

(

~


;R)

+ k~sk

H

2

(

~


;R

2

)

�

� C

�

"

2

kfk

H

1

(

~


;R)

+ kfk

H

�1

(

~


;R)

�

: (51b)

This yields (42b) and (42c). 2

5 The Simpli�ed Dynamic Problem

In this section we consider the dynamic problems in the sense of Kirchho�{Love and

Reissner{Mindlin under the simplifying assumptions that the Lam�e constants �, � are so
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large and that " is so small, that in the equations the terms of order "

2

can be neglected

in comparison with the terms of order "

2

�, "

2

�, �, � and 1.

Furthermore, we assume that the external body force vanishes, i.e. f(~x) = 0.

The Simpil�ed Dynamic Problem in the Sense of Kirchho�{Love

The simpil�ed dynamic problem in the sense of Kirchho�{Love reads

@

2

t

u

KL

+

"

2

(�+ 2�)

3

��u

KL

= 0; (52a)

u

KL

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

(~x; t)

�

�

�

~x2@

~




= 0; (52b)

u

KL

(~x; 0) = u

0

(~x); @

t

u

KL

(~x; 0) = u

1

(~x): (52c)

Furthermore, Kirchho�'s normal hypothesis reads

~v

KL

(~x; t) = �

~

ru

KL

(~x; t): (53)

Theorem 6 (Existence, Uniqueness, Regularity)

The simpli�ed dynamic Kirchho�{Love problem (52) possesses a unique weak solution

u

KL

2 C

1

(

~


� R;R).

Proof.

This is a well known fact from the theory of evolution equations. 2

Next, we consider an asymptotic expansion of the solution u

KL

with respect to ". We

make the formal ansatz

u

KL

(~x; t) :=

1

X

k=0

"

2k

u

KL

k

(~x; t) (54)

and insert it into the Kirchho�{Love problem (52). Then, we obtain

@

2

t

u

KL

0

= 0; (55a)

u

KL

0

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

0

(~x; t)

�

�

�

~x2@

~




= 0; (55b)

u

KL

0

(~x; 0) = u

0

(~x); @

t

u

KL

0

(~x; 0) = u

1

(~x) (55c)

and

@

2

t

u

KL

k+1

+

�+ 2�

3

��u

KL

k

= 0; (56a)

u

KL

k+1

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

k+1

(~x; t)

�

�

�

~x2@

~




= 0; (56b)

u

KL

k+1

(~x; 0) = 0; @

t

u

KL

k+1

(~x; 0) = 0: (56c)
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Furthermore, let n 2 N be �x. Then, we de�ne a formal approximate solution to the

simpli�ed dynamic Kirchho�{Love problem (52) by

u

KL

app

(~x; t) :=

n

X

k=0

"

2k

u

KL

k

(~x; t): (57)

Theorem 7 (Asymptotic Expansion)

1. The recursion problem (55), (56) possesses a unique solution given by

u

KL

k

(~x; t) =

�

�

�+ 2�

3

�

k

�

t

2k

(2k)!

�

2k

u

0

(~x) +

t

2k+1

(2k + 1)!

�

2k

u

1

(~x)

�

: (58)

2. Let T > 0, p; q 2 N and let s 2 N be su�ciently large.

Then, the following a{priori estimate holds for all " > 0:







u

KL

� u

KL

app







C

p

([�T;T ];H

2q

(

~


;R))

� C"

2n+2

�

ku

0

k

H

s

(

~


;R)

+ ku

1

k

H

s

(

~


;R)

�

: (59)

In particular, the formal expansion (54) is actually an asymptotic expansion.

Proof.

1. Obviously, the unique solution to the equations (55a), (55c) and (56a), (56c) is given

by (58). Since u

0

and u

1

have compact support, the constraints (55b) and (56b) are

also satis�ed.

2. Let m 2 N . We de�ne r

KL

m

2 C

1

(

~


� [�T; T ];R) by

r

KL

m

(~x; t) := u

KL

(~x; t)�

m

X

k=0

"

2k

u

KL

k

(~x; t): (60)

Let 0 � i � 2m. We show that @

i

t

r

KL

m

satis�es the following initial boundary value

problem:

@

i+2

t

r

KL

m

+

"

2

(�+ 2�)

3

��@

i

t

r

KL

m

= �

"

2m+2

(�+ 2�)

3

��@

i

t

u

KL

m

; (61a)

@

i

t

r

KL

m

(~x; t)

�

�

�

~x2@

~




= 0;

~

r@

i

t

r

KL

m

(~x; t)

�

�

�

~x2@

~




= 0; (61b)

@

i

t

r

KL

m

(~x; 0) = 0; @

i+1

t

r

KL

m

(~x; 0) = 0: (61c)

For i = 0 the statement follows from (52) and the construction of u

KL

k

.

For i = 1; : : : ; 2m the statement follows by induction, since by (58) we have

��@

i�1

t

u

KL

m

(~x; 0) = 0: (62)
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Next, we multiply (61a) by @

i+1

t

r

KL

m

in L

2

(

~


;R) and integrate with respect to t.

With the help of integration by parts we obtain for all t 2 [�T; T ]

1

2







@

i+1

t

r

KL

m

(�; t)







2

L

2

(

~


;R)

+

"

2

(�+ 2�)

6







r

2

@

i

t

r

KL

m

(�; t)







2

L

2

(

~


;R

2�2

)

= �

"

2m+2

(�+ 2�)

3

Z

t

0




@

i+1

t

r

KL

m

(�; �) ��@

i

t

u

KL

m

(�; �)

�

L

2

(

~


;R)

dt

�

"

2m+2

(�+ 2�)

3







@

i+1

t

r

KL

m







C

0

([�T;T ];L

2

(

~


;R))







��@

i

t

u

KL

m







L

1

([�T;T ];L

2

(

~


;R))

�

1

4







@

i+1

t

r

KL

m







2

C

0

([�T;T ];L

2

(

~


;R))

+ C"

4m+4







��@

i

t

u

KL

m







2

L

1

([�T;T ];L

2

(

~


;R))

: (63)

Now, let s 2 N be su�ciently large. Then, with the help of (58), (63) and Poincar�e's

inequality we obtain







@

i+1

t

r

KL

m







C

0

([�T;T ];L

2

(

~


;R))

� C"

2m+2

�

ku

0

k

H

s

(

~


)

+ ku

1

k

H

s

(

~


;R)

�

; (64a)







@

i

t

r

KL

m







C

0

([�T;T ];H

2

(

~


;R))

� C"

2m+1

�

ku

0

k

H

s

(

~


)

+ ku

1

k

H

s

(

~


;R)

�

: (64b)

Next, we rewrite (61a) as

"

2

(�+ 2�)

3

��@

i

t

r

KL

m

= �@

i+2

t

r

KL

m

�

"

2m+2

(�+ 2�)

3

��@

i

t

u

KL

m

: (65)

Let j 2 N and s 2 N be su�ciently large. Then, with the help of elliptic regularity

theory and (58) we obtain







@

i

t

r

KL

m







C

0

([�T;T ];H

2j

(

~


;R))

� C"

�2







@

i+2

t

r

KL

m







C

0

([�T;T ];H

2j�4

(

~


;R))

+ C"

2m

�

ku

0

k

H

s

(

~


)

+ ku

1

k

H

s

(

~


;R)

�

: (66)

Furthermore, let 0 � l � 2m+ 1. Then, with the help of (61c) we obtain

kr

KL

m

k

C

l

([�T;T ];H

2j

(

~


;R))

� C







@

l

t

r

KL

m







C

0

([�T;T ];H

2j

(

~


;R))

(67)

Now, we choose i = 2m in (64) and apply (66) inductively. Then, with the help of

(67) we obtain

kr

KL

m

k

C

l

([�T;T ];H

4m+2�2l

(

~


;R))

� C"

l+1

�

ku

0

k

H

s

(

~


)

+ ku

1

k

H

s

(

~


;R)

�

: (68)

Finally, we estimate u

KL

� u

KL

app

. By construction we have for m � n

u

KL

� u

KL

app

= r

KL

m

+

m

X

k=n+1

"

2k

u

KL

k

: (69)

Now, we choose m; l su�ciently large, l � maxfp; 2n + 1g and 4m + 2 � 2l � 2q.

Then, the desired statement (59) follows from (58), (68) and (69).
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The Simpli�ed Dynamic Problem in the Sense of Reissner{Mindlin

The simpli�ed dynamic problem in the sense of Reissner{Mindlin reads

@

2

t

u

RM

� �

�

�u

RM

+ div ~v

RM

�

= 0; (70a)

�

"

2

3

h

(�+ �)

~

r

�

div ~v

RM

�

+ ��~v

RM

i

+ �

�

~

ru

RM

+ ~v

RM

�

= 0; (70b)

u

RM

(~x; t)

�

�

�

~x2@

~




= 0; ~v

RM

(~x; t)

�

�

�

~x2@

~




= 0; (70c)

u

RM

(~x; 0) = u

0

(~x); @

t

u

RM

(~x; 0) = u

1

(~x): (70d)

We remark that by our simplifying assumption the term @

2

t

~v

RM

has vanished from equation

(70b). Consequently, we can no longer impose the initial conditions (17b) on ~v

RM

.

Furthermore, from (70a) and u

0

2 C

1

0

(

~


;R) we formally obtain

@

2

t

u

RM

(~x; 0)

�

�

�

~x2@

~




= �

�

div ~v

RM

(~x; 0)

�

�

�

�

~x2@

~




: (71)

But, in general this contradicts the �rst boundary condition in (70c). Consequently, we

can not expect that the regularity of the solution (u

RM

; ~v

RM

) will allow us to take the trace

of @

2

t

u

RM

(�; t) on @

~


.

Theorem 8 (Existence, Uniqueness, Regularity)

The simpli�ed dynamic Reissner{Mindlin problem (70) possesses a unique weak solution

(u

RM

; ~v

RM

) 2

T

2

k=0

C

k

�

R; H

2�k

(

~


;R)

�

� C

k

�

R; H

3�k

(

~


;R

2

)

�

.

Proof.

We de�ne a continuous linear operator A : H

k+1

(

~


;R

2

) \H

1

0

(

~


;R

2

) �! H

k�1

(

~


;R

2

) by

A ~w := �

"

2

3

h

(�+ �)

~

r

�

div ~w

�

+ �� ~w

i

+ � ~w: (72)

With the help of elliptic theory we �nd that A is bijective for all k 2 N . Now, we can

rewrite the PDE system (70a), (70b) as

~v

RM

= ��A

�1

(

~

ru

RM

); (73)

@

2

t

u

RM

� ��u

RM

+ �

2

divA

�1

~

ru

RM

= 0: (74)

With the help of the theory of evolution equations we �nd that the initial boundary value

problem (74), (70a), (70b) possesses a unique solution u

RM

2

T

2

k=0

C

k

�

R; H

2�k

(

~


;R)

�

.

Furthermore, with the help of (73) we obtain ~v

RM

2

T

2

k=0

C

k

�

R; H

3�k

(

~


;R)

�

. 2

Next, we consider an asymptotic expansion of the solution (u

RM

; ~v

RM

) with respect to ".

We make the formal ansatz

u

RM

(~x; t) :=

1

X

k=0

"

2k

u

RM

k

(~x; t); ~v

RM

(~x; t) :=

1

X

k=0

"

2k

~v

RM

k

(~x; t) (75)
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and insert it into the Reissner{Mindlin problem (70). Then, we obtain

@

2

t

u

RM

0

= 0; ~v

RM

0

= �

~

ru

RM

0

; (76a)

u

RM

0

(~x; t)

�

�

�

~x2@

~




= 0; ~v

RM

0

(~x; t)

�

�

�

~x2@

~




= 0; (76b)

u

RM

0

(~x; 0) = u

0

(~x); @

t

u

RM

0

(~x; 0) = u

1

(~x) (76c)

and

@

2

t

u

RM

k+1

=

�+ 2�

3

�

�

div ~v

RM

k

�

; (77a)

~v

RM

k+1

= �

~

ru

RM

k+1

+

1

3�

h

(�+ �)

~

r

�

div ~v

RM

k

�

+ ��~v

RM

k

i

; (77b)

u

RM

k+1

(~x; t)

�

�

�

~x2@

~




= 0; ~v

RM

k+1

(~x; t)

�

�

�

~x2@

~




= 0; (77c)

u

RM

k+1

(~x; 0) = 0; @

t

u

RM

k+1

(~x; 0) = 0: (77d)

Furthermore, let n 2 N be �x. Then, we de�ne a formal approximate solution to the

simpli�ed dynamic Reissner{Mindlin problem (70) by

u

RM

app

(~x; t) :=

n

X

k=0

"

2k

u

RM

k

(~x; t); ~v

RM

app

(~x; t) :=

n

X

k=0

"

2k

~v

RM

k

(~x; t): (78)

Theorem 9 (Asymptotic Expansion)

1. The recursion problem (76), (77) possesses a unique solution given by

u

RM

0

(~x; t) = u

0

(~x) + tu

1

(~x); (79a)

u

RM

k+1

(~x; t) =

�

�+ 2�

3

�

k+1

k

X

l=0

�

k

l

�

(�1)

l+1

�

k�l

�

�

t

2l+2

(2l + 2)!

�

k+l+2

u

0

(~x)

t

2l+3

(2l + 3)!

�

k+l+2

u

1

(~x)

�

; (79b)

~v

RM

k

(~x; t) =

�

�+ 2�

3

�

k

k

X

l=0

�

k

l

�

(�1)

l+1

�

k�l

�

�

t

2l

(2l)!

~

r�

k+l

u

0

(~x)

t

2l+1

(2l + 1)!

~

r�

k+l

u

1

(~x)

�

: (79c)

2. Let T > 0 and let s 2 N be su�ciently large.

Then, the following a{priori estimate holds for all " > 0:







u

RM

� u

RM

app







\

2

k=0

C

k

([�T;T ];H

2�k

(

~


;R))

� C"

2n+2

�

ku

0

k

H

s

(

~


;R)

+ ku

1

k

H

s

(

~


;R)

�

; (80a)







~v
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� ~v

RM

app







\

2

k=0

C

k

([�T;T ];H

3�k

(

~


;R

2

))

� C"

2n+2

�

ku

0

k

H

s

(

~


;R)

+ ku

1

k

H

s

(

~


;R)

�

: (80b)
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In particular, the formal expansion (75) is actually an asymptotic expansion.

Proof.

1. Obviously, the unique solution to the equations (76a), (76c) and (77a), (77b), (77d)

is given by (79). Since u

0

and u

1

have compact support, the constraints (76b) and

(77c) are also satis�ed.

2. Let m 2 N . We de�ne (r

RM

m

; ~s

RM

m

) 2

T

2

k=0

C

k

�

R; H

2�k

(

~


;R)

�

� C

k

�

R; H

3�k

(

~


;R

2

)

�

by

r

RM

m

:= u

RM

�

m

X

k=0

"

2k

u

RM

k

; ~s

RM

m

:= ~v

RM

�

m

X

k=0

"

2k

~v

RM

k

: (81)

By construction (r

RM

m

; ~s

RM

m

) satis�es the following initial boundary value problem:

@

2

t

r

RM

m

� �

�

�r

RM

m

+ div ~s

RM

m

�

= 0; (82a)

�

"

2

3

h

(�+ �)

~

r

�

div ~s

RM

m

�

+ ��~s

RM

m

i

+ �

�

~

rr

RM

m

+ ~s

RM

m

�

= "

2m+2

~

�(~x; t); (82b)

r

RM

m

(~x; t)

�

�

�

~x2@

~




= 0; ~s

RM

m

(~x; t)

�

�

�

~x2@

~




= 0; (82c)

r

RM

m

(~x; 0) = 0; @

t

r

RM

m

(~x; 0) = 0 (82d)

where

~

� :=

1

3

h

(�+ �)

~

r

�

div ~v

RM

m

�

+ ��~v

RM

m

i

: (83)

We multiply (82a) by @

t

r

RM

m

(�; t) in L

2

(

~


;R) and (82b) by @

t

~s

RM

m

(�; t) in L

2

(

~


;R

2

).

Then, we add the two equations and integrate with respect to t. With the help of

integration by parts we obtain for all t 2 [�T; T ]

E(t) :=

1

2

k@

t

r

RM

m

(�; t)k

2

L

2

(

~


;R)

+

�

2










~

rr

RM

m

(�; t) + ~s

RM

m

(�; t)










2

L

2

(

~


;R

2

)

+

"

2

�

6

kdiv ~s

RM

m

(�; t)k

2

L

2

(

~


;R)

+

"

2

�

12













r~s

RM

m

(�; t) +

�

r~s

RM

m

(�; t)

�

T













2

L

2

(

~


;R

2�2

)

= E(0) + "

2m+2

Z

t

0

D

@

t

~s

RM

m

(�; �)

~

�(�; �)

E

L

2

(

~


;R

2

)

d�

= E(0) + "

2m+2

D

~

rr

RM

m

(�; t) + ~s

RM

m

(�; t)

~

�(�; t)

E

L

2

(

~


;R

2

)

� "

2m+2

D

~s

RM

m

(�; 0)

~

�(�; 0)

E

L

2

(

~


;R

2

)

� "

2m+2

Z

t

0

D

~

rr

RM

m

(�; �) + ~s

RM

m

(�; �) @

t

~

�(�; �)

E

L

2

(

~


;R

2

)

d�

+ "

2m+2

Z

t

0

D

@

t

r

RM

m

(�; �) div

~

�(�; �)

E

L

2

(

~


;R)

d�
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�

1

2

E(t) + E(0) +

Z

t

0

E(�) d�

+ C

�

k~s

RM

m

(�; 0)k

2

L

2

(

~


;R

2

)

+ "

4m+4










~

�










2

C

1

([�T;T ];H

1

(

~


;R

2

))

�

: (84)

By construction we have

E(0) =

�

2

k~s

RM

m

(�; 0)k

2

L

2

(

~


;R

2

)

+

"

2

�

6

kdiv ~s

RM

m

(�; 0)k

2

L

2

(

~


;R)

+

"

2

�

12













r~s

RM

m

(�; 0) +

�

r~s

RM

m

(�; 0)

�

T













2

L

2

(

~


;R

2�2

)

: (85)

Furthermore, ~s

RM

m

(�; 0) satis�es the following boundary value problem:

�

"

2

3

h

(�+ �)

~

r

�

div ~s

RM

m

(�; 0)

�

+ ��~s

RM

m

(�; 0)

i

+ �~s

RM

m

(�; 0)

= "

2m+2

~

�(~x; 0); (86a)

~s

RM

m

(~x; 0)

�

�

�

~x2@

~




= 0: (86b)

With the help of elliptic regularity theory we obtain

"

2

k~s

RM

m

(�; 0)k

2

H

1

(

~


;R

2

)

+ k~s

RM

m

(�; 0)k

2

L

2

(

~


;R

2

)

� C"

4m+4










~

�(�; 0)










2

L

2

(

~


;R

2

)

: (87)

Now, we insert (85), (87) into (84). This yields

E(t) � 2

Z

t

0

E(�) d� + C"

4m+4










~

�










2

C

1

([�T;T ];H

1

(

~


;R

2

))

: (88)

With the help of Gronwall's inequality we obtain

E(t) � C"

4m+4










~

�










2

C

1

([�T;T ];H

1

(

~


;R

2

))

8t 2 [�T; T ]: (89)

Furthermore, with the help of Poincar�e's inequality and Korn's inequality we obtain










~
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m

+ ~s
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m
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0
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2
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;R))
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C

1
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1

(

~


;R

2
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; (90a)
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m

k

\

1

k=0

C

k

([�T;T ];H
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(
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;R))

� C"
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~
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C

1

([�T;T ];H

1

(

~


;R

2
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; (90b)

k~s
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m

k

C

0

([�T;T ];H

1

(

~


;R))

� C"

2m+1










~

�










C

1

([�T;T ];H

1

(

~


;R

2

))

: (90c)

Next, we formally di�erentiate the initial boundary value problem (82) with respect

to t and note that

@

2

t

r

RM

m

(~x; 0) = � div ~s

RM

m

(~x; 0): (91)
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Then, with the help of a Galerkin approximation procedure we can apply the same

arguments as above. This yields










~

rr

RM

m

+ ~s

RM

m










C

1
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2

(

~


;R))

� C"
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C

2
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1

(

~


;R

2
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; (92a)
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m

k

\

2
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C

k

([�T;T ];H
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(
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(
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; (92b)
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m

k

C
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(
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1

(
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2
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: (92c)

Next, we rewrite (82a) as

�r

RM

m

=

1

�

@

2

t

r

RM

m

� div ~s

RM

m

: (93)

Then, with the help of elliptic regularity theory and (90), (92) we obtain
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m
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^
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0
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(
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1

(

~


;R

2
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: (94)

Next, we rewrite (82b) as

�

"

2

3

h

(�+ �)

~

r

�

div ~s

RM

m

�

+ ��~s

RM

m

i

+ �~s

RM

m

= "
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~

�(~x; t)� �

~

rr

RM

m

: (95)

Then, with the help of elliptic regularity theory and (92), (94) we obtain
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m
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(
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; (96a)
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: (96b)

Finally, we estimate u

RM

� u

RM

app

and ~v

RM

� ~v

RM

app

. By construction we have

u

RM

� u

RM

app

= r

RM

n+2

+

n+2

X

k=n+1

"
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u

RM

k

; ~v
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� ~v
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+
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X
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"

2k

~v

RM

k

: (97)

Now, the desired statement (80) follows from (79), (83), (92), (94), (96) and (97).
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Comparison of the Simpli�ed Dynamic Problems

Theorem 10 (Comparison Theorem)

Let (u

KL

; ~v

KL

) be the solution to the simpli�ed dynamic Kirchho�{Love problem (52), (53),

let (u

RM

; ~v

RM

) be the solution to the simpli�ed dynamic Reissner{Mindlin problem (70) and

let s 2 N be su�ciently large.

Then, the following a{priori estimates hold for all " > 0:
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(
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(
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; (98a)
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; (98b)
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In particular, the Kirchho�{Love solution (u

KL

; ~v

KL

) and the Reissner{Mindlin solution

(u

RM

; ~v

RM

) coincide as "! 0.

Proof.

By (53), (58) and (79) we have

u

KL

0

= u

RM

0

; u

KL

1

= u

RM

1

; ~v

KL

0

= ~v

RM

0

= �

~

ru

RM

0

: (99)

Now, the desired statement (98) follows from (59), (80). 2

6 The Full Dynamic Problem

In this section we consider the full dynamic problems in the sense of Kirchho�{Love and

Reissner{Mindlin. As in the previous section we assume that the external body force

vanishes, i.e. f(~x) = 0.

The Full Dynamic Problem in the Sense of Kirchho�{Love

The full dynamic problem in the sense of Kirchho�{Love reads

@

2

t

u

KL

�

"

2

3

h

@

2

t

�u

KL

� (�+ 2�)��u

KL

i

= 0; (100a)

u

KL

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

(~x; t)

�

�

�

~x2@

~




= 0; (100b)

u

KL

(~x; 0) = u

0

(~x); @

t

u

KL

(~x; 0) = u

1

(~x): (100c)

Furthermore, Kirchho�'s normal hypothesis reads

~v

KL

(~x; t) := �

~

ru

KL

(~x; t): (101)

From (100) we formally obtain that @

2

t

u

KL

(�; 0) satis�es the following boundary value

problem:

@

2

t

u

KL

(�; 0)�

"

2

3

@

2

t

�u

KL

(�; 0) = �

"

2

(�+ 2�)

3

��u

KL

0

(~x); (102a)
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@

2

t

u

KL

(~x; 0)

�

�

�

~x2@

~




= 0: (102b)

But, in general this contradicts the second boundary condition in (100b). Consequently,

we can not expect that the regularity of the solution u

KL

will allow us to take the trace

of @

2

t

u

KL

(�; t) on @

~


.

Theorem 11 (Existence, Uniqueness, Regularity)

The full dynamic Kirchho�{Love problem (100) possesses a unique weak solution

u

KL

2

T

2

k=0

C

k

�

R; H

3�k

(

~


;R)

�

.

Proof.

Let H := H

1

0

(

~


;R), V := H

2

0

(

~


;R). With the help of Poincar�e's inequality we can de�ne

equivalent scalar products on H;V by

hu vi

H

:= hu vi

L

2

(

~


;R)

+

"

2

3

D

~

ru

~

rv

E

L

2

(

~


;R

2

)

8u; v 2 H; (103a)

hu vi

V

:=

"

2

(�+ 2�)

3




r

2

u r

2

v

�

L

2

(

~


;R

2�2

)

8u; v 2 V: (103b)

Then, for test functions y 2 C

1

0

�

[0;1);V

�

the weak formulation of the Kirchho�{Love

problem (100) reads

�

Z

1

0

h@

t

y(�; t) @

t

u

KL

(�; t)i

H

dt� hy(�; 0) u

1

i

H

+

Z

1

0

hy(�; t) u

KL

(�; t)i

V

dt

= 0; (104a)

u

KL

(~x; 0) = u

0

(~x): (104b)

With the help of the theory of evolution equations we �nd that (104) possesses a unique

solution u

KL

2 C

0

�

[0;1);V

�

\C

1

�

[0;1);H

�

and with the help of a time reversal argument

we �nd that actually u

KL

2 C

0

�

R;V

�

\ C

1

�

R;H

�

.

Furthermore, the boundary value problem (102) possesses a unique weak solution

u

2

� u

KL

(�; 0) 2 H. But this is a compatibility condition to the Kirchho�{Love problem

(100). Consequently, with the help of the theory of evolution equations we �nd that

actually u

KL

2 C

1

�

R;V

�

\ C

2

�

R;H

�

.

Next, we rewrite (100a) as

"

2

(�+ 2�)

3

��u

KL

= �@

2

t

u

KL

+

"

2

3

@

2

t

�u

KL

=: �(~x; t) (105)

where � 2 C

0

�

R; H

�1

(

~


;R)

�

. With the help of elliptic regularity theory we �nd that

u

KL

2 C

0

�

R; H

3

(

~


;R)

�

. 2

Next, we consider an asymptotic expansion of the solution u

KL

with respect to ". We

make the formal ansatz

u

KL

(~x; t) :=

1

X

k=0

"

2k

u

KL

k

(~x; t) (106)
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and insert it into the Kirchho�{Love problem (100). Then, we obtain

@

2

t

u

KL

0

= 0; (107a)

u

KL

0

(~x; t)

�

�

�

~x2@

~




= 0;

~

ru

KL

0

(~x; t)

�

�

�

~x2@

~




= 0; (107b)

u

KL

0

(~x; 0) = u

0

(~x); @

t

u

KL

0

(~x; 0) = u

1

(~x) (107c)

and

@

2

t

u

KL

k+1

=

1

3

h

@

2

t

�u

KL

k

� (�+ 2�)��u

KL

k

i

; (108a)

u

KL

k+1

(~x; t)

�

�

�

~x2@

~




= 0;

~
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KL

k+1

(~x; t)

�

�

�

~x2@

~




= 0; (108b)

u

KL

k+1

(~x; 0) = 0; @

t

u

KL

k+1

(~x; 0) = 0: (108c)

Furthermore, let n 2 N be �x. Then, we de�ne a formal approximate solution to the full

dynamic Kirchho�{Love problem (100) by

u

KL

app

(~x; t) :=

n

X

k=0

"

2k

u

KL

k

(~x; t): (109)

Theorem 12 (Asymptotic Expansion)

1. The recursion problem (107), (108) possesses a unique solution given by

u

KL

0

(~x; t) = u

0

(~x) + tu

1

(~x); (110a)

u

KL

k+1

(~x; t) =

1

3

k+1

k

X

l=0

�

k

l

�

(�1)

l+1

(�+ 2�)

l+1

�

�

t

2l+2

(2l + 2)!

�

l+k+2

u

0

(~x) +

t

2l+3

(2l + 3)!

�

l+k+2

u

1

(~x)

�

: (110b)

2. Let T > 0 and let s 2 N be su�ciently large.

Then, the following a{priori estimate holds for all " > 0:







u

KL

� u

KL

app







\

2

k=0

C

k

([�T;T ];H

3�k

(

~


;R))

� C"

2n+2

�

ku

0

k

H

s

(

~


;R)

+ ku

1

k

H

s

(

~


;R)

�

: (111)

In particular, the formal expansion (106) is actually an asymptotic expansion.
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Proof.

1. Obviously, the unique solution to the equations (107a), (107c) and (108a), (108c) is

given by (110). Since u

0

and u

1

have compact support, the constraints (107b) and

(107b) are also satis�ed.

2. Let m 2 N . We de�ne r

KL

m

2

T

2

k=0

C

k

�

R; H

3�k

(

~


;R)

�

by

r

KL

m

(~x; t) := u

KL

(~x; t)�

m

X

k=0

"

2k

u

KL

k

(~x; t): (112)

By construction r

KL

m

satis�es the following initial boundary value problem:

@

2

t

r

KL

m

�

"

2

3

h

@

2

t

�r

KL

m

� (�+ 2�)��r

KL

m

i

= "

2m+2

�(~x; t); (113a)

r
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m

(~x; t)
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�
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~




= 0;

~
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m

(~x; t)

�

�

�

~x2@
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= 0; (113b)

r

KL

m

(~x; 0) = 0; @

t

r

KL

m

(~x; 0) = 0 (113c)

where

� :=

1

3

h

@

2

t

�u

KL

m

� (�+ 2�)��u

KL

m

i

: (114)

We multiply (113) by @

t

r

KL

m

(�; t) in L

2

(

~


;R) and integrate with respect to t. With

the help of integration by parts we obtain for all t 2 [�T; T ]
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2
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t

r
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m

(�; t)k

2
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(
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)
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r
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r
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)
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Z

t

0
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m

k

C

0
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(
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L

1
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2

(
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�

1

4
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t

r

KL

m

k

2

C

0

([�T;T ];L

2

(
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;R))

+ C"

4m+4
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2

L

1

([�T;T ];L

2

(

~


;R))

: (115)

With the help of (115) and Poincar�e's inequality we obtain
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t
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m

k
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0
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(
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; (116a)

k@

t

r

KL

m

k

C

0

([�T;T ];H

1

(
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; (116b)
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(
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1

([�T;T ];L
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(

~


;R))

: (116c)

Next, we formally di�erentiate the initial boundary value problem (113) with respect

to t and note that @

2

t

r

KL

m

(�; 0) satis�es the following boundary value problem:

@

2

t

r

KL

m

(�; 0)�

"

2

3

@

2

t

�r

KL

m

(�; 0) = "

2m+2

�(~x; 0); (117a)
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@
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t

r
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m
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�

�

�

~x2@
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= 0: (117b)

With the help of elliptic regularity theory and (110) we obtain
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H
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(
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: (118)

Now, with the help of a Galerkin approximation procedure we can apply the same

arguments as above. This yields
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; (119a)
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; (119b)
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: (119c)

Next, we rewrite (113a) as

"
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m
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2

t

r
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m

+

"

2

3

@
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�r
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m

+ "
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�(~x; t): (120)

Then, with the help of elliptic regularity theory and (119) we obtain
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(
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: (121)

Finally, we estimate u

KL

� u

KL

app

. By construction we have

u

KL

� u

KL

app

= r

KL

n+1

+ "

2n+2

u

KL

n+1

: (122)

Now, the desired statement (111) follows from (110), (114) (119), (121) and (122).

2

The Full Dynamic Problem in the Sense of Reissner{Mindlin

The full dynamic problem in the sense of Reissner{Mindlin reads

@

2

t

u
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� �

�

�u
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+ div ~v
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�

= 0; (123a)
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t
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r

�
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�
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�

= 0; (123b)
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�

�

�
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= 0; (123c)

u

RM

(~x; 0) = u

0

(~x); @

t

u

RM

(~x; 0) = u

1

(~x); (123d)
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(~x); @
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(~x; 0) = �
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(~x): (123e)
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Theorem 13 (Existence, Uniqueness, Regularity)

The full dynamic problem in the sense of Reissner{Mindlin possesses a unique weak so-

lution (u

RM

; ~v

RM

) 2 C

1

�

R �

~


;R

�

� C

1

�

R �

~


;R

2

�

.

Proof.

This is a well known fact from the theory of evolution equations. 2

Next, we consider an asymptotic expansion of the solution (u

RM

; ~v

RM

) with respect to ".

We make the formal ansatz

u

RM

(~x; t) :=

1

X

k=0

"

2k

u

RM

k

(~x; t); ~v

RM

(~x; t) :=

1

X
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"

2k

~v

RM

k

(~x; t) (124)

and insert it into the Reissner{Mindlin problem (123). Then, we obtain
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; (125a)
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= 0; (125b)

u
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0

(~x; 0) = u

0

(~x); @

t

u
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0

(~x; 0) = u

1

(~x); (125c)
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(~x); @

t
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0

(~x; 0) = �

~
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(~x) (125d)

and

@
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u
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�
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�
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; (126a)
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h

(�+ �)
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�
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; (126b)
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= 0; (126c)

u
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t

u
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(~x; 0) = 0; (126d)

~v
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k+1

(~x; 0) = 0; @

t

~v

RM

k+1

(~x; 0) = 0: (126e)

Furthermore, let n 2 N be �x. Then, we de�ne a formal approximate solution to the full

dynamic Reissner{Mindlin problem (123) by

u

RM

app

(~x; t) :=

n

X

k=0

"

2k

u

RM

k

(~x; t); ~v

RM

app

(~x; t) :=

n

X
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"

2k

~v

RM

k

(~x; t): (127)

Theorem 14 (Asymptotic Expansion)

1. The recursion problem (125) possesses a unique solution given by

u

RM

0

(~x; t) = u

0

(~x) + tu

1

(~x); (128a)
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0
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~
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0

(~x)� t

~
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1

(~x): (128b)
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In particular, the zero{order terms in the formal expansion (124) of the Reissner{

Mindlin solution are exactly the zero{order terms in the asymptotic expansion (106)

of the Kirchho�{Love solution, i.e. we have

(u

RM

0

; ~v

RM

0

) = (u

KL

0

; ~v

KL

0

): (129)

2. When we exclude the constraint (126e) from (126), then the remaining recursion

problem possesses a unique solution given by

u
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�
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1
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k+1

(~x; t) =

~
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(~x; t) (130b)

where w

k

is given recursively by
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(~x; t): (131b)

3. For k = 0 the constraint (126e) is satis�ed if and only if

�u

0

= constant; �u

1

= constant: (132)

Then, the solution to the full dynamic Reissner{Mindlin problem (123) is given by

the zero{order terms in the formal expansion (124), i.e. we have

(u
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; ~v
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) = (u

RM

0

; ~v
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0

): (133)

4. The formal approximate solution (u

RM

app

; ~v

RM

app

) satis�es the following initial boundary

value problem:
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= 0; (134a)
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�(~x; t); (134b)
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�

�
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= 0; ~v

RM

app

(~x; t)

�

�

�

~x2@

~




= 0; (134c)

u

RM

app

(~x; 0) = u

0

(~x); @

t

u

RM

app

(~x; 0) = u

1

(~x); (134d)

~v

RM

app

(~x; 0) = �

~

ru

0

(~x) + "

2

~
(~x; 0); (134e)

@

t

~v

RM

app

(~x; 0) = �

~

ru

1

(~x) + "

2

@

t

~
(~x; 0) (134f)
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where

~

� :=

1

3

@

2

t

�

~

rw

n

�

�

�+ 2�

3

~

r

�

�w

n

�

; (135a)

~
 :=

n

X

k=1

"

2k�2

~

rw

k

(135b)

In particular, (u

RM

app

; ~v

RM

app

) satis�es the Reissner{Mindlin PDE system (123a), (123b)

up to terms of order "

2n+2

and the corresponding boundary and initial conditions

(123c), (123d) exactly. Furthermore, (u

RM

app

; ~v

RM

app

) satis�es the corresponding initial

conditions (123e) up to terms of order "

2

.

Proof.

1. Obviously, the unique solution to the equations (125a), (125c) is given by (128).

By construction and since u

0

, u

1

have compact support, the constraints (125b) and

(125d) are also satis�ed. Furthermore, (129) follows from (101), (110a) and (128).

2. Obviously, the unique solution to the equations (126a), (126b), (126d) is given

by (130), (131). Since u

0

, u

1

have compact support, the constraint (126c) is also

satis�ed.

3. With the help of (130), (131) we obtain

~v

RM

1

(~x; 0) = �

�+ 2�

3�

~

r�u

0

(~x); @

t

~v

RM

1

(~x; 0) = �

� + 2�

3�

~

r�u

1

(~x): (136)

Consequently, (126e) is equivalent to (132). Furthermore, let (132) hold. Then, the

unique solution to the full dynamic Reissner{Mindlin problem (123) is obviously

given by (133).

4. The �rst statement (134) follows from the construction of (u

RM

app

; ~v

RM

app

) and (128),

(130), (131). The second statement follows from a comparison of (123) and (134).

2

Comparison of the Full Dynamic Problems

In theorem 14 we have seen that the zero{order terms in the formal expansion (127) of the

Reissner{Mindlin solution coincide with the zero{order terms in the asymptotic expansion

(101), (106) of the Kirchho�{Love solution.

On the other hand, in general condition (132) of the theorem does not hold and con-

sequently the series in (127) do not converge. Furthermore, the theorem shows that in

general (127) is not even an asymptotic expansion.

It remains to show, that the Kirchho�{Love solution (u

KL

; ~v

KL

) and the Reissner{Mindlin

solution (u

RM

; ~v

RM

) coincide as "! 0.
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Theorem 15 (Comparison Theorem)

Let (u

KL

; ~v

KL

) be the solution to the full dynamic Kirchho�{Love problem (100), (101),

let (u

RM

; ~v

RM

) be the solution to the full dynamic Reissner{Mindlin problem (123) and let

s 2 N be su�ciently large.

Then, the following a{priori estimates hold for all " > 0:
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; (137b)

ku

RM

� u

KL

k

C

1

([�T;T ];L

2

(

~


;R))

� C"

2

�

ku

0

k

H

s

(

~


;R)

+ ku

1

k

H

s

(

~


;R)

�

; (137c)
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: (137g)

In particular, the Kirchho�{Love solution (u

KL

; ~v

KL

) and the Reissner{Mindlin solution

(u

RM

; ~v

RM

) coincide as "! 0.

Proof.

With the help of (101) and (110a), (111) we obtain
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Next, we de�ne (r

RM

; ~s

RM

) 2 C

1

�

R �

~


;R

�

� C

1

�

R �

~


;R

2

�

by

r

RM

:= u

RM

� u

0

� tu

1

; ~s

RM

:= ~v

RM

+

~

ru

0

+ t

~

ru

1

: (139)

By construction, (r

RM

; ~s

RM

) satis�es the following initial boundary value problem:

@

2

t

r
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� �

�

�r

RM

+ div ~s

RM

�

= 0; (140a)
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�(~x; t); (140b)

r

RM

(~x; t)

�

�

�

~x2@

~




= 0; ~s

RM

(~x; t)

�

�

�

~x2@

~




= 0; (140c)

r

RM

(~x; 0) = 0; @

t

r

RM

(~x; 0) = 0; (140d)

~s

RM

(~x; 0) = 0; @

t

~s

RM

(~x; 0) = 0: (140e)
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We multiply (140a) by @

t

r

RM

(�; t) in L

2

(

~


;R) and (140b) by @

t

~s

RM

m

(�; t) in L

2

(

~


;R

2

). Then,

we add the two equations and integrate with respect to t. With the help of integration

by parts we obtain for all t 2 [�T; T ]
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With the help of Gronwall's inequality we obtain

E(t) � C"
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Furthermore, with the help of Poincar�e's inequality and Korn's inequality we obtain
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Next, we di�erentiate the initial boundary value problem (140) with respect to t and note

that

@

2

t

~s

RM

(~x; 0) = 3

~

�(~x; 0): (144)
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Then, we can apply the same arguments as above. This yields
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Next, we rewrite (140a) as
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: (146)

Then, with the help of elliptic regularity theory and (143), (145) we obtain
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Next, we rewrite (140b) as
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Then, with the help of elliptic regularity theory and (143), (145) we obtain
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Now, the desired statement (137) follows from (143), (145) and (147), (149). 2
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