L?-Regularity Theory of Linear
Strongly Elliptic Dirichlet Systems of Order 2m
with Minimal Regularity in the Coefficients !

Stefan Ebenfeld
Darmstadt Institut of Technology (Germany)
e-mail: ebenfeld@mathematik.tu-darmstadt.de

Contents

1 Statement of the Theorem 2
2 Preliminaries 5
3 Weak Solutions 6
4 Interior Regularity 9
5 Boundary Regularity 14
6 Global Regularity 28

In this article we consider the following Dirichlet system of order 2m:

L(z,V)u = f(x) in Q,
VFu =0 on 02 (k=0,...,m—1).

Here, Q is a smooth bounded domain in R™ and the differential operator L(z, V)
given by (1) satisfies the Legendre-Hadamard condition (4). From the general ellip-

tic theory we know that for sufficiently smooth coefficients Agg), Bé%m), C((,k) and for
f € H-™5(Q,RN), every weak solution u € HJ*(2, RV ) is actually in H™¢(Q, RY)

and satisfies an a—priori estimate of the following form:

[ull grm-ts (o pry < C 1 | zr-mes vy + K [ull L2 mvy -

The latter a—priori estimate is of particular interest in applications to nonlinear
PDE’s (see e.g. [6] and [10]). There the coeflicients of L(x, V) result from a lin-
earization procedure and consequently they cannot be chosen as smooth as one likes.
Therefore, e.g. in [10] (Kato) the author cannot use the famous results stated in [4]
(Agmon-Douglis-Nirenberg) but refers to [14] (Milani) instead.

Here, we proove the above regularity result under the assumptions (2), (8) on the
coefficients and we give an explicit representation formula for the regularity constants
C and K (see (10)).

!The following result constitutes a major part of a PhD thesis (see [7]).



1 Statement of the Theorem

Let 2 C R™ be a bounded domain with a smooth boundary 0f2.
We consider a linear differential operator of order 2m with NxN-matrix valued coefficients,

L(z, V)u := AL (2)0*0%u + Z B (2)0%0%u + Z CW (z)8%u (1)
k=0
where
AU € Ho(Q, RV (la] = 18] = m), (2a)
Bég ™ e B (Q,RVY) (la| = k, 8] = m), (2b)
Ok ¢ Fors (Q, RV*N) (|| = &). (2¢)

Here, o, 3 € R denote multiindices and we use Einstein’s summation convention, i.e. the
sum is taken over repeated indices in products. Furthermore, H'(Q) := W%2(Q) (t € R)
denote the L?-Sobolev spaces and the real numbers a,, by, ¢, will be chosen appropriately
below.

We define a bilinear form associated with the operator L(z, V),

m—1
Alv,u] := (—1)"‘/9(9“ (vTAgg))ﬁﬁu dz + Z(—l)k/ ( TB (km) )8514 dz
k=0
m—1
+ Z / vI'CW oy da. (3)
k=0 &

Throughout this article we will assume L(z, V) to be strongly elliptic,

0 otherwise

(1) (A @)e?)n > 85 e VeeQvecRvp e Y (4)
where
5((;2) _ {1 if o =0 and |o| = |B] =m, (5)

and we will refer to (4) as the Legendre-Hadamard condition.
We consider the following Dirichlet problem:

L(z,V)u = f(x) in €, (6a)
VFu =0 ondQ (k=0,...,m—1). (6b)

The associated weak formulation of the Dirichlet problem reads:

we HM(Q,RY), (7a)
Afv,u] = f[v] Yo € HMQ,RY). (7b)



Here, the boundary conditions are satisfied in the sense of trace. Furthermore, f[v] denotes
the dual pairing between the function v and the distribution f.

The main goal of this article is to prove the following theorem.

Theorem (Elliptic Regularity)
Let s €N, § > 0 and ag, bgs, cks € R such that

as>%+5, bks>g+6+k—m, ck5>g+5+k—2m, (8a)
ag 2 m, bks 2 k; Cks 2 0; <8b)
a, > s —m, bys > s —m, Chs > 8§ — M. (8¢c)

Furthermore, let f € H ™ (Q,RY) and let uw € HF'(Q,RY) be a weak solution to the
Dirichlet problem (6).
Then u is actually in H™5(Q, RY) and satisfies the following a—prior: estimate:

HUHHers(Q,RN) <C HfHH*mH(Q,RN) + K HUHL2(Q,RN) (9)
where
AL (m) ’
¢ = C(zﬁ: HAQB ‘HQS(Q,RMN) +1), (10a)
s(m+s)
k= k(0|5 +1)
a8 Wl pros (@ ey

Hbks (Q,RNXN)

m—1
(m) (km)
. <az,f; HA“B ‘ Has (Q,RNxN) * ; az,f; HBaﬁ ‘
m—1 (m+s)(1+8)
+2. 2 llcd

k=0 «

4
Hcks(QJRNXN) + 1) M (1Ob)

(km)

Here, the constants C', K are independent of u, f and of the coefficients Agg), B,s s

o,
The assumptions (8) on the coefficients are minimal in the following sense:

1. In the proof of the above theorem we will have to exploit the Legendre-Hadamard
condition (4) with the help of the Fourier transformation. Therefore, we will have
to localize the coefficients Agg) of the principal part of L(z, V). But this requires
continuity of the Agg). By the Sobolev imbedding theorem, the first inequality
in (8a) provides the minimal L?-regularity that guarantees the required continuity

and the other inequalities in (8a) are corresponding assumptions on the lower order
coeflicients.

2. In the proof of the above theorem for s = 0 we will have to characterize A as a
continuous bilinear form on H{"(2, RY). Therefore, (8b) is a necessary condition.
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3. In the proof of the above theorem for s > m we will have to characterize L(z, V) as a
bounded operator H™"*(Q, RY) — H~™%(Q, RY). Therefore, (8c) is a necessary
condition.

If we consider an operator in divergence form,
m—1
L(z,V)u := 0° (A&"g)(w)ﬁﬁu> + Z o” (Bi’;m)(x)aﬁzL) +)  CW(2)0%, (1)
k=0

then the assumptions (8a), (8b) of the above theorem remain unchanged ? whereas (8¢)
has to be replaced by
as > 8, bps > s—m+k, Chs > 8§ — M. (8¢’)

Consequently, the assumptions on the coefficients are minimal in the same sense as above.

Elliptic theory has now been a field of research for some decades and of course other
theorems of the above type do already exist. Some of the well known results on the
subject are the following:

1. In [2] (Agmon), [4] (Agmon—Douglis—Nirenberg), [8] (Giaquinta), [9] (Gilbarg—Tru-
dinger) and [18] (Wloka) the authors state their elliptic regularity theorems under
Ck—type assumptions on the coefficients.

2. In [6] (Dafermos—Hrusa) the authors prove local in time existence for a quasilinear
hyperbolic system (here, m = 1 and s > § + 1). Therefore, they need an elliptic
regularity theorem for coefficients with a; < s. They write that they could not
localize such a theorem in the published literature, but that they have verified that
the proofs go through under their assumptions.

3. Also in [10] (Kato) the author proves local in time existence for a quasilinear hyper-
bolic system (here again, m = 1 and s > § + 1), refering to the elliptic regularity
theory in [14] (Milani) and [16] (Morrey).

Furthermore, he (Kato) sketches the proof of an improved elliptic regularity theo-
rem, assuming that s > 7 and ay > s, bgs > s — 1, cos > 5 — 1.

Nevertheless, to the best of my knowledge there is no theorem in the published literature
that covers all the cases of the above theorem under the assumptions (8) on the coefficients,

and the representation formulas (10) for the regularity constants have not been previously
published.

In the remaining sections we will prove the above theorem:.

2 Actually, from the proof it will be clear that in this case the assumption (8b) can be replaced by

as > 0, bs > 0, cgs 2> 0. (8b")



2 Preliminaries

In this section we prove some preliminary results for later use.
Here and in the following, C, K,... > 0 denote generic constants independent of the
functions and the parameters under consideration.

Lemma 1 (Some Inequalities)

1. Letr,s,t € [0,00) such that r+s+t > % and let w € H'(Q), v € H*(Q), v € H(Q).
Then wou € L* () and

lwvullpygy < Cllwllge ) 101ls ) lull e - (11)
2. Let r € N and s,t € [r,00) such that s+t —r > % and let v e H*(Q), u € H ().
Then vu € H"(Q) and
lvull gr gy < Cllo]l oy 1l eey - (12)
3. Let 0 < s <t andlet ue H'(Q).
Then
iy < = (ellgey + =" [l vesoo (1
Proof. The inequalities (11) and (12) are direct consequences of the Hélder inequal-

ity and the Sobolev imbedding theorem. Inequality (13) is a well known interpolation
inequality. O

Next, we define a partition of unity on R". Let ¢ > 0, and let {2;}5°, be an enumeration
of Z". Furthermore, let ¢ € C§°(R) such that supp(¢) = [—1,1] and ¢(¢) > 0 for all
€ (—1,1). We define a set of functions {¢;.}52, C C°(R™),

sz HQ0<_ —Z; ) Spjs( ¢]s <Z¢ks
-1
By construction, the set {(;.}32, has the following properties:
2 #e=1 (15)
J

supp(pje) = €2 + [—¢,¢]", (15b)
HaaSOjEH(jg(Rn) = Ca5_|a‘ Ve > 0. (15¢)

\/
mlH

(14)

Next, we define an extension operator on the halfspace R? := R*~! x (0, c0).
Let 1 <l €N, and let {ay,...,ay} be the solution to the following Vandermonde system:

21

Z(‘%)jo‘uzl (j=0,...,20—1). (16)



For functions u : R} — R we define

u(Z, z™) if 2™ > 0,

Y2 au(F, —Lz") else.

Eu(z, a™) = {

For functions v : R* — R we define

2l

1\ 201
8* “‘7 n — “‘7 n _ < _ _) y "", _ n .
Ju(Z,2") = v(Z,2") Z ” a,v(&, —vz")
By construction, & and & are continous operators,
& HY(RY) — H*(R") (0<s <),
& HY(R") — H{(R?) (0<t<l).

In particular, & and & have the following property:

/ Ol vdl (&u) dz = / O (&fv)dLu dx vv € H'(R")Vu € H'(R?).
n R

n
+

3 Weak Solutions

(17)

(18)

(19a)
(19b)

(20)

In this section we prove the continuity and the coercivity of the bilinear form A and we
will refer to the latter as the Garding inequality. Furthermore, we prove the a—priori

estimate of the above theorem in the case s = 0.

Here and in the following, F : L*(R") — L*(R™) denotes the Fourier transformation and

for s € N we define

m—1
M, = ; HAW ‘ orian T I; ; HBaﬁ ‘

m—1
+2_2 e

k=0 «,8

=S
.3

HPks (QJRNXN)

HC¢ks (Q,RNXN) + ]‘7

+ 1.
Has (QRNXN)

Furthermore, we consider H{(Q) (¢ > 0) to be a subspace of H*(R").

Lemma 2 (Continuity of A)
Let s =0, 6 > 0 and let the assumptions (8) hold.
Then A is a continuous bilinear form,

A:H™Q,RY) x H™(Q,RY) — R.

(21a)

(21b)

(22)



In particular, the following estimates hold for all v,u € H™(2, RN):

Ay, u] - / 0T AT 9%u de| < Oy [0l s g ) 1] (23b)

where My, Ny are defined by (21).

We see that in (23a) m derivatives are acting on both v and u. Therefore, the right hand
side is proportional to the H™—norms of v and u. On the other hand, in (23b) at most
m — 1 derivatives are acting on v. Therefore, the right hand side is proportional to the
H™ % norm of v. But since the coefficients Agg), Bg},m), C® are not smooth enough we
cannot have the right hand side proportional to the H™ !-norm of v.

Proof. It is sufficient to prove the estimates (23). Now, (23a) is a direct consequence of
inequality (11). Furthermore, we have

‘A[v,u] - / (9“1)TASZ)8BU da:’
Q

m—1
<C Z/ ‘Vm_lA(m) @ Vi ® Vmu‘ dz
1=0 V9

m—1 k

+C Z Z/ ‘Vk_lB(km) ® Viv® Vmu‘ dx
k=0 1=0 7%
m—1
+CZ/ ’C(k)®v®vku’dx. (24)
k=0 7
Another application of inequality (11) yields (23b). a

Lemma 3 (Garding Inequality)
Let s =0, 6 > 0 and let the assumptions (8) hold.
Then A is a coercive bilinear form,

A HPMOQRY) x H(Q,RY) — R (25)

In particular, the following estimate holds for all u € HJ*(Q, RN ):

2m(144)

[ ullm gy < CAlu,u] + KMy |Jull e (26)
where My is defined by (21a).

Proof. It suffices to prove the estimate (26). Let ¢ > 0, let {p;.}32; be the set of
functions defined by (14), and let ;. € supp(p;.) N Q if this set is not empty.

Then, with the help of the Poincaré inequality, the Plancherel theorem and the Legendre—
Hadamard condition, we obtain

1 m
— HuH?qm(Q rN) < 5((1[3) / 0*u’ 9Py dx
C ’ Q



:Z(sgg) /Q 02 0°u" %y dz
= Z% / 0% (p;.u)T0° (pjeu) dz + Ry[u]
- Z_ ) [ el de+ Rilu
)" 3 |, e T (A5 (ey0)6°¢?) Flipjeu] € + il

Y / 0 (p3.0)" AT (2,)0% () do + Ruful
2
Z/ 5. 0%u TA xjs)aﬂu dz + ZR,[u]
=1
= —1)m2/(p]€8a TATY 9% dx+ZR
J =1

3
= (-1 / 0°uT ALY 0%u dz + > Rilu]
Q

=1

Next, we estimate the remainder terms R;[u].
With the help of property (15¢) and inequality (11) we obtain

|[Rau]] + |Re[u]l < CMo D > e ull sy [l sty - (28a)
k=1 1=0
With the help of property (15a) and the Sobolev imbedding theorem we obtain
> 2
| Rs[u]| < Ce’ Mo ||ullzpm o) - (28b)
From inequality (23b) we have
|Ralu]| < CMo [|ull gm-s0,rny Ul gm (o ey - (28¢)
Furthermore, with the help of inequality (13) we obtain
HUHHW*’“(Q,RN) HUHHW*Z(Q,RN)
2 —om || 112
< O ((Jullymazm) + o1 lulz e ) Ve, > 0, (292)
HUHHW&(Q RN) HUHHm Q,RN)

< el ulfm ) + 27" Iullfaqem) ) ez > 0. (29b)
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We choose €; < ¢ and insert (29) into (28). Then we obtain

4
D IRi[u]] < OMo(e + e ey + &) |[ullfm g v
i—1

+ CMo(e er +e3)(er ™™ + 22 ™) lul o) - (30)

We choose ¢, 1, €5 sufficiently small,

~ 1446

~A_1 ~ _ 1446 a1
eox M, °, g1 oc Myteoc My ° g9 0¢ M, °. (31)

Then, with the help of (27) and (30), we obtain

2m(149)

lullzm @y < CAlw,ul + CMy 7 [lul 72 - (32)

This is the estimate (26). O

Lemma 4 (A-Priori Estimate)

Let s =0, 6 > 0 and let the assumptions (8) hold. Furthermore, let f € H ™(,RY) and
let w e HMQ,RY) be a weak solution to the Dirichlet problem (6).

Then u satisfies the following a—priori estimate:

1446

A m
HUHHW(Q,RN) <C HfHH*m(Q,RN) + KM, ° HUHLZ(Q,RN) (33)

where My is defined by (21a).
Proof.

The a—priori estimate (33) is a direct consequence of (7) and the Garding inequality (26).
O

4 Interior Regularity

In this section we prove an a—priori estimate for weak solutions to the Dirichlet problem
(6) in the interior of 2.

Lemma 5 (A-Priori Estimate)

Let 1 <s €N, d >0 and let the assumptions (8) hold. Furthermore, let 1 € C§°(Q) be a
cut—off function, let f € H ™ (Q,RY) and let u € H™(Q,RY) be a weak solution to
the Dirichlet problem (6).

Then u satisfies the following a—priori estimate:

WUHHm+s(Q,RN)
. (m+s)(14)

<C HfHH—"H'S(Q,RN) + P M, HUHHm+s—1(Q,RN) + KM ¢ WUHLZ(Q,RN) (34)

where M, is defined by (21a).



Proof.
Let ¢ > 0, let {p;c}32; be the set of functions defined by (14), and let z;. € supp(yp;:) N Q
if this set is not empty.

Case 1. Let1<s<m-—1.

For every a with |a| =k > s+ 1 we choose A < o with [A\| =k — s.

Then, with the help of the Poincaré inequality, the Plancherel theorem and the Legendre—
Hadamard condition, we obtain

1 2
C HZZJUHHm+s(Q,RN)

< 68 / 94 0% (YpuT)8” 0° (Yu) du
Q
=Y 6l /Q 2010 (Yu”) 0" 0% (Yu) d
J
= Z 6&‘?6&7;) A@”@a(@jgtbuT)@”@ﬁ(gojgwu) dz + Ry [u]
J

=SS0 [ e Flp de+ Ril
j n

—T

<o [ e Fleind (A% @) Flosen] de+ Rilu
J

= ()™ ok /Q 00" (psepu)" AL (250)0° 0% (pjetpu) da + Ryfu]
j

2
= (-1)™ Z 5e) /Q 030000 (hu)T AL (2.)0° 0% (Yu) dz + > Rifu]
J

=1

3
= (1" 6 /Q 02.000"0" (pu) AU * 208 (Yu) dz + > Rilu]
J

=1

3
= (—1)™35) / 0o (yu)T ALR 9° 0P (Yu) de + Y Rilu]
Q

=1

4
= (-1)"6() /Q A (aﬂa"(¢u)TAg”g>) 0° 0% (Yu) da + 3 Rifu]

i=1

10



= (-1)"st) /Q oM (00 (vu) ALy )00 ~0% () da

m—1
+ 3 (~1)kal /aA (6”6”(¢U)TB )aa 298 (u) da
k=s+1
+) (-1)%8) / 99" ()" BYY 020 (yu) da
k=0 L
m—1
+y (—1)%G /auaku) Fo* (hu) dx+ZR
k=0
= (~1)"6%) /Q e (waﬂa”(wu)TAag)aa—Aaﬁu dz
m—1
Y (1) / 0 (009" (W) BY ) 00w da
k=s+1
+3 (=1)%8) / 0" 9" (pu)TBYM 0°0%u do
k=0 Q
m—1 6
+) (~1)°6%) / $0"0” (Yu)" CPO*u dw + Y Rifu]
k=0 Q i=1
6
= (—1)*6) f[ 0" (yu)] + ) _ Rilu]. (35)

i=1

By assumption we have
168 F[0" 0" (Yu)l] < C 11 f |l gr-mee(aemy [0ull grome ey - (36)

Case 2. Let s > m.

For every p with |p| = s we choose A < p with |A\| = s — m.

Then, with the help of the Poincaré inequality, the Plancherel theorem and the Legendre—
Hadamard condition, we obtain

1
C kuuilmﬂ(g,RN)
< 68 / 94 0% (YpuT) 8" 0° (Yu) da
Q

=Y 6ty /Q 02,010 (YpuT) " 0% () da

J
= 30885 [ 00 st ) de + Rl

J
- 3oaety | eed Pl de+ Rilu

RO | e Floinl” (A% @)ee?) Flosavn] de + Rilu

11



Zdw, / 9" (pjpu)" AL (25.)010°0° (pjepu) da + Ri[u]
2

—1)m™y o) / 30" (pu)T ALY (2;.)0*0°0° (Yu) dz + > Rifu]
j i=1

—1m S 60) / P2 M 0" (hu)” AT 9} 0°08 (yu) da + ZR
J

=1

3
= (—1)™35) / 020" (Yu)T ALY 020708 (u) du + Y Rilu]
Q

=1

4
= (-1)"6() /Q 98" (ypu)T O (Ag"}aaaﬁ(wu)) de+ Y Rifu]
i=1

= (—1)m5%) /Q 98" (ypu)T O (Agg)aaaﬁ(wu)) do

3

+ 3 (—ma) /Q a“*AaV(wu)TaA(Bg’;m)aaaﬂ(wu)) dz

T
1L

5
+ ) (=1msl) /Q 2 (Yu)T o <O§f“)6°‘(¢u)) dz + > Ri[u]
i=1

x
Il
IS

= (-1)mst) / Yo" 2o (pu)T 9 (AL 90 ) da
Q

-1
m S(s - 14 (km) o
3 (e /Q Y0 (ypu)* 0 (B3 0Pu) d
0

k=

m—1 6
(—1)™6%) o (Ypu)ToM  C®o*u) d R;
DI /¢ (wu)" o (CWru) o+ DR
6
= (~1)m68) / YO (pu)T 0N do + 3 Rifu] (37)
Q i=1

By assumption we have

5;(5/) /Q@ba”_’\(?"(wu)Tﬁ’\f da:’ <C HfHH*erS(Q,RN) ’|¢UHHW+S(Q,RN)' (38)

Continuation. Let s be arbitrary again.
Next, we estimate the remainder terms R;[u].
With the help of property (15c) and inequality (11) we obtain

m-+s m-+s

[Rufu]| + [Relu]l < OM, Y Y e [pull gmse-siqpm) 96l gmsarigpwy - (392)
k=1 1=0

With the help of property (15a) and the Sobolev imbedding theorem we obtain
| Rs[u]| < C® My [|9hullfmis () - (39b)

12



With the help of inequality (11) we obtain

| Ra[u]| + [Rs[u]] < CM, [[9ull gmro-s g ) 100 s @iy » (39¢)
| Bolull < CM [[ull gmss-so vy 19Ul gmes ey (39d)

Furthermore, with the help of inequality (13) we obtain

\’¢U’|Hm+rk(n,m) kuHHerS*l(Q,RN)
< Cs'f”( kuHiIm"rS(Q,]RN) + 5;2(m+8) H@Z’UHiZ(Q,RN)> Ver >0, (40a)
kuHHer*’*‘;(Q,RN) kuHHWH(Q,RN)

< ng( kuHiIm"rs(Q,RN) + 5;2(m+8) ’WUHi2(Q,RN)> Ve > 0. (40Db)
Additionally, we have

HUHHm+s—1(Q,RN) WUHHm+s(Q,RN)

1 2 1 — 2
< 5°3 1wl g ey + 5°3 ' [/ o1 g ey Vez >0, (40c)
HfHH—"H‘S(Q,RN) "¢u"HW+S(Q,RN)

1 2 1 _ 2
< 5% ’WUHHmH(Q,RN) + 5%4 ' HfHH*"HS(Q,RN) Veq > 0. (40d)

We choose €; < ¢ and insert (40) into (39). Then we obtain

6
Z |Rilu]| 4 | f | zr-mes ey 10Ul grmss o ey
i—1

< OM(e* + e er + €8 + £3) [9u]| vy + Ca 190U Fmeeapm
+ O (e ey +25) (e, ™) 42, 2™ [l Fo g v
~ — 2 — 2
+CM,ez! HUHH"H‘S—l(Q,RN) + Oy’ HfHH—m+s(Q,RN) . (41)

We choose ¢, ¢1, €9, €3, £4 sufficiently small,

1446

eox My ?, e ocM,'eoc My °, eyoxM;®, e3oxxM' g4l (42)

.
il

Then, with the help of the cases 1. and 2. and with the help of (41), we obtain

2 2 "~ 2
WUHHm+s(Q,RN) <C HfHH—"H'S(Q,RN) + CMSZ HUHHm+s—1(Q,RN)

. 2(mets)(149) )
+CMs  ° HlZ’UHLZ(Q,RN) : (43)
Now, taking the square root of (43) yields the a—priori estimate (34). a
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5 Boundary Regularity

In this section we consider the Dirichlet problem that arises from our original Dirich-
let problem (6) by covering the boundary 92 with open sets and flattening the several
boundary parts. In particular, we prove some a—priori estimates for the corresponding
solution.

Let B C R" be the open unit ball, let B, := BNR*™! x (0,00) and let I := BNR"~! x {0}.
We consider the following Dirichlet problem:

L(z, V)i = f(z) in B, (44a)
VL =0 onT (k=0,...,m—1). (44D)

The associated weak formulation of the Dirichlet problem reads:

i€ H™(B,,RY), (45a)
VFi =0 onT (k=0,...,m—1), (45b)
Ao, @) = f[7] Vo € H'(By,RY). (45c¢)

Here, the differential operator L(z, V) and the associated bilinear form A, -] are defined

L(z, V)i := A (2)0*0%a + Y | BYY(2)0°0%a + Y CH)(x)0°q, (46)
k=0 k=0
m—1
Ao o~ m a [ ~ m ~ afl ~ km ~
Alg,a) = (-1) /a (UTAaﬁ))aﬁu dz + (—1)k/a ( T g ))aﬁ do
Q k=0 Q
m—1
+> / "C® g de. (47)
k=0 v
where
ATy e H™ (B, RVN) (Jo = 8] = m), (48a)
BU" € Hb% (B, RVN) (Jo] = k, |8 = m), (48b)
CH e Hews (B, RV*N) (Jaf = k) (48c)

and the real numbers ag, by, cps shall satisfy the same assumptions as in our original
problem. 5

Throughout this section we will assume Agg) to satisfy the following Legendre-Hadamard
condition:

(~1)m" (A5 (2)eoe ) > 6 e nf? Vo e BVEERERY.  (49)

14



In order to abbreviate the notation, for s € N we define

IS 3 ol i
+ZZH0 \

k=0 «a,8

=>4
a,p

M; -

j(m) ‘
o

kus B+ RNXN)

+1, (50a)

HCkS Jr]R]V)(N)

+1. (50b)

Hes (B RN XN)

Lemma 6 (A-Priori Estimate)

Let s = 1, 6 > 0 and let the assumptions (8) hold. Furthermore, let ¢ € C(B) be a
cut-off function, let f € H ™ (B, RY), and let &« € H™ (B4, RY) be a weak solution
to the Dirichlet problem (44). Furthermore, let 1 < i < n — 1, i.e. 9; denotes a purely
tangential derivative.

Then 4 satisfies the following a—priori estimate:

0; (Vi
‘ (va) H™(By RN)
PIE (11l gm0 + | 23] )
1ar4”(13+,RN)jL L el + |00 Hm+1-3 (B, RN)
K o (d
(i 51
+ KM, (yi) - (51)

where M is defined by (50a).

Proof.

For every a with |o| = m we choose é < a with |é| = 1.
Then, with the help of the Garding inequality, we obtain

—_

0,0 R

A[i(a), 0:($a)] + Rl
= (—1)™ /B o (ai(@z?a)TAgg))aﬁai(zZa) de+ ) Rild)

c
<

= (-1 / o 0y()" 0, (AY5 07 () ) o + im
= (=" / o407 ($a) o (A5 0° () ) do + imm

:(—1>m/8 aa—é(a§(¢ )T A )aea%m dx+§:Ri[a]

15



k=0
3 / 0} ()" CP o (i) de + Z R[]
k=0 Y B+ i1
= (-1 / o ¢ (ai (iai(wa)T)A )aeaﬁu de
B
m—1

DI /B aa(ai(@z@i<@za>f>gg@m>>aﬁa da

= (90 f)[0.(9a)] + Z R;lu].

i=1
Next, we estimate the remainder terms R;[a].
With the help of the Garding inequality, we obtain

~ 2m(14+9)

|Rala]| < OM, °

0; (Y

LBy RN)

With the help of inequality (23b) we obtain

i]| < O, |9 H H :
|R2[U]| = C 1 wu Hm+1-6(B, RN) (9 HW(B+,RN)
With the help of inequality (11) we obtain
< CM H H (D ‘ ’
Z |R | C M, lbu Hmt15 (5, BN 0 (¢u> H™ (B4 RN)
|Rsa]| < CM, @l g5, vy || 05 (¥0T) Hm(B, BN)
By assumption we have
~ . ~ . ~ < 7 . r ~~ .
@apowl < [daf|, . lawo|,

16
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Furthermore, for all £1,e5 > 0 we have

< L — 5(B+ gy T HUHHW(B+’RN)> ‘ ova) ‘HW(B+,RN)
1 1 ~ _ 2
= 5% 0,(v) s, ey 20 ( va F- (B ) HUHHW(B+’RN)> , (54)
f H-m(By, RN 0,(vi) Hm(B+ RN)
1
< = . 54b
- 252 (wu) H™ (B4 RN )+ 52 H-" (B ,RN) (54b)
Now we insert (54) into (53). Then we obtain
6
Ri[a |o:
> IR T C2] —
< C(J\Z/ )
~ 161 + €2 (@bu) Hm(B, EN)
2
+OMey ( “¢u“HW+1 5(By RN) * ] B+’RN)>
2m (146 -
C oM, ° . 55
+Cey’ . m(B+RN)+ 1 0 (vt ) L2(B, &) (55)
We choose ¢, ¢ sufficiently small,
e1 oc M, g9 ox 1. (56)
Then, with the help of (52) and (55), we obtain
5 (di 2
L
- 2
2 -
sy FCEC] s Nl )
~ 2m(1446 - 2
cM, ° 0; (Vi . 57
Welva C2] - (57)
Now, taking the square root of (57) yields the a—priori estimate (51). O

Lemma 7 (Estimate)

Let 2 < s €N, § > 0 and let the assumptions (8) hold. Furthermore, let ¢ € C3°(B) be
a cut-off function, let f € H=™ (B, RY) and let & € H™*(B,,RY) be a weak solution
to the Dirichlet problem (44). Furthermore, let 1 < i < n — 1, i.e. 9; denotes a purely
tangential derivative.

Then there exists §; € H ™ 1B, RY) such that d;@i is a weak solution to the following
Dirichlet problem:

L(z, V)(9:a) = 0,f () + §i(x) i By, (58a)
VE@ia) =0 onl (k=0,...,m—1). (58b)

17



In particular, §; satisfies the following estimates:

H¢9i H-m+s-1(5, RN) = CMS< e HW ‘Hm+55(3+7RN) )’ (592)
1Gill gr-mvs-2(5, mvy < C M |Gl gmss—1 (s, g (59b)
where M, is defined by (50a).
Proof.
First, we prove the estimate (59a).
Casel. Let2<s<m.
Then we have
(93:)[7] = A[¢o, &ia) + A[di(¢7), @] v € Hy ' (B, RY). (60)
With the help of integration by parts and inequality (11) we obtain 3
|A[$, 8] + Aldi(¢0), |
< O (1l smse 1o, ) + [P (HWM(B%RN)) (I P—— (61)
Since H"™(B,,RY) is dense in HJ* ***(B,,RY), we obtain (59a).
Case 2. Let s>m+1.
Then we have
—(2)§i(z) = P(z) (8,-Afjg) (2)0°0%u(z) + Y :BEM ()00 u(x)
k=0
m—1 _
+ 8zCék)(w)8au(w)> (62)
k=0
With the help of inequality (12) we obtain (59a).
Next, we prove the estimate (59b).
Casel. Let2<s<m+1.
Then we have
Gi[0] = A[9, 9;a) + A[o;9, Vo € HM (B, RY). (63)
With the help of integration by parts and inequality (11) we obtain
1415, 0]l + 1A10:3, 8l < CHE s, ) 17—t - (64)

Since H"™(B,,RY) is dense in Hy* *™*(B,,RY), we obtain (59b).

3Remark that the terms with 2m + 1 derivatives acting on @, 7 cancel out.
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Case 2. Let s >m + 2.
Then we have

3
L

~Gi(z) = BAT (2)0°0%a(z) + Y 8B (2)9°0%a(x)
k=0
m—1
+) 9,0W (z)0%u(x). (65)
k=0
With the help of inequality (12) we obtain (59b). O

Lemma 8 (A-Priori Estimate)

Let 1 < s €N, § > 0 and let the assumptions (8) hold. Furthermore, let ¢ € C°(B) be
a cut-off function, let f € H=™ (B, RY) and let &= € H™*(B,,RY) be a weak solution
to the Dirichlet problem (44).

Then 4 satisfies the following a—priori estimate:

i <clof |
¢U Hm+5(B+,RN) - ¢f H7m+5(3+,RN) HerS*l(BJr,RN)
- m+56 1+46 N
QU Nl i oy + KL 0 [, (66)

where M, N, are defined by (50).

Proof.

Let & > 0, let {¢;c}3°, be the set of functions defined by (14), and let y;. € supp(yp;.) N By
if this set is not empty.
Furthermore, let £n,45, £, be the operators defined by (17), (18).

Furthermore, let o := mé,, where é, denotes the unit vector in n—direction, i.e. ¥ is the
multiindex corresponding to m purely normal derivatives.

Then, from the Legendre-Hadamard—condition (49), we obtain
(=" A5 @)y = nf? Vo € By € RY. (67)

Case 1. Let1<s<m-—1.

For every («, ) with |a| = |8 = m we choose A < «a with |A\| = m — s such that
9 AP #£ 9mts if (o, B) # (D, D).

Furthermore, for every o with || =k > s we choose kK < o with || =k — s+ 1.

Then, with the help of the Poincaré inequality, the Legendre-Hadamard condition and
property (20), we obtain

2
< | + R[]
L2(Q,RN)

= Z / P3O0 (") ot (i) da + Ryl

1 2

C

Hm+s (B+ RN)

(¥)

19



- Z 8m+5 ‘Pye@bu )am“(%elbu ) dz + Z R;[1

=1

Z/m Ot (setpi™) ASY) (y;0) O (pyepit) dav + ZR

=1

S (_1>mz 81T+sgm+s( MW ) (yye)a an gm-l—s( ]€¢u dx + ZR

© =1

2
= (D)™ | O Ems (0T ) AT (43 ) O (010) da + Y Rild]

iooB i=1

-)" Z 5 o (90366285:z+55m+s(90j815ﬁT)> Aé’;)(ng)ﬁ,T*s(zZa) dx
i +

3
+ Z R[]
=1
4
n"y. /B ) On (soy68258;+85m+s(soje¢aT)) AGPomte (i) de + Y Rl
J i=1
5
-1y /B o (05023 s (03B A ) (1) do + Y Ryl
J i=1

-1" Z B & ((p”azsg:;wsgm-ks(@jeﬁzaT>Agg)) 80!7/\8[3(772{‘) da
i /By

m—1
+Z k+1Z/ 8R @]582sg;1+sgm+s(90]swu ) )aa “8ﬁ(w ) xr
k=s

s—1

+ Z/ QOJEaZSS:Hs m+3<¢]5¢ ) km aaaﬁ(d) ) dz
k:O By
m—1

+ Z/ 903582 mts m+s((,0]5¢u ) 8a ¢u dx—I—ZR
k:o By =

= (_1>m Z/ 6)\ <Q0jawa288;z+sgm+s(QOJ'EZEQT)A((;Z))6a_)\aﬁﬂ dx
i VB
m—1

Z k+12/ aﬁ ¢]Ew8235* +sgm+8(soja'¢}u ) )>0"’“0ﬂﬂ dI‘
k=s
s—1
+ Z/ (p]€¢a2s m—+s m+s(90]6¢u ) km 8"‘8% da:
k=0 By
m—1
+ Z/B wﬂslﬁazs m+s m+8<gpjs¢u “u dz + ZR
k:O +

20



7

-1)° Z f[¢j€128255;+55m+3(gojsﬁzﬁ)] + Z Rila]. (68)

j i=1

By assumption we have

| X Tl Ema(ijc0)

<C|yf Pl (69)

‘H—m+s(6+,RN) ( H™+ (B RN Hm o=k (B RN) )

+s
+ Z e * Hzﬁﬂ
k=1
Case 2. Let s > m.
Then, with the help of the Poincaré inequality, the Legendre-Hadamard condition and
property (20), we obtain

s

1 2

C

Hm+s(B+ ]RN)

(¥)

L2(Q,RN)

= Z / P3O () op e (Ya) de + Ry[d]
= Z 8m+s (P]glbu )8m+s(¢]€wu da: + ZR
Z/B 6m+s 80‘7 'LZ)U ) 124 (y]E)am—i—s(SO]swu dx + ZR

Z/ Ot E 1o (050D ) AT () O 4 o (05 0000) da:—i—ZR

=1

2
Z/ am+sg;l+s m—&-s(‘Pje@ZﬁT)Ag;) (yje)agl+s(90j€7vza) dz + Z Ri [ﬂ]
By

=1

Z/ onaam+sg7>:z+sgm+s<§0]s¢ ) (y]g)am“ (¢u dx —+ Z R
B

=1

4
Ry / P3Ot s Emes 0T AT O (0) du + 3 Rifl
] +

i=1

Z /B 05O Emas(0jetbT” )OS (A Jo2m (4 ) dx+ZR
)
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Z / 0 OMTSER | Eom (05T T) DM (Ag’g)aaaﬁ(w)) dz
By
+ (-1 Z Z /B P10 Ery iy 0N ™ (BU6°0° (1)) da
o Z | a0t Ennalos B0 (CH R (G0) do
=0 j YB+
+ZR
Z / 0 OMTSES | Eon o050 ) 0 m(wA 199984 )d:c
1>’”ZZ /B e O E Eealpg D)0 (BB 900 da
1 +

m Z/B ¢358m+sg;t+sgm+5(@ye¢u ) <77;C~' ) dz
+

k=0

7

Z / 002 E  Emrs(pjeaT )™ (W f) da + Z R;[i]. (70)
B+ i=1
By assumption we have

by [ o0 )05 (5 da
.

<C|of

m+s
~_ —k |7~
. 71
“ Hm+S(B+,RN)+kz:€ “¢u“Hm+s—k(3+,RN)) =

‘H—m+S(B+,RN) < ‘

Continuation. Let s be arbitrary again.

Next, we estimate the remainder terms R;[a].

Without loss of generality we assume that ¢ < 1.

Then, with the help of the Poincaré inequality, the Sobolev imbedding theorem, inequality
(11) and property (19), we obtain

72
|R1 Hm+s—1(B, RN) +CH¢U L2 B+7RN)7 ( a‘)
m+s m+s
k—1 T~
[Reola]} | Rslil] < M, Z Zg kuHHmH (B4 RN) ‘wu ‘Hm+s_l(B+,RN), (720)
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. 2
|R4[a)| < Ced M,

H™ s (B RN)

m+s m—+s
Y k1.7~ ~
+CMSZZ€ kuHHmJFS_k(BJF,RN) ‘¢u Hm-‘rS—l(B_,_,RN), (72(3)
Rslill| < CM, H .
‘ 5[ ” Hm+s=3(B, RN) wu Hm+s(By RN)
m-+s m—+s
et h H H ‘ i , 72d
NLELD D) S U PPV [ R

n—1
[Rafi] < O (

‘Hm+sl(B+,RN ) H Hm+S(B+,RN)

)(Zs‘k
Hmt+s—1(B RN)

=

+CNs(n_

[a

"Hm+5k(3+,RN) >

+ CM,

HHm-‘rs 5(B4,RN) ‘Hm+S(B+,RN)

m—+s m-+s

o, 33 vl & .o
[Ri[al] < CH, il s 1, ) || 9 S
m+s
+ O | gt s, v ( kz —~ ku st o ) . (72)
=1
Furthermore, with the help of inequality (13) we obtain
wu Hm+s— k(BJr RN) ‘wu ‘Hm+s—l(3+7RN)
-2
< cgf“( ku ( 429 | g ) Ve >0,  (73a)
Hm+s(By BN L2(Q,RN)
o
Hm+s— 6(B+ RN) Hm+s(B+7]RN)
-2
< cef( 0 || ) ey > 0. (73b
= Ve ¢u Hm+s(By RN) TE v L2(Q,RN) ©2 ( )
Additionally, we have
n—1 ~
( ) W 1
P Hm+3—1(B+,RN) Hm+S(B+,RN)
2
< Ces + Ce3? ‘ Ves > 0, (73c)
Hm+s(B+7]RN Hm+s— I(B+ ]RN)
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@] gomss-1 (5, vy HWE

Hm+s(By ,RN)
< seu | + gt lall ves > 0
5 Hmts (8, EN) 9 4 Hm+s—1(By RN) 4 )
vf H—m+s (B RN) Vi Hm+s(By RN)
<1 ‘WZ 4L ¢f2 ves > 0
9 Hm+s(By RN) 2 5 H—m+s (B4 RN) 5

and

—k T~
Hm+s—1(8+,RN)> (kZ:;E ku

Hm+s_k(3+,RN) >

Hm+s—1(B, RN)

m-+s m+s
czz = al v
+ € wu Hm+57k(B+,RN) wu ]_]ers—l(BJ”RN)7
+
@] grones- L(B4,RN) (Z_: Hm+sk(3+,RN)>
1
§HUHHm+s (B4 ,RN)

m+s m-+s

+5 Zzg . l“¢u“Hm+s k(B4 ,RN)

(o

Hm+s— Z(B+ RN) ’

of

e i

H=mts (B, RN) ( k=1

Hm+sfk([3+,RN) >

il

1
2 H-mts(By,RN)

m+s m+s

+3 Zzg . leuHHmﬂ k(B4 ,RN)

bl

Hm+s— Z(B+ RN) ’
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We choose ¢; < ¢ and €3,£4,65 < 1 and insert (73) into (72). Then we obtain

b

7
ot 1

< OM(° + e tey + €5+ ¢4)

=[]

Hm+s(B+,RN) Hm+s— k B+ ]RN))

Hm+s(B+ RN)

i
1'_17714»5(8+ ]RN)

+ CM, (s ey + &) (] 2Amts) 4 ;2m+s Hd)u

~ 2
+ CN,eq + Ces
Hm+s (B RN)

L2(Q,RN)
L ien2
+C’N5 Hre (5, ) + C'M;e, HUHHmH—l(BJr,RN)
C . 74
+ Cey™ [ — (74)
We choose ¢, ¢1, €9, €3, €4, €5 sufficiently small,
1 - S EY ) 1
e o< My ?, g1 oc M, teoc My ° €9 ¢ My 2,
83O(Ns , €4OCM;1, 850(1. (75)
Then, with the help of the cases 1. and 2. and with the help of (74) we obtain
w Hm+s(B+ RN)
- 2
C wf( +0N2
H- m+s(B+ ]RN) Hm+s_1(B+,RN)
) ~ 2m+s)A+8) || -
+ OV [l nsos s, vy + C M (wu I (76)
Now, taking the square root of (76) yields the a—priori estimate (66). O

Lemma 9 (A-Priori Estimate)

Let 1 < s €N, § > 0 and let the assumptions (8) hold. Furthermore, let ¢ € C°(B) be
a cut-off function, let f € H=™ (B, RY) and let & € H™*(B,,RY) be a weak solution
to the Dirichlet problem (44).

Then 4 satisfies the following a—priori estimate:

YU

Hm+s(B+ RN)

(m+s— t)(1+5) (s—t)(m+s—t) S+t

+ZKM Ne o ° 1@l (s vy (77)

+ PMN; (|| gmsvsr (5, povy

H- m+s B+ RN) H—m+s—1(8+’RN)>

where M, N, are defined by (50).
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Proof.
We prove the lemma by induction on s.

Induction start. Let s = 1.
With the help of the a—priori estimates (51) and (66) we obtain

D

HmHL(B RN

n—1
=G HWHHWH(&M) ram Z:; Jo:o) gy T O N )
~ (m4+1)(149
+ Oy, ‘wa
L2(B4 BN)
< (|41 " )
B vk H-m+1(By RN) H-m (B4 ,RN)
+ CM N, ‘wa‘ S + CMiN @l g, mvy
CMm(1(5+6)N - CM(m+1();(1+6) - -
e Y| agp, gy T M [ F— (78)
With the help of inequality (13) we obtain
wu Hm+1—6(3+’RN)
< cel( ( [ () ( ) Ve, > 0, 79
< Cel| ||va R +e; Y L5, 2 €1 (79a)
H(B 2N
m 7~ —(m+1) T~
< Cel ( D,y ‘¢u Lz(m,m)) Vea > 0. (79b)
We choose ¢4, €5 sufficiently small,
11 S ET RS
€1OCM1 6N16, €20<M1 o Nlm (80)
Then, with the help of (78), we obtain
wu Hm+1(B, RN)
< CON ( b f f ) CNLN, |[]]
SCON | ||of H-m1(5, RN) Hm (B, B) + 1V (|| o 5, vy
i, N | ga 81
+ 1 1 (0 L2(By BN) (81)

This is the a—priori estimate (77).

Induction hypothesis.  Assume that the statement of the lemma holds for s.

Induction step.  Let the assumptions of the lemma for s + 1 be given.
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Let 1 <i<n—1,ie. 0; denotes a purely tangential derivative.
Then, with the help of lemma 7 and the induction hypothesis, we obtain

o)
< H@Z@,ﬁ
< Csz( H bo;

Hm+s (B RV)

+ O |l grrs 5, o)

o:f

Hmts (B BN

|

H=m+s (B4 RN) H-m+s=1(B, RN) )

+ 02N55< ngi + ng'HH—m+s—1(B+,RN))

+ Cy M, N¢ ]| grm+s (5, oy

H=m+s (B, EN)

(m+s—t)(1+6) (s t)(m+s B¢ B
—I—szM ° N; 10:0| e 5, vy
<o o] ai )
- s+1 ¢f H-m+s+1(B, RN) f H-m+s (B, RN)

+ C M1 N? s+1 Hlﬁu + CMerlesH Ha’|HW+S(B+,RN)

‘Hm+s+15(8+,RN)

(m+4s— t)(1+6) - (s t)(m+s t)+t

-1
Z Non @ll s, ey

t=0

With the help of the a—priori estimates (66) and (82) we obtain

Vi

Hm+o+1(B BN)

o]

<C]_

“ |
’ Hm+s(B, RN)

H- m+s+1 B+ RN)

~ (m+8+1)(1+5)
+Cl 5+1HUHHW+5(B+RN +Cl +1 s

+(f

‘Hm+s+1—§(3+ RN)

L

\7s+1 hf
< ONGY ( "¢f“HW+S+1(B+»RN)
-+ CMs+lesi11 ’d}

~ (m+s+1 HA+6) . (s+1- t)(m+s+1 L2 J

+CZ Ny @l e, ) -

‘HW+S(B+ JRN) )

+ CMs+1 +1 HUHHm+8(8+ RN)

With the help of inequality (13) we obtain

U
w Hm+s+1_6(B+,]RN)

< cei( ||l

— 1 T o~
e (m+s+1) ‘

Hmts+1(B, RN) L2(By RN) )

We choose ¢; sufficiently small
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Then, with the help of (83) we obtain
¥

<conii(

Hm+s+1(B, RN)
(wf ‘ + (f

+ CMerlesj:ll 1l g+ 35 vy

H- m+s+1 B+ ]RN) ‘H‘m+S(B+,RN)>

(mtst1-t)(1+d) . (s+1-t)(mtstl—t) .

+CZM ’ Ny ° @/l gre (s, vy - (86)

This is the a—priori estimate (77). O

6 Global Regularity

In this section we combine the various a—priori estimates of the previous sections to prove
our original theorem.

Lemma 10 (A-Priori Estimate)

Let s € N, § > 0 and let the assumptions (8) hold. Furthermore, let f € H-™(Q,RY)
and let w € H™(Q,RY) be a weak solution to the Dirichlet problem (6).

Then u satisfies the following a—priori estimate:

(m+s)(A+6) . s(m+s)

[ull s (@ vy < ONZ || Fllgomss (QRrN) T KM, * Ny ° [l g2 g em) (87)

where M,, N, are defined by (21).
Proof.

Case 1. Let s =0.

Then, (87) follows from (33).

Case 2. Let 1 S SEN.

Let {U,U™) } be a smooth open covering of €2 such that L{ is an interior domain
and such that {L{ _, is a covering of the boundary 02, let L{ = UD N Q, and let
Vi =y noa.

Furthermore, let {¢, M ... P} C C(R™) be a partition of unity subordinate to the
covering {U, UM, ... . UP}.

Furthermore, let B C R™ be the open unit ball, let B, := BN R x (0,00), and let
I:=BNR*! x {0}

Furthermore, let @ : B — Y® be diffeomorphisms such that ¢ (B,) = J(ri) and
(p(i)(p) — V(i).

We define functions on B, by

a0 = o ), DD = oo . (88)

Then, every @ := 11(') is a solution to a Dirichlet problem of the form (44). In particular,
for the coefficients A %m) CH of L(z, V) and for the right hand side f the following
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estimates hold:
M, < CM,, N, < CN;,

f < Ol flgr-m+s@ ) (89)

H=—m*s(B1 RN)

where M,, N, are defined by (50).

Furthermore, without loss of generality we assume that the Legendre-Hadamard condition
(49) holds.

Then, with the help of (89) and the a—priori estimates (34) and (77), we obtain

HUHH"H'S(Q,RN)

p
< kuHH"H'S(Q,RN) + Z Hw(i)uHHWrS(Q,RN)
i=1

p
Sy p——en g (O T
=1

Hms (B, N

A (m+s)(149

< Co || fll s (@rN) T Cy M, HUHHmﬂfI(Q,RN) +CoMs  ° HUHLZ(Q,RN)
s T NTS |15
+ CzN fHH b (B, BN) + Co M N, HUHHW+S*1(B+,RN)
(m-ta=1)(1:40) (s Blmta=t) Ly
+C2ZM N ]| e, vy

< CON; HfHHme ae) T OMN; ||l gty )

(m+s— t)(1+6) (s t)(m+s t)+t

+ OZM N, [ull ey - (90)

With the help of inequality (13) we obtain

HUHHt QRN) = Cel ™ el g QrN) T & ;) lull p2m Ve > 0. (91)
( ) (,RN)
We choose ¢,,45-1 and ¢, (t =0,...,s — 1) sufficiently small,
A S S = S
Emis_1 OC M, TN, * ggoc My ° N, ° 7t (92)

Then, with the help of (90) we obtain

- L () (140) L s(me)
HUHHWJFS(Q,RN) < CN; HfHH*"HS(Q,RN) + CM; N HUHLZ(Q,RN) : (93)
This is the a—priori estimate (87). O

Lemma 11 (Higher Regularity)

Let s € N, § > 0 and let the assumptions (8) hold. Furthermore, let f € H ™"(Q, RY)
and let w € HI*(Q,RY) be a weak solution to the Dirichlet problem (6).

Then, u is actually in H™*(Q,RY).
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Proof.
We prove the lemma by induction on s.

Induction start. For s = 0, the statement is trivial.

Induction hypothesis. Let 1 < s € N and assume that the statement of the lemma holds
for s — 1.

Induction step. Let the assumptions of the lemma for s be given.
Let A" BUm) ki) ¢ coo(y RV*N) (i € N) such that

aB ' af

Almi) 12, pm) in H*(Q,RVY), (94a)
Bgz;mi) i—00 Békm) n Hb’“s(Q,RNXN), (94b)
Cc(xkz) H—OO> C((xk) in ECks (527 RNXN> (94C)

and such that the Aggi) satisfy the Legendre-Hadamard condition (4). 4

Furthermore, we define the differential operators L (z,V) and the associated bilinear
forms A®[., -] in analogy with (1) and (3).

Furthermore, for A > 0 let

L(Ai)(x, Vv :=LO(z, V)v + v (95)
and let the Af\i)[-, -] be the associated bilinear forms.
We consider the following Dirichlet problem:
LY (z, V)u® = f(z) + Mu(z) in €, (96a)
VEu® =0 on 0N (k=0,...,m—1). (96b)

With the help of the Garding inequality and (94) we choose A sufficiently large, such that
ol pny < CAL [, 0] Vo € Hy'(Q,RY). (97)

Then, with the help of the Lax—Milgram lemma we obtain existence and uniqueness of a
weak solution u € HI*(Q, RY) to the Dirichlet problem (96).

From the general elliptic theory we find that u(¥) is actually in H™(Q, RV).

From the a-priori estimate (87) and (94) we find that the sequence {u(?};cy is bounded
in HM(Q,RN) n H™$(Q, RY). After possibly passing to a subsequence we obtain

L) o = weakly in H™* (€, RY), (98a)
ul® 22 g in H*(Q,RY). (98b)

With the help of (94), (98b) and inequality (11) we find that @ is a weak solution to the
following Dirichlet problem:

La(z, V)u = f(z) + Au(z) in Q, (99a)
VkT =0 ondQ (k=0,...,m—1) (99b)

4This is possible since by the Sobolev imbedding theorem, convergence in H%: (Q) implies uniform
convergence on ).
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where Ly(z, V) is defined in analogy with (95).

On the other hand, u is obviously another weak solution to the Dirichlet problem (99).
Since by the Lax—Milgram lemma the solution is unique, we obtain

u=1€ H™(Q,RY). (100)

This is the desired regularity statement. O
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