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ABSTRACT

Recently, the coupled dynamical simulation of pantograph and catenary in high speed

trains has found much interest. The equations of motion form a partial di�erential-

algebraic equation (PDAE) that combines a partial di�erential equation (PDE) for

the catenary and a di�erential-algebraic equation (DAE) for the pantograph. In

the present paper we discuss the relation of this PDAE model to current work on the

analysis of PDAE's [3, 17, 18] and formulate a benchmark problem to stimulate further

research on this topic. The benchmark problem is solved numerically using a semi-

discretization in space (by �nite elements or �nite di�erences). For time discretization,

typical DAE techniques are applied (index reduction, projection steps, handling of

systems with varying structure).

Key words: interaction pantograph/catenary, mechanical multibody system,

partial di�erential-algebraic equation (PDAE).

1 INTRODUCTION

The contact between pantograph and catenary is the most critical part in the

transmission of electrical energy to modern high-speed trains (e. g. ICE, TGV).

The high-speed motion of the pantograph results in oscillations in the con-

tact wire such that the contact force between pantograph and catenary varies

strongly and the contact may even get lost. Therefore, special pantographs and

catenaries have been developed and further constructive changes are under de-

velopment. Design criteria include the permanent contact of pantograph head

and contact wire at high speed and the reduction of both aeroacoustic noise

and wear [20].

Because of the complicated dynamical behaviour and because of very high

costs for prototypes, all modi�cations and new design concepts for the system

pantograph/catenary are essentially based on dynamical simulation. Tradi-

tional approaches focus on the catenary, which is modelled as set of coupled

�
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Fig. 1. System pantograph/catenary (see [20, Fig. 1]).

strings and / or beams whereas simpli�ed lumped mass models are used to

describe the pantograph. The increased computer power allows nowadays the

application of more re�ned pantograph models considering e. g. the elastic-

ity of the pantograph and active control components in innovative pantograph

concepts.

In the present paper we consider the combination of a beam model for the

contact wire with a mechanical multibody system (MBS) model for the panto-

graph. Both substructures are modelled separately resulting in partial di�eren-

tial equations (PDE's, catenary) and di�erential-algebraic equations (DAE's,

pantograph). Because of the geometrical contact between pantograph and con-

tact wire the substructures are coupled. The equations of motion form a partial

di�erential-algebraic equation (PDAE) consisting of the PDE part, the DAE

part, and the contact condition that couples PDE and DAE.

The e�cient coupled dynamical simulation of pantograph and catenary is

per se a challenging problem from the viewpoint of both mechanical engineering

and numerics. In the present paper, however, we consider mainly the modelling

aspect of the problem.

The analysis and numerical solution of PDAE's has found increasing interest

over the last few years. Typical practical applications have their origin in

chemical engineering and in structural mechanics. Most work was done in the

design and implementation of numerical methods to handle the PDE part (that

may in general be expected to cause most of the numerical e�ort). Theoretical

investigations focussed on linear systems with constant coe�cients [3, 17, 18].

The de�nition and development of concepts that are very useful in standard

DAE theory (e. g. di�erentiation index, index reduction, perturbation index [2])

is in the PDAE case still not far beyond its infancy.

Up to now there are not many applied problems that have been considered

from the PDAE viewpoint in the literature. The main purpose of the present

paper is to provide a simple but nevertheless non-trivial example that has
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furthermore a strong background in the current development of high-speed

trains.

The most common approach to handle the elastic deformation of bodies

in a multibody system is based on a Ritz ansatz combined with modal model

reduction. The deformation is approximated by a linear combination

J

X

j=1

q

j

(t)�

j

(x) (1)

of a small number of eigenmodes �

j

(x) corresponding to the very �rst eigenfre-

quencies where typically J � 100 [25]. Choosing a suitable set of eigenmodes

f�

j

: 1 � j � J g, this approach has been used successfully in many applica-

tions and is implemented in modern MBS simulation packages. Since the set

of eigenmodes f�

j

: 1 � j � J g is already �xed in the MBS model setup, the

equations of motion are reduced from a PDAE (with the PDE part describing

the elastic deformation) to a standard DAE before time discretization.

As a consequence, standard DAE{integrators are applied in the dynami-

cal simulation. Eigenmodes �

j

(x) corresponding to high eigenfrequencies may

cause problems in the time discretization because they introduce sti�ness and

oscillatory solution components in the equations of motion. In this context,

the instability of time discretization schemes and order reduction phenomena

have been studied following the lines of sti� ODE theory [22, 23].

For several reasons the system pantograph/catenary does not �t into this

classical framework [20]: Measurements show that the pantograph { catenary

interaction is essentially inuenced not only by low-frequency but also by high-

frequency processes. Furthermore, the number of eigenmodes in the frequency

range of interest is very large (in a typical application there are J = 200 eigen-

modes up to 22Hz [14]). Additional eigenmodes have to be considered if one of

the droppers between carrier and contact wire slackens. Because of a reduced

numerical e�ort per time step and because of greater exibility w. r. t. changes

of the system structure, spatial discretizations by �nite elements (FEM) or �-

nite di�erences (FDM) have become an attractive alternative ([21, 20], see also

Sec. 4 below).

All these approaches are variants of the method of lines (MOL), i. e. in

a �rst step the PDAE is discretized in space (e. g. by (1), FEM, or FDM)

and the resulting (very large) DAE is discretized in time in a separate second

step. In general, the time discretization scheme will be adapted to the method

being used for space discretization. But there are basic parts of the time

integration problem that are common to all approaches and that are studied

most conveniently at the original PDAE (index reduction, drift-o� e�ect, . . . ).

A similar situation may be found in the analysis of time integration methods for

MOL approximations to parabolic PDE's where order reduction phenomena in
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implicit Runge{Kutta methods are studied considering the Runge{Kutta time

discretization of the parabolic PDE [16].

In our opinion the PDAE approach is natural and useful in the time inte-

gration of all MBS models that include elastic e�ects at higher frequencies. But

in the present paper we restrict ourselves to the system pantograph/catenary

and to models for pantograph and catenary that are well known from the engi-

neering literature. The remaining part of the paper is organized as follows: In

Sec. 2 we describe the mechanical system pantograph/catenary and outline the

equations of motion. Furthermore, a simpli�ed benchmark problem that may

be used for an analysis of numerical e�ects is introduced. Sec. 3 deals with the

PDAE aspect, in particular with the coupling of both subsystems. The details

of space discretization (by FEM and FDM) and time discretization are given

in Sec. 4 and in Sec. 5, respectively. At the end we present in Sec. 6 simulation

results for the benchmark problem.

2 A MODEL FOR PANTOGRAPH AND CATENARY

In this section we describe some of the details of the technical system and

summarize basic model assumptions. The equations of motion of the catenary

are outlined following Poetsch et al. [20] while the pantograph is treated as a

standard multibody system.

position of
registration arms

stitch wire
carrier

dropper

contact wirel
δ

l

Fig. 2. Basic construction of a stitched wire catenary (adapted from [20, Fig. 2]).

Catenaries are assembled of simple standard elements (e. g. carrier, contact

wire, droppers, registration arms, insulators). Fig. 2 shows a part of a stitched

wire catenary that is used at German high speed tracks. In intervals of length

l � 65:0m, the carrier and the contact wire are �xed by registration arms. The

distance between the droppers connecting carrier and contact wire is d � 9:0m.
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The droppers are designed to suspend the contact wire, they are connected to

carrier and contact wire by suspension clamps.

In a catenary without stitch wires the contact force between pantograph and

catenary would vary strongly when the pantograph passes a registration arm.

Stitch wires were introduced to smooth the contact force. The contact wire

(and the complete catenary) is splitted in sections of length l � 1200m, the

interactions between subsequent sections are negligible. Therefore, the generic

simulation problem is given by the interaction between a catenary of length l

and a pantograph that moves with �xed speed along the track.

To simplify the presentation we restrict ourselves to a part of this problem

and consider instead of a whole section only the region between two subse-

quent registration arms. In this simpli�ed model the pantograph never passes

a registration arm such that it makes sense to neglect the stitch wire. In di-

mensionless form we end up with the con�guration that is shown in Fig. 3: In

a region of length L a carrier and a contact wire are connected by n

d

droppers

at positions x

d;j

. The position of the pantograph at time t is given by x

p

(t).

x

w

L

l
c

x (t)p

Fig. 3. The reduced catenary model, L = 65:0, n

d

= 7, x

d;j

= 9:0j � 3:5, (j = 1; : : : ; n

d

).

2.1 Equations of motion

The model error and the complexity of the numerical solution depend mainly

on the selection of appropriate models for carrier and contact wire. We make

the essential model assumption that the displacements in lateral direction are

negligible such that the geometric problem dimension is reduced from 3D to 2D.

Following this approach, models of increasing complexity have been compared

in [20]: strings, Euler{Bernoulli beams, and Timoshenko beams.
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Extensive numerical experiments have shown that the carrier may be de-

scribed by any of these three models. The situation is di�erent for the contact

wire because of the moving load induced by the pantograph. The bending

sti�ness of the contact wire may not be neglected, therefore the string model

is not applicable here. To keep the numerical e�ort small the carrier will be

modelled as homogeneous string and the contact wire as Euler{Bernoulli beam

such that the vertical displacementsw

c

(x; t) and w

w

(x; t) of carrier and contact

wire satisfy

%

c

A

c

�w

c

+ �

c

_w

c

= T

c

w

00

c

� %

c

A

c

g �

n

d

X

j=1

f

c

d;j

;

%

w

A

w

�w

w

+ �

w

_w

w

= �E

w

I

w

w

0000

w

+ T

w

w

00

w

� %

w

A

w

g �

n

d

X

j=1

f

w

d;j

+ f

w

p

(2)

with boundary conditions

w

c

(0; t) = w

c

(L; t) = l

c

;

w

w

(0; t) = w

w

(L; t) = 0 ; w

00

w

(0; t) = w

00

w

(L; t) = 0 :

(3)

The physical parameters of carrier and contact wire are denoted by %A

(mass per unit length), T (tensile force), EI (bending sti�ness), and g (gravi-

tational acceleration) while viscous damping is determined by the parameter �.

The droppers and the contact between pantograph and catenary result in the

loads f

c

d;j

, f

w

d;j

, and f

w

p

.

The droppers are modelled as wires of �xed length l

j

, the mass per unit

length is denoted by %

d

A

d

. The suspension clamps are considered as point

massesm

s

that are attached to carrier and contact wire at position x

d;j

. Thus,

the loads f

d;j

, (j = 1; : : : ; n

d

) in (2) are given by

f

c

d;j

(x; t) = �(x � x

d;j

) � ((m

s

+

1

2

l

j

%

d

A

d

)g + �

d;j

(t))

f

w

d;j

(x; t) = �(x � x

d;j

) � ((m

s

+

1

2

l

j

%

d

A

d

)g � �

d;j

(t))

(4)

with the Dirac function � and constraint forces �

d;j

(t) � 0 that guarantee that

the unilateral constraints

�

d;j

(t) := w

w

(x

d;j

; t)� w

c

(x

d;j

; t) + l

j

� 0 (5)

are always satis�ed. In nominal position all n

d

unilateral constraints (5) are ac-

tive (i. e. �

d;j

(t) = 0) but they may get inactive if one of the droppers slackens

during simulation. An inactive constraint corresponds to a vanishing constraint

force such that we get complementarity conditions

�

d;j

(t) ��

d;j

(t) = 0 ; (j = 1; : : : ; n

d

) (6)
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(see e. g. [15] for an extensive discussion of unilateral constraints in standard

DAE theory).

In (4), the loads are concentrated in isolated points x

d;j

that are �xed during

integration and correspond in a natural way to a �xed element or �xed grid

point if FEM or FDM are used for space discretization. The contact between

pantograph and catenary, on the other hand, results in a moving point force

acting in an isolated point x

p

(t). Thus, the force term f

w

p

of (2) is given by

f

w

p

(x; t) = �(x � x

p

(t))�

p

(t) ; (7)

and the geometrical contact condition of pantograph and catenary reads

�

p

(t) := w

w

(x

p

(t); t) � b(t; q

MBS

(t)) � 0 : (8)

Here, b(t; q

MBS

) denotes the vertical position of the pantograph head depend-

ing on the position coordinates q

MBS

of the pantograph. Again, we have a

complementarity condition

�

p

(t) ��

p

(t) = 0 : (9)

At the moment we do not specify a detailed pantograph model and suppose

only that its position may be completely described by coordinates q

MBS

that

satisfy the standard MBS model equations [5]

M

MBS

(q

MBS

)�q

MBS

= f

MBS

(t; q

MBS

; _q

MBS

) +G

T

MBS

(t; q

MBS

)�

MBS

�B

T

(t; q

MBS

)�

p

;

0 = g

MBS

(t; q

MBS

)

(10)

with mass matrixM

MBS

(q

MBS

), holonomic constraints g

MBS

= 0, and force terms

that contain the internal constraint forces G

T

MBS

�

MBS

of the pantograph where

G

MBS

:=

@

@q

MBS

g

MBS

(t; q

MBS

).

The second constraint force term

�B

T

(t; q

MBS

)�

p

with B :=

@b

@q

MBS

(t; q

MBS

) (11)

results from the interaction with the catenary. Summing up, the model for the

system pantograph/catenary is completely described by (2){(11).

2.2 A simpli�ed benchmark problem

In real life applications, the dynamical simulation of the interaction between

pantograph and catenary requires a very large numerical e�ort. We introduce

in this subsection a simpli�ed benchmark problem in order to discuss the basic

steps of discretization in space and time.
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x

w

L

l
c

x (t)p

F
0

Body 1

Body 2

Fig. 4. Geometry of the model problem.

For the benchmark problem, we consider the interaction between a sim-

pli�ed catenary with only n

d

= 2 droppers and a lumped mass model for the

pantograph. The \pantograph" consists of two point masses representing the

pantograph head (Body 1) and the remaining parts of the pantograph (Body 2).

There are spring{damper elements between Bodies 1 and 2 and between Body 2

and the ground (see Fig. 4). Both bodies move with �xed speed v

p

in x-direction

such that x

p

(t) in (7) is given by

x

p

(t) = x

p;0

+ v

p

t :

The contact pressure of the pantograph and the gravitational forces are mod-

elled by a constant force F

0

acting on Body 2 in vertical direction.

With this simpli�ed model we have

q

MBS

= (w

p;1

; w

p;2

)

T

; b(t; q

MBS

) = w

p;1

and (10) gets the form

m

1

�w

p;1

= �d

1

( _w

p;1

� _w

p;2

) � c

1

(w

p;1

� w

p;2

) � �

p

(t)

m

2

�w

p;2

= �d

2

_w

p;2

+ d

1

( _w

p;1

� _w

p;2

)� c

2

w

p;2

+ c

1

(w

p;1

� w

p;2

) + F

0

(12)

with w

p;j

denoting the w-coordinate of Body j.

The simulation results of Sec. 6 illustrate that this simpli�ed model reects

qualitatively typical e�ects of the real technical system. As a drawback of this
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con�guration we observed in the numerical tests that the simulation results

depend strongly on the initial conditions. The inuence of the initial state

is dominating in the beginning of the motion, only after some seconds it is

negligible because of damping. Therefore the initial conditions for the model

problem are adjusted carefully to avoid artefacts like frequent slackening of

droppers.

In the subsystem \catenary" we start with a stationary state:

_w

c

(x; 0) = _w

w

(x; 0) = �w

c

(x; 0) = �w

w

(x; 0) = 0 ; 0 � x � L :

These conditions de�ne for any given load f

w

p

the displacements w

c

(x; 0) and

w

w

(x; 0) as solution of an elliptic system (2) with boundary conditions (3) and

constraints (5). In the subsystem \pantograph" we assume

w

p;1

(0) = w

p;2

(0) (13)

and suppose furthermore that pantograph and catenary are in contact at t = 0.

Then the contact condition, the hidden constraints (see Sec. 4.1 below), and (12)

de�ne the initial values of w

p;j

, _w

p;j

, �w

p;j

, (j = 1; 2).

Following Poetsch et al. [20] (see also [19, Appendix O]) the material de-

pendent constants in the catenary model are adapted to measured data for the

catenary Re 250 of the Deutsche Bahn AG: The masses per unit length are

%

c

A

c

= 0:6 kg=m, %

w

A

w

= 1:068 kg=m, %

d

A

d

= 0:14 kg=m, the damping con-

stants are �

c

= �

w

= 0:03Ns=m

2

, the tensile forces are T

c

= T

w

= 15:0 kN and

the bending sti�ness of the contact wire is given by E

w

I

w

= 150:0Nm

2

. The

suspension clamps have mass m

s

= 0:25 kg, and the actually used constant of

gravity is g = 9:81m=s

2

.

The geometry of the model problem is de�ned by the length L = 20:0m

of the \catenary", by the distance l

c

= 1:0m between carrier and contact wire

at x = 0 and x = L and by the positions x

d;1

= 5:5m, x

d;2

= 14:5m and the

length l

1

= l

2

= 0:95m of the two droppers.

Lumped mass models for the pantograph have been considered frequently

in the literature (see e. g. [19, Sec. 4]). We use a set of parameters that goes

back to Fischer [6]: m

1

= 9:0 kg,m

2

= 17:0 kg, c

1

= 7000:0N=m, c

2

= 0:0N=m,

d

1

= 30:0Ns=m, d

2

= 130:0Ns=m, F

0

= 70:0N. The initial position of the \pan-

tograph" is x

p;0

= x

p

(0) = 2:0m, the simulation is stopped if the end position

x

p

(t

e

) = 18:0m has been reached. The initial constraint force between panto-

graph and catenary is set to �

p

(0) := 8:75N.
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3 REFORMULATION AS PDAE PROBLEM

In this section, we want to discuss the pantograph catenary model from above

in more detail and �nally reformulate it as a mixed system of PDE's and DAE's

or \PDAE", a term which has not yet been exactly de�ned in the literature.

It was introduced to characterize coupled systems of PDE's, ODE's and / or

DAE's that contain (explicitly or implicitly) relations which do not involve time

derivatives of the solution. A typical example is the incompressibility condition

r � u(x; t) = 0 in the Navier{Stokes equations (see e. g. [2, (1.3.14)]).

Up to now, the work on PDAE's has focussed on the special case that these

relations have to be satis�ed pointwise for all t and x of the time interval and

the spatial domain of interest (see [3, 4, 17] and the references therein). The

Navier{Stokes equations �t into this class of PDAE's. On the other hand,

constraints in mechanical systems are very often formulated for isolated spatial

points or parts of the boundary or some subdomain. The pantograph/catenary

model is an instructive example for this class of constrained PDE's or PDAE's.

3.1 Moving point force and constraint formulation

Since the whole model of Sec. 2 shows a rather complex structure, we �rst con-

centrate on only one PDE subject to one time dependent constraint. Consider

the beam equation

%A �w = �EIw

0000

+ Tw

00

� %Ag (14)

with boundary conditions as in (3). In case of an equality constraint, the

contact condition (8) leads basically to a PDAE of type

%A �w = �EIw

0000

+ Tw

00

� %Ag + �(x � x

p

(t))�

p

(t)

0 = w(x

p

(t); t) � b(t)

(15)

where we assumed b to be a known function to simplify matters. The corre-

sponding weak form reads, for all testfunctions v : [0; L] ! R satisfying the

boundary conditions,

%A

R

v �w dx = �EI

R

v

00

w

00

dx � T

R

v

0

w

0

dx� %Ag

R

v dx + v(x

p

)�

p

(t) ;

0 = w(x

p

; t) � b(t) :

(16)

The integrals range here from 0 to L. In general, the Sobolev space H

2

0

will be

appropriate for such a beam model [1] while H

1

0

is the basic setting in case of

the string (EI = 0).

As an alternative to the point constraint in (15), the displacement of the

wire can also be prescribed in an interval or subdomain I = [x

p

� �; x

p

+ �]. In
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weak form, we obtain then

%A

R

v �w dx = �EI

R

v

00

w

00

dx � T

R

v

0

w

0

dx � %Ag

R

v dx +

R

I

v(x)�(x; t) dx ;

0 =

R

I

�(x)(w(x; t) � b(t)) dx :

(17)

Now, a Lagrange multiplier �(x; t) appears which depends on both space and

time, and the constraint is only formulated in a weak sense with test func-

tions �. Eqs. (17) are directly related to constraint variational and saddle

point problems, see, e. g., Kikuchi/Oden [13] for more details.

Though the above constrained PDE's show some formal similarities to

DAE's, it turns out that they feature much di�erent properties. We illus-

trate that by calculating the Lagrange multiplier �

p

of (15). In standard DAE

theory, one would di�erentiate the constraints twice with respect to time in

order to derive an algebraic expression in �

p

(see e. g. [11, (VII.1.46e)]). Here,

we start with the formal di�erentiation

d

2

dt

2

w(x(t); t) = w

00

_x

2

+ 2 _w

0

_x+ w

0

�x+ �w (18)

where _w = @w=@t. The balance of momentum for a control volume moving

along with the contact point x

p

(t) yields

Z

x

p

+�

x

p

��

%A

d

2

dt

2

w(x(t); t) dx =

Z

x

p

+�

x

p

��

(�EIw

0000

+ Tw

00

� %Ag) dx+ �

p

(t) : (19)

In case of an Euler-Bernoulli beam, w

00

as well as _w

0

and �w are still continuous

but w

000

has a discontinuity at x

p

. Hence, for the limit case �! 0 all integrals

in the balance equation (19) vanish except for the bending term, which leads

to

�

p

(t) = EI(w

000

(x

+

p

; t) �w

000

(x

�

p

; t)) : (20)

The relation (20) is sometimes called a compatibility condition [20] for the

moving point force �

p

. In string models (EI = 0), even w

0

is discontinuous at

x

p

, and thus the derivatives of (18) exist only in subintervals [x

p

� �; x

�

p

] and

[x

+

p

; x

p

+ �]. Consequently, the limit case � ! 0 results in a condition which

takes the velocity _x

p

into account [19, Sec. 3],

�

p

(t) = (%A _x

2

p

� T )(w

0

(x

+

p

; t)� w

0

(x

�

p

; t)) : (21)

In standard DAE theory, a given DAE may be transformed to an analytically

equivalent one substituting constraints by their time derivatives (typically this

substitution is used to reduce the index analytically [8]). Eq. (21) illustrates

that this approach can not be carried over to the PDAE model (15) since

the point constraint 0 = w(x

p

; t)� b(t) is in general not di�erentiable. The

situation changes if we pass to the subdomain constraint in (17) where w is

smooth inside the intervall I.
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3.2 Reformulating the full system

We now turn back to the equations of motion outlined in Sec. 2 and reformulate

them as a PDAE system. As long as the time interval of interest may be

split in a �nite number of sub-intervals [t

i

; t

i+1

] such that the set of active

unilateral constraints (5), (8) remains �xed for all t 2 [t

i

; t

i+1

], the analysis of

the equations of motion is restricted most conveniently to one of these sub-

intervals [15]. For ease of presentation, we therefore consider in the following

a sub-interval [t

0

; T ] with all unilateral constraints (5), (8) being active for

all t 2 [t

0

; T ]. With minor modi�cations this analysis may be carried over to

sub-intervals with inactive constraints.

In [t

0

; T ] the constraints (5) and (8) de�ne n

d

+ 1 functionals that vanish

identically for t 2 [t

0

; T ]. These functionals are linear in w

c

and w

w

, they are

mappings from a function space to R. We summarize these n

d

+ 1 constraints

in

0 = C

c

w

c

+ C

w

(x

p

(t))w

w

�

�

0

b(t; q

MBS

)

�

� z =: g

PDE

(t; w

c

; w

w

; q

MBS

): (22)

The corresponding force terms in (2) and (10) are written as

0

B

B

@

�

P

j

�(x � x

d;j

)�

d;j

(t)

P

j

�(x � x

d;j

)�

d;j

(t) + f

w

p

�B

T

(t; q

MBS

)�

p

(t)

1

C

C

A

=:

 

C

T

PDE

(x

p

(t))

C

T

MBS

(t; q

MBS

)

!

�

PDE

(t)

with forces �

PDE

(t) := (�

d;1

; : : : ; �

d;n

d

; �

p

)

T

and matrices C

PDE

2 R

(n

d

+1)�2

and C

MBS

2 R

(n

d

+1)�1

.

With these notations, (2){(11) get the compact form

M(q)�q = A[q] + f(t; q; _q) +G

T

(t; q)�

0 = g(t; q)

(23)

where

q :=

0

@

w

c

(x; t)

w

w

(x; t)

q

MBS

(t)

1

A

; � :=

�

�

PDE

(t)

�

MBS

(t)

�

;

M(q) := blockdiag ( %

c

A

c

; %

w

A

w

; M

MBS

(q

MBS

) ) ;

g(t; q) :=

�

g

PDE

(t; w

c

; w

w

; q

MBS

)

g

MBS

(t; q

MBS

)

�

;

G

T

(t; q) :=

0

B

@

C

T

PDE

(x

p

(t))

C

T

MBS

(t; q

MBS

)

0

0 G

T

MBS

(t; q

MBS

)

1

C

A

:
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Furthermore, A denotes the linear di�erential operator

A[q] :=

0

B

@

T

c

w

00

c

�E

w

I

w

w

0000

w

+ T

w

w

00

w

0

1

C

A

(24)

and

f(t; q; _q) :=

0

B

@

��

c

_w

c

� %

c

A

c

g �

P

j

�(x � x

d;j

)(m

s

+

1

2

l

j

%

d

A

d

g)

��

w

_w

w

� %

w

A

w

g �

P

j

�(x � x

d;j

)(m

s

+

1

2

l

j

%

d

A

d

g)

f

MBS

(t; q

MBS

; _q

MBS

)

1

C

A

contains generalized centrifugal and Coriolis forces and applied forces.

As mentioned at the beginning of this section, the constraints in (23) are not

pointwise w. r. t. x but they guarantee that certain functionals of the solution

vanish for all t 2 [t

0

; T ]. To the knowledge of the authors, PDAE's of this basic

type have not been considered before in the PDAE literature. They are worth

to be studied in more detail because coupling conditions between substructures

in complex models result typically in this kind of constraints, in particular in

a broad class of mechanical systems.

4 SPACE DISCRETIZATION

We turn now to numerical simulation techniques and concentrate in this section

on semi-discretization in space by �nite elements and �nite di�erences. Before,

however, it is necessary to study the contact of pantograph head and contact

wire in more detail. The discussion is restricted to the setting of the benchmark

problem of Sec. 2.2.

4.1 Moving point forces

Moving point forces are known to cause numerical problems whenever x

p

(t)

crosses a grid point of a FEM or FDM discretization. We therefore follow the

approach (17) and consider explicitly the distribution of the load in the contact

area between contact wire and pantograph head (a typical head consists of

2 contact strips spanning a contact area of length � 0:4m):

f

w

p

(x; t) = �

�

(x� x

p

(t))�

p

(t) : (25)

In (25) the inuence of the actual displacements w

w

(x; t) on f

w

p

is neglected,

the load distribution is described by a normalized function �

�

2 C

1

(�1;1)
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that is non-negative and vanishes identically outside of [��; �] (here � denotes

a small positive parameter),

�

�

(�) � 0 ; (� 2 R) ;

Z

1

�1

�

�

(�) d� = 1 ; supp �

�

= [��; �] :

In the numerical tests we set � := 0:2m and use a cubic C

1

{spline �

�

with knots

��, 0, and � that satis�es �

0

�

(0) = 0. The analytical expression is obtained

straightforwardly as

�

�

(�) :=

1

�

� 3

�

2

�

3

+ 2

j�j

3

�

4

; if j�j � � :

The geometrical contact condition pantograph/catenary is formulated con-

sistently with (25):

�

p

(t) :=

Z

1

�1

�

�

(x � x

p

(t))w

w

(x; t) dx� b(t; q

MBS

(t)) � 0 : (26)

Again, we have the complementarity condition (9).

As long as this contact condition (26) is active the solution of the PDAE

has to satisfy additionally the hidden constraint

0 =

d

dt

�

p

(t) =

Z

1

�1

(��

0

�

(x � x

p

) _x

p

w

w

+ �

�

(x� x

p

) _w

w

) dx� b

t

� b

q

_q

MBS

on the level of velocity coordinates and the hidden constraint 0 =

d

2

dt

2

�

p

(t) on

the level of accelerations (similar to standard DAE theory [11, pp. 463�], see

also Sec. 3.1 of the present paper).

4.2 Semi-discretization by �nite elements

Let 0 = x

0

< x

1

< : : : < x

N

< x

N+1

= L denote an equidistant grid with

N + 1 subintervals of length �x = L=(N + 1) and assume that the dropper

positions x

d;j

; j = 1; 2, coincide with some grid points. In each subinterval

[x

i

; x

i+1

] , the displacements w

c

and w

w

are approximated by a linear and a

cubic Hermite ansatz, respectively,

w

c

(x; t)

:

= (1 � �)q

c;i

(t) + �q

c;i+1

(t) ; w

w

(x; t)

:

=

3

X

j=0

N

j

(x) q

w;2i+j

(t) (27)

where � := (x � x

i

)=�x and the latter shape functions read

N

0

(x) = (1� �)

2

(1 + 2�); N

1

(x) = �(1 � �)

2

�x;

N

2

(x) = �

2

(3� 2�); N

3

(x) = ��

2

(1 � �)�x :
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Note, that the coe�cients q

c;i

and q

c;i+1

approximate w

c

at nodes x

i

and

x

i+1

; i = 0; : : : ;N , while the coe�cients q

w;2i+j

; j = 0; : : : ; 3 approximate

both nodal displacements and corresponding spatial derivatives of w

w

.

If the boundary conditions w

c

(x

0

; t) = w

c

(x

N+1

; t) = l

c

and w

w

(x

0

; t) =

w

w

(x

N+1

; t) = 0 are taken into account, these conforming �nite elements of

class C

0

and C

1

de�ne in the usual way N global test functions v

c

(x) for the

carrier and 2N + 2 test functions v

w

(x) for the contact wire [24]. Thus, the

global approximation can be written as

w

c

(x; t)

:

=

N

X

j=1

v

c;j

(x)q

c;j

(t) ; w

w

(x; t)

:

=

2N+2

X

j=1

v

w;j

(x)q

w;j

(t) : (28)

Inserting (28) in the weak form of (2), cf. also (17), and applying all testfunc-

tions, we obtain the semidiscretized equations of motion

M

c

�q

c

+D

c

_q

c

= �S

c

q

c

+ b

c

�H

T

c

�

d

(29)

M

w

�q

w

+D

w

_q

w

= �(S

w

+K

w

)q

w

+ b

w

+H

T

w

�

d

+ F

T

w

(t)�

p

(30)

0 = H

w

q

w

�H

c

q

c

+ (l

1

; l

2

)

T

(31)

0 = F

w

(t)q

w

� b(t; q

MBS

(t)) : (32)

Mass, damping and sti�ness matrices follow from standard computations [24],

e. g., it holds

M

c

= %

c

A

c

�

Z

L

0

v

c;i

v

c;j

dx

�

N

i;j=1

; K

w

= E

w

I

w

�

Z

L

0

v

00

w;i

v

00

w;j

dx

�

2N+2

i;j=1

:

Furthermore, the constraint matrix H

c

for the droppers is given by

H

T

c

=

�

v

c;i

(x

d;1

); v

c;i

(x

d;2

)

�

N

i=1

while the force vector b

c

contains both gravity and dropper terms (analogously

H

w

and b

w

),

b

c

= �%

c

A

c

g

�

Z

L

0

v

c;i

dx

�

N

i=1

�H

T

c

�

(m

s

+

1

2

l

1

%

d

A

d

)g

(m

s

+

1

2

l

2

%

d

A

d

)g

�

:

The time dependent constraint vector F

w

(t) for the contact of pantograph and

catenary, �nally, is based on the load distribution (26) and computed by

F

T

w

(t) =

�

Z

L

0

�

�

(x � x

p

(t))v

w;i

(x) dx

�

2N+2

i=1

: (33)

Gaussian quadrature provides an e�cient and stable way to evaluate (33).

Note, that the combination of a cubic Hermite ansatz for w

w

and the load



16 M. ARNOLD, B. SIMEON

distribution (25) represents a special type of mixed discretization, compare

also the subdomain constraint formulation (17).

How good is the approximation in space using such linear and cubic ansatz

functions? Concerning the string model of the carrier, the errors are of order

O(�x

2

) as long as the point loads of the droppers act only in some nodes of

the grid [24]. Cubic elements, on the other hand, lead in general to errors of

order O(�x

4

), but the contact wire discretization will be somewhat worse due

to the same point loads. In these nodes, the ansatz is actually too smooth,

but we have to compromise here between a conforming ansatz and the Delta

functions induced by the droppers.

Looking �nally at the structure of the equations, we observe that the carrier

matrices in (29) are tridiagonal while the contact wire matrices in (30) are

pentadiagonal.

4.3 Semi-discretization by �nite di�erences

To illustrate that the di�culties in the numerical solution of (23) are mainly

caused by the PDAE itself and not by a special type of discretization we con-

sider in addition to the FEM discretization (29){(32) a standard second order

�nite di�erence discretization. Finite di�erences of higher order have been

implemented, e. g., by Poetsch/Wallaschek [21].

Consider again the equidistant grid fx

i

: 0 � i � N + 1 g of Sec. 4.2 and

denote by q

c;i

(t) and q

w;i

(t) the approximations to w

c

(x

i

; t) and w

w

(x

i

; t),

respectively. The FDM discretization is discussed in detail for the contact

wire: First and third derivatives at intermediate points x

i+1=2

:=

1

2

(x

i

+ x

i+1

)

are approximated by

w

0

w

(x

i+1=2

; t)

:

=

1

�x

(q

w;i+1

� q

w;i

) ; w

000

w

(x

i+1=2

; t)

:

=

1

�x

(q

00

w;i+1

� q

00

w;i

) (34)

with

q

00

w;i

:=

1

�x

2

(q

w;i+1

� 2q

w;i

+ q

w;i�1

) ; (1 � i � N) :

The boundary conditions (3) de�ne q

w;0

= q

w;N+1

= q

00

w;0

= q

00

w;N+1

:= 0.

From the second equation of (2) we obtain by integration over the interval

[x

i�1=2

; x

i+1=2

]

Z

x

i+1=2

x

i�1=2

(%

w

A

w

�w

w

(x; t) + �

w

_w

w

(x; t)) dx =

�E

w

I

w

(w

000

w

(x

i+1=2

; t)� w

000

w

(x

i�1=2

; t)) +

+ T

w

(w

0

w

(x

i+1=2

; t) �w

0

w

(x

i�1=2

; t)) � %

w

A

w

g ��x+

+

Z

x

i+1=2

x

i�1=2

(�f

w

d;1

� f

w

d;2

+ f

w

p

) dx :
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Approximating the left hand side by

�x � (%

w

A

w

�q

w;i

+ �

w

_q

w;i

)

and inserting (34) we get a FDM approximation of the form (30) with diagonal

matrices

M

w

:= %

w

A

w

��x I

N�N

; D

w

:= �

w

��x I

N�N

;

a tridiagonal matrix S

w

representing the term T

w

w

00

w

and a pentadiagonal ma-

trix K

w

representing the term �E

w

I

w

w

0000

w

.

For the FDM discretization the matrices H

w

and F

w

in (30) are given by

H

T

w

:= ( e

i

1

; e

i

2

) ; F

T

w

(t) :=

�

Z

x

i+1=2

x

i�1=2

�

�

(x � x

p

(t)) dx

�

N

i=1

with the i

j

-th unit vectors e

i

j

and x

i

j

�1=2

� x

d;j

< x

i

j

+1=2

, (j = 1; 2). The

vector

b

w

:= �%

w

A

w

g ��x�H

T

w

�

(m

s

+

1

2

l

1

%

d

A

d

)g

(m

s

+

1

2

l

2

%

d

A

d

)g

�

contains gravitation forces of contact wire, droppers, and suspension clamps.

In the same way the FDM discretization of the �rst equation in (2) may

be written in the form (29) with diagonal matrices M

c

, D

c

, and a tridiagonal

matrix S

c

. Finally the active unilateral constraints (5) and (8) are discretized

as (31) and (32).

Formally, both FEM and FDM yield a semi-discretized system of the form

(29){(32). Comparing these discretizations the FEM approximation of Sec. 4.2

is seen to be of higher order. At the other hand the diagonal structure of

matrices M

c

, D

c

, M

w

, and D

w

allows some savings of cpu-time in the FDM

approach.

5 STABILIZED TIME INTEGRATION

OF THE SEMI-DISCRETIZED PDAE

The discretization of the equations of motion (23) is completed by applying

techniques from standard DAE theory to the semi-discretized system that was

obtained either by FEM or by FDM. In this section we present the 2nd order

time discretization schemes that are used in the simulations of Sec. 6 and discuss

some details in the handling of the unilateral constraints (5) and (26).
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5.1 Index reduction and hidden constraints

Using FEM or FDM the equations of motion are semi-discretized in space, see

Sec. 4. The PDE part (2){(9) describing the catenary results in the DAE (29){

(32), the MBS part (10) that describes the pantograph remains unchanged.

Similar to (23) the semi-discretized system may be written in the compact

form

M

�

(q

�

)�q

�

= A

�

q

�

+ f

�

(t; q

�

; _q

�

) +G

T

�

(t; q

�

)�

�

0 = g

�

(t; q

�

)

(35)

with

q

�

:=

0

@

q

c

(t)

q

w

(t)

q

MBS

(t)

1

A

;

(see (10) and (29){(32)). In the benchmark problem of Sec. 2.2 we have

M

�

(q

�

) = blockdiag (M

c

; M

w

; m

1

; m

2

) ;

A

�

= blockdiag (�S

c

; �(S

w

+K

w

) ; 0 ; 0 )

(see (12), (29), (30)) and

1

�x

A

�

approximates the linear di�erential operator A

in (24). Introducing the velocity v

�

:= _q

�

and accelerations a

�

:= _v

�

= �q

�

Eqs. (35) may be rewritten as a �rst order system that forms an index-3 DAE

[11, pp. 463�].

Any time integration method for standard MBS model equations (10) may

be applied to the semi-discretized system (35) (see [11, Chapter VII] for a com-

prehensive overview). To guarantee numerical stability, all these methods re-

duce the index of (35) analytically and exploit not only the original constraints

g

�

(t; q

�

(t)) = 0 of (35) but also the hidden constraints

d

dt

g

�

(t; q

�

(t)) = 0 (ve-

locity level) and / or

d

2

dt

2

g

�

(t; q

�

(t)) = 0 (acceleration level).

In the numerical tests of Sec. 6 we use a generalization of the Gear{Gupta{

Leimkuhler formulation [9] that considers simultaneously original and hidden

constraints. The hidden constraints are coupled to the equations of motion

via auxiliary Lagrange multipliers �; � 2 R

n

�

. Here, we return to the original

problem (2){(11) where instead of equality constraints g

�

= 0 unilateral con-

straints g

�;i

� 0 and complementarity conditions �

�;i

� g

�;i

= 0, (i = 1; : : : ; n

�

)

are given. Since unilateral constraints imply hidden constraints only as long as

they are active, we get additional complementarity conditions

�

i

(t) � g

�;i

(t; q

�

) = 0 ; �

i

(t) � g

�;i

(t; q

�

) = 0 ; (i = 1; : : : ; n

�

) :

The active unilateral constraints and the complementarity conditions for � are

formally summarized to

0 = g

(0)

�

(t; q

�

; �) =

�

g

(0)

�;i

(t; q

�

; �)

�

n

�

i=1
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where

g

(0)

�;i

(t; q

�

; �) =

(

g

�;i

(t; q

�

) if g

�;i

(t; q

�

) � 0 ;

�

i

(t) if g

�;i

(t; q

�

) > 0 :

(36)

The hidden constraints on velocity level and the complementarity conditions

for � are summarized as

0 = g

(I)

�

(t; q

�

; _q

�

; �) =

�

g

(I)

�;i

(t; q

�

; _q

�

; �)

�

n

�

i=1

with

g

(I)

�;i

(t; q

�

; _q

�

; �) =

(

d

dt

g

�;i

(t; q

�

(t)) =

@

@t

g

�;i

+

@

@q

�

g

�;i

� _q

�

(t) if g

�;i

� 0 ;

�

i

(t) if g

�;i

> 0 :

(37)

In the same way the n

�

conditions g

(II)

�

(t; q

�

; _q

�

; �q

�

; �

�

) = 0 on acceleration

level are de�ned by

d

2

dt

2

g

�

= 0 with g

(II)

�;i

:= �

�;i

if g

�;i

> 0 such that also the

original complementarity conditions for �

�

are always satis�ed.

With these notations the semi-discretized equations of motion get the form

M

�

( _q

�

� v

�

) =

�

@

@q

�

g

(I)

�

(t; q

�

; v

�

; �)

�

T

� +

�

@

@q

�

g

�

(t; q

�

; �)

�

T

� ;

M

�

( _v

�

� a

�

) =

�

@

@ _q

�

g

(I)

�

(t; q

�

; v

�

; �)

�

T

� ;

M

�

a

�

= A

�

q

�

+ f

�

(t; q

�

; v

�

) +G

T

�

(t; q

�

)�

�

;

g

(0)

�

(t; q

�

; �) = 0 ;

g

(I)

�

(t; q

�

; v

�

; �) = 0 ;

g

(II)

�

(t; q

�

; v

�

; a

�

; �

�

) = 0 :

(38)

The auxiliary variables �, � vanish identically for the analytical solution and

are in the size of discretization errors for the numerical solution, the initial

values are set to �(0) = �(0) = 0 [7, 9].

For the benchmark problem of Sec. 2.2 Eqs. (38) are substantially simpli�ed

since the constraints g

�

are linear w. r. t. q

�

such that G

�

,

@g

�

@q

�

,

@g

(I)

�

@q

�

, and

@g

(I)

�

@ _q

�

are independent of q

�

and v

�

and g

(0)

�

, g

(I)

�

, and g

(II)

�

are linear w. r. t. q

�

, v

�

,

and a

�

. Furthermore f

�

is linear and the mass matrix M

�

is constant.

5.2 Time discretization

As long as the set of active unilateral constraints g

�;i

� 0 does not change

system (38) forms an index-2 DAE and may be solved by standard methods

like BDF. Similar to the space discretization, we �x the time stepsize �t and
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use a 2nd order method. Since two-step methods (like 2nd order BDF) need

initial values at t = 0 and at t = �t we compute a 2nd order approximation of

q

�

(�t), v

�

(�t), and a

�

(�t) by Richardson extrapolation based on backward

Euler method with stepsizes �t and �t=2. Alternatively, a half-explicit Euler

method may be used for extrapolation.

There is only small damping in the technical system \catenary" and con-

sequently any numerical damping may cause wrong simulation results. Nu-

merical damping results from the use of large stepsizes in integrators that are

strictly stable at 1 (BDF, implicit Runge{Kutta methods of Radau IIa type)

[23]. Therefore both explicit and most implicit methods have to be applied

with rather small stepsizes to (38) (see, however, [12] for a novel integration

method that avoids numerical damping completely).

In the numerical tests of Sec. 6, we use two-step BDF for (38) and a half-

explicit two-step method for (38) that is based on St�ormer's method of 2nd or-

der ([10, Sec. III.10], see also [21]). This half-explicit method may be de�ned for

general problems of the form (38) but to simplify notation we restrict ourselves

to the benchmark problem of Sec. 2.2.

For given q

�

n

� q

�

(t

n

), v

�

n

� v

�

(t

n

), and v

�

n�1

� v

�

(t

n�1

), the time step

t

n

! t

n+1

:= t

n

+�t is de�ned by:

Step 1 Compute a

�

n

, �

�

n

as solution of the system of linear equations

M

�

a

�

n

= A

�

q

�

n

+ f

�

(t

n

; q

�

n

; v

�

n

) +G

T

�

(t

n

)�

�

n

;

0 = g

(II)

�

(t

n

; q

�

n

; v

�

n

; a

�

n

; �

�

n

) :

(39)

Step 2 Set t

n+1=2

:= t

n

+�t=2 and use Block Gau� elimination to compute

q

�

n+1

� q

�

(t

n+1

) and v

�

n+1

� v

�

(t

n+1

) as solution of the system of linear

equations

M

�

�

q

�

n+1

� q

�

n

�t

�

1

2

(v

�

n

+ v

�

n+1

)

�

=

�

@g

(I)

�

@q

�

(t

n+1=2

)

�

T

� +

�

@g

�

@q

�

(t

n+1=2

)

�

T

� ;

M

�

�

v

�

n+1

� v

�

n�1

2�t

� a

�

n

�

=

�

@g

(I)

�

@ _q

�

(t

n

)

�

T

� ;

0 = g

(0)

�

(t

n+1

; q

�

n+1

; �) ;

0 = g

(I)

�

(t

n+1

; q

�

n+1

; v

�

n+1

; �) :

(40)

The method (39), (40) is reversible in time. Formally (39) and (40) are implicit

w. r. t. all unknowns but for given right hand sides the solution components a

�

n

,

q

�

n+1

, and v

�

n+1

may be obtained very e�ciently sinceM

�

is tridiagonal (in the

FEM case) or even diagonal (in the FDM case). Because only the unknowns

�

�

n

, �, and � have to be computed from small dense systems of linear equations,

we call (39), (40) a half-explicit method.
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In the numerical tests we observed an oscillatory instability for damped

systems that was �xed substituting f

�

(t

n

; q

�

n

; v

�

n

) in (39) by the smoothed

term

f

�

(t

n

; q

�

n

;

1

4

(v

�

n�1

+ 2v

�

n

+ v

�

n+1

) )

or (substituting v

�

n+1

! v

�

n�1

+ 2�t a

�

n

) by

f

�

(t

n

; q

�

n

;

1

2

(v

�

n�1

+ v

�

n

+�t a

�

n

) ) : (41)

With (41) the system (39) is as before linear w. r. t. a

�

n

, �

�

n

since f

�

is linear

in the benchmark problem.

The stepsize �t of the half-explicit method has to satisfy �t � c ��x

2

to

guarantee stability since the largest eigenvalue of matrix M

�1

�

A

�

is of size

O(�x

�4

). In the numerical tests of Sec. 6 we use stepsizes �t = c ��x

2

with

an appropriate constant c > 0 both for the half-explicit method (to avoid in-

stability) and for BDF (to avoid numerical damping and instability).

5.3 Systems with varying structure

The time discretization method has to be extended by an algorithm to handle

changes of the set of active unilateral constraints. In each time step t

n

! t

n+1

,

the set of active constraints at t

n+1

is determined iteratively. This algorithm

is discussed for the half-explicit method (39), (40), it may be carried over

straightforwardly to BDF and other methods.

We denote by

J

n+1

:= f i : 1 � i � n

�

; g

�;i

(t

n+1

; q

�

n+1

) = 0 g

the (a priori unknown) index set of active constraints at t

n+1

. In (39) and

(40) the de�nitions (36) and (37) of g

(0)

�

, g

(I)

�

, and g

(II)

�

are slightly modi�ed

substituting the conditions \if g

�;i

� 0" and \if g

�;i

> 0" by \if i 2 J

n+1

" and

\if i =2 J

n+1

", respectively.

Most often the set of active constraints does not change in a time step

t

n

! t

n+1

. We therefore start with method (39), (40) and J

n+1

:= J

n

to get

a

�

n

, �

�

n

, q

�

n+1

, and v

�

n+1

.

If these vectors are consistent with the unilateral constraints, i. e. if

g

�;i

(t

n+1

; q

�

n+1

) � 0 ; �

�

n;i

� 0 ; (i = 1; : : : ; n

�

) ;

then the time step t

n

! t

n+1

is completed successfully and the integration may

be continued with time step t

n+1

! t

n+2

.

If there is an i =2 J

n+1

with g

�;i

(t

n+1

; q

�

n+1

) < 0 then the i-th unilateral

constraint has become active in time step t

n

! t

n+1

, the index \i" has to be

added to J

n+1

and the time step t

n

! t

n+1

is repeated.
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If there is an i 2 J

n+1

with �

�

n;i

< 0 then the i-th unilateral constraint has

become inactive in time step t

n

! t

n+1

, the index \i" has to be deleted from

J

n+1

and the time step t

n

! t

n+1

is repeated.

This algorithm is robust and e�cient. Note, that we do not determine

exactly the time instant t

�

2 [t

n

; t

n+1

] where an inactive constraint gets active

or vice versa. In each single time step t

n

! t

n+1

the set of active constraints

is considered to be �xed. This is justi�ed by the very small time stepsize, by

the low order of the method, and by the large error of the physical model.

An inactive unilateral constraint that gets active corresponds in the physical

model to two bodies getting in contact and results typically in an impact in

the system. Implicitly, we have assumed by g

(I)

�

= 0 in (40) that these impacts

are inelastic [15].

6 SIMULATION RESULTS

The following selection of simulation results shows some typical properties

of the benchmark problem pantograph/catenary and illustrates the numerical

techniques discussed above. We use the benchmark data as speci�ed in Sec. 2.2

and discretize carrier and contact wire by an equidistant grid of N + 1 = 500

intervals.

Space Carrier Contact wire

discretization !

max

!

min

!

max

!

min

FEM 2:1793 � 10

3

3:9528 5:9257 � 10

4

2:9631

FDM 1:2582 � 10

3

3:9528 4:8088 � 10

3

2:9631

Table 1. Eigenfrequencies of carrier and contact wire in Hz for N + 1 = 500 intervals.

Table 1 gives maximum and minimum frequencies of the subsystems in the

undamped case. The low frequencies of FEM and FDM space discretization

are in good agreement, but the conforming cubic FEM approach for the con-

tact wire leads to a much higher maximum frequency. Concerning the time

integration by the time reversible half-explicit method of Sec. 5.2, this means

that the stepsize �t is restricted to 6:6 � 10

�5

s in case of the FDM grid and to

5:3 � 10

�6

s in case of the FEM grid. With respect to e�ciency, the combination

of FEM discretization and time reversible integration su�ers thus from a more

than ten times smaller stepsize.
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The initial state of the catenary due to the gravity and the constraints (5)

and (26) is displayed in Fig. 5. Here, the pantograph speed was chosen as

v

p

= 32m=s. The corresponding time integration results are shown in Fig. 6.

With respect to position variables, the solution remains comparatively smooth.

On the other hand, with increasing time the constraint forces start oscillating

though the unilateral constraints are always active, i.e., there is no loss of con-

tact between pantograph head and catenary and the droppers do not slacken.

Looking at the accuracy, the di�erence between FDM and FEM space dis-

cretization is negligible here, and also the time integration by second order

BDF or the half-explicit method yields comparable results. The solution in

Fig. 6 was computed using a constant stepsize of �t = 5 � 10

�5

s and either

BDF-2 for the FEM discretization or the time reversible half-explicit method

for the FDM grid.

If we rerun the simulation with increased speed v

p

= 48m=s, the solution

behavior changes considerably, Fig. 7. First, there is a very high sensitivity of

the solution with respect to the initial values. In order to avoid an immediate

loss of contact between pantograph head and catenary, it was necessary to

change the choice (13) for the initial pantograph position to

w

p;1

(0) = w

p;2

(0) + 0:002m :

Second, the oscillations in the constraint forces grow strongly. In particular,

the constraint force �

p

between pantograph head and catenary is characterized

by very sharp peaks and much higher maximum values. This is partly due to

a third phenomenon, the slackening of the second dropper. The pantograph

passes the �rst dropper at time t = 0:0729 s, which leads to a distinct minimum

of the constraint force �

d;1

. At t = 0:2604 s, the second dropper is reached, and

now �

d;2

tends to zero whence the unilateral constraint (5) becomes inactive,

the dropper slackens. This event was localized by the technique outlined in

Sec. 5.3, and the integration was continued without the corresponding con-

straint equation until the constraint �

d;2

� 0 became active again. Note, that

space discretization by either FEM or FDM is here clearly superior to a modal

approach since it o�ers a straightforward handling of such discontinuities. In

real life simulations, slackening of droppers happens frequently and thus ap-

propriate numerical techniques are essential.

Finally, we remark that also for v

p

= 48m=s, the di�erence between space

discretization by either FEM of FDM as well as the di�erence between time

integration by either BDF or the half-explicit method were very small. Further-

more, in all simulations the inuence of viscous damping in terms of factors �

c

and �

w

, cf. (2), was negligible.
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Fig. 5. Initial con�guration of the catenary.

0 0.1 0.2 0.3 0.4
−0.01

0

0.01

0.02

0.03

0.04

[m
]

Pantograph

Wp1

Wp2
qc

qw

d2

d1 p

λ

λ λ

0 0.1 0.2 0.3 0.4
−0.02

0

0.02

 

0.94

0.96

0.98

Catenary at x = 10

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

Constraint forces droppers

[N
]

 t  [s]
0 0.1 0.2 0.3 0.4

0

20

40

60

80

100

120

Constraint force contact p.

 t  [s]

head passing

Fig. 6. Time integration results for v
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= 32m=s.
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7 SUMMARY

Simulation plays a very important role in the analysis of the pantograph/cate-

nary interaction as well as in the design of innovative pantograph concepts.

Clearly, the quality of any simulation result depends on the model, the available

data, and the numerical solution techniques. But in case of complex technical

applications like the system of pantograph and catenary, there is not only one

model equation and one or two numerical schemes. Instead, several physical

processes are described by corresponding di�erential equations (PDE's and

DAE's), and the mutual coupling becomes the most crucial part.

Though tempting, we do here not advocate approaches where modelling and

numerical solution are intertwined, e. g., by �rst discretizing some subsystems

in space and then setting up the overall model. The alternative we propose is

the mathematical model of Sec. 2, a partial di�erential-algebraic equation or

PDAE which comprises all equations and coupling conditions before discretiza-

tion. Like the descriptor form in rigid body systems, this approach o�ers great

exibility in the handling of additional subsystems and does not exclude any

numerical technique a priori.

It turns out that the PDAE of Sec. 2 does not �t into the framework devel-

oped so far in the literature. On the other hand, mechanical systems including

deformable bodies lead quite naturally to constraints on some boundary or

subdomain, and hence the pantograph PDAE represents a typical example for

this broad class of applications. We hope that the simple benchmark problem

introduced in Sec. 2.2 will serve as a reference to study such problems. Note

that the discussion in Sec. 3 shows that one has to be careful when applying

standard DAE techniques like di�erentiation of constraints.

The numerical methods outlined in Secs. 4 and 5 realize a MOL type ap-

proach. Alternatives like Rothe's method based on the PDAE formulation

have not been investigated so far. We want to stress in this context that space

and time discretization should preserve as much information as possible. For

this purpose, we presented a novel half-explicit integration method which is

reversible in time. Its application to the semi-discretized PDAE involves no

numerical damping, in contrast to standard methods like BDF.

Finally, the simulation results for the benchmark problem illustrate that the

constraint between pantograph and catenary and the corresponding constraint

force is the most important part in both model formulation and numerical

solution. Concerning the latter, we did not use any adaptivity in space or

time, a topic which de�nitely needs further attention.
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