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Viscoplastic Deformation from the DAE Perspective -

a Benchmark Problem

Viscoplastic deformation is characterized by a combined system of balance and evolution equations. The

application of the Finite Element Method results in a Di�erential-Algebraic Equation (DAE) in time.

The paper summarizes the most important points of the mathematical model and presents a benchmark

problem for numerical comparisons. As computational example, the BDF-2 method with stepsize control

is applied.

1. Introduction

Deformation and failure of technical structures are a focus of current research in computationalmechanics.

Simulation techniques in this �eld rely mainly on the Finite Element Method (FEM) and corresponding

numerical software [4]. For time dependent material laws, not only the space but also the time dimension

plays an important role. In particular in viscoplasticity, there is a growing interest in the DAEs that arise

after space discretization. The goal is the combination of numerical techniques from FEM and DAEs in

order to achieve more accurate results and better performance. Since it is often very di�cult to assess

the quality of a method, there is a need for benchmark problems which show typical di�culties but can

still be handled outside a black box simulation environment.

In this paper, we concentrate on the time dimension and discuss viscoplastic deformation from the

DAE perspective. Moreover, we present a test problem which is intended to serve as a reference for

numerical methods. Section 2 speci�es the combined system of balance equations for the displacements

and evolution equations for the internal variables. In Section 3, the space discretization and the resulting

DAE in time are introduced. Furthermore, the index is determined and the potential of sti� DAE solvers

is investigated. Finally, the example of a viscoplastic beam subjected to a tensile and a bending test

illustrates the problem class. The DAE is solved by both implicit Euler and the BDF-2 method with

stepsize control. We give all the data necessary for 2D simulation and provide in this way a benchmark

problem for further comparisons.

2. Mathematical Model

We consider a body 
 � IR

3

with su�ciently smooth boundary @
: Cauchy's �rst law of motion charac-

terizes the deformed body by

�(x; t) �u(x; t) = div �(x; t) + f(x; t) 8x 2 
 (1)

with boundary conditions u(x; t) = �u(x; t) 8x 2 @


u

and �(x; t)n(x; t) =

�

t(x; t) 8x 2 @


�

. Here, u

stands for the displacements, � is the symmetric stress tensor, � the mass density and f the density

of body forces. Furthermore, �u denotes prescribed displacements,

�

t surface tractions, and n is the unit

normal vector on @


�

with @
 = @


�

[ @


u

:

As usual in viscoplasticity, we neglect the acceleration term �u in (1) because we are only interested

in long term loads. A material law completes the equations of motion by relating stress and strain. The
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standard assumption in viscoplasticity is that the total strain tensor " can be decomposed additively into

an elastic part "

e

and a plastic part "

p

[12]. We restrict the discussion to the geometrically linear case

and Hooke's law for the elastic part whence

"(x; t) =

1

2

(ru(x; t) + (ru(x; t))

T

); �(x; t) =D"

e

(x; t) = D("(x; t)� "

p

(x; t)) : (2)

The constitutive relations have the form of evolution equations

_
"

p

(x; t) = �

"

p

(�(x; t); q(x; t)) ;
_
q(x; t) = �

q

(�(x; t); q(x; t)) 8x 2 
 (3)

with initial values "

p

(x; 0) = "

p

0

; q(x; 0) = q

0

. Note that the internal state variables q can be either

second order tensors or scalars.

The mathematical model outlined so far has been investigated by various authors. We refer here to

Alber [1] where existence and uniqueness of solutions of the combined system (1) to (3) has been shown

for a large class of constitutive equations. Furthermore, one could also view the combined system of

balance and evolution equations as an example of a Partial Di�erential Algebraic Equation or PDAE, see

[10] for �rst results in this �eld.

In the benchmark problem below, we consider the evolution equations of Chan-Bodner-Lindholm

[3] under the assumption of homogeneous temperature. This approach belongs to the class of uni�ed

viscoplastic models due to Lubliner [9,2]. Our notation is similar to the notation used by Fritzen [5],

_
"

p

= 'dev�=kdev�k ' =

p

2D
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h

�
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i

_

Z
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)w
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2

(Z

3

� p� �)w

p

p = �=k�k

with the scalar Z = Z

(i)

+ � : p for isotropic hardening and the second order tensor � for directional

hardening.

For simplicity, we concentrate now on the 2D case and assume plane stress. Let u still denote the

displacement vector and introduce a vector notation for stress and strain and a Sobolev space V by [5]

� := [�

11

; �

22

;

p
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]

T
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2
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1

(
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T

= Lu(x; t)
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E
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2
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V

0

:= fw 2 V : wj

@


u

= 0g

V

�u

:= fw 2 V : wj

@


u

= �ug

The weak form (principle of virtual work) of the equations of motion (1) then reads

0 =

Z




[Lu(x; t)� "

p

(x; t)]

T

DLv(x; t) dx�

Z




f

T

(x; t)v(x; t) dx�

Z

@


�

�

t

T

(x; t)v(x; t) ds (4)

for all v 2 V

0

, with solution u 2 V

�u

. Note that the plastic strain "

p

is still de�ned by the evolution

equations (3) while the stress is expressed by the di�erential operator L and equation (2).

3. Discretization

As mentioned in Section 1, Finite Elements are the method of choice in viscoplasticity. For an analysis

of space and time discretization techniques see, e.g., LeTallec[8]. In order to derive the discrete problem
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E[MPa] � D

0

[

1

s

] n Z

0

[MPa] Z

1

[MPa] Z

3

[MPa] m

1

[

1

MPa

] m

2

[

1

MPa

]

220000 0.298 9799 1.4753 378.2 868.4 332.5 0.2032 13.41

Table 1: Parameters for the model of Chan-Bodner-Lindholm, SS316 [11]

associated to (4), V

0

and V

�u

are replaced by �nite dimensional subspaces V

h

0

� V

0

and V

h

�u

� V

�u

with

basis functions N

i

; i = 1; : : : ;M . With �u

h

� �u on @


u

, we introduce the ansatz

u

h

(x; t) =

M

X

j=1

N

j

(x)u

j

(t) + �u

h

(x; t) =: N (x)u(t) + �u

h

(x; t); v

h

(x; t) =

M

X

j=1

N

j

(x)v

j

(t) =: N (x)v(t):

Now, the discrete version of (4) can be formulated as

0 =

Z




h

B

T

(x)DB(x)u(t) dx�

Z




h

B

T

(x)D"

p

(x; t) dx

�

Z




h

N

T

(x)f(x; t) dx�

Z

@


h

�

N

T

(x)

�

t(x; t) ds+

Z




h

B

T

(x)DL�u

h

(x; t) dx (5)

with 
 and @
 approximated by 


h

, @


h

and B(x) := [LN

1

(x); : : : ; LN

M

(x)]:

Due to the plastic strain, the second integral in (5) has to be computed numerically. The application

of a quadrature formula leads to

Z




h

B

T

(x)D"

p

(x; t) dx �

�

X

k=1




k

B

T

(�

k

)D"

p

(�

k

; t) =: C(�)"

p

(�; t)

with quadrature weights 


k

and quadrature points �

k

. For the evaluation of "

p

(�

k

; t), the evolution

equations (3) must be solved in every quadrature point.

Summing up, we obtain thus the semidiscretized equations

0 = Ku(t) � b(t)� C(�)"

p

(�; t) and

�(�

k

; t) = D(B(�

k

)u(t) � "

p

(�

k

; t))

_"

p

(�

k

; t) = �

"

p

(�(�

k

; t); q(�

k

; t))

_q(�

k

; t) = �

q

(�(�

k

; t); q(�

k

; t))

9

=

;

k = 1; : : : ; �

where

K :=

Z




h

B

T

(x)DB(x) dx (sti�ness matrix)

b(t) :=

Z




h

N

T

(x)f(x; t) dx+

Z

@


h

�

N

T

(x)

�

t(x; t) ds�

Z




h

B

T

(x)DL�u

h

(x; t) dx (load vector).

Let �̂; "̂

p

and q̂ denote vectors which comprise the components �(�

k

; t); "

p

(�

k

; t) and q(�

k

; t); k = 1; : : : ; �,

respectively. If we de�ne additionally di�erential variables y := ("̂

p

; q̂) and algebraic variables w := (u; �̂),

the semidiscretized equations of motion can �nally be written as Di�erential-Algebraic Equation (DAE)

_y(t) = f(y(t); w(t)); 0 = g(y(t); w(t)): (6)

Standard DAE theory [6] shows that (6) is of index 1 i� the sti�ness matrix K is invertible. The latter

condition holds if enough supporting boundary conditions are speci�ed. Consequently, DAE solvers can

be applied to integrate (6) in time.

The most popular scheme is without doubt the implicit Euler since it meets several requirements:
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CPU- time rejected Newton

time steps steps failures x-Error y-Error comments

Tensile test

BDF2/1 34350 971 19 10 6.90e-08 1.10e-08 ATOL=RTOL=1e-3

BDF2/2 10722 300 20 1 2.84e-07 4.75e-08 ATOL as vector, RTOL=1e-3

Impl.Eul. 49372 1500 - 0 6.39e-07 9.98e-08 �t = 0:01

Bended beam

BDF2/1 77415 2372 22 8 4.96e-08 6.83e-07 ATOL=RTOL=1e-3

BDF2/2 15783 401 18 4 3.24e-07 4.49e-06 ATOL as vector, RTOL=1e-3

Impl.Eul. 49967 1500 - 0 1.63e-06 2.29e-05 �t = 0:01

Table 2: Integration statistics for tensile and bended beam test with 8-node rectangular elements.

The maximumdisplacement-error in x/y-direction was computed with respect to a BDF2 reference

run and ATOL=RTOL=1e-6.

it is of order 1 in both y and w, it is A-stable, and it �ts well in the FEM algorithms, which is very

important in terms of implementation. However, stepsize control is also an important issue, and for this

reason there is a growing interest in adapting DAE techniques to this particular problem class, see, e.g.,

[5].

For the benchmark problem below, we use an extension of the implicit Euler method which is,

though of second order, almost as inexpensive to implement. The BDF-2 method for (6) with variable

stepsize [6,7] reads

1 + 2�

n

1 + �

n

y

n+1

� (1 + �

n

)y

n

+

�

2

n

1 + �

n

y

n�1

= h

n

f(y

n+1

; w

n+1

)

0 = g(y

n+1

; w

n+1

):

Here, y

n+1

denotes the numerical solution of y at time t = t

n+1

with stepsize h

n

= t

n+1

� t

n

and stepsize

ratio �

n

= h

n

=h

n�1

: Note that the nonlinear system for y

n+1

and w

n+1

has the same dimension as in case

of implicit Euler. For its solution, one can either apply a full or chord-Newton method or, by exploiting

the strucure of the FEM grid, a two-stage Newton process [7]. The latter technique solves �rst the

discretized evolution equation in each element and then computes a global iterate from the discretized

balance equations.

The stepsize control relies on a predictor-corrector scheme as local error estimator. With absolute

and relative tolerances ATOL and RTOL, the stepsize is selected such that the local error estimation

�z; z = (y; w), satis�es k�zk � 1 in a standard weighted root mean square norm [6]

k�zk

2

:=

1

l

l

X

i=1

�

�z

i

RTOL �WT

i

+ ATOL

i

�

2

for �z = (�z

1

; : : : ;�z

l

) : (7)

The weight vector WT is de�ned by some reference data, e.g., WT = z

n+1

which is the new solution at

time t

n+1

.

4. Benchmark problem

The following example is chosen as a benchmark problem since it is often used in experimental identi-

�cation and since typical viscoplastic e�ects can be observed. A beam of length 1m and height 0.2m

is subjected to a tensile test, Fig. 1. First, the loading increases linearly, then the beam is held �xed,
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Figure 1: Tensile test of a viscoplastic beam
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Figure 2: Stepsize control

0 5 10 15
0

1

2

3

4

5

6
x 10

−3

S
u

rfa
c
e

 lo
a

d

P
la

s
ti
c
 s

tr
a

in

Time t[s]

0

150

300

Figure 3: Plastic strain "

p

11
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and �nally the loading decreases again linearly to zero, see Fig. 3. Each phase takes 5 seconds. We use

the uni�ed viscoplastic model of [3] for the stainless steel SS316 (nickel-chromium, single crystal). The

parameters given in Table 1 were identi�ed by Seibert [11].

Assuming plane stress, the beam is discretized by 32 8-node rectangular �nite elements, and second

order Gaussian quadrature is used in each element. Thus, the DAE (6) obtained from space discretization

features 896 di�erential variables y and 1010 algebraic variables w. For time integration, both implicit

Euler and BDF-2 were employed. Fig. 3 shows the plastic strain "

p

11

and Fig. 4 the stress-strain diagram

for �

11

and "

11

in the upper left corner of the beam.

As demonstrated by Fig. 2, the BDF-2 stepsize increases in regions with purely elastic behavior and

in the holding phase whereas it decreases when plastic deformations occur and also at points of phase

transition. In particular, at time t = 5s and t = 10s, the change in the loading is re
ected by sharp

stepsize drops since such discontinuities were not taken into account by root �nding techniques. Table 2

compares BDF-2 with implicit Euler. Both methods solve here in each step the system of nonlinear

equations by a chord-Newton process. In order to stabilize and speed up these computations, we sup-

plied an analytical Jacobian evaluation and used sparse matrix techniques. Clearly, the BDF-2 scheme

is more accurate and much faster than implicit Euler. Due to the di�erent scales of variables that range

from 1e � 3 for plastic strains to 1e + 2 for stresses, the stepsize control can be signi�cantly improved

by choosing ATOL as vector (BDF2/2), compare (7). The BDF-2 method takes then only 20% of the

computing time of implicit Euler while still delivering a more accurate result.

The above results are con�rmed by a second example where the beam is subjected to a bending

test, Fig. 5. Corresponding simulation results are shown in Figures 6 to 8. It turns out that, due to a

higher strain and stress growth, the number of time steps increases here, especially in the loading phase.
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Figure 5: Bending test of a viscoplastic beam
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Figure 6: Stepsize control
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Nevertheless, the stepsize control leads again to a much more e�cient simulation. Choosing ATOL as

vector to account for di�erent ranges of variables works even better than before.

To summarize, the benchmark problem shows that DAE solvers such as the BDF-2 method can

improve both accuracy and e�ciency in viscoplastic simulation. However, there are further aspects which

should be considered as well in the future, in particular the interplay of space and time discretization

and the loading vector b(t). The latter is the driving force of the process and supplies valuable additional

information.
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