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Abstract. Conceptual Graphs and Formal Concept Analysis are com-

bined by developing a logical theory for concept graphs of relational

contexts. Therefore, concept graphs are introduced as syntactical con-

structs, and their semantics is de�ned based on relational contexts. For

this contextual logic, a sound and complete system of inference rules is

presented and a standard graph is introduced that entails all concept

graphs being valid in a given relational context. A possible use for con-

ceptual knowledge representation and processing is suggested.
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1 Introduction

The �rst approach combining the theory of Conceptual Graphs and Formal Con-

cept Analysis was described by R.Wille in [Wi97]. For connecting the conceptual

structures in both theories, the concept types appearing in conceptual graphs

were considered to be formal concepts of formal contexts, the constituents in

Formal Concept Analysis. To facilitate this connection, concept graphs, appro-

priate mathematizations of conceptual graphs, were introduced. The theory of

concept graphs of formal contexts was developed as a mathematical structure

theory where concept graphs of formal contexts are realizations of abstract con-

cept graphs.

In this paper, a logic approach is presented by developing a logical theory for

concept graphs. Therefore, concept graphs are de�ned as syntactical constructs

over an alphabet of objects names, concept names and relation names (Section

2). Then, a contextual semantics is speci�ed. We interpret the syntactical names

by objects, concepts and relations of a relational context (Section 3). In this way,



we can pro�t from all notions for concepts that have been developed in Formal

Concept Analysis.

The introduced contextual logic is carried on by the study of inferences (Sec-

tion 4). Based on a model-theoretic notion for the entailment of concept graphs,

a sound and complete set of inference rules is established and compared to the

notion of projections between concept graphs. With the standard model, we can

present another interesting tool for reasoning with concept graphs. In Section

5, we introduce a standard graph for a given relational context. It gives a basis

of all concept graphs being valid in the relational context. In the last section,

we suggest how this approach can be used for knowledge representation and

processing.

2 Syntax for the Language of Concept Graphs

We want to introduce concept graphs as syntactical constructs. Therefore, we

need an alphabet of concept names, relation names and objects names. As the

theory of conceptual graphs provides an order-sorted logic, we start with ordered

sets of names that are not necessarily lattices. These orders are determined by

the taxonomies of the domains in view, they formalize ontological background

knowledge.

De�nition 1. An alphabet of concept graphs is a triple (C;G;R), where (C;�

C

)

is a �nite ordered set whose elements are called concept names, G is a �nite set

whose elements are called object names, and (R;�

R

) is a set, partitioned into

�nite ordered sets (R

k

;�

R

k

)

k=1;:::;n

whose elements are called relation names.

Now, we can introduce concept graphs as statements formulated with these

syntactical names. That means, we consider the concept graphs to be the well-

formed formulas of our formal language. In accordance with the �rst mathema-

tization of conceptual graphs in [Wi97], the structure of (simple) concept graphs

is described by means of directed multi-hypergraphs and labeling functions.

De�nition 2. A (simple) concept graph over the alphabet (C;G;R) is a struc-

ture G := (V;E; �; �; �), where

� (V;E; �) is a (not necessarily connected) �nite directed multi-hypergraph,

i. e. a structure where V and E are �nite sets whose elements are called

vertices and edges respectively, and �:E !

S

n

k=1

V

k

is a mapping (n � 2),

� �:V [ E ! C [ R is a mapping such that �(V ) � C and �(E) � R, and all

e 2 E with �(e) = (v

1

; : : : ; v

k

) satisfy �(e) 2 R

k

,

� �:V ! P(G)nf;g is a mapping.

For an edge e 2 E with �(e) = (v

1

; : : : ; v

k

), we de�ne jej := k, and we write

�(e)

�

�

i

:= v

i

and �(e) := �(v

1

)� : : :� �(v

k

):

Apart from some little di�erences, the concept graphs correspond to the sim-

ple conceptual graphs de�ned in [So84] or [CM92]. We only use multi-hypergraphs

instead of bipartite graphs in the mathematization. The application � assigns to
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every edge the tuple of all its incident vertices. The function � labels the ver-

tices and edges by concept and relation names, respectively, and the mapping �

describes the references of every vertex. In contrast to Sowa, we allow references

with more than one object name (i. e. individual marker) but no generic markers,

i. e. existential quanti�ers, yet. They can be introduced into the syntax easily

(cf. [Pre98b]), but in this paper we want to put emphasis on the elementary lan-

guage. That is why we can omit coreference links here which are only relevant

in connection with generic markers.

3 Semantics for Concept Graphs

We agree with J.F.Sowa, when he writes about the importance of a semantics:

\To make meaningful statements, the logic must have a theory of reference that

determines how the constants and variables are associated with things in the

universe of discourse." [So98, p. 27]

Usually, the semantics for conceptual graphs is given by the translation of

conceptual graphs into �rst-order logic (cf. [So84] or [CM92]). For some notions

and proofs, a set-theoretic, extensional semantics was developed (cf. [MC96]),

but it is rarely used.

We de�ne a semantics based on relational contexts. That means, we interpret

the syntactical elements (concept, object and relation names) by concepts, ob-

jects and relations of a relational context. We prefer this contextual semantics for

several reasons. As the basic elements of concept graphs are concepts, we want

a semantics in which concepts are considered in a formal, but manifold way.

Therefore, it is convenient to use Formal Concept Analysis, which is a math-

ematization of the philosophical understanding of concepts as units of thought

constituted by their extension and intension (cf. [Wi96]). Furthermore, it is es-

sential for Formal Concept Analysis that these two components of a concept are

uni�ed on the basis of a speci�ed context. This contextual view is supported by

Peirce's pragmatism which claims that we can only analyze and argue within

restricted contexts where we always rely on preknowledge and common sense

(cf. [Wi97]). Experience has shown that formal contexts are a useful basis for

knowledge representation and communication because, on the one hand, they

are close enough to reality and, on the other hand, their formalizations allow an

e�cient formal treatment.

As formal contexts do not formalize relations on the objects, the contexts

must be enriched with relational structures. Therefore, R.Wille invented power

context families in [Wi97] where relations are described as concepts with exten-

sions consisting of tuples of objects. Using relational contexts in this paper, we

have chosen a slightly simpler formalism. Nevertheless, this formalism can be

transformed to power context families and vice versa. This is explained in detail

in [Pre98a] and will not be discussed in this paper. Let us start with the formal

de�nition of a relational context (originally introduced in [Pri96]).
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De�nition 3. A formal context (G;M; I) is a triple where G and M are �nite

sets whose elements are called objects and attributes, respectively, and I is a

binary relation between G and M which is called an incidence relation. A formal

context, together with a set R :=

S

n

k=1

R

k

of sets of k-ary relations on G is

called relational context and denoted by K := ((G;R);M; I). The concept lattice

B(G;M; I) := (B(G;M; I);�) is also called the concept lattice of K and denoted

by B(K ).

For the basic notions in Formal Concept Analysis like the de�nition of the

concept lattice, please refer to [GW98]. We just mention the denotation g

I

:=

fm 2 M=(g;m) 2 Ig for g 2 G (and dually for m 2 M) which will be used in

the following paragraphs.

Now, we can specify how the syntactical elements of (C;G;R) are interpreted

in relational contexts by context-interpretations. The object names are inter-

preted by objects of the context, the concept names by its concepts and the

relation names by its relations. In this way, we can embed the order given on C

into the richer structure of the concept lattice. Order-preserving mappings are

required because the interpretation shall respect the subsumptions given by the

orders on C and R.

De�nition 4. For an alphabet A := (C;G;R) and a relational context K :=

((G;R);M; I) we call the union � := �

C

_

[ �

G

_

[ �

R

of the mappings �

C

: (C;�

C

) !

B(K ), �

G

:G ! G and �

R

: (R;�

R

)! (R;�) a K -interpetation of A if �

C

and �

R

are order-preserving and we have �

R

(R

k

) � R

k

for all k = 1; : : : ; n. The tuple

(K ; �) is called a context-interpretation of A.

Having de�ned how the syntactical elements are related to elements of a

relational context, we can explain formally how to distinguish valid statements

from invalid statements. Due to our contextual view, the notion of validity also

depends on the speci�ed relational context. That means, a concept graph is called

valid in a context-interpretation if the assigned objects belong to the extension

of the assigned concepts, and if the assigned relations conform with the labels

of the edges. Let us make these conditions precise in a formal de�nition.

De�nition 5. Let (K ; �) be a context-interpretation of A. The concept graph

G := (V;E; �; �; �) over A is called valid in (K ; �) if

� �

G

�(v) � Ext(�

C

�(v)) for all v 2 V (vertex condition)

� �

G

�(e) � �

R

�(e) for all e 2 E (edge condition).

If G is valid in (K ; �), then (K ; �) is called a model for G and G is called a

concept graph of (K ; �).

Note that, theoretically, any formal context could be completed to a model

if the relations and the interpretation were chosen in the right way. For a given

concept graph G := (V;E; �; �; �), a formal context (G;M; I) and a given map-

ping �

G

:G ! G, we can always de�ne an order-preserving mapping �

C

: C !

B(G;M; I) satisfying the vertex condition, for example the mapping with �

C

(c) :=
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W

��

�

G

�(v)

II

; �

G

�(v)

I

�

j v 2 V; �(v) �

C

c

	

: Thus, we can obtain a model by

choosing appropriate relations and a mapping �

R

. This shows that looking for

an adequate model is not only a matter of formalism. It always depends on the

speci�c purpose.

There is one interesting model for every concept graph, namely its standard

model. It codes exactly the information given by the concept graph.

De�nition 6. Let G := (V;E; �; �; �) be a concept graph over the alphabet

(C;G;R). We de�ne the standard model of G to be the relational context K

G

:=

((G;R

G

); C; I

G

) together with the K

G

-interpretation �

G

:= �

C

_

[ �

G

_

[ �

R

where

�

C

: C ! B(K

G

) with �

C

(c) := (c

I

G

; c

I

G

I

G

), �

G

:= id

G

, R

G

:= �

R

(R). The inci-

dence relation I

G

� G�C and the mapping �

R

are de�ned in such a way that for

all g 2 G, c 2 C, (g

1

; : : : ; g

k

) 2 G

k

and R 2 R, we have the following conditions:

(g; c) 2 I

G

() 9 v 2 V : �(v) �

C

c and g 2 �(v)

(g

1

; : : : ; g

k

) 2 �

R

(R) () 9 e 2 E : �(e) �

R

R and (g

1

; : : : ; g

k

) 2 �(e):

We can read this de�nition as an instruction of how to construct the standard

model. As objects of the context, we take all object names in G, as attributes of

the context, we take all concept names in C and we relate the object name g and

the concept name �(v) (i. e., set (g; �(v)) 2 I

G

) if the object name g belongs

to the reference �(v) of the vertex v. For preserving the order, we additionally

relate g to every concept name c satisfying �(v) �

C

c. Similarly for the relations.

It is proved in [Pre98a] that this standard model is really a model for G.

Constructing a standard model for a given concept graph is the easiest way

to �nd a relational context that codes exactly the information formalized in

the concept graph. Thus, it allows us to translate knowledge expressed on the

graphical level into knowledge on the contextual level. In the following section,

we will see how the standard model helps to characterize inferences of concept

graphs on the contextual level.

4 Reasoning with Concept Graphs

4.1 Entailment and Validity in the Standard Model

Having speci�ed a formal semantics, we can easily describe inferences on the

semantical level by entailments. For this, we only consider concept graphs over

the same alphabet in the whole section. We recall the usual de�nition.

De�nition 7. Let G

1

and G

2

be two concept graphs over the same alphabet. We

say that G

1

entails G

2

if G

2

is valid in every model for G

1

. We denote this by

G

1

j= G

2

.

The following proposition explains how the entailment can be characterized

by standard models (for the proof see appendix).

Proposition 1. The concept graph G

1

entails the concept graph G

2

if and only

if G

2

is valid in the standard model (K

G

1

; �

G

1

) of G

1

.

5



That means, using the contextual language, we obtain an e�ective method

for deciding whether a concept graph entails another one or not. Beyond this,

we could theoretically concentrate completely on the context level and describe

the relation j= by means of inclusion in the standard models as the following

lemma shows.

Lemma 1. Let G

1

and G

2

be two concept graphs over the same alphabet with

standard models (K

G

1

; �

G

1

) and (K

G

2

; �

G

2

), respectively. They satisfy

G

1

j= G

2

() I

G

1

� I

G

2

and �

G

1

R

(R) � �

G

2

R

(R) for all R 2 R:

Although the lemma is not very practical for reasoning in general, it has

important consequences. Firstly, we can see easily that the relation j= is re
exive

and transitive, i. e., it is a preorder. Secondly, it implies that equivalent concept

graphs (i. e. concept graphs withG

1

j= G

2

and G

2

j= G

1

) have identical standard

models.

Finally, we can characterize the order that is induced by the preorder j=

on the equivalence classes of concept graphs: the lemma shows how it can be

characterized by the inclusions in the corresponding standard models. In par-

ticular, this allows us to describe the in�mum and supremum of concept graphs

by join and intersection in the standard model. The in�mum of the two equiv-

alence classes of the concept graphs G

1

and G

2

is the equivalence class of the

juxtaposition G

1

� G

2

(cf. [CM95]). It is not di�cult to see that the standard

model of this juxtaposition is exactly the standard model one obtains by \joining

the standard models": for (K

G

1

�G

2

; �

G

1

�G

2

), we have I

G

1

�G

2

= I

G

1

[ I

G

2

and

�

G

1

�G

2

R

(R) = �

G

1

R

(R) [ �

G

2

R

(R) for all R 2 R.

Whereas it is a di�cult task to construct the supremum of two equivalence

classes (if it exists at all), we can deduce immediately from Lemma 1 that its

standard model (K ; �) is the intersection of the standard models. That means,

we have I = I

G

1

\ I

G

2

and �

R

(R) = �

G

1

R

(R) \ �

G

2

R

(R) for all R 2 R.

We conclude that describing the order induced by j= is much easier on the

context level than it is on the graph level. Especially suprema and in�ma can

be characterized easily. This shows that for some purposes, it is convenient to

translate the information given in concept graphs to the context level. For other

purposes, it is interesting to do reasoning only on the syntactical level. But

how can we characterize inferences on the syntactical level? It is usually done

in two ways: by inference rules that were inspired by Peirce's inference rules

for existential graphs and by projections, i. e. graph morphisms that can be

supported by graph-theoretical methods and algorithms (cf. [So84], [MC96]).

4.2 Projections

Projections describe inferences from the perspective of graph morphisms. We

recall the de�nition of projections as graph morphisms respecting the labeling

functions (cf. [CM92]). It is slightly modi�ed for concept graphs.
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 ADULT:  Witch

 ADULT:  Witch

21

1 2

THREATEN

HUMAN: Gretel, Witch

CHILD: Hansel

ADULT CHILD WOMAN

HUMAN {Hansel, Gretel, Witch}

{THREATEN}

THREATEN CHILD: Hansel

CHILD:  Hansel, Gretel ADULT:  Witch

WOMAN: Witch

C :

G :=

R :=

G

1

G

2

G

3

G

4

Fig. 1. Counter-examples to the Completeness of the Projection

De�nition 8. For the two concept graphs G

1

:= (V

1

; E

1

; �

1

; �

1

; �

1

) and G

2

:=

(V

2

; E

2

; �

2

; �

2

; �

2

) over the same alphabet, a projection from G

2

to G

1

is de�ned

as the union �

V

_

[�

E

of mappings �

V

:V

2

! V

1

and �

E

:E

2

! E

1

such that

jej = j�

E

(e)j, �

V

(�

2

(e)

�

�

i

) = �

1

(�

E

(e))

�

�

i

and �

1

(�

E

(e)) �

R

�

2

(e) for all edges

e 2 E

2

and for all i = 1; : : : ; jej; and �

1

(�

V

(v)) �

C

�

2

(v) and �

1

(�

V

(v)) � �

2

(v)

for all vertices v 2 V

2

. We write G

1

. G

2

if there exists a projection from G

2

to

G

1

.

The relation . de�nes a preorder on the class of all concept graphs, i. e., it

is re
exive and transitive but not necessarily antisymmetric. It can be proved

that this relation is characterized by the following inference rules (cf. [CM92],

for concept graphs see [Pre98a]):

1. Double a vertex.

2. Delete an isolated vertex.

3. Double an edge.

4. Delete an edge.

5. Generalize a concept name.

6. Generalize a relation name.

7. Restrict a reference.

8. Copy the concept graph.
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That means, two concept graphsG

1

and G

2

satisfyG

1

. G

2

if and only if G

2

can

be derived from G

1

by applying these rules (which are elaborated more precisely

in the appendix). Note that the Rule 7 (restrict a reference) is di�erent to the

restriction rule de�ned in [CM92]: Here, we cannot replace an individual maker

by a general marker but delete an individual marker from the set of objects being

the reference.

It can be proved that these rules are sound (cf. [Pre98a]). But as the examples

in Figure 1 show, they are not complete. It is easy to see that G

2

must be valid

in every model for G

1

. On the other hand, it cannot be derived from G

1

because

by these rules, references can only be restricted, not extended or joined. Even for

concept graphs with references of only one element, the rules are not complete,

when we consider redundant graphs. This is shown by the concept graphs G

3

and G

4

. We have G

3

j= G

4

, but the concept name WOMAN cannot be replaced

by ADULT with the given rules.

4.3 A Sound and Complete Calculus for all Concept Graphs

There are two ways to treat the incompleteness: restricting the class of consid-

ered concept graphs (e. g. to concept graphs of normal form like in [MC96]) or

extending the rules. As it is convenient for conceptual knowledge processing to

allow all concept graphs instead of restricting them to normal forms, we decided

to modify and extend the rules. (Note that the introduced rules are usually

needed to transform a concept graph into normal form.)

De�nition 9. Let G

1

and G

2

be two concept graphs over the same alphabet.

We call G

2

derivable from G

1

and denote G

1

` G

2

if it can be derived by the

following inference rules (which are elaborated in the appendix):

1. Double a vertex.

Double a vertex v and its incident edges (several times if v occurs more than

once in �(e)). Extend the mappings � and � to the doubles.

2. Delete an isolated vertex.

Delete a vertex v and restrict � and � accordingly.

3. Double an edge.

Double an edge e and extend the mappings � and � to the double.

4. Delete an edge.

Delete an edge e and restrict the mappings � and � accordingly.

5:

�

Exchange a concept name.

Substitute the assignment v 7! �(v) for v 7! c for such a concept name c 2 C

for which there is a vertex w 2 V with �(w) �

C

c and �(v) � �(w).

6:

�

Exchange a relation name.

Substitute the assignment e 7! �(e) for e 7! R for such a relation name

R 2 R for which there is an edge f 2 E with �(f) �

C

R and �(e) � �(f).

7. Restrict a reference.

Replace the assignment v 7! �(v) by v 7! A with the subset ; 6= A � �(v).

8



8. Copy the concept graph.

Construct a concept graph that is identical to the �rst concept graph up to

the names of vertices and edges.

9:

�

Join vertices with equal references.

Join two vertices v; w 2 V satisfying �(v) = �(w) into a vertex v _ w with

the same incident edges and references, and set �(v_w) = c for a c 2 C with

�(v) �

C

c and �(w) �

C

c.

10:

�

Join vertices with corresponding edges.

Join two vertices v; w 2 V which have corresponding, but uncommon edges

(i. e. for every edge e 2 E incident with v there exists an edge e

0

incident with

w, and vice versa, with equal label and equal references, and there incident

vertices only di�er in v and w once) into a vertex v _ w with the same

incident edges, �(v _ w) = c for a c 2 C with �(v) �

C

c and �(w) �

C

c, and

�(v _ w) = �(v) [ �(w).

We will state these inference rules more precisely in the appendix and prove

formally that they are sound and complete. Note that Rule 8 is redundant be-

cause it can be substituted by applying Rule 1 and 4.

Proposition 2 (Soundness and Completeness).

Let G

1

and G

2

be two concept graphs over the same alphabet. Then, we have

G

1

j= G

2

() G

1

` G

2

:

Let us sum up what has been achieved. There are three possibilities for char-

acterizing inferences on concept graphs. The usual model-theoretic way is the

entailment (cf. Def. 7). On the syntactical level, we have a sound and complete

set of inference rules (cf. Def. 9) whereas the projections cannot be used in the

general case due to incompleteness. With their graphical character, the inference

rules can visualize inferences and can be intuitively used to derive relatively simi-

lar concept graphs by hand. That is why they can support communication about

reasoning to a certain degree. For implementation and general questions of de-

cidability, it seems to be more convenient to use the third notion to characterize

inferences, namely validity in the standard model (cf. Prop. 1).

5 The Standard Graph of a Relational Context

The construction of a standard model for a given concept graph gives not only an

e�cient mathematical method for reasoning, but also a mechanism to translate

the knowledge given in concept graphs to knowledge formalized in relational

contexts. This possibility to translate from the graphical level to the contextual

level is important for the development of conceptual knowledge systems.

For such a conceptual knowledge system, the opposite direction is equally

important. How can we translate knowledge given in relational contexts into

the language of concept graphs? Obviously, we can state many di�erent valid

concept graphs for a given relational context. If we look for a so-called standard

graph that codes the same information as the relational context, we have to look

9



for a concept graph that entails all other valid concept graphs. For a similar

purpose, R.Wille proposed a procedure to construct a canonical concept graph

in [Wi97]. We will modify this procedure for our purpose here.

We start with a relational context, say K := ((G;R);M; I). For constructing

a concept graph, we need an alphabet (C;G;R). We de�ne C := B(K ), G := G

and R := R. For every index k = 1; : : : ; n, we determine for every relation

R 2 R

k

all maximal k-tuples (A

1

; : : : ; A

k

) of non-empty subsets of G being

included in R. All those (k + 1)-tuples (R;A

1

; : : : ; A

k

) are collected in the set

E

K

. That means, we de�ne for R 2 R

k

the set

Ref

max

(R) := fA

1

� : : :�A

k

� R j

B

1

� : : :�B

k

� R implies B

1

� : : :�B

k

6� A

1

� : : : A

k

g

and obtain the set of edges

E

K

:=

[

k=1;:::;n

f(R;A

1

; : : : ; A

k

) j R 2 R

k

; A

1

� : : :�A

k

2 Ref

max

(R)g:

Now, we de�ne

V

K

:=fA � G j there exists a (R;A

1

; : : : ; A

k

) 2 E

K

with A = A

i

for an i � kg [

fg

II

� G j g 2 Gg;

and set �

K

: E

K

!

S

n

k=1

V

k

K

with �

K

(R;A

1

; : : : ; A

k

) := (A

1

; : : : ; A

k

) and �

K

:

V

K

[ E

K

! B(K ) [ R where �

K

(R;A

1

; : : : ; A

k

) := R and �

K

(A) := (A

II

; A

I

).

Finally, we can choose �

K

(A) := A for all A 2 V

K

.

In this way, we obtain a concept graph G(K ) := (V

K

; E

K

; �

K

; �

K

; �

K

) that is

valid in (K ; id) and is called the standard graph of K .

Proposition 3. The standard graph G(K ) of a relational context K entails every

concept graph G

0

that is valid in (K ; id).

This proposition (which is proved in the appendix) guarantees the demanded

property of the standard graph. It is an irredundant graph that entails all concept

graphs which are valid in its context. Thus, the standard graph is the counterpart

to the standard model. With the standard model, we gather all the information

given in the concept graph and have a tool to translate it from the graph level

into the context level. Vice versa, we can translate information from the context

level to the graph level by constructing the standard graph.

The relationship between a context K and the context K

G(K)

, belonging to

the standard model (K

G(K)

; �

G(K)

) of G(K ) can also be described: The proof of

Prop. 3 shows that the context K

G(K)

only di�ers from K because its set of

attributes is not reduced and the attributes have di�erent names. Their concept

lattices are isomorphic.

Vice versa, starting with a concept graph G and constructing the standard

model (K

G

; �

G

), we cannot say that the standard graph of K

G

is isomorphic to

G in the formal sense because it is not a concept graph over the same alphabet.

Nevertheless, it encodes the same information in an irredundant form.
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6 Contextual Logic for Knowledge Representation

With the approach to contextual logic presented in this paper, we have proposed

a logic for concept graphs that is equipped with a model-theoretic foundation and

in which inferences can be characterized in multiple ways. From a computational

point of view, an e�cient method has been presented to do reasoning by checking

validity in the corresponding standard models.

The major domain of application we have in mind for this logic, is conceptual

knowledge representation and processing. In particular, the contextual seman-

tics allows an integration of concept graphs into conceptual knowledge systems

like TOSCANA that are based on Formal Concept Analysis. Vice versa, an in-

tegration of concept lattices and various methods of Formal Concept Analysis

into tools for conceptual graphs is possible. For this purpose, the separation of

syntax and semantics is less important than the possibility of expressing knowl-

edge on two di�erent levels, the graph level and the context level. With the

standard model and the standard graph, we have developed two notions that

help to translate knowledge from one level to the other. With it, the foundation

is laid for conceptual knowledge systems which combine the advantages of both

languages.

For example, we can imagine a system that codes knowledge in relational con-

texts and provides, with the concept graphs, a graphical language as interface

and representation tool for knowledge. In such a system, the knowledge engineer

could extend a given knowledge base by constructing new concept graphs over

the existing alphabet. Then, implemented algorithms on the graph level or on

the context level (whatever is more convenient for the special situation) could

check whether the new concept graph is already valid in the context (i. e., the

information is redundant) or whether it represents additional information. Con-

cept lattices could be used to �nd the conceptual hierarchy on the concepts and

to determine the conceptual patterns and dependencies of concepts and objects.

Obviously, we could pro�t from all the methods and algorithms already existent

for conceptual graphs.

The architecture of conceptual knowledge systems including relational con-

texts and concept graphs should be discussed, and the role of the di�erent lan-

guages should be further explored. As the expressivity of the developed language

is still quite limited, the extensions by quanti�ers and nested concept graphs are

considered in current research.

7 Appendix: Formal Proofs

Proof of Proposition 1. We only have to prove that G

2

is valid in an arbitrary

model (K ; �) for G

1

with K := ((G;R);M; J) and � := �

G

_

[�

C

_

[�

R

if G

2

is

valid in the standard model (K

G

1

; �

G

1

) of G

1

with K

G

1

= ((G;R

G

1

); C; I

G

1

):

As a result of the vertex condition for G

1

in the model (K ; �), we have

�

G

�

1

(v) � Ext �

C

�

1

(v) � Ext �

C

(c) for all concept names c 2 C and for all

vertices v 2 V

1

with �

1

(v) �

C

c (because �

C

is order-preserving). It follows

�

G

(

S

f�

1

(v) j v 2 V

1

; �

1

(v) �

C

cg) � Ext �

C

(c) for all c 2 C. As a result of

the vertex condition for G

2

in the standard model (K

G

1

; �

G

1

), we have �

2

(w) �

11



Ext �

G

1

C

(�

2

(w)) :=

S

f�

1

(v) j v 2 V

1

; �

1

(v) �

C

�

2

(w)g for all vertices w 2 V

2

.

This implies for all w 2 V

2

the vertex condition �

G

(�

2

(w)) � �

G

(

S

f�

1

(v) j v 2

V

1

; �

1

(v) �

C

�

2

(w)g) � Ext �

C

(�

2

(w)). For the edge condition, one can proceed

similarly. 2

Proof of Soundness: G

1

` G

2

) G

1

j= G

2

.

Due to the transitivity of j=, it su�ces to show soundness for each single infer-

ence rule. Therefore, we will give the exact de�nition of every inference rule by

describing the derived concept graph G

2

. Then, we can prove the entailment by

using Prop. 1 and checking that G

2

is valid in the standard model (K

G

1

; �

G

1

)

of G

1

:= (V

1

; E

1

; �

1

; �

1

; �

1

). Because of �

G

1

G

:= id

G

, Ext(�

G

1

C

c) =

S

f�

1

(v) j v 2

V

1

; �

1

(v) �

C

cg for all c 2 C and �

G

1

R

R =

S

f�

1

(e) j e 2 E

1

; �

1

(e) �

R

Rg for

all R 2 R (cf. Def. 6), we only have to convince ourselves that G

2

satis�es the

following vertex and edge conditions:

8w 2 V

2

: �

2

(w) �

S

f�

1

(v) j v 2 V

1

; �

1

(v) �

C

�

2

(w)g (vertex condition)

8f 2 E

2

: �

2

(f) �

S

f�

1

(e) j e 2 E

1

; �

1

(e) �

R

�

2

(f)g (edge condition).

1. Double a vertex. The concept graph derived by doubling the vertex v 2 V

1

is G

2

:= (V

2

; E

2

; �

2

; �

2

; �

2

) which is de�ned by

� V

2

:= V

1

nfvg

_

[f(v; 1); (v; 2)g,

� E

2

:= E

1

nE

v

_

[E

v

with

E

v

:= fe 2 E

1

j �

1

(e)j

i

= v for some i = 1; : : : ; jejg and

E

v

:= f(e; �) j e 2 E

v

; � 2 f1; 2g

[e;v]

g where [e; v] := fi j �

1

(e)j

i

= vg,

� �

2

j

E

1

nE

v

:= �

1

j

E

1

nE

v

and

�

2

(e; �)j

i

:=

�

�

1

(e)j

i

if i 62 [e; v]

(v; �(i)) if i 2 [e; v]

for all (e; �) 2 E

v

,

� �

2

: V

2

[ E

2

! C [R

x 7! �

1

(x) for all x 2 V

1

nfvg [ E

1

nE

v

(v; j) 7! �

1

(v) for j = 1; 2

(e; �) 7! �

1

(e) for all (e; �) 2 E

v

;

� �

2

j

V

1

nfvg

:= �

1

j

V

1

nfvg

and �

2

(v; j) := �

1

(v) for j = 1; 2.

For this derived concept graph G

2

, the vertex and edge condition can be

checked easily. It is left to the reader.

2. Delete an isolated vertex. If v 2 V

1

is an isolated vertex of G

1

(i.e., there is

no edge e 2 E

1

and no i = 1; : : : ; jej with �

1

(e)j

i

= v), the components of

the concept graph G

2

derived by deleting the isolated vertex v are de�ned as

follows: V

2

:= V

1

nfvg, E

2

:= E

1

, �

2

:= �

1

, �

2

:= �

1

j

V

2

[E

1

and �

2

:= �

1

j

V

2

.

These components obviously satisfy the vertex and edge conditions.

3. Double an edge. The concept graphG

2

derived by doubling the edge e 2 E

1

is

de�ned by V

2

:= V

1

, E

2

:= E

1

nfeg [ f(e; 1); (e; 2)g where (e; 1); (e; 2) 62 E

1

,

�

2

j

E

1

nfeg

:= �

1

j

E

1

nfeg

and �

2

(e; j) := �

1

(e) for j = 1; 2, �

2

j

V

1

[(E

1

nfeg)

:=

�

1

j

V

1

[(E

1

nfeg)

and �

2

(e; j) := �

1

(e) for j = 1; 2 and �

2

:= �

1

. It satis�es the

vertex and edge conditions.
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4. Delete an edge. Deleting the edge e 2 E

1

, one obtains the concept graph

G

2

:= (V

1

; E

1

nfeg; �

1

j

E

1

nfeg

; �

1

j

V

1

[(E

1

nfeg)

; �

1

) which satis�es the vertex

and edge conditions.

5:

�

Exchange a concept name. The concept graph derived by substituting the

concept name �

1

(v) for a c 2 C for which there is a vertex w 2 V

1

with

�

1

(w) �

C

c and �

1

(v) � �

1

(w), is de�ned by G

2

:= (V

1

; E

1

; �

1

; �

2

; �

1

) with

�

2

j

(V

1

nfvg)[E

1

:= �

1

j

(V

1

nfvg)[E

1

and �

2

(v) := c. The edge condition is ob-

viously satis�ed, and the vertex condition is satis�ed because �

1

(w) �

C

c

implies �

1

(v) � �

1

(w) � Ext �

G

1

C

c.

6:

�

Exchange a relation name. The concept graph derived by substituting the

relation name �

1

(e) for such an R 2 R for which there is an edge f 2 E

1

with �

1

(f) �

C

R and �

1

(e) � �

1

(f), is de�ned by G

2

:= (V

1

; E

1

; �

1

; �

2

; �

1

)

with �

2

j

V

1

[(E

1

nfeg)

:= �

1

j

V

1

[(E

1

nfeg)

and �

2

(e) := R. It satis�es the edge

condition because �

1

(f) �

R

R implies �

1

(e) � �

1

(f) � �

G

1

R

R.

7. Restrict references. The concept graph derived by restricting the reference

�

1

(v) of the vertex v 2 V

1

to the reference A with ; 6= A � �

1

(v), is de�ned

by G

2

:= (V

1

; E

1

; �

1

; �

1

; �

2

) with �

2

j

V

1

nfvg

:= �

1

j

V

1

nfvg

and �

2

(v) := A.

From A � �

1

(v) we deduce the vertex condition.

8. Copy the concept graph. For a copied concept graph G

2

, there exist two

bijections '

V

:V

1

! V

2

and '

E

: E

1

! E

2

such that �

1

(v) = �

2

('

V

(v))

and �

1

(v) = �

2

('

V

(v)) for all v 2 V

1

, and '

V

(�

1

(e)) = �

2

('

E

(e)) and

�

1

(e) = �

2

('

E

(e)) for all e 2 E

1

. It trivially satis�es the vertex and edge

conditions.

9

�

. Join vertices with equal references. The concept graph derived from G

1

by

joining the two vertices v and w with equal references (i. e. with �

1

(v) =

�

1

(w)) is G

2

:= (V

2

; E

1

; �

2

; �

2

; �

2

) with

� V

2

:= V

1

nfv; wg

_

[fv _ wg,

� �

2

j

i

(e) :=

�

v _ w if �

1

(e)j

i

= v or �

1

(e)j

i

= w

�

1

(e)j

i

otherwise

for all e 2 E

1

, i = 1; : : : ; jej,

� �

2

j

(V

1

nfv;wg)[E

1

:= �

1

j

(V

1

nfv;wg)[E

1

and �

2

(v _ w) := c

for a c 2 C with �

1

(v) �

C

c and �

1

(w) �

C

c,

� �

2

j

V

1

nfv;wg

:= �

1

j

V

1

nfv;wg

and �

2

(v _ w) := �

1

(v):

The vertex and edge conditions are satis�ed from �

1

(v) = �

2

(v_w), �

1

(v) �

C

c and �

1

(w) �

C

c, we deduce Ext(�

1

(v)) [ Ext(�

1

(w)) � Ext(�

2

(v _ w)).

10

�

. Join vertices with corresponding edges.

Let us assume that the vertices v; w 2 V

1

have corresponding, but uncommon

edges, that means for every edge e 2 E

v

(i. e., that is incident with v) there

exists an edge e

0

2 E

w

and vice versa with �

1

(e) = �

1

(e

0

), �

1

(e)j

i

= v for

exactly one i 2 f1; : : : ; jejg and �

1

(e

0

)j

i

= w, �

1

(e)j

j

6= w and �

1

(e

0

)j

j

6= w

for all j = 1; : : : ; jej, and �

1

(�

1

(e)j

j

) = �

1

(�

1

(e

0

)j

j

) if �

1

(e)j

j

6= v.

Then the concept graph derived from G

1

by joining the two vertices v and w

is G

2

:= (V

2

; E

1

; �

2

; �

2

; �

2

) where V

2

and �

2

are de�ned as in Rule 9

�

, and �

2

is de�ned by �

2

j

V

1

nfv;wg

:= �

1

j

V

1

nfv;wg

and �

2

(v _w) := �

1

(v) [ �

1

(w). The
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vertex and edge conditions are satis�ed because �

1

(v) �

C

c and �

1

(w) �

C

c

imply Ext �

1

(v) [ Ext �

1

(w) � Ext �

2

(v _ w). 2

Proof of Completeness: G

1

j= G

2

) G

1

` G

2

:

We will prove completeness by using so-called stars, which are concept graphs

with only one edge and its incident vertices. For a given concept graph G :=

(V;E; �; �; �), the stars of G are all those stars which are subgraphs of G, i. e. all

concept graphs G

0

:= (V

0

; E

0

; �j

V

0

[E

0

; �j

V

0

[E

0

; �j

V

0

[E

0

) where E

0

:= feg for an

edge e 2 E and V

0

:= f�(e)j

i

j i = 1; : : : ; jej g. The stars are interesting because

we can derive a concept graph from the set of all its stars and its isolated vertices

using Rule 9

�

(join vertices with equal references). Consequently, it su�ces to

prove that every star A of G

2

can be derived from G

1

if G

1

entails G

2

. Using

Rule 8 (copy concept graph), we obtain enough copies to derive all stars of G

2

from which we can derive G

2

.

Let G

1

and G

2

be two concept graphs with G

1

j= G

2

and let A be a star of

G

2

with edge f and vertices w

1

; w

2

; : : : ; w

k

. For deriving A from G

1

, we proceed

in three steps.

(i.) First, we derive stars from G

1

such that, for every tuple (g

1

; : : : ; g

k

) of ob-

jects in �(f), there is a star A

g

1

;:::;g

k

with edge e

g

1

;:::;g

k

and �(e

g

1

;:::;g

k

) =

(g

1

; : : : ; g

k

).

(ii.) Then, we join these stars in several steps by joining the corresponding ver-

tices. We obtain a starB with an edge f

0

that has the same references as the

star A of G

2

. But it does not necessarily have the same concept and relation

names.

(iii.) In order to adapt the concept and relation names by Rules 5� and 6

�

, we

�rst have to derive isolated vertices v

i

for every vertex w

i

of A with �

1

(v

i

) =

�

2

(w

i

) and �

1

(v

i

) � �

2

(w

i

). Then, we can �nally deduce a copy of A from

B.

i) As A is valid in the standard model (K

G

1

; �

G

1

) and �

2

(f) 2 R, there

exists a set T � �

1

(E

1

) of relations such that �

G

1

R

�

2

(f) =

S

f�

G

1

R

R j R 2 Tg.

Consequently, for all (g

1

; : : : ; g

k

) 2 �

2

(f), there exists an R 2 T such that

�

G

1

G

(g

1

; : : : ; g

k

) = (g

1

; : : : ; g

k

) 2 �

G

1

R

(R). Because of R 2 �

1

(E

1

), we can �nd an

edge e

g

1

;:::;g

k

2 E

1

with (g

1

; : : : ; g

k

) 2 �

1

(e

g

1

;:::;g

k

).

By means of Rule 2 and 4 (delete vertices and edges), we can derive, for all

tuples (g

1

; : : : ; g

k

) 2 �

2

(f), the corresponding star of G

1

with the edge e

g

1

;:::;g

k

.

Using Rule 7 (restrict references), we restrict the references to g

1

; : : : ; g

k

. In this

way, we derive stars denoted by A

g

1

;:::;g

k

with vertices denoted by v

g

1

; : : : ; v

g

k

.

ii) In the �rst substep, we join the k

th

vertices of all stars A

g

1

;:::;g

k

where

the �rst k� 1 references are identical. For every tuple (g

1

; : : : ; g

k�1

) 2 �

2

(w

1

)�

: : : � �

2

(w

k�1

), we consider all stars A

g

1

;:::;g

k�1

;g

k

with g

k

2 �

2

(w

k

) and unify

the relation names �(e

g

1

;:::;g

k�1

;g

k

) by Rule 6

�

(exchange relation names) into

a common relation name R

e

g

1

;:::;
g

k�1

. As all g

k

belong to �

2

(w

k

), they satisfy

�(e

g

1

;:::;g

k�1

;g

k

) �

R

�(f). Thus, we �nd a common relation name R

e

g

1

;:::;
g

k�1

�

R

�(f).
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Thereafter, we join the k

th

vertices of all changed concept graphsA

g

1

;:::;g

k�1

;g

k

by Rule 10

�

(join vertices with corresponding edges). Then, we join their �rst,

then second, and �nally (k� 1)

th

vertices. After deleting the double edges (Rule

4), we obtain a star with k vertices that we denote by A

g

1

;:::;g

k�1

. It has an

edge e

g

1

;:::;
g

k�1

, and we have �(e

g

1

;:::;
g

k�1

) = fg

1

g � : : : � fg

k�1

g � �

2

(w

k

) and

�(e

g

1

;:::;g

k�1

) �

R

�(f).

In the second substep, we join the vertices of all those stars A

g

1

;:::;g

k�1

(which

all have the same k

th

reference) that correspond in the (k � 1)

th

reference. Ap-

plying Rule 6

�

; 10

�

and 4, we obtain concept graphs A

g

1

;:::;g

k�2

with the edge

e

g

1

;:::;g

k�2

satisfying �(e

g

1

;:::;g

k�2

) = fg

1

g � : : : � fg

k�2

g � �

2

(w

k�1

) � �

2

(w

k

):

After k steps of joining, we obtain a star B with edge f

0

that has the same

references as the edge f of A.

iii) As A is valid in the standard model (K

G

1

; �

G

1

), every vertex w

i

of A

satis�es �

2

(w

i

) � Ext (�

G

1

G

�

2

(w

i

)) =

S

f�

1

(v) j v 2 V

1

; �

1

(v) �

C

�

2

(w

i

)g.

Thus, for every vertex w

i

of A, we can use Rule 4 (delete edges) and derive

all isolated vertices v 2 V

1

with �

1

(v) �

C

�

2

(w

i

). By means of Rule 10

�

(join

vertices with corresponding edges), they can be joined into an isolated vertex v

i

with �

1

(v

i

) = �

2

(w

i

) and �

1

(v

i

) � �

2

(w

i

).

Finally, we can exchange the concept and relation names (Rules 5

�

and 6

�

)

and, by means of Rule 2 (delete all isolated vertices), we obtain a concept graph

that is isomorphic to A. Taken as a whole, this proves G

1

` A. 2

Proof of Proposition 3. Let G

0

be valid in (K ; id). We prove the assertion by

showing that G

0

is valid in the standard model of the standard graph G(K ) := G

and by using Prop. 1. The standard model (K

G

; �

G

) of the concept graph G

with K

G

= ((G;R);B(K ); I

G

) satis�es �

G

G

= id

G

, and �

G

R

(R) =

S

f�

K

(e) j e 2

E; �

K

(e) � Rg = R for all R 2 R. This implies �

G

R

= id

R

. Consequently, the

edge condition for G

0

in (K

G

; �

G

) is satis�ed. Furthermore, we have �

G

C

(c) :=

(c

I

G

; c

I

G

I

G

) and, according to the de�nition of the incidence relation in the

standard model, we have for every concept name c 2 C the equations c

I

G

:=

S

f�

K

(A) j �

K

(A) � cg =

S

fg

II

j (g

II

; g

I

) � cg =

S

fg

II

j g 2 c

I

g = c

I

: Thus,

the vertex condition is also satis�ed. 2
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