
A numerical study of iterative methods for the

solution of convection-di�usion problems

J�urgen Witzel

�

Abstract

We consider di�erent iterative methods (Krylov subspace algorithms, multigrid meth-

ods) for the solution of linear systems which arise from a nonconforming Petrov-Galerkin

discretization of convection-di�usion problems. This discretization technique is based

on inhomogeneous exponentially �tted splines. A numerical examination and compari-

son of these solution methods gives an answer to the question which methods may be

preferred in practice.
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1 Introduction

The aim of this article is to present an overview of iterative solution techniques for linear

systems which arise from a new Petrov-Galerkin discretization of convection-di�usion

problems and to give an answer to the fundamental question which method is to be

preferred.

First we derive a discretization method for instationary convection-di�usion problems

which is based on the method of lines, i.e. a nonconforming Petrov-Galerkin discretiza-

tion in space followed by a time integration. The main aspect of the Petrov-Galerkin

discretization is that we use exponentially �tted trial and test functions.

The algebraic systems of our discretization are nonsymmetric positive de�nite. Thus

we have to use solution methods which are well-suited for such systems. We give

an overview on current Krylov subspace methods and present some preconditioning

techniques. Subsequently we derive a special multigrid method, too. Since Krylov

subspace methods only work well when they are equipped with a good preconditioning

technique we use incomplete LU decompositions and also the multigrid method as

preconditioners.

The intention of this work is not to present results of quantitative character which

means that we did not measure CPU-time, for instance. Since our aim is to judge the

di�erent techniques on a qualitative basis we compare the residuals during the course

of our computations, mostly.
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2 The convection-di�usion problem

Convection-di�usion problems appear in several �elds of applications. They are of par-

ticular interest in uids dynamics where they serve as model problems for the derivation

of new discretization techniques [28]. If the di�usion coe�cient tends to zero the so-

lutions of convection-di�usion problems which are formally of parabolic type behave

more and more hyperbolically. On the other hand the numerical methods for the treat-

ment of parabolic resp. hyperbolic problems di�er very much. Consequently there is a

signi�cant demand for robust discretization techniques which work well for all values

of the di�usion parameter.

Here we consider the unsteady linear convection-di�usion equation of the form

u

t

+ Lu = q with Lu =r � (�u� �ru) (1)

on a bounded domain 
 � R

2

with constant di�usion coe�cient � > 0 and a constant

velocity �eld � in R

2

. The initial and boundary conditions are given by

u(x; 0) = u

0

(x) on 


u(x; t) = u

D

(x) on �

D

� �

in

:= fx 2 @
 ; � � n � 0g

@

n

u(x; t) = 0 on �

N

� @
 n �

D

:

(2)

The extension of the method, which is presented in the subsequent section, to the case

of an arbitrary divergence free velocity �eld is treated in [27, 46].

For convection-di�usion problems standard Galerkin methods, whether conforming or

not, are perfectly satisfactory from the point of convergence, but in practice the mesh

has to be unrealistically �ne to meet the theoretical requirements. Typically the grid

size h should not exceed some �xed multiple of the global P�eclet number Pe. When h

exceeds this threshold the numerical solution shows spurious oscillations and is of little

or no value.

We expect an acceptable numerical method to give an error that should decrease when

the mesh is re�ned. Unfortunately a careful examination of simple upwind schemes

show that for �xed " the maximum pointwise error usually increases as the mesh is

re�ned until the grid parameter h and the perturbation parameter have the same order

of magnitude. This statement holds true for standard Galerkin methods, too. Here, we

consider the concept of uniform convergence which has great inuence in practice.

A discretization method is called uniformly convergent of order k > 0 with respect to "

in the norm k � k, if there exists a constant C which is independent of ", such that for

all su�ciently small h (independently of "),

ku� u

h

k � Ch

k

:

For uniformly convergent methods the error bound decreases as the mesh is re�ned,

regardless of the ratio of h and ".

2



In order to develop practicable techniques for small values of ", the Galerkin approach

has to be generalized by allowing di�erent trial and test spaces, i.e. we apply a Petrov-

Galerkin method.

Since it is possible to show that some �tted upwind schemes can be generated using a

Petrov-Galerkin method with linear trial and quadratic test functions [6], we can state

that also Petrov-Galerkin methods based on polynomial trial and test spaces are not

practicable. Moreover, it is known from [16] that it is even not possible to construct

a uniformly convergent method with polynomial spline functions on an equidistant

grid. Consequently we summarize and state the numerical results for Petrov-Galerkin

methods with polynomial trial and test spaces are not convincing.

Thus, we have to use exponential �tted Petrov-Galerkin methods. That means that

the trial and { probably { the test functions are piecewise solutions of a simpli�ed

di�erential equation which is related to the original one in some sense.

In one space dimension we consider the di�erential equation

Lu := �"u

00

+ �u

0

+ u = f(x) :

A homogeneous L-spline is now constructed by using the condition that a basis function

�

i

should be a solution of

�

L�

i

= 0 on every open subinterval:

Analogously, we obtain an inhomogeneous L-spline by postulating that a basis function

�

i

should ful�ll

�

L�

i

=

�

f on every open subinterval:

Here, we approximate the di�erential operator L by

�

Lu := �"u

00

+ �u

0

+ (x)u =

�

f (x)

with

�

f as a piecewise constant approximation to f [37].

This article does not intend to present convergence results for the Petrov-Galerkin

discretization of the following section. Results on uniformly convergence for our method

are part of [11].

3 A nonconforming Petrov-Galerkin method

For the presentation of the Petrov-Galerkin method we restrict ourselves to the case of

homogeneous Dirichlet boundary conditions. The well-known extension to the general

inhomogeneous case can be found in [8, 15].

With the aim to obtain a weak formulation for the original di�erential equation we

multiply (1) with a function w = w(x) 2 W and integrate over the domain 
. We

choose H

1

0

� V := fv 2 H

1

jv = 0 on �

D

g � H

1

(
) and V = W. Using Gauss'

Theorem we observe that u(t) 2 V is now the solution of the weak formulation

d

dt

Z




uwd
 +

Z




(� �ruw + "ru �rw) d
 =

Z




qwd
 8w 2 W :
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This equation can be written shortly as

d

dt

(u;w) + a(u;w) = (q; w) 8w 2 W

where the nonsymmetric bilinear form a(�; �) is given by

a(u;w) :=

Z




� �ruw + "ru �rw d


and (�; �) denotes the L

2

-scalar product.

S

V

S

1

S

3

S

4

n

1

n

2

n

3

n

4

S

2

V

�

V

+

Figure 1: local cell, grid, and neighbouring cells

To obtain a Petrov-Galerkin method we replace the spaces V and W by �nite spaces

V

h

and W

h

. The construction of the trial space V

h

is based on the local spaces V

V

de�ned by

V

V

= span

�

1; x

1

; x

2

; exp

�

�

1

�

x

1

�

; exp

�

�

2

�

x

2

��

: (3)

The space V

V

contains the inhomogeneous exponentially �tted L-splines in both space

directions.

We require that a trial function v 2 V

h

restricted to a cell V belongs to V

V

and that the

evaluation of the average for an interior edge S using these restrictions is independent

of the cell under consideration. Therefore, we de�ne a canonical basis of V by using

the cell and edge averages as `nodal values'.

Let V be the set of cells and S be the set of edges. Canonical trial functions �

V

for

V 2 V and �

S

for S 2 S as a basis of V

h

are de�ned by

�

V

(

~

V ) =

1

j

~

V j

Z

~

V

�

V

(x)d

~

V = �

V

~

V

8

~

V 2 V ;

�

V

(

~

S) =

1

j

~

Sj

Z

~

S

�

V

(x)d

~

S = 0 8

~

S 2 S ;

and

�

S

(

~

V ) =

1

j

~

Sj

Z

~

S

�

S

(x)d

~

S = �

S

~

S

8

~

S 2 S ;

�

S

(

~

S) =

1

j

~

V j

Z

~

V

�

S

(x)d

~

V = 0 8

~

V 2 V :

4



In analogy to the de�nition of the trial functions we construct a test space W

h

which

is { for each V 2 V { based on the local test space

W

V

= span

�

1; x

1

; x

2

; exp

�

�

�

1

�

x

1

�

; exp

�

�

�

2

�

x

2

��

: (4)

Here, W

V

consists of inhomogeneous exponentially �tted L

�

-splines where L

�

denotes

the adjoint operator of L.

Canonical test functions  

V

, V 2 V and  

S

, S 2 S are de�ned analogously to the

canonical trial functions.

We observe that the trial and test functions are discontinuous at interelement bound-

aries. Consequently, we have to deal with nonconforming spaces and, moreover, we

have to change the bilinear form a(�; �) { by summing up over all grid cells { into

a

h

(u;w) :=

X

V�


Z

V

� �ruw + "ru �rw dV : (5)

Thus the resulting nonconforming Petrov-Galerkin method can be described as follows.

Find u(t) 2 V

h

such that

d

dt

(u;w) + a

h

(u;w) = (q; w) 8w 2 W

h

: (6)

Describing u(t) by its nodal values as

u(t) =

X

V2V

u

V

(t)�

V

+

X

S2S

u

S

(t)�

S

and inserting the canonical test functions into (6) we obtain by setting u

V

:= (u

V

)

V2V

and u

S

:= (u

S

)

S2S

^

M

d

dt

u+Bu = b ()

^

M

d

dt

u+

 

B

11

B

12

B

21

B

22

! 

u

V

u

S

!

=

 

b

1

b

2

!

: (7)

If we approximate the L

2

-scalar product appearing in the mass matrix

^

M and the right

hand side b of (7) by the quadrature rule

(f; g) �

X

V 2V

jV jf(V )g(V )

we achieve a system of the form

M

d

dt

u+Bu = b ()

 

V 0

0 0

!

d

dt

 

u

V

u

S

!

+

 

B

11

B

12

B

21

B

22

! 

u

V

u

S

!

=

 

b

1

b

2

!

(8)

where V = diag(jV j)

V2V

.
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An identical mass matrix is also obtained by using a mass lumping technique because

of

X

V2V

�

V

+

X

S2S

�

S

� 1

in all cells.

The linear systems which arise are di�erential-algebraic systems of index 1 [5]. The

sti�ness matrix B in (8) can be assembled by the cell matrices

B

V;i

=

jS

i

j

2

8

<

:

cof

 

�;

2"

jS

i+1

j

!

0

B

@

4 �2 �2

�2 1 1

�2 1 1

1

C

A
+

2"

jS

i+1

j

0

B

@

0 0 0

0 1 �1

0 �1 1

1

C

A

(9)

+�

i

0

B

@

0 �2 2

2 �1 �1

�2 1 1

1

C

A

9

=

;

for V 2 V, i = 1; 2.

The cell matricesB

V;i

are connected to the cell vectors u

V;i

:= (u

V

; u

S

i+2

; u

S

i

)

T

ignoring

rows and columns belonging to Dirichlet data u

S

for S 2 @S

D

. The scalar B

S

is

associated with u

S

for Neumann boundaries S 2 S

N

.

The function cof in (9) is de�ned by

cof(�; �) =

8

>

>

>

>

<

>

>

>

>

:

�

 

coth(

�

�

)�

�

�

!

�1

; �; � 6= 0

j�j ; � = 0

3� ; � = 0

:

At this point we mention that the �nite volume and also the Petrov-Galerkin approach

can be extended to the case of an arbitrary, divergence free velocity �eld � (see [27, 46]).

For the application of an iterative solution method we state the de�niteness of the

sti�ness matrix B, the matrix A in

Au = f with A =



�t

M +B (10)

for constant time steps �t which arises during time integration, and the corresponding

Schur complement. For a proof see [29, 46].

Theorem 3.1

The sti�ness matrix B is positive de�nite uniformly in h

2

, i.e.

x

T

Bx � "Ch

2

x

T

x 8x 2 R

N

(11)

with a constant C > 0 independent of h.
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Corollary 3.2

The matrixA of (10) and its Schur complement [A=A

22

] are positive de�nite uniformly

in h

2

, i.e.

x

T

Ax � "Ch

2

x

T

x 8x 2 R

N

(12)

and

x

T

V

[A=A

22

]x

V

�

�

"C +



�t

C

2

h

�

h

2

x

T

V

x

V

8x

V

2 R

N

1

: (13)

Here, C > 0 is the constant from (11).

4 Krylov subspace methods

A large class of practical methods for the solution of sparse linear systems uses in some

kind or another a projection process. The �rst method of this class, the conjugate

gradient algorithm, was developed by Hestenes, Stiefel [26], and Lanczos [30], indepen-

dently. First, it was seen as a direct method. In practice, there was no convergence

in at most N steps observed, as it was predicted by theory. This e�ect is due to the

loss of orthogonality during the runtime of the cg-algorithm. At the beginning of the

1970's the algorithm was interpreted as an iterative method for solving large sparse lin-

ear systems [36]. During the last two decades a great variety of conjugate-gradient-like

methods was introduced [14]. Here, we present a selection of the most recent methods.

For a detailled description we refer to [38, 34, 46], for instance.

The main idea of projection methods, in general, is to extract an approximation from

a space of m candidate approximants denoted as K

m

by imposing m constraints. To

describe these constraints we specify m orthogonality conditions. In our case we pos-

tulate that the residual vector b�Ax should be orthogonal to m linearly independent

vectors which form the so-called left subspace L

m

. Krylov subspace methods are based

on orthogonal or oblique projection processes onto Krylov subspaces.

Let K

m

and L

m

denote two m-dimensional subspaces of R

N

. Using a projection onto

K

m

and a Petrov-Galerkin condition we construct an approximate solution
~
x to the

solution x of a linear system

Ax = b

with a regular matrix A 2 R

N�N

and x; b 2 R

N

.

As mentioned above, we like to �nd an approximate solution
~
x from K

m

| or more

generally from x

(0)

+ K

m

with an arbitrary initial guess x

(0)

| by imposing that the

residual vectors should be orthogonal to L

m

. Our general problem now reads

Problem 4.1 (General Projection Method)

Find an approximate solution
~
x from the a�ne subspace x

(0)

+K

m

such that

�

b�A
~
x

�

?L

m

: (14)

�
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Here x

(0)

is an arbitrary initial guess. We call K

m

the subspace of candidate approxi-

mants and L

m

the subspace of constraints. The orthogonality relations are de�ned via

x?y () (x;y)

2

= 0 for x;y 2 R

N

.

A Krylov subspace is de�ned by

K

m

(A;x) := span

n

x;Ax; : : : ;A

m�1

x

o

;

and the choice of K

m

= K

m

(A; r

(0)

) leads to a Krylov subspace method. Here r

(0)

=

b�Ax

(0)

denotes the initial residual.

Di�erent versions of Krylov subspace methods arise from di�erent choices of L

m

. For

K

m

= L

m

we get an orthogonal projection method and (14) represents a Galerkin con-

dition. If K

m

6= L

m

we obtain an oblique projection method which is de�ned via the

Petrov-Galerkin condition (14).

Here, we restrict ourselves to the most important Krylov subspace methods, namely the

Generalized Minimal Residual (GMRES) [39], the Conjugate Gradient Squared (CGS)

[40], the Transpose-free Quasi Minimal Residual (TFQMR) [12], the Bi-conjugate Gra-

dient Stabilized (BiCGSTAB) [42], and the Quasi Minimal Residual Bi-conjugate Gra-

dient Stabilized (QMRCGSTAB) [7] method.

The GMRES method represents an oblique projection method onto x

(0)

+K

m

orthogonal

to L

m

= AK

m

. Since the storage amount of the GMRES method grows with m a

GMRES version with restart is used in practice.

The CGS algorithm is a variant of the Bi-conjugate Gradient (BiCG) algorithm [10]

which is an oblique projection method onto x

(0)

+ K

m

orthogonal to the subspace

L

m

= span

n

^
r

(0)

;A

T

^
r

(0)

; : : : ; (A

T

)

m�1

^
r

(0)

o

. Mostly
^
r

(0)

= r

(0)

is chosen. In contrast to

the BiCG method the CGS algorithm uses a slight modi�cation to avoid multiplications

with A

T

. It replaces the representation of the residual of the BiCG which is of the form

r

(m)

= p

m

(A)r

(0)

by

r

(m)

= p

2

m

(A)r

(0)

(15)

where p

m

is a polynomial of degree m with p

m

(0) = 1.

The BiCG and the CGS method have the advantageous property that the storage does

not increase with m and that they are based on three-term recurrences. On the other

hand they su�er from di�erent breakdown possibilities. Additionally, the CGS method

tends to oscillations which is due to the squaring of residual polynomials used.

With the aim to avoid the oscillating behaviour of the CGS algorithm the BiCGSTAB

method replaces the representation of the residual from (15) by

r

(m)

= p

m

(A)q

m

(A)r

(0)

with a certain polynomial q

m

of degree m. Afterwards this additional degree of freedom

is used for the minimization of the residual.
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In order to avoid breakdowns the BiCG approach was equipped with a minimization

strategy in [13]. The resulting QMR algorithm does not minimize the norm of the

residual over the a�ne Krylov space x

(0)

+ K

m

like in the case of the GMRES algo-

rithm. Instead of the residual a so-called quasi-residual { which is easily computable { is

used. A modi�cation of the CGS method in an analogous way yields the TFQMR algo-

rithm and the quasi-minimal version of the BiCGSTAB algorithm is the QMRCGSTAB

algorithm.

5 Preconditioning of linear systems

The convergence rate of an iterative method for the solution of

Ax = b (16)

strongly depends on the condition number cond(A) := kAkkA

�1

k.

The consequence of a large condition number is that the solution of the system is very

sensitive to disturbances of the matrix and the right hand side. In general we state

that the systems which arise from the discretization of partial di�erential equations are

ill-conditioned, i.e. cond(A)� 1.

With the intention to improve the convergence of an iterative method we construct an

equivalent system to (16) by multiplying with the inverse of a regular matrix T

1

and

substituting x by T

�1

2

y. (16) now transforms into

T

�1

1

AT

�1

2

y = T

�1

1

b : (17)

Afterwards we apply an arbitrary iterative solution method.

The advantage of (17) is that the matrix of the transformed system remains symmetric

if A is symmetric and if we have T

1

= T

T

2

. This is the case when we use an incomplete

Cholesky decomposition [1, 43], for instance.

The main problem is now to �nd preconditioning matrices which allow an e�cient solu-

tion of the system. If we consider, for example, a left preconditioned system, i.e. T

2

= I

we can state that the matrix T

1

should be a good approximation to the system matrix

A, but T

1

should be easy to invert, additionally. With the aim to ful�ll both require-

ments we now suggest some possibilities for the selection of preconditioning matrices.

We note that a preconditioned system may be a full system. Even though the precon-

ditioning matrix may be sparse, its inverse does not necessarily need to be sparse, too.

As a consequence the number of techniques we can choose for the solution of a pre-

conditioned system is limited. We use methods which require matrix-vector products

only. E.g. for an operation of the form w = T

�1

1

Av we proceed in two steps. First, we

compute r := Av and, subsequently, we solve w = T

�1

1

r.

First we consider the simplest way of preconditioning. A preconditioning with T

1

:=

D = diag(d

11

; : : : ; d

NN

) with a diagonal matrix D 2 R

N�N

is called scaling of the
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system (16). The simplest choice is d

ii

= a

ii

for i = 1; : : : ; N where we suppose that

a

ii

6= 0.

This very simple choice of a preconditioner leads often to poor improvements, especially

for discretization matrices. Consequently, we have to take a more sophisticated way.

Stationary iterative methods were used as iterative solution methods up to the 1960's.

Nowadays, they play a role as smoothing iterations in a multigrid code (see Chapter

6), or as preconditioners.

Here we give an insight into the relation between classical iterative methods such as

the Jacobi iteration and the solution of certain preconditioned systems. Therefore, we

recall that classical iterative methods are of the general form

x

(m+1)

=Wx

(m)

+ f : (18)

They are based on a splitting of the system matrix A of the form

A = T

1

�N

with a regular matrix T

1

.

We de�ne a �xed point iteration for our original system Ax = b by the recursion (18)

rewritten as

x

(m+1)

= T

�1

1

(Nx

(m)

+ b) :

Now we are able to view the iteration (18) as a technique for attempting to solve

(I �W )x = f with f := T

�1

1

b. SinceW is of the formW = I � T

�1

1

A this system

can be written as

T

�1

1

Ax = T

�1

1

b :

This system is a left-preconditioned system, and we can consider a relaxation scheme

of the form (18) for the original system as a �xed point iteration on a preconditioned

system.

Classical schemes are based on an additive decomposition of the form A =D�E�F .

Here D is the diagonal of A, E is the strict lower and F the strict upper part of A.

The most commonway of deriving a preconditioner for the system (16) is to approximate

the matrix A by a decomposition of the form

A = LU �

~

R (19)

where L is a lower and U an upper triangular matrix. This means, in practice, that

we determine an approximate LU decomposition of A.

De�nition 5.1 (Graph of a matrix)

Let I := f1; : : : Ng and A 2 R

N�N

. The subset

G(A) = f(i; j) 2 I � I : a

ij

6= 0g

of all elements of I � I is denoted as the graph of A. �
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For the construction of an incomplete decomposition we postulate that

l

ij

= u

ij

= 0 for all (i; j) =2 P

where the pattern P is a subset of I � I. We always require (i; i) 2 P for all i 2 I,

and in general one should choose P large enough, i.e.

P � G(A) :

The algorithm for the determination of an ILU decomposition, which ful�lls

n

X

k=1

l

ik

u

kj

= a

ij

for all (i; j) 2 P ; (20)

can be found in [19].

For our computations we set P = G(A), but we point out that for speci�c problems

the choice of a larger pattern P can lead to better convergence rates [45].

There are several modi�cations and extensions to de�ne incomplete LU decomposi-

tions, mainly with the aim to derive stable versions of the solution algorithm [23, 38].

Concerning the existence of ILU decompositions we refer to [19, 31, 33].

6 A linear multigrid method

Another class of solution methods for linear (and also nonlinear) systems are multigrid

methods. For an introduction see [18, 32, 44]. The �rst multigrid method (MGM)

was formulated by Fedorenko in 1964 [9]. This was a multigrid algorithm for the

standard 5-point �nite di�erence discretization of Poisson's equation on a square. In

1966 Bachvalov [2] proved the optimal O(N)-order of complexity for the more di�cult

case of a di�erence scheme for a general elliptic partial di�erential equation on the

unit square. The �rst practical results and the e�ciency of multigrid algorithms were

reported by Brandt in 1972 [3]. Independently the multigrid method was discovered

by Hackbusch in 1976 [17] who laid the �rm mathematical foundations. Articles on

advanced topics can be found in the collections of Hackbusch and Trottenberg [20, 21,

22], and Hemker and Wesseling [24, 25].

In practice the solution of advanced problems often exceeds the capacity of the com-

puters or requires to much time. Multigrid methods o�er the possibility of solving

problems with N unknowns with O(N) work and storage for a large class of problems.

Consequently, there is a big signi�cance of multigrid methods for scienti�c computing.

A second, very important additional feature is a convergence rate which is bounded

away from 1 for decreasing mesh size.

We observe that basic iterative methods reduce the components of the error belonging

to so-called high frequencies rapidly and, moreover, that the slow convergence is caused

by the lower frequencies. The essential idea of multigrid is now to approximate the

11



smooth parts of the error on coarser grids and to reduce the rough parts with a small

number of iterations, which is independent of h, using a basic iterative method on the

�ne grid.

We consider a sequence of nested grids (see Figure 2)

G

0

� G

1

� : : : � G

l

max

:

Figure 2: A sequence of nested grids

Let u

l

2 R

N

l

, l = 0; : : : ; l

max

be grid functions and, furthermore, let S

l

: R

N

l

! R

N

l

be a smoothing iteration, P

l

: R

N

l�1

! R

N

l

a prolongation, and R

l

: R

N

l

! R

N

l�1

a

restriction operator for l = 1; : : : ; l

max

.

For the derivation of a linear algorithm we consider a sequence of matrices

A

0

;A

1

; : : :A

l

max

with A

l

2 R

N

l

�N

l

:

The problem to be solved on grid G

l

reads

A

l

u

l

= f

l

: (21)

Concerning the computation of these matrices we make the following remark. The two-

grid algorithm, for instance, requires an approximation of the �ne grid matrixA := A

1

by a matrix

�

A := A

0

on the coarse grid. Basically there are two ways to compute

�

A. The discretization coarse grid approximation (DCA) computes the matrix

�

A as

a discretization matrix of the partial di�erential equation on the coarse grid. And

the Galerkin coarse grid approximation (GCA) [47] chooses

�

A as

�

A = RAP with

a restriction operator R and a prolongation operator P . The advantages of GCA

in comparison with DCA are that the coarsest grids may be very coarse. On such

grids DCA may be unreliable if the coe�cients are variable, because these coe�cients

are sampled in very few points. A remedy is to replace the pointwise sampling of

the coe�cients by a suitable averaging. GCA does this accurately and automatically.

Also GCA has a pure algebraic nature and makes no use of the underlying partial

di�erential equation. Consequently, it is well-suited for the use in 'black box' multigrid

codes. The disadvantages of GCA are that for nonlinear problems and systems of

di�erential equations there is no general way to implement GCA. For an example see

[47]. Anyway both alternatives are in widespread use. For our computations we use a

DCA representation.

A multigrid method for the solution of our linear systems can be written as

12



Algorithm 6.1

MGM(l;u

l

;f

l

)

if (l = 0)

u

0

:= (A

0

)

�1

f

0

(exact solution on coarsest grid)

else

u

l

:= S

l

(u

l

;f

l

; �

1

) (presmoothing)

d

l�1

:= R

l

(f

l

�A

l

u

l

) (restriction of defect)

~u

l�1

:= 0

for j = 1; : : : ; � do MGM(l � 1; ~u

l�1

;d

l�1

)

u

l

:= u

l

+ P

l

u

l�1

(coarse grid correction)

u

l

:= S

l

(u

l

;f

l

; �

2

) (postsmoothing)

endif

�

We can improve the algorithm above by starting on the coarsest grid and successively

computing the solution on the next level in order to obtain a better starting guess on

the �ner level. This approach is called nested iteration or full multigrid (FMG) [4].

The main problem for the derivation of an e�cient multigrid algorithm is the determi-

nation of the di�erent components of the algorithm, especially of the smoother and the

transfer operators.

The coarsest grid consists of �ve equations, i.e. we have one cell at least. In practice we

choose a coarse grid with a moderate number of equations. Consequently, we do not

solve the coarse grid system exactly, but approximately. For the solution on this grid we

use the GMRES method since this method is theoretically convergent and practically

a fast convergent method for a medium-sized system of our discretization [39, 45].

Choice of a smoothing iteration

If we consider linear systems which arise from the discretization of singularly perturbed

problems we cannot use any basic iterative method as a smoother. We have to construct

special smoothing iterations. From [18] we quote the following criterion for the choice

of S

l

.

Criterion 6.2

The smoothing iteration S

l

should be a fast iterative (or even a direct) solver for the

limit case " = 0. �

We suggest two di�erent smoothers. The �rst is the well-known Gauss-Seidel method

[41] and the second is an iteration which is based on the ILU decomposition. This ILU

iteration reads as

T

1

(u

m+1

�u

m

) = f �Au

m

(22)

13



with T

1

= LU from the ILU decomposition.

Since in the limit case " = 0 and with a numbering in direction of the velocity �eld our

linear system reduces to lower triangular form we can state that the Gauss-Seidel and

the ILU iteration as well are exact solvers. We obtain

Lemma 6.3

The Gauss-Seidel method and the ILU iteration are well-suited smoothing iterations

for a multigrid algorithm based on our Petrov-Galerkin discretization. �

Again we consider the ILU decomposition and prove

Theorem 6.4 (Exactness of the ILU decomposition)

For the ILU decomposition with the pattern P = G(A) we have with N = V [ S

a

vn

= (LU )

vn

for v 2 V and n 2 N : (23)

Proof:

From (20) we obtain the exactness of the ILU decomposition for the pattern P, i.e.

a

vn

= (LU )

vn

for v; n 2 P : (24)

Without loss of generality we assume that the velocity �eld � has components �

1

; �

2

> 0.

With a numbering in the direction of the velocity �eld we observe that the column

indices a�liated to u

S

3

, u

V

and u

S

1

belong to the v-th row of L (see Figure 3).

Figure 3: Pattern of L and U

For the limit case � = 0 we obtain a symmetric matrix A which has a symmetric

pattern, of course. The pattern of A is independent of the choice of � so that the

matrix A has a symmetric pattern in general.

This means that U

T

has the same pattern as L and, thus, row n of U has the same

structure as the column n of L.

14



The element (LU )

vn

is the scalar product of the vth row of L with the nth column

of U . And this scalar product is zero if there are no common nonvanishing entries.

Considering for v 2 V the two cases n 2 V with n 6= v and n 2 S we conclude that

there are no common entries and, consequently, that the scalar product is zero. Hence,

we have shown (LU )

vn

= 0 = a

vn

for v 2 V and (v; n) =2 P which concludes the proof.

�

As a consequence of this result we obtain

Lemma 6.5

The ILU iteration is an exact solver for the equations belonging to the cells.

Proof:

We consider equation (22)

LU (u

m+1

� u

m

) = f �Au

m

and examine the equation belonging to a cell equation v which has the form

X

n2N

(LU)

vn

(u

m+1

n

�u

m

n

) = f

v

�

X

n2N

a

vn

u

m

n

:

Theorem 6.4 gives now

X

n2N

a

vn

u

m+1

n

= f

v

which is the desired result. �

Restriction and prolongation

For the description of restriction and prolongation operators we assume that a cell

V belonging to G

l�1

consists of four adjacent �ne grid cells

~

V

k

on level l as shown in

Figure 4. The two interpretations of our discretization lead to di�erent versions of these

operators. The index l is neglected when there is no ambiguity.

Petrov-Galerkin approach

For �nite element methods the prolongation and restriction operators are naturally

de�ned in terms of the nodal functions using the corresponding function spaces [18].

For a conforming method with nested �nite element spaces V

0

h

� V

1

h

� � � � � V

l

max

h

and

a nodal basis V

l

h

= spanf�

l;i

; i = 1; : : : ; N

l

g we can express the nodal functions on level

l � 1 by

�

l�1;j

=

N

l

X

i=1

�

l�1;j

i

�

l;i

; j = 1; : : : ; N

l�1
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S

1

S

4

V

S

3

S

2

~

V

1

~

V

3

~

V

4

~

V

2

Figure 4: local notations

where �

i

denotes the nodal value of � for the index i. The canonical prolongation

~

P

l

on the trial spaces is de�ned by the inclusion

V

h

l

3

~

P

l

u

l�1

= u

l�1

=

N

l

X

i=1

N

l�1

X

j=1

�

l�1;j

i

u

l�1

j

�

l;i

2 V

h

l�1

with the prolongation matrix given as

(P

l

)

ij

= �

l�1;j

i

for i = 1; : : : ; N

l

; j = 1; : : : ; N

l�1

:

The corresponding restriction matrix R

l

for the residuals tested by the nodal functions

is

R

l

= (P

l

)

T

:

Considering Petrov-Galerkin methods the prolongation is connected to the trial spaces

V

h

l

and the restriction to the test spaces W

h

l

. Therefore, we have for i = 1; : : : ; N

l

and

j = 1; : : : ; N

l�1

(P

l

)

ij

= �

l�1;j

i

; (25)

(R

l

)

ji

=  

l�1;j

i

: (26)

In our case the nodal values are the averages indexed by V 2 V and S 2 S instead of i.

For the one-dimensional problem the evaluation is evident. In two dimensions we have

to deal with nonconforming nodal functions. Due to the discontinuity at the boundary

D of supp(�

l�1;j

) and supp( 

l�1;j

) we de�ne the edge averages for S � D to be zero as

in the conforming case:

�

l�1;j

S

:=

8

<

:

1

2

�

l�1;j

j

D

(S) for S 2 S n @S

�

l�1;j

j

D

(S) for S 2 @S

and for the restriction, analogously.

Figure 5 illustrates the prolongation and restrictions for the limit cases of the di�usion

and the convection problem in form of distribution stencils for P

l

and collection stencils

for R

l

. Since P

l

= (R

l

)

T

holds for the di�usion case we show the distribution stencil,

only.
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Figure 5: Prolongation and restriction

Finite volume approach

The underlying system of ordinary di�erential equations motivates to understand the

di�erential part of the semidiscrete system as �nite volume equations and the algebraic

part as constraints. This approach is based on an alternative derivation of the linear

systems (8) in the framework of �nite volume methods which is presented in [27, 28].

Transferring this point of view to the linear system (10) we consider �rst of all the

Schur complement system

[A=A

22

]u

V

= f

1

�A

12

A

�1

22

f

2

= f

fv

(27)

which determines the cell averages u

V

independently of the edge averages u

S

. Thus,

we have to derive a restriction and prolongation for the parts corresponding to cells.

The defect vector for this Schur complement system is given by d

V

= [A=A

22

]u

V

�f

fv

.

Its components d

V

should be approximations to the integral of a defect function

~

d(x),

i.e.

d

V

�

Z

V

~

d(x)dx (28)

which is motivated by the �nite volume approach [27, 28].

This de�nes a restriction R

l

V

by means of

(R

l

V

d

l

V

)

V

:=

4

X

i=1

d

l

~

V

i

�

4

X

i=1

Z

~

V

i

~

d(x)dx =

Z

V

~

d(x)dx � d

l�1

V

for all V 2 V: (29)
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With respect to the scalar products d

T

V

V

�1

d

V

for defect vectors and u

T

V

V u

V

for cell

averages the corresponding prolongation P

l

V

simply reads

P

l

V

= (R

l

V

)

T

: (30)

The resulting multigrid algorithm is not really e�cient since the Schur complement

[A=A

22

] should not be computed explicitly. Hence, we have to extend the grid transfer

operators including the edge components to get a comparable multigrid method for the

whole system.

The matrix A can be decoupled by the block decomposition

A =

 

I A

12

A

�1

22

0 I

! 

[A=A

22

] 0

0 A

22

! 

I 0

A

�1

22

A

21

I

!

(31)

= (I +U)

^

A(I +L) (32)

where the back transformations are given by the identities (I + U )(I � U) = I and

(I +L)(I �L) = I . Using this, we are able to de�ne a decoupled system by

^

Aû =

^

f

with û = (I +L)u and

^

f = (I �U)f .

For this system the restriction and the prolongation should also be decoupled, i.e.

^

R

l

:=

 

R

l

V

0

0 R

l

S

!

;

^

P

l

:=

 

P

l

V

0

0 P

l

S

!

(33)

with R

l

V

and P

l

V

from (29, 30) and analogously

(R

l

S

d

l

S

)

S

:=

2

X

i=1

d

l

~

S

i

; P

l

S

= (R

l

S

)

T

for all S 2 S (34)

where

~

S

1

;

~

S

2

are the edges on the �ne grid belonging of S.

Assuming that the defect vector transforms like the right hand side and the correction

vector like a solution vector the corresponding transfer operators of the original system

are

R

l

:= (I +U

l�1

)

^

R

l

(I �U

l

); (35)

P

l

:= (I �L

l

)

^

P

l

(I +L

l�1

): (36)

Theorem 6.6

Under the assumption of an exact solution on the coarse grid the defect corrections

for the cell variables according to the Schur complement system (27) and the original

system (10) are identical.
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Proof:

The correction vector belonging to (10) is de�ned by

�u

l

:= P

l

(A

l�1

)

�1

R

l

�

f

l

�Au

l

�

and for the Schur complement system by

�u

l

fv

:= P

l

V

�

[A=A

22

]

l�1

�

�1

R

l

V

�

f

l

fv

� [A=A

22

]

l

u

l

V

�

with exact solution on the coarse level l � 1. Hence, we have to show that

�

�u

l

�

V

= �u

l

fv

: (37)

Using the de�nitions (35, 36) for the restriction and the prolongation, the factorization

(31), and the block diagonal structure of

^

P

l

,

^

R

l

and

^

A

l�1

we get

�u

l

= (I �L

l

)

^

P

l

(I +L

l�1

)

�

A

l�1

�

�1

(I +U

l�1

)

^

R

l

(I �U

l

)

�

f

l

�A

l

u

l

�

= (I �L

l

)

^

P

l

�

^

A

l�1

�

�1

^

R

l

�

(I �U

l

)f

l

�

^

A

l

(I +L

l

)u

l

�

and �nally

�u

l

= (I �L

l

)

0

@

^

P

l

V

�

[A=A

22

]

l�1

�

�1

R

l

V

0

0

^

P

l

S

(A

l�1

22

)

�1

^

R

l

S

1

A

 

f

l

fv

� [A=A

22

]

l

u

l

V

f

l

2

� (A

l

21

u

l

V

+A

l

22

u

l

S

)

!

:

Evaluating the cell part of this product the assertion (37) follows, directly. �

For the implementation of the operators (33) it is important that a system with the

matrix A

22

can be solved at low costs. Fortunately we can state that the matrix

A

22

= B

22

of (10) is strictly diagonal dominant for " > 0 and reduces to triangular

form for " = 0 with a numbering in convection direction. Hence the Gauss-Seidel

method is a fast solver for systems involving this matrix and this statement holds also

true for the ILU iteration.

At this point we mention that the statement of Theorem 6.6 is true for every restriction

^

R

l

and prolongation

^

P

l

which are decoupled. The proof of Theorem 6.6 does not use

the special structure of R

l

V

, R

l

S

and P

l

V

, P

l

S

. This opens additional possibilities for

the de�nition of R

l

V

and P

l

V

for the main variables u

V

. In our case we keep R

l

V

as

de�ned in equation (29) and take P

l

V

as a bilinear interpolation, i.e. equation (30) is not

valid any more. This approach provides two advantages. In practice we gain a better

convergence rate as shown later. And additionally, we ful�ll a necessary condition for

convergence on the level of the cell variables as the main variables of the form

m

R

+m

P

> m

where m

R

is the order of the restriction, m

P

is the order of the prolongation and m is

the order of the di�erential equation [18].
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7 Numerical results

For our numerical computations we consider di�erent test problems [27, 35, 40] for

the linear convection-di�usion equation. The �rst two problems are steady partial

di�erential equations, but { since we have an additional positive contribution to the

diagonal of our discretization matrices in the unsteady case { the numerical solution of

these problems is even more di�cult.

0

1

�1 0 1
inlet outlet

D D

D

Figure 6: Streamlines and boundary conditions for problem 7.1

Problem 7.1 (Berkeley problem)

� �ru� "�u = 0 in 
 = (�1; 1)� (0; 1)

with � = (� 

y

;  

x

)

T

given by the stream function  = (1� x

2

)(1 � y

2

) and

u(x; y) =

(

1 + tanh (10(2x + 1)) on �

in

:= f(x; y) 2 � j � 1 � x � 0; y = 0)g ;

0 on �

D

= � n f�

in

[ �

N

g ;

@

n

u(x; y) = 0 on �

N

:= f(x; y) 2 � j 0 � x � 1; y = 0)g :

Problem 7.2 (Convection-di�usion equation on the unit square)

� �ru� "�u = 0 in 
 = (0; 1) � (0; 1)

with � = (cos�; sin�)

T

and u(x; y) = x

2

+y

2

on �. The angle � is varying in multiples

of 15

�

.
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Results for the Krylov subspace methods

The next part of the presentation of our numerical results treats the application of the

Krylov subspace methods. We like to sketch the behaviour which is typical for these

methods and the problems they have to face.

Figure 7 shows results for problem 7.1 on a 48 � 24 grid, i.e. for 3552 unknowns, and

" = 0:1 for the CGS and the BiCGSTAB algorithms.

BICGSTAB

CGS
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N

o

r

m

o
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h

e
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2
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10

�8

Figure 7: Comparison between the transpose-free variants of the BiCG algorithm

We observe oscillations which are typical for both methods. The residual, especially

for the CGS algorithm, sometimes changes abruptly and varies by several orders of

magnitude from step to step. In addition, our numerical results con�rm the property

that the BiCGSTAB method has a smoother convergence behaviour.

In practice the TFQMR and also the QMRCGSTAB algorithm are not using the resid-

ual norm as a stopping criteria. This is the reason for depicting the magnitude of

j�

m

j=kr

(0)

k

2

and { additionally { the real residual in �gures 8 and 9 for these two

algorithms.
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Figure 8: Convergence of CGS and TFQMR

A comparison of the CGS and the TFQMR algorithm is shown in �gure 8. The predicted

smoother convergence of the TFQMR method is con�rmed. Additionally, we observe

that the TFQMR method needs, approximately, the same number of steps.

For the QMRCGSTAB algorithm, as the quasi-minimal variant of the BiCGSTAB

method, we obtain a smoother convergence, too. Figure 9 shows, clearly, that the

e�ect of the QMRCGSTAB method is not as impressive as the one of the TFQMR

method on the residuals of CGS algorithm. Since the BiCGSTAB algorithm already

improves the erratic residual behaviour of the CGS method this is not surprising.
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Figure 9: Convergence of BiCGSTAB and QMRCGSTAB

Since the convergence rate of the methods becomes worse with decreasing grid size we

use preconditioned versions of the Krylov subspace methods in combination with an

ILU decomposition for the subsequent computations.

For our numerical computations we de�ne an averaged convergence rate via

%

M

:=

 

kr

(m)

k

2

kr

(0)

k

2

!

1

m

where m is the number of iterations.

In �gure 10 results for problem 7.1 on a 96 � 48 grid with 13968 unknowns for the

preconditioned versions of the CGS, the BiCGSTAB and the restarted GMRES method

with the dimension of the Krylov subspace of 10 are depicted. We observe that the

convergence rate approaches 1 with increasing di�usion coe�cient. Similar behaviour

is shown by the quasi-minimal variants, the TFQMR and the QMRCGSTAB algorithm.
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Figure 10: Convergence rate for varying di�usion coe�cient

For problem 7.2 on a 64�64 grid with 12416 unknowns we show that the quality of the

solution methods is independent of the direction of the ow �eld � (see table 11). Note

that the results obtained for di�erent versions of our multigrid method will be given in

the subsequent section (see tables 13 and 14). The BiCGSTAB algorithm seems to be

the fastest method, but only by a small margin. In general the convergence behaviour

of the Krylov subspace methods is relatively bad, especially for problems with a large

di�usion coe�cient.
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Method " n � 0

o

15

o

30

o

45

o

60

o

75

o

90

o

135

o

�45

o

GMRES(10) 1 .950 .955 .955 .956 .955 .955 .950 .965 .965

0:1 .936 .945 .935 .946 .935 .945 .936 .954 .954

0:01 .883 .870 .858 .866 .858 .870 .883 .897 .897

0:001 .613 .498 .489 .478 .489 .498 .613 .541 .541

GMRES(15) 1 .949 .949 .949 .949 .949 .949 .949 .949 .949

0:1 .920 .924 .927 .924 .927 .924 .920 .934 .934

0:01 .886 .888 .883 .884 .883 .888 .886 .909 .909

0:001 .521 .325 .316 .337 .316 .325 .521 .463 .463

CGS 1 .877 .864 .869 .867 .860 .869 .878 .865 .865

0:1 .835 .812 .824 .834 .837 .834 .831 .844 .864

0:01 .812 .829 .799 .845 .790 .839 .887 .826 .881

0:001 .342 .212 .251 .295 .251 .212 .342 .278 .278

BiCGSTAB 1 .838 .838 .826 .819 .818 .829 .836 .811 .825

0:1 .810 .810 .861 .800 .817 .803 .803 .814 .821

0:01 .718 .752 .747 .772 .752 .748 .724 .747 .779

0:001 .373 .233 .247 .264 .224 .311 .369 .258 .252

QMRCGSTAB 1 .853 .855 .844 .841 .836 .853 .853 .828 .837

0:1 .842 .849 .849 .833 .849 .824 .849 .828 .825

0:01 .761 .774 .764 .793 .762 .774 .755 .777 .756

0:001 .450 .369 .325 .348 .333 .322 .439 .318 .311

Table 11: Comparison of preconditioned versions for problem 7.2

Of particular interest are the numerical results for an increasing number of unknowns.

Since the BiCGSTAB algorithm performs best we examine its convergence behaviour

for problem 7.1 with varying grid size (see �gure 12). For very small gridsizes the

convergence rate approaches 1 which means that the algorithm converges very slowly.

Thus, it is questionable whether Krylov subspace methods with a relatively simple

preconditioning, at least the selection tested here, are of any use for very large systems

with more than 10

5

unknowns.

This behaviour was the main reason for the development of the multigrid method which

shows a very good convergence rate { independently of the gridsize h.
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Figure 12: Convergence rate of the BiCGSTAB method for varying gridsize

Results for the multigrid algorithms

This section presents the results for di�erent versions of the multigrid algorithm of

Chapter 6. As a smoother we consider the Gauss-Seidel and ILU iteration, which are

exact solvers in the convection case, with a numbering in the direction of the velocity

�eld. This governs the excellent behaviour of the multigrid method in convection domi-

nated cases. On the other hand the Gauss-Seidel method (GS) leads to low e�ciency for

di�usion dominated problems. This di�culty can be weakened by choosing a relaxation

factor greater than 1, e.g. ! = 1:25, in the SOR method.

The averaged reduction factor is de�ned by

%

M

:=

 

kr

(�)

k

2

kr

(0)

k

2

!

1

�

with � = number of multigrid cycles :

We illustrate the behaviour of di�erent smoothers for problem 7.2 with various param-

eters on a 64 � 64 grid with 12416 unknowns. Table 13 shows the reduction factor %

M

for the �nite volume transfer operators and table 14 for the operators corresponding to

the Petrov-Galerkin interpretation. For all computations we set the number of pre- and
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smoothing iteration " n � 0

�

15

�

30

�

45

�

60

�

75

�

90

�

135

�

�45

�

ILU 1 :268 :272 :272 :272 :272 :272 :268 :258 :258

0:1 :215 :215 :221 :223 :221 :215 :215 :225 :225

0:01 :087 :097 :085 :079 :085 :097 :087 :096 :097

0:001 :028 :010 :005 :003 :005 :010 :028 :022 :022

GS 1 :911 :908 :906 :905 :906 :908 :911 :905 :905

0:1 :870 :855 :845 :840 :845 :855 :869 :842 :842

0:01 :369 :352 :324 :310 :324 :352 :369 :345 :345

0:001 :087 :047 :025 :015 :025 :047 :087 :061 :061

SOR (! = 1:25) 1 :720 :702 :704 :701 :704 :702 :720 :700 :700

0:1 :630 :610 :594 :586 :594 :610 :630 :556 :556

0:01 :260 :193 :170 :162 :170 :193 :260 :161 :161

Table 13: Finite volume restriction and prolongation

smoothing iteration " n � 0

�

15

�

30

�

45

�

60

�

75

�

90

�

135

�

�45

�

ILU 1 :538 :538 :538 :538 :538 :538 :538 :542 :542

0:1 :421 :429 :445 :455 :445 :429 :421 :457 :457

0:01 :143 :136 :152 :157 :152 :136 :143 :190 :190

0:001 :024 :008 :006 :007 :006 :008 :024 :014 :014

GS 0:1 :675 :695 :643 :633 :643 :695 :675 :634 :634

0:01 :407 :370 :278 :221 :278 :371 :407 :285 :285

0:001 :076 :044 :018 :016 :018 :044 :076 :032 :032

SOR (! = 1:25) 1 :921 :917 :914 :913 :914 :917 :921 :913 :913

0:1 :557 :559 :546 :539 :546 :559 :557 :544 :544

0:01 :226 :136 :110 :108 :108 :136 :226 :118 :118

Table 14: Petrov-Galerkin restriction and prolongation

postsmoothing iterations to �

1

= �

2

= 2 in the case of ILU smoothing and �

1

= �

2

= 4

for the Gauss-Seidel and the SOR method as a smoother.

Comparing tables 13 and 14 we observe that the convergence for restriction and pro-

longation of the �nite volume type is much better than in the Petrov-Galerkin case.

As expected the reduction factor is very good for " small. Anyway we have to mention

that the multigrid method does not converge for the SOR method and " = 0:001 as well

as in the Petrov-Galerkin case for the Gauss-Seidel iteration and " = 1. The crucial

point for the choice of the smoothing iteration is the reduction factor for the di�usion
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dominated case (" = 0:1; 1). With the aim of robustness we prefer the ILU method as

a smoothing iteration which is used in all subsequent computations.

In addition, the di�erent columns of these tables indicate that the results are essentially

independent of the velocity direction, i.e. of the angle �.

That we can gain from using a bilinear prolongation for the cell variables is shown in

table 15. The number of multigrid V-cycles is given in brackets additionally. The results

have to be compared with the results for the original multigrid algorithm in table 19.

For large di�usion coe�cient and on very �ne grids we can save up to one third of the

V-cycles needed for convergence.

Method "nn

1

16 32 64 128

MGM/BIL 1 :163(11) :166(11) :170(11) :173(11)

0:1 :126 (9) :168(11) :200(12) :198(12)

0:01 :010 (4) :045 (6) :099 (8) :141(10)

0:001 :001 (2) :001 (3) :006 (4) :020 (5)

Table 15: Results of the multigrid method with bilinear prolongation

Note that ILU smoothing in connection with the original �nite volume restriction and

prolongation is used for the remaining computations of this section.

One of the main features of a multigrid method is that the convergence rate is uniformly

bounded by some number smaller than 1. Our numerical experiments for problem 7.1

with varying grid size h and di�erent values of " shown in �gure 16 are con�rming this

property. The largest linear systems in our computations had 221952 unknowns on a

384 � 192 grid. For �xed grid size h the convergence rate is increasing in ". The gap

between the convergence rate for " = 1 and the other ones becomes smaller on �ner

grids. The uniform boundedness in h and { in the sense of robustness { even in " is

determined by the top line which seems to be bounded by 0:4.
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Figure 16: Convergence rates for varying di�usion parameters

Finally, we present results of the full multigrid algorithm in table 17. Again, we have

to compare this with table 19. We observe that we gain from nested iteration. The

reason is that a better starting vector on the �nest grid is computed.

Method "nn

1

16 32 64 128

FMG 1 :149(11) :173(12) :208(12) :239(13)

0:1 :097 (9) :131(10) :160(11) :196(12)

0:01 :005 (4) :024 (5) :055 (7) :091 (8)

0:001 :001 (2) :001 (3) :007 (4) :008 (4)

Table 17: Results of the full multigrid algorithm
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Results for the preconditioned versions

This subsection presents numerical results for problem 7.2 with a varying di�usion

parameter ".

Since the restarted GMRES algorithm is a convergent method for our discretization

theoretically we examine its behaviour in combination with a multigrid algorithm. As

a preconditioner we use one V-cycle with ILU smoothing and the �nite volume transfer

operators.

First of all we vary the dimension of the Krylov subspace for di�erent preconditioned

versions of the restarted GMRES method (see table 18). We observe that the multigrid

preconditioning is very e�cient in comparison to an ILU preconditioner and that we

need just a small dimension of the Krylov subspace to obtain a fast convergent method.

The last statement is very important since we do not have much additional storage

and computational costs for the GMRES method with multigrid preconditioning in

comparison to the multigrid method itself. Thus, the storage requirements are governed

by the preconditioning mainly.

Method " nm 2 5 7 10 12 15

GMRES/ILU 1 :997 :986 :962 :955 :952 :949

0:1 :996 :971 :953 :935 :930 :927

0:01 :995 :830 :857 :866 :867 :884

0:001 :466 :541 :443 :478 :438 :337

GMRES/MGM 1 :983 :973 :387 :101 :101 :101

0:1 :983 :972 :408 :121 :121 :121

0:01 :954 :149 :056 :056 :056 :056

0:001 :006 :005 :005 :005 :005 :005

Table 18: Comparison of GMRES/ILU and GMRES/MGV

Table 19 shows the results for di�erent grid sizes and varying di�usion parameter ". We

present the results for the multigrid algorithm and the restarted GMRES method with

multigrid preconditioning. In addition, we show the BiCGSTAB and QMRCGSTAB

methods, each of them equipped with a multigrid preconditioning. If we look at the

number of V-cycles needed for convergence we ascertain that multigrid is a good precon-

ditioner. A combination of a restarted GMRES algorithm with a moderate dimension

of the Krylov subspace leads to a very e�cient solution method for our linear systems.
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Method "nn

1

16 32 64 128

MGM 1 :172(12) :214(13) :261(14) :333(17)

0:1 :118 (9) :162(11) :206(12) :258(14)

0:01 :007 (4) :032 (6) :071 (8) :123 (9)

0:001 :001 (2) :001 (3) :005 (4) :009 (4)

GMRES/MGM 1 :072 (8) :090 (9) :101(10) :127(11)

0:1 :068 (9) :098 (9) :121(10) :135(11)

0:01 :006 (5) :031 (7) :056 (8) :092 (9)

0:001 :001 (3) :001 (4) :005 (4) :007 (5)

BICGSTAB/MGM 1 :009 (8) :035(12) :067(14) :099(16)

0:1 :009 (8) :016(10) :068(14) :530(60)

0:01 :001 (4) :001 (6) :005 (8) :015(10)

0:001 :001 (2) :001 (4) :001 (4) :001 (4)

QMRCGSTAB/MGM 1 :029(12) :083(16) :127(20) :186(22)

0:1 :030(12) :069(14) :197(24) :586(72)

0:01 :001 (6) :010(10) :043(12) :069(14)

0:001 :001 (4) :001 (6) :001 (8) :009 (8)

Table 19: The multigrid algorithm and di�erent preconditioned algorithms

8 Conclusion

This article presents an overview on recent solution methods for large and sparse linear

systems. These methods are applied to systems which arise from a nonconforming

Petrov-Galerkin discretization of convection-di�usion problems. The numerical results

show clearly that { especially for large linear systems { Krylov subspace algorithms

equipped with a multigrid preconditioning lead to very e�cient and robust solution

methods. This statement holds true in the case of the GMRES algorithm particularly.
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