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Abstract: We prove a vertex theorem for space curves which need not lie on the boundaries of their convex 
hulls.

1. Introduction

A regular closed simple curve in Euclidean 3-space, lying on the boundary of its convex hull
and without zero curvature points, has at least four points where the torsion τ vanishes. Under
minor additional assumptions this was shown by Bisztriczky [2] and by Nuño Ballestros and
Romero Fuster [13], and in full generality by Sedykh [21]. Admitting singular points and sign
changes of the curvature κ, Romero Fuster and Sedykh [16] showed that

(1) V K S+ + ≥2 3 4

where S is the number of singular points, K the number of zeros of κ , and V the number of
zeros of τ. Here we will consider regular closed space curves which may have double points
and need not lie on the boundaries of their convex hulls. We show that

(2) V K D+ + ≥ 4

where D is the number of extrema of the conical curvature τ κ . We call such points Darboux
vertices because there the Darboux vector changes its sense of rotation within the rectifying
plane. For V and K we only count sign changes of τ and κ.



2. The vertex theorem

Definition 1: By a closed space curve we mean an immersion  X S E: 1 3
→  of class C3 with

the following properties:
(P1) d X ds2 2  (s arc length) vanishes only at finitely many points and the unit normal vector

        N d X ds=
−

κ
1 2 2  may locally be defined as a C1 vector field,

(P2)  curvature κ and torsion τ never vanish at the same point,

(P3)  X S1c h does not lie in a plane (τ is not identically zero).

Remark 1: Usually κ ≠ 0 is assumed for convenience. But it suffices that locally there is a C1

Frenet frame. This has been worked out by Nomizu [12], see also Grüß [9], Fenchel [7], and

Randrup and Røgen [15]. Nomizu shows that (P1) is fulfilled by C∞ curves if for every point
there is some k ∈ I

.

.N such that d X dsk k
≠ 0. By (P1) we allow the curvature κ to change its

sign. But we have to pay attention to the fact that the frame cannot be defined globally in a
unique way if κ has an odd number of sign changes: after having run through the curve once,
the normal vector will have changed its direction. Another strange fact may show up in
examples: if curves with κ ≠ 0 approach a curve with a point where κ changes sign, then the
torsion may change discontinuously. This was noted by Calugareanu [4,616]. See also
Section 4.4 and Figure 4.

Remark 2: Assumption (P2) simplifies the situation, but it excludes some interesting examples.
Consider for instance a Möbius strip. It is the rectifying strip of its middle line. This curve must
have at least one point where κ changes sign. But there τ will vanish too. For if at some point
κ τ= ≠0 0, , then the cuspidal edge of the rectifying strip touches the curve. This follows from
the following representation of the cuspidal edge

(3) X T B+ +
′ − ′

κ

κ τ τ κ
τ κb g ,

where T is the unit tangent vector, B the binormal vector (Scheffers [18,417]). It also follows
from Theorem 3 of Randrup and Røgen [15] that for an embedded rectifying strip τ = 0 at
points where κ = 0. See also Section 4.1.

Probably the Theorem remains true, if (P2) is replaced by the weaker condition that lim τ κ

exists in IR∪ ∞ −∞,l q, possibly without counting points twice.

Remark 3: Notice that we do not exclude double points.

Definition 2: A point where τ or κ changes sign is called a vertex or an inflection,
respectively. A point where τ κ  or κ τ  has a local strong extremum is called a Darboux

vertex. For a given closed curve we denote the numbers of vertices, inflections, and Darboux
vertices by V, K, and D, respectively. We admit the possibility that a sign change takes place in
such a way that τ or κ vanishes in an interval which is then to be counted as one point, and we
make a similar convention for D.

Together with the curve X we will consider its tangent image T X= '  as a curve on the unit
sphere S2 , the prime denoting differentiation with respect to arc length. Its geodesic curvature
is τ κ  (Fenchel [7]). We call the tangent circles on S2  with radius κ τ  osculating circles of T.

Lemma 1: If X is a closed space curve, then T(S1) does not lie in any closed hemisphere.

Proof: Assume for instance that T(S1) lies in the closed upper hemisphere. Then its third
component T3 0≥  and not always 0 since X is not a plane curve. Integrating T with respect to
arc length of X shows that X could not be closed. (The converse of Lemma 1 is less trivial. It
has been proved by Fenchel [6].)



Lemma 2: The osculating circles of an arc on S2 of class C2 with strictly monotone geodesic

curvature have the nesting property, i. e. they are contained in one another without meeting.

Conversely, from the nesting property follows the strict monotony.

Proof: This property is well-known for plane curves. By stereographic projection we can defer
it to S2 in the following way (see also Weiner [24,431]). Jackson [11] characterizes arcs of
class C2 on surfaces with strictly monotone geodesic curvature by the fact that they cross their
osculating curvature circles at every point. If we project an arc on S2 with strictly monotone
geodesic curvature stereographically into the plane, this property remains true. The image thus
has strictly monotone curvature and their osculating circles have the nesting property. The
osculating circles of the pre-image then have the same property. The other direction follows
similarly. Note that the proof of the nesting property in the plane does not need the
differentiability of the curvature radius as was shown by Ostrowski [14,325]. - It is also
possible to remodel the proof for planar arcs on the sphere.

•• Theorem: For a closed space curve (in the sense of Definition 1) we have

(4) Σ:= + + ≥V K D 4.

•• Corollary: For a closed space curve with  κ τ≥ ≥0 0,   we have  D ≥ 4.

Remark 4: Under additional hypotheses, Takasu [23] has shown the statement of the
Corollary because his "dual curvature" is κ τ . Jackson's critique [10,810], does only refer to
Takasu's similar theorem for spherical curves. See also Section 4.3.

Proof of the Theorem: We treat the cases K = 0, K = 1, K ≥ 2 separately. V is an even
number, since τ is continuous and periodic.
a1) K = 0 and V = 0. This is the case of the corollary. We have to show D ≥ 4. The tangent
image T does not have constant geodesic curvature τ κ  because otherwise T would be a circle,
but not a great circle since we excluded τ ≡ 0. Then the curve X would not be closed by
Lemma 1. Assume now that τ κ  has only two extrema which then divide T into two arcs of
monotone non-constant geodesic curvature. Let C0 be the osculating circle of T at a point with
minimal geodesic curvature. It follows from Lemma 2 that, for both arcs of T, all osculating
circles lie on one side of C0, and if C0 is not a great circle, they lie on the smaller side since τ κ

is monotone. Then T S1c h lies on this same side of C0, and by Lemma 1 the curve X cannot be

closed. This excludes D = 2. Since K = 0, the curvature κ of X is uniquely defined and
therefore periodic. Therefore τ κ  is periodic too, D is even, and Σ = ≥D 4.

a2) K = 0 and V ≥ 2 . By (P2) τ κ  vanishes at the zeros of τ. Because there are at least two of
them, there will be at least two extrema of τ κ  between them, possibly of infinite value. Note

that κ may be zero but does not change sign. This shows D ≥ 2 and Σ = + ≥V D 4.
b) K = 1. Consider the arc A which remains if the point or interval where κ changes sign is
taken away from the curve X. The sign of κ does not change on A and τ changes sign, if at all,
an even number of times. Therefore τ κ  has the same sign near both end points of A,
τ κ → +∞ , say. Then there must be a minimum of τ κ  on A, possibly with value − ∞ . Thus
D ≥ 1. Furthermore D is odd. We will now derive a contradiction from D = 1 and V = 0. This
will then show D ≥ 3 or V ≥ 2 . Since K = 1 and D ≥ 1, we then have Σ = + + ≥V K D 4.
Indeed, if D = 1 and V = 0, let p be the point, or one of the points, where τ κ  has the
extremum. A is divided by p into two subarcs A1 and A2 with monotone τ κ  which, by



Lemma 2, lie on the same side of the osculating circle C pb g at p. C pb g may be a great circle (if

τ = 0 at p) but all the other ones are smaller circles or coincide with C pb g because they shrink
to points at the other ends of A1 and A2. Thus A1 and A2, and therefore X, lie in a hemisphere
which is impossible by Lemma 1.
c) K ≥ 2. We consider a subarc between successive sign changes of κ. It must contain an
extremum of τ κ  or a sign change of τ κ , that is a sign change of τ. Since there are at least
two such subarcs, we have V D+ ≥ 2  and Σ = + + ≥V K D 4. n

3. Examples for the equality cases

The proof exhibits 6 different cases with Σ ≥ 4. We show by examples that in all these cases
Σ = 4 is possible. Four of them are (1,k)-torus curves

(5) R kt t R kt t kt+ +cos cos , cos sin , sinb g b gc h
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(1,2)-torus curve with R = 4

(1,1)-torus curve with R = 1

(1,2)-torus curve with R = 5, modified

(1,1)-torus curve with R = 2

(1,2)-torus curve with R = 5

curve with  κ = 3 cost ,  τ = 3 sin t

According to Proposition 1 of Costa [5] we can choose any R with 3 5< <R  in (a1).
In (a2) we could also choose R = 0 which gives Viviani's curve, the intersection of the unit

sphere with the cylinder x y− + =1 2 1 4
2 2b g . This curve is well-known in architecture. It has a

double point which is allowed in our Theorem.
In (b1) the curve in (c1) is modified in such a way that one of the inflections is removed and

that the other one stays. It has the representation

(6) 5 1 2 5 1 2 21
3

2 1
3

2
− − + − − +sin cos cos , sin cos sin , sint t t t t t tb ge j b ge je j .

In (c2) we have one of Scofield's [20] curves of constant precession, namely

(7) 3
4

1
12

3
4

1
12

3
23 3sin sin , cos cos , sint t t t t− − −e j.

In this last example t is the arc length.
Obviously example (c2) has the properties claimed in the table. In all other cases it is not

much work to generate plots of τ κ τ κ, ,  and to convince oneself that the claims are true. It is

also possible to transform the numerators of τ κ τ κ, , b g⋅ into polynomials of sin t  or cost  and
to determine the exact number of zeros by means of Sturm sequences. This has been worked
out using Maple V.

In Sedykh's theorem and its extension mentioned in the introduction it is assumed that the
curve lies on the boundary of its convex hull. This property could not strengthen our Theorem
as examples (b2), (c1) and (c2) show. These curves lie on the boundaries of their convex hulls,
which easily follows from the convexity of their projections onto the xy-plane.



4. Further remarks

4.1 Geometric interpretation of Darboux vertices. Darboux vertices were defined in
Definition 2 as points were the conical curvature τ κ  has an extremum, including the case that
this extremum is +∞  or −∞ . The conical curvature really has no simple interpretation. In the
proof we used the fact that these points correspond to vertices of the tangent image (extrema
of its geodesic curvature). At the end of the introduction we mentioned a geometric inter-
pretation of Darboux vertices which we will now explain in greater detail.

At each point of the curve X the plane spanned by the tangent vector T and the binormal
vector B touches the rectifying strip (compare Remark 2). It is called so because the curve
becomes a straight line if the strip is rolled out on a plane. Like any developable surface, it is
generated by a family of straight lines, which here have the directions of the Darboux vectors
τ κT B+ . So, if one wraps a rectangular strip along the curve X, then one can approximately
see where the generating straight lines change their sense of rotation with respect to the bases
T B,l q, thus identifying the Darboux vertices.

4.2. Explanation of the figures. Figure 1 shows the curve (b2) on the torus. The inflection,
where κ changes its sign, is marked by a small cube.

Figure 2 shows this curve together with its rectifying strip and the generators of the strip.
An edge of regression touches the curve at the inflection (compare Remark 2). Next to the
inflection, 2 vertices are marked. Here the generators are orthogonal to the curve. Opposite the
inflection a Darboux vertex is marked. All this can more easily be seen when the rectifying strip
is rolled out on the plane (Figure 3): a Darboux vertex at 0, vertices at ±π 3, and an inflection

at π. Strictly speaking Figure 3 does not show the rectifying strip rolled out since we did not
introduce the arc length parameter.

Figure 4 shows the torsion of the curve together with the torsions of 4 approaching curves
R = 1 6 1 995 2 2 005 2 2. , . , , . , .b g. It illustrates the discontinuous behavior of the (continuous)

torsion when an inflection is approached by curves without inflections (compare Remark 1 and
Section 4.4). This may be made plausible in the following way. During the approximation the
normal vectors κ

−1 2 2d X ds  have to approach a normal vector which is discontinuous at the
inflection if it is defined in the traditional way. They have thus to perform a rotation of about
1800. This gives high values to the torsion and, depending on the sense of rotation, 2 additional
zeros of τ or none.

Figure 1
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4.3 The 4-vertex theorem for spherical curves. In order to proof the Corollary (part a1 of the
proof) one could be tempted to use the four-vertex theorem for spherical curves. But this is
impossible: for κ > 0 the tangent image T of X is a curve immersed into the sphere S2  which
does not lie in a hemisphere (Lemma 1). If it would be free of double points, then it would
have points of inflection (Arnold [1,54], Blaschke [3,49], ex. 25), and this would contradict
τ κ ≥ 0. But curves on S2  with double points need not have 4 extrema of the geodesic
curvature τ κ .

Saban [17,257] considers closed space curves X with κ > 0, τ > 0 and with the property
that the binormal B describes an oval on S2 . He proves a four-vertex theorem for ovals on the
sphere and thus concludes the existence of 4 Darboux vertices of X. He calls them helicoidal
points. This seems to be a special case of our Corollary, but is in fact a void assertion because
B cannot be an oval. This follows from the fact that T cannot be an oval (as explained above)
because T and B are polars of each other (Fenchel [7,46]). For a closed space curve with
κ > 0, τ > 0 Saban gives the following example of Segre [22]

(8) X t t t= −ω ω ω, ,2 31d ie j , ω = − +t t4 3
2

2 1, −∞ ≤ ≤ ∞t .

Its tangent image T is not an oval since it has 2 double points, namely & &X t X ti ib g b g= − , i = 1 2, ,

for t1 1 1 2= +  and t2 1 1 2= − . Thus T and B are not ovals.

4.4 Gericke's example. Gericke [8] used (2,1)-torus curves

(9) R t R tt t t− −sin cos , sin sin , cos2 2 2c hd i c hd i c he j ,  0 4≤ ≤t π ,  R > 1,

in order to show that closed space curves need not have more than 2 curvature extrema. For
R = 5 4 we obtain another example for (b2).

Gericke concludes from a result of Scherk [19,763] on curves of order 4 that such torus
curves have exactly 2 zeros of the torsion τ for all values of R. But for 5 4 2< <R  they have 4
of them. The reason is that these curves are not of order 4 for all R. This can be seen as
follows: for R = 5 4 the curvature κ changes sign at t = π . The osculating plane locally

supports the curve at this point. Thus, for 3 values of t approaching π there is a 4th one also
approaching π such that the corresponding points lie on a plane, and there are 2 other points of
the curve not close to the inflection point. The curve with R = 5 4 is therefore of order (at

least) 6. Nevertheless it has only 2 sign changes of τ. But for 5 4 2< <R  there are 4 sign

changes of τ, and we can conclude that for these values of R the order must be at least 6. The
existence of 2 additional sign changes of τ may also be explained as in Section 4.2.
By the way, Scherk [19] showed that V = 4 for a curve of order 4 lying on the boundary of its
convex hull. As mentioned in the introduction, Sedykh proved this without assuming 4th order.
In several recent papers, with reference to [19], this is called Scherk's Conjecture. But
G. Thorbergsson pointed out to me that such a conjecture is not expressed in [19].
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