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Abstract

For the unsteady convection-di�usion equation in two dimensions we derive a new cell-based

semi-discretization which is founded on the method of lines and a �nite volume approach.

Moreover, we present a second semidiscretization technique, a nonconforming Petrov-Galerkin

method with exponentially �tted trial and test functions. If we use appropriate quadrature

rules both approaches are equivalent. We obtain di�erential-algebraic equations of index 1 and

present consistency, stability and convergence properties for these semidiscrete systems. For

the time integration we use implicit methods and state the convergence of the fully discrete

systems. Finally, we consider several test problems and present numerical results concerning

the quality of our discretization method.
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1 Introduction

Convection-di�usion problems appear in many �elds of applications. Especially in com-

putational 
uid dynamics they serve as a model problem for the derivation of numerical

schemes. The aim of this article is to present a new �nite-volume approach for the so-

lution of the unsteady linear convection-di�usion equation of the form

u

t

+ Lu = q with Lu =r � (�u� �ru) (1)

on a bounded domain 
 � R

2

with constant di�usion coe�cient � > 0 and a given

divergence free velocity �eld �(x) in R

2

. The initial and boundary conditions are given

by

u(x; 0) = u

0

(x) on 


u(x; t) = u

D

(x) on �

D

� �

in

:= fx 2 @
 ; �(x) �n � 0g

@

n

u(x; t) = 0 on �

N

� @
 n �

D

:

(2)

In the convection dominated case (j�j � �) boundary layers can occur due to Dirichlet

conditions on the out
ow boundary if �

D

n �

in

6= ; and internal layers have to be

considered when using nonsmooth Dirichlet data u

D

.

The third section presents the derivation of a related Petrov-Galerkin method. More-

over, it is shown that both methods are equivalent under certain conditions.
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The properties of the semidiscrete systems are stated in the fourth section. We also

treat the time integration of these systems and conclude with a consideration of the

fully discrete systems.

Finally we describe several test problems and discuss our numerical results.

2 Cell-based semi-discretization

The convection-di�usion equation (1) is a parabolic conservation law in divergence form.

Using Gauss' theorem it can be written in integral form

d

dt

Z

~




udV +

I

@

~




[� � nu� � @

n

u] ds =

Z

~




qdV for all

~


 � 
 (3)

where

~


 is a domain with piecewise smooth boundary @

~


. This equation is one possi-

bility of a weak form [2].

The cell-based semidiscretization is based on a �nite volume approach for (3) using the

method of lines. In the following we will outline the main steps of its derivation under

the simplifying assumption of a constant velocity �eld � with nonvanishing components.

For a rectangular cell V with edges S

i

(see �gure 1) (3) leads to

d

dt

Z

V

udV +

4

X

i=1

� � n

i

Z

S

i

uds� �

Z

S

i

@

n

u ds =

Z

V

qdV : (4)

S

V

S

1

S

3

S

4

n

1

n

2

n

3

n

4

S

2

V

�

V

+

Figure 1: local cell, grid and neighbouring cells

Equation (4) motivates the use of average values of u and their semidiscrete analogues

u

V

� u(V ) :=

1

jV j

Z

V

udV (cell average) ;

u

S

� u(S) :=

1

jSj

Z

S

u ds (edge average) ;

@

n

u

S

� @

n

u(S) :=

1

jSj

Z

S

@

n

u ds (edge average of normal derivatives)

(5)

where jV j and jSj indicate the measure of V and S, respectively.
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For a rectangular grid with cells V 2 V and edges S 2 S (see �gure 1) the �nite volume

equation (4) has the semidiscrete counterpart

jV j

d

dt

u

V

+

4

X

i=1

jS

i

j [� � n

i

u

S

i

� �@

n

u

S

i

] = jV jq

V

(6)

for all V 2 V.

Here, q

V

denotes the exact evaluation of q(V ) or { for practical purposes { an approxi-

mation by a cubature formula. Rewriting the boundary conditions in the form

u

S

(0) = u

D

(S) for S 2 @S

D

:= fS 2 S : S � �

D

g ;

@

n

u

S

(0) = 0 for S 2 @S

N

:= fS 2 S : S � �

N

g

(7)

we get an underdetermined system. Thus, we have to de�ne additional conditions for

edge averages u

S

, @

n

u

S

.

Standard cell-center �nite volume techniques approximate the convective 
ux � �n

S

u

S

by a numerical 
ux function and the di�usive 
ux �"@

n

u

S

by a di�erence formula using

the cell averages u

V

of the cells in the neighbourhood of S.

In contrast to this explicit 
ux representation we use an implicit one given by the

representation of the normal derivative @

n

u

S

as a linear combination of the cell and

edge averages in a cell V in the form

@

n

u

S

= �

V

u

V

+

4

X

i=1

�

S

i

u

S

i

: (8)

The coe�cients are determined by postulating the validity of (8) for the averages on a

local trial space

V

V

= span

�

1; x

1

; x

2

; exp

�

�

1

�

x

1

�

; exp

�

�

2

�

x

2

��

: (9)

The basis functions of V

V

are inhomogeneous exponentially �tted L-splines [11, 16]

varying only in one coordinate direction.

The values for �

V

and �

S

i

, i = 1; : : : ; 4 are determined by solving a 5�5 linear system.

The result is that the normal derivatives are given by

@

n

u

S

i

=

1

2h

i

(

h

u

S

i

� u

S

i+2

i

+�

i

 

1 +

1

coth(�

i

)� 1=�

i

!

h

u

S

i

+ u

S

i+2

� 2u

V

i

)

(10)

@

n

u

S

i+2

= �

1

2h

i

(

h

u

S

i

� u

S

i+2

i

+�

i

 

1�

1

coth(�

i

)� 1=�

i

!

h

u

S

i

+ u

S

i+2

� 2u

V

i

)

(11)

for i = 1; 2. Here �

i

:=

�

i

jS

i+1

j

2"

is the local Peclet number.
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This representation enables us to eliminate of the normal derivatives in (6) and (7).

For each interior edge S belonging to two cells V

+

, V

�

(see �gure 1) the normal deriva-

tives @

n

u

S

have di�erent signs so that we get additional constraints in terms of the

unknowns u

V

:= (u

V

)

V 2V

and u

S

:= (u

S

)

S2S

only. These equations combined with the

�nite volume equations (4) and boundary conditions altered by the elimination of the

normal derivatives de�ne a di�erential-algebraic system of the form

M

d

dt

u+Bu = b ()

 

V 0

0 0

!

d

dt

 

u

V

u

S

!

+

 

B

11

B

12

B

21

B

22

! 

u

V

u

S

!

=

 

b

1

b

2

!

(12)

where V = diag(jV j)

V2V

.

Here the di�erential part consists of the �nite volume equations and the algebraic part

is composed of the boundary conditions and the additional constraints for the interior

edges.

3 A nonconforming Petrov-Galerkin method

Here, we restrict ourselves to the case of homogeneous Dirichlet boundary conditions.

For the well-known extension to the general inhomogeneous case we refer to [3, 5].

With the aim to obtain a weak formulation for the original di�erential equation we

multiply (1) with a function w = w(x) 2 W and integrate over the domain 
. We

choose H

1

0

� V := fv 2 H

1

jv = 0 on �

D

g � H

1

(
) and V = W. Using Gauss'

Theorem we observe that u(t) 2 V is now the solution of the weak formulation

d

dt

Z




uwd
 +

Z




(� �ruw + "ru �rw) d
 =

Z




qwd
 8w 2 W

which can be written shortly as

d

dt

(u;w) + a(u;w) = (q; w) 8w 2 W :

The nonsymmetric bilinear form a(�; �) is de�ned by

a(u;w) :=

Z




� �ruw + "ru �rw d


and (�; �) denotes the L

2

-scalar product.

To obtain a Petrov-Galerkin method we replace the spaces V and W by �nite spaces

V

h

and W

h

. The construction of the trial space V

h

is based on the local spaces V

V

from (9). We require that a trial function v 2 V

h

restricted to a cell V belongs to V

V

and that the evaluation of the average for an interior edge S using these restrictions is

independent of the cell under consideration. Therefore we can de�ne a canonical basis

of V by using the cell and edge averages as `nodal values'.
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Canonical trial functions �

V

, V 2 V and �

S

, S 2 S as a basis of V

h

are de�ned via

�

V

(

~

V ) =

1

j

~

V j

Z

~

V

�

V

(x)d

~

V = �

V

~

V

8

~

V 2 V ;

�

V

(

~

S) =

1

j

~

Sj

Z

~

S

�

V

(x)d

~

S = 0 8

~

S 2 S ;

and

�

S

(

~

V ) =

1

j

~

Sj

Z

~

S

�

S

(x)d

~

S = �

S

~

S

8

~

S 2 S ;

�

S

(

~

S) =

1

j

~

V j

Z

~

V

�

S

(x)d

~

V = 0 8

~

V 2 V :

In analogy to the de�nition of the trial functions we construct a test space W

h

which

is for each V 2 V based on the local test space

W

V

= span

�

1; x

1

; x

2

; exp

�

�

�

1

�

x

1

�

; exp

�

�

�

2

�

x

2

��

: (13)

Here, W

V

consists of inhomogeneous exponentially �tted L

�

-splines where L

�

denotes

the adjoint operator of L.

Canonical test functions  

V

, V 2 V and  

S

, S 2 S are de�ned analogously to the

canonical trial functions. The trial and the test functions are plotted in �gure 2.

We observe that the trial and test functions are discontinuous at interelement bound-

aries. Consequently, we have to deal with nonconforming spaces and, moreover, we

have to change the bilinear form a(�; �) { by summing up over all grid cells { into

a

h

(u;w) :=

X

V�


Z

V

� �ruw + "ru �rw dV : (14)

Hence the resulting nonconforming Petrov-Galerkin method reads:

Find u(t) 2 V

h

such that

d

dt

(u;w) + a

h

(u;w) = (q; w) 8w 2 W

h

: (15)

Describing u(t) by its nodal values as

u(t) =

X

V2V

u

V

(t)�

V

+

X

S2S

u

S

(t)�

S

and inserting the canonical test functions into (15) we obtain by setting u

V

:= (u

V

)

V2V

and u

S

:= (u

S

)

S2S

^

M

d

dt

u+Bu = b ()

^

M

d

dt

u+

 

B

11

B

12

B

21

B

22

! 

u

V

u

S

!

=

 

b

1

b

2

!

: (16)
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Figure 2: Trial and test functions in two dimensions

Here the sti�ness matrix B is exactly the same as in the �nite volume case of the

preceding section (see equation (12)). This is shown in [16]. If we approximate the

L

2

-scalar product appearing in the mass matrix

^

M and the right hand side b of (16)

by the quadrature rule

(f; g) �

X

V2V

jV jf(V )g(V )

we achieve completely the same system as in the �nite volume case. An identical mass

matrix is also obtained by using a mass lumping technique because of

X

V2V

�

V

+

X

S2S

�

S

� 1

in all cells.

For both approaches presented up to now the sti�ness matrixB in (12) can be assembled
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by the cell matrices

B

V;i

=

jS

i

j

2

8

<

:

cof

 

�;

2"

jS

i+1

j

!

0

B

@

4 �2 �2

�2 1 1

�2 1 1

1

C

A
+

2"

jS

i+1

j

0

B

@

0 0 0

0 1 �1

0 �1 1

1

C

A

+�

i

0

B

@

0 �2 2

2 �1 �1

�2 1 1

1

C

A

9

=

;

for V 2 V, i = 1; 2.

The cell matricesB

V;i

are connected to the cell vectors u

V;i

:= (u

V

; u

S

i+2

; u

S

i

)

T

ignoring

rows and columns belonging to Dirichlet data u

S

for S 2 @S

D

. The scalar B

S

is

associated with u

S

for Neumann boundaries S 2 S

N

.

The function cof is de�ned by

cof(�; �) =

8

>

>

>

>

<

>

>

>

>

:

�

 

coth(

�

�

)�

�

�

!

�1

; �; � 6= 0

j�j ; � = 0

3� ; � = 0

:

At this point we mention that the �nite volume and also the Petrov-Galerkin approach

can be extended to the case of an arbitrary, divergence free velocity �eld � [7, 16].

4 Convergence of the semidiscretization

As pointed out at the end of section 2 we obtain a semidiscrete system with a di�erential

and an algebraic part of the form

V

d

dt

u

V

+B

11

u

V

+B

12

u

S

= b

1

(t)

B

21

u

V

+B

22

u

S

= b

2

(t)

(17)

Such systems are called di�erential-algebraic systems [1]. Due to the regularity of B

22

it is a semi-implicit system of index 1 [7, 16].

For a DAE not all initial conditions do admit smooth solutions. We have to choose

consistent initial conditions. This means that the corresponding initial data u(0) = u

0

should be consistent in the sense that the algebraic equations are satis�ed, i.e.

B

21

u

0

V

+B

22

u

0

S

= b

2

(0) :

Resolving the algebraic part of (12) for the variables u

S

and substituting into the

di�erential part we get the underlying system

V

d

dt

u

V

+ [B=B

22

]u

V

= b

1

�B

12

B

�1

22

b

2

(18)
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of ordinary di�erential equations where [B=B

22

] := B

11

� B

12

B

�1

22

B

21

denotes the

Schur complement of B

22

for the matrix B.

In the case of ODEs as semidiscrete systems su�cient conditions for stability (T <1)

and asymptotic stability (T =1) in the sense of Liapunov are well known (see [7, 13]).

To generalize these criteria to DAEs of index 1 we can use the connection to ODEs

described by the decoupling of the underlying ODE (18) and the algebraic equations

(17b) described in [7, 8].

The equivalence between (17) and

V

d

dt

u

V

+ [B=B

22

]u

V

= b

1

(t)�B

12

B

�1

22

b

2

(t) (19)

u

S

= B

�1

22

�

b

2

(t)�B

21

u

V

�

(20)

leads to an extension of the stability results known for ODE semidiscretizations [13] to

DAE semidiscretizations.

In the following we consider so-called lub-norms kAk de�ned by kAk := max

kxk=1

kAxk

where k � k is a given vector norm.

De�nition 4.1

The logarithmic norm according to a lub-norm is de�ned by

�(A) := lim

"!0

+

kI + "Ak � 1

"

:

�

The proof of the following theorem can be found in [7].

Theorem 4.2

The semidiscretization (17) is asymptotically stable if there exist constants ` < 0 and

L <1 independent of h > 0 with

�(�V

�1

[B=B

22

]) � ` ; kB

�1

22

B

21

k � L :

�

The main key for the application of this theorem is to determine ` < 0 which can be

interpreted as a generalized one-sided Lipschitz constant. For this purpose, we cite two

estimates proven in [7].

Theorem 4.3

Given a norm kuk := k

�

ku

V

k

V

; ku

S

k

S

�

k

(0)

with k:k

(0)

to be monotone, �(C) � 0 and

C

22

regular, then

�

V

([C=C

22

]) � �(C) :

Let K be a symmetric matrix with K

22

negative de�nite and �

2

(C �K) � 0 then

�

2

([C=C

22

]) � �

2

([K=K

22

]) :

�
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By transformation the latter estimate can also be used for norms given by scalar prod-

ucts without coupling between di�erential and algebraic variables.

Based on the equivalence between the semi-implicit DAE (17) and the underlying ODE

(18) including perturbations one can de�ne an appropriate consistency of the DAE to

get the expected result

DAE consistency + asymptotic stability =) DAE convergence :

A general framework of this kind for the nonlinear case is presented in [7]. Here we

cite only the main results in a version for linear systems with constant coe�cients and

su�cient conditions for DAE convergence which can be checked for the cell-based dis-

cretization directly. For a DAE semidiscretization (17) depending on a grid parameter

h the truncation error is given by

�

h

V

(t) =

d

dt

u

h

V

(t) + V

�1

n

B

11

u

h

V

(t) +B

12

u

h

S

(t)� b

1

(t)

o

�

h

S

(t) = B

21

u

h

V

(t) +B

22

u

h

S

(t)� b

2

(t)

(21)

where u

h

= (u

h

V

;v

h

S

)

T

is the projection of the solution of the partial di�erential equation

onto the semidiscrete space.

Theorem 4.4 (DAE Convergence)

Suppose that the family of DAEs (17) which depends on h ful�lls

i) max

t�0

k�

h

V

k

V

= O(h

k

1

), max

t�0

k�

h

S

k

S

= O(h

k

2

) ;

ii) kV

�1

B

12

k

V;S

= O(h

k

12

) ;

iii) kB

21

k

S;V

= O(1) ;

iv) �

V

(�V

�1

[B=B

22

]) � l

1

< 0 ;

v) �

S

(�B

22

) � l

2

< 0

with l

1

; l

2

independent of h and the vector norm k � k de�ned as in Theorem 4.3. Then

the DAE semidiscretization converges, i.e.

max

t�0

ku

h

V

� u

V

k

V

= O(h

k

) ; max

t�0

ku

h

S

� u

S

k

S

= O(h

k

)

with k := minfk

1

; k

2

� k

12

g. �

The results of the following part are proven in [7]. Here we quote the main theorems,

only. For the cell based semidiscretization we choose the following norms

ku

V

k

2

V

:= u

T

V

V u

V

and

ku

S

k

2

S

:= h

2

u

T

S

u

S

with k � k

(0)

:= k � k

2

. This gives now

kuk

2

= u

T

Hu with H =

 

V 0

0 h

2

I

!

:
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Lemma 4.5

For the cell-based semidiscretization we have

max

t�0

k�

h

V

k

V

= O(h

2

)

max

t�0

k�

h

S

k

S

= O(h

k

2

)

with k

2

= 3 on arbitrary grids, and k

2

= 4 for problems on quasi-uniform grids with

Dirichlet boundary conditions. �

The proof of this statement is based on a generalized Taylor's expansion for the cell

and the edge averages. We summarize the estimates for the norms of the submatrices

as follows.

Lemma 4.6

For the cell-based semidiscretization we obtain

i) kV

�1

B

12

k

V;S

= "C

1

h

�2

;

ii) kB

21

k

S;V

= "C

2

;

iii) �

V

(�V

�1

[B=B

22

]) � �"C

3

;

iv) �

S

(�B

22

) � �"C

4

with constants C

1

; C

2

; C

3

; C

4

> 0. �

From Theorem 4.4 and the lemmas from above we deduce

Corollary 4.7

The cell-based semidiscretization converges of order 1 on arbitrary grids and of order 2

for Dirichlet problems on quasi-uniform grids. �

For the convection case (" = 0) it is possible to show convergence of order 1 on a �nite

time interval 0 � t � T .

5 Time integration and convergence

For systems of ordinary di�erential equations we distinguish between one-step and mul-

tistep methods. These methods have to be transferred to DAEs. For further reading

we refer to [6] and [1].

In [7] Runge-Kutta methods as an important subclass of one-step methods and back-

ward di�erentiation formulas as a subclass of multistep methods are treated.

10



We restrict ourselves to multistep methods. Concerning Runge-Kutta methods we refer

to [6, 7].

For the semi-implicit DAE (17) we de�ne for abbreviation

f

1

(u

V

;u

S

; t) := b

1

(t)�B

11

u

V

�B

12

u

S

;

f

2

(u

V

;u

S

; t) := b

2

(t)�B

21

u

V

�B

22

u

S

:

(22)

A general multistep method for the semi-implicit system (17) reads

V (�t)

�1

m

P

j=0

a

j

u

n+1�j

V

=

m

P

j=0

b

j

f

1

(u

n+1�j

V

;u

n+1�j

S

; t

n+1�j

);

0 =

m

P

j=0

b

j

f

2

(u

n+1�j

V

;u

n+1�j

S

; t

n+1�j

)

(23)

where �t denotes a constant step size.

We assume that the algebraic equations are ful�lled at previous time steps, i.e.

0 = f

2

(u

n+1�j

V

;u

n+1�j

S

; t

n+1�j

) for j = 1; : : : ;m (24)

and, hence, the second equation of (23) becomes

0 = f

2

(u

n+1

V

;u

n+1

S

; t

n+1

) : (25)

A special subclass of the multistep methods de�ned above are the backward di�erenti-

ation formulas (BDF). They are de�ned via b

0

= 1 and b

j

= 0 for j = 1; : : : ;m. The

coe�cients a

i

are deduced by using backward di�erencing of consistency order m.

From [1] we cite

Theorem 5.1 (BDF Convergence)

A m-step BDF method with m � 6 and constant step size �t applied to a semi-implicit

DAE system (17) converges if the initial values u

j

; j = 0; : : : ;m � 1 are correct to

O(�t

m

) accuracy and if the linear systems are solved to O(�t

m+1

) accuracy. �

The coe�cients of multistep methods are usually written in the form

a

0

b

0

.

.

.

.

.

.

a

m

b

m

and linear one-step methods can now be represented via

1 $

�1 1 �$

with $ 2 R.

11



For $ = 1 we obtain the �rst order consistent backward Euler method and for $ =

1

2

the second order consistent Crank-Nicolson method. A drawback of the latter methods

is that it shows an oscillating behaviour as con�rmed by our numerical results.

Additionally, we consider the following 2-step BDF method

3

2

1

�2 0

1

2

0

which is second order consistent, too. This method is also called method of Gear.

At each time step it is necessary to solve one or more systems of linear equations having

the form

Au = f with A =




�t

M +B (26)

for constant time steps �t.

The parameter 
 > 0 depends on the chosen method, only. The vector u is either an

approximation on the next time level or an increment.

Since our semidiscretization is of order 2 we also choose time integration methods

of order 2. Studying the quality of linear solvers for (26) it is adequate to restrict

ourselves to the method of Gear (2-step backward di�erentiation formula) and the

Crank-Nicolson scheme. Several other schemes like multistep methods and implicit

Runge-Kutta methods are discussed in [7] with regard to the cell-based discretization.

With similar techniques as in the semidiscrete context the convergence theorem for the

cell-based discretization can be extended to the full discretization by using contractivity

and convergence results for time integration methods (see [7]).

Theorem 5.2

The cell-based discretization is convergent in the grid parameter h with the order stated

in Corollary 4.7 and of order 2 in �t. For the method of Gear there is no restriction on

the coupling of h and �t. �

6 Test problems and numerical results

For our numerical computations we consider three test problems [4, 7, 10, 15] for the

linear convection-di�usion equation (1, 2).

Problem 6.1 (Berkeley problem)

r � (�u� �ru) = 0 in 
 = (�1; 1)� (0; 1)

with � = (� 

y

;  

x

)

T

given by the stream function  = (1� x

2

)(1 � y

2

) and

u(x; y) =

(

1 + tanh(10[2x+ 1]) on �

inlet

:= f(x; y) 2 � : �1 � x � 0; y = 0)g ;

0 on �

D

n f�

inlet

[ �

N

g ;

@u

n

(x; y) = 0 on �

N

:= f(x; y) 2 � : 0 � x � 1; y = 0)g :

12



0

1

�1 0 1
inlet outlet

D D

D

Figure 3: Streamlines and boundary conditions for problem 6.1

Problem 6.2 (Rotating hump problem)

u

t

+ � �ru = 0 in 
 = (�1; 1)� (�1; 1)

with � = (� 

y

;  

x

)

T

,  =

x

2

+y

2

2

and

u(x; 0) =

(

1

2

�

1 + cos(

5

2

�r)

�

in r = kx� x

0

k

2

�

2

5

;

0 else ;

u(x; t) = 0 on � :

Problem 6.3 (Convection-di�usion problem on the unit square)

� �ru� ��u = q in 
 = (0; 1) � (0; 1)

with � = (cos

�

8

; sin

�

8

) and a di�usion coe�cient " = 10

�6

. We require homogeneous

Dirichlet data at the in
ow x = 0, y = 0 and homogeneous Neumann data on the

two remaining sides. We adapt the right hand side q by inserting the function u =

sin

�

�

2

x

�

sin

�

�

2

y

�

. Thus u is the solution of this problem.

The results presented here were obtained by using a linear multigrid method with

problem-adapted components [16]. Especially in combination with Krylov subspace

methods [12] this yields a fast and robust solution method. Di�erent Krylov subspace

methods and di�erent versions of the multigrid approach are studied in [17].

First of all we have to illustrate the quality of the cell-based discretization. This is

in
uenced by the approximation in space mainly. Therefore it is convenient to consider

the steady problem 6.1. Figure 4 shows the results on a 40�40 grid and various values of

�. The isolines of the computed solution depicted on the left are indicating that there

is no arti�cal crosswind di�usion. And on the right hand side the good coincidence

between the nodal values of the approximation and the exact solution can be observed

[14].
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In the pure convection problem 6.2 the initial condition is transported a long the stream-

lines which are concentric circles. Here the initial 'hump' should be rotated with pe-

� = 10

�1

� = 10

�2

� = 10

�3

� = 10

�6

� = 10

�1

� = 10

�2

� = 10

�3

� = 10

�6

u

u

u

u

Figure 4: The quality of the cell orientated discretization
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0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 5: Di�erent time integrators (Gear and Crank-Nicolson method)

riodicity of 2�. Figure 5 shows the results with Gear and Crank-Nicolson method for

one rotation at times t = i

�

2

, i = 0; : : : ; 4 on a 64 � 64-grid with 200 time steps. The

height of the hump decreases about 3% for the Gear method which is an e�ect of its

15



damping behaviour. The shape of the hump is rotated by both methods without signif-

icant deformation or translation. The quality is good in comparison with results shown

in [9, 10].

Stabilized Petrov- Cell-based

Galerkin method Galerkin method semidiscretization

M k�k

V

k�k

1

k�k

V

k�k

1

k�

1

k

V

k�

1

k

1

k

SD

app

10 5:07 � 10

�4

2:45 � 10

�3

1:92 � 10

�3

4:26 � 10

�3

1:03 � 10

�3

2:04 � 10

�3

|

20 1:12 � 10

�4

6:13 � 10

�4

4:95 � 10

�4

1:15 � 10

�3

2:57 � 10

�4

5:13 � 10

�4

2:00

30 4:74 � 10

�5

2:74 � 10

�4

2:22 � 10

�4

5:18 � 10

�4

1:14 � 10

�4

2:28 � 10

�4

2:00

40 2:58 � 10

�5

1:56 � 10

�4

1:25 � 10

�4

2:91 � 10

�4

6:42 � 10

�5

1:28 � 10

�4

2:00

60 1:08 � 10

�5

7:11 � 10

�5

5:46 � 10

�5

1:26 � 10

�4

2:86 � 10

�5

5:71 � 10

�5

1:99

Table 6: Comparison of the error � in the energy and the maximum norm

Table 6 shows results for problem 6.3 on M � M grids for varying grid parameter

h = M

�1

. We conclude that the cell-based semidiscretization yields good results on

an equidistant grid in comparison to the results of [4]. Under the assumption k�

1;h

k �

Ch

k

SD

we can estimate the order of convergence by a comparison of two grids with grid

parameter h resp.

~

h by

k

SD

app

= log

k�

1;h

k

k�

1;

~

hk

"

log

h

~

h

#

�1

(27)

This example gives a hint that the convergence order of 2 for Dirichlet problems is also

realistic for problems with Neumann data.

7 Conclusion

We have been presenting a new �nite-volume technique for the discretization of unsteady

convection-di�usion problems. This approach is equivalent to a nonconforming Petrov-

Galerkin method with exponentially �tted L-splines as trial and L

�

-splines test functions

which was also described.

Numerical experiments show that the quality of this new discretization approach is

good, also in comparison to methods presented in literature. The convergence results

for the semidiscrete and the fully discrete systems stated here are given without proofs.

These can be found in [7] and will be published in a forthcoming article.
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