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1. Introduction.

Throughout the last decades the relative performance has received con-

siderable attention which is attained by the ordinary least squares estimator

(OLSE) in comparison to the best linear unbiased estimator (BLUE) of the

parameters in a linear model. For example, Bloom�eld and Watson (1975)

and Knott (1975) evaluated the e�ciency of the generalised variance, i. e.

the ratio of the determinants of the dispersion matrices of the BLUE and

the OLSE. In the presence of autocorrelated errors the e�ciency was exam-

ined by Kr�amer (1980). Baksalary and Kala (1980) derived upper bounds

for the Euclidean norm of the di�erence between the OLSE and BLUE. The

e�ect of cluster sampling on the OLSE was investigated by Scott and Holt

(1982) and Christensen (1984). More recently, Wang et al (1994) studied

the performance of the OLSE by comparing it with the BLUE in the con-

text of two{stage sampling from a �nite population. There the observations

belonging to the same cluster are assumed to have a constant correlation,

the so{called interclass correlation. In this note, starting from the results by

Wang et al (1994) we consider the performance of the OLSE relatively to the

BLUE in the context of the following error component model with random

e�ects in units and time.

Let P = f1; � � � ; Ng be a �nite population of a known number N of

identi�able units labeled 1; � � � ; N and `y' be a study variable. We are inter-

ested in the characteristics of this population over a number of time points

t = 1; � � � ; T . It is assumed that apart from y we have a set of auxiliary vari-

ables `x

j

' (j = 1; � � � ; p), so{called covariates, closely related to y which may

also vary in time t. Associated with the unit i we have, therefore, a vector of

real numbers (y

it

; x

1it

; x

2it

; � � � ; x

pit

) where y

it

and x

jit

are the values of the

observations y and the covariates x

j

, respectively, on unit i at time t.

For example, we may have N factories belonging to an industrial group,

y

it

being the value of output (value added by manufacture) of the ith factory

in the year (at the time point) t. Then x

1

; x

2

; . . . may be a set of auxiliary

variables, like value of raw materials, the number of workers, x

1it

; x

2it

; . . .

being the values of the raw materials (number of workers) for the ith factory

in the year t, etc. We consider the following error component model: y

it

is

a realisation of a random variable Y

it

which follows a superpopulation model

distribution for given values of x

jit

(j = 1; � � � ; p):

Y

it

= � +

p

X

j=1

�

j

x

jit

+ "

it

�

i = 1; � � � ; N

t = 1; � � � ; T

(1)

where � is a constant (intercept parameter), �

j

(j = 1; � � � ; p) is a set of

unknown regression coe�cients (slope parameters) and "

it

is a random error

which can be additively decomposed according to

"

it

= u

i

+ v

t

+ w

it

(2)
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into its components u

i

, v

t

and w

it

which are associated with the units i,

the time points t and the particular observations, respectively. The auxil-

iary variables are assumed to result in �xed e�ects �

1

; . . . ; �

p

which are the

parameters of interest.

The present note provides two{dimensional extensions of the (�rst{order)

approximations obtained by Wang et al (1994) and of their bounds on the

spectral norm of the loss in the dispersion matrix when the OLSE is used in-

stead of the BLUE. As a by{product the latter bound is improved also for the

one{dimensional situation. Generalisations to higher{order approximations

and to more than two variance components are indicated in the concluding

Section 4.

2. Assumptions and notations.

Besides the usual requirement of zero mean errors E(u

i

) = E(v

t

) =

E(w

it

) = 0 for the components of " we will assume that these variance

components are homoscedastic

�

2

u

= Var (u

i

); �

2

v

= Var (v

t

); �

2

w

= Var (w

it

) (3)

and that di�erent components and observations are uncorrelated, i. e.E(u

i

u

j

)

= E(v

s

v

t

) = E(w

is

w

jt

) = E(u

i

v

t

) = E(u

i

w

jt

) = E(v

s

w

it

) = 0. A similar

error component model has been considered by Fuller and Battese (1973).

The object of our further statistical investigations will be the vector � =

(�

1

; � � � ; �

p

)

0

of unknown parameters related to the auxiliary variables.

If we denote by

Y =

2

6

6

6

6

6

6

6

4

Y

11

.

.

.

Y

1T

Y

21

.

.

.

Y

NT

3

7

7

7

7

7

7

7

5

; X =

2

6

6

6

6

6

6

6

4

x

111

� � � x

p11

.

.

.

.

.

.

x

11T

� � � x

p1T

x

121

� � � x

p21

.

.

.

.

.

.

x

1NT

� � � x

pNT

3

7

7

7

7

7

7

7

5

and " =

2

6

6

6

6

6

6

6

4

u

1

+ v

1

+ w

11

.

.

.

u

1

+ v

T

+ w

1T

u

2

+ v

1

+ w

21

.

.

.

u

N

+ v

T

+ w

NT

3

7

7

7

7

7

7

7

5

(4)

the vector of observations, the matrix of covariates and the vector of errors,

respectively, then the model can be written in matrix notation as

Y = �1

NT

+X� + "; (5)

where 1

m

denotes a m{dimensional vector of ones.

Let

A = I

N


 J

T

and B = J

N


 I

T

; (6)

where I

m

is a m �m identity matrix, J

m

= 1

m

1

0

m

is a m�m matrix with

all entries equal to one and `
' denotes the Kronecker product of matrices.

With this notation the dispersion matrix Cov (") = � of the error vector "

becomes

� = �

2

w

I

NT

+ �

2

u

A+ �

2

v

B: (7)
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Note that � is regular if �

2

w

> 0. Moreover, it can be veri�ed that

�

�1

=

1

�

2

w

(I

NT

� �

1

A� �

2

B + �

3

J

NT

) (8)

where �

1

=

�

2

u

�

2

w

+T�

2

u

, �

2

=

�

2

v

�

2

w

+N�

2

v

and �

3

=

�

2

u

�

2

v

(�

2

w

+T�

2

u

)(�

2

w

+N�

2

v

)

[1+

�

2

w

�

2

w

+N�

2

v

+T�

2

u

].

If we de�ne by �

2

= Var ("

it

) = �

2

u

+ �

2

v

+ �

2

w

the total variance of each

observation and by � =

�

2

u

�

2

and � =

�

2

v

�

2

the proportions of the variance com-

ponents associated with the units and the time points, respectively, then the

dispersion matrix� can be written as � = �

2

�(�; �), where the standardised

dispersion �(�; �) is given by

�(�; �) = (1 � � � �)I

NT

+ �A+ �B: (9)

We may assume without loss of generality that the auxiliary variables are

centered, i. e.

P

i

P

t

x

jit

= 0 for each j(= 1; � � � ; p): (10)

This may be accomplished by a linear reparametrisation of the model which

leaves the parameters � = (�

1

; � � � ; �

p

)

0

unchanged (see e. g. Schwabe, 1996,

p. 16). Note, however, that this transformation of X may produce an altered

value for the overall mean � in the model equation (5) which will not be

investigated in the sequel.

We assume further that rank (X) = p < NT , i. e. [1

NT

X] has full column

rank p+1. Then, under the model speci�ed by (5) and (7), when X satis�es

the centering condition (10),

b

�

�

= (X

0

�

�1

X)

�1

X

0

�

�1

Y (11)

is the best linear unbiased estimator (BLUE) of �. As 1

0

NT

�

�1

X = 0 in view

of (8) and (10) the dispersion matrix of

b

�

�

is

Cov (

b

�

�

) = (X

0

�

�1

X)

�1

= �

2

w

[X

0

(I

NT

� �

1

A� �

2

B)X]

�1

: (12)

Note that under the above conditions also b� = Y =

1

NT

P

i

P

t

Y

it

is the

BLUE of � and that the estimators b� and

b

�

�

are uncorrelated.

The calculation of the BLUE

b

�

�

requires the knowledge of the ratios of

the variance components �

2

u

, �

2

v

and �

2

w

. As an alternative for estimating

� one can therefore choose the ordinary least square estimator (OLSE)

b

�

0

which is given by

b

�

0

= (X

0

X)

�1

X

0

Y; (13)

when X satis�es the centering condition (10).

To compare the performance of the OLSE

b

�

0

with the BLUE

b

�

�

we in-

troduce a whole class of unbiased estimators

b

�(~�;

~

�) =

�

X

0

�(~�;

~

�)

�1

X

�

�1

X

0

�(~�;

~

�)

�1

Y (14)
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parametrised by ~� and ~� which covers both estimators of interest as

b

�

�

=

b

�(�; �) and

b

�

0

=

b

�(0; 0).

3. The OLSE

b

�

0

as an approximation to the BLUE

b

�

�

.

In the present main section we develop bounds on the deviation of the

OLSE from the BLUE.

Theorem 1.

b

�

�

=

b

�

0

� (X

0

X)

�1

X

0

(�A+ �B)(Y �X

b

�

0

) +O(�

2

+ �

2

): (15)

Remark. The notation \O" indicates a pointwise approximation of order

O(�

2

+�

2

), i. e. the remainder term is bounded by c(�

2

+�

2

) for some (random)

constant c if � and � tend to 0 simultaneously.

Proof of Theorem 1. Expanding

b

�

�

=

b

�(�; �) in a bivariate Taylor series

at

b

�

0

=

b

�(0; 0) we obtain

b

�(�; �) =

b

�(0; 0) + �

@

b

�(�; �)

@�

�

�

�

�

�

�=0;�=0

+ �

@

b

�(�; �)

@�

�

�

�

�

�

�=0;�=0

+O(�

2

+ �

2

): (16)

We make use of the di�erentiation rules

@C(�)D(�)

@�

=

@C(�)

@�

D(�) + C(�)

@D(�)

@�

and

@C(�)

�1

@�

= C(�)

�1

@C(�)

@�

C(�)

�1

, etc. for matrix valued functions C and D

(see e. g. Magnus and Neudecker, 1988). Then

@(X

0

�(�; �)

�1

X)

�1

@�

= (X

0

�(�; �)

�1

X)

�1

X

0

H(�; �)X(X

0

�(�; �)

�1

X)

�1

;

(17)

where

H(�; �) =

@�

�1

@�

= �

�1

@�

@�

�

�1

= �(�; �)

�1

(I

NT

�A)�(�; �)

�1

and, consequently, in view of (14),

@

b

�

@�

= (X

0

�

�1

X)

�1

(X

0

@�

�1

@�

Y )� (X

0

�

�1

X)

�1

f

@

@�

(X

0

�

�1

X)g

b

�

= (X

0

�

�1

X)

�1

X

0

H(Y �X

b

�): (18)

Similarly, for the derivative with respect to � we obtain

@

b

�

@�

= (X

0

�

�1

X)

�1

X

0

M(Y �X

b

�): (19)

where

M(�; �) =

@�

�1

@�

= �

�1

@�

@�

�

�1

= �(�; �)

�1

(I

NT

�B)�(�; �)

�1



6 p. mukhopadhyay and r. schwabe

Note that �(0; 0) = I

NT

and, hence, H(0; 0) = I

NT

� A and M(0; 0) =

I

NT

�B. It follows that

b

�

�

=

b

�

0

+ �(X

0

X)

�1

X

0

(I

NT

�A)(Y �X

b

�

0

)

+ �(X

0

X)

�1

X

0

(I

NT

�B)(Y �X

b

�

0

) +O(�

2

+ �

2

)

=

b

�

0

� (X

0

X)

�1

X

0

(�A+ �B)(Y �X

b

�

0

) +O(�

2

+ �

2

) (20)

since X

0

(Y �X

b

�

0

) = 0. 2

If we ignore higher order terms, the di�erence

b

�

0

�

b

�

�

between the OLSE

and the BLUE can be approximated by (X

0

X)

�1

X

0

(�A + �B)(Y � X

b

�

0

).

Note that the OLSE and the BLUE coincide,

b

�

0

=

b

�

�

, if (�A+ �B)X = XS

for some p� p matrix S (see e. g. Zyskind, 1967). In particular, this holds if

AX = BX = 0.

Example. The performance of the OLSE depends on the interactions AX

and BX of the auxiliary variable with the dispersion structure generated by

the variance components. For illustrative purposes we consider the situation

of 4 observations, N = T = 2, and a single auxiliary variable, p = 1. The

auxiliary variable is assumed to be available at levels 1, -1, 0 and 0, thus

satisfying condition (10). Now, there are essentially three di�erent assign-

ments of the auxiliary variable possible resulting in the matrices of covariates

X = (1;�1; 0; 0)

0

, X = (1; 0 � 1; 0)

0

and X = (1; 0; 0;�1)

0

. In the �rst case

the di�erence

b

�

0

�

b

�

�

is approximately equal to

1

2

�(Y

21

� Y

22

) and the per-

formance depends on the correlation at �xed time points. In the second case

the di�erence equals approximately

1

2

�(Y

12

� Y

22

) and the within units cor-

relation determines the performance. In the third case both correlations are

important and the di�erence is about

1

2

(� � �)(Y

12

� Y

21

).

In the following we will study the relationship between

b

�

�

and

b

�

0

by

providing an upper bound for jj

b

�

�

�

b

�

0

jj; where jj � jj is the Euclidean norm.

Let �

1

(G) � � � � � �

m

(G) denote the eigenvalues of a m � m symmetric

matrix G:

Lemma 1. If D is a symmetric positive semide�nite m�m matrix and C

an arbitrary m� n matrix, then �

1

(C

0

DC) � �

1

(D)�

1

(C

0

C).

Proof. By Rayleigh's formula for the largest eigenvalue of a symmetric

positive semide�nite matrix (see e. g. Rao, 1973, p. 62) we have

�

1

(C

0

DC) = sup

z

z

0

C

0

DCz

z

0

z

= sup

z

z

0

C

0

DCz

z

0

C

0

Cz

z

0

C

0

Cz

z

0

z

� sup

z

z

0

C

0

DCz

z

0

C

0

Cz

� sup

z

z

0

C

0

Cz

z

0

z

� �

1

(D)�

1

(C

0

C):

2

Theorem 2.

jj

b

�

�

�

b

�

0

jj �

(T�+N�)jjY �X

b

�

0

jj

�

1=2

p

(X

0

X)

+ O(�

2

+ �

2

) (21)
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Proof. By Theorem 1 we have

jj

b

�

�

�

b

�

0

jj = jj(X

0

X)

�1

X

0

F�jj+R = (�

0

F

0

X(X

0

X)

�2

X

0

F�)

1=2

+R;

where F = �A + �B, � = Y � X

b

�

0

and R = O(�

2

+ �

2

). By Rayleigh's

inequality and Lemma 1 we obtain

�

0

F

0

X(X

0

X)

�2

X

0

F� � �

1

�

F

0

X(X

0

X)

�2

X

0

F

�

jj�jj

2

� �

1

�

X(X

0

X)

�2

X

0

�

�

1

(F

0

F )jj�jj

2

:

Now, F is symmetric and positive semide�nite and, hence, �

1

(F

0

F ) = �

2

1

(F ).

Next, note that for every matrix C the positive eigenvalues of C

0

C and

CC

0

coincide, since for every eigenvector z of C

0

C corresponding to an eigen-

value � > 0 the vector Cz 6= 0 is an eigenvector of CC

0

with CC

0

Cz = �Cz.

By letting C = (X

0

X)

�1

X

0

we, thus, obtain

�

1

�

X(X

0

X)

�2

X

0

�

= �

1

�

(X

0

X)

�1

�

=

1

�

p

(X

0

X)

:

The largest eigenvalue of F is T�+N� which completes the proof. 2

We note that the upper bound in (21) may become large, when strong

multicollinearity is present in X, i. e. �

p

(X

0

X) is small and X is ill{condition-

ed. However, for balanced X the smallest eigenvalue �

p

(X

0

X) grows approx-

imately like NT for N and T large. Hence, the bound of Theorem 2 becomes

c(�

p

T=N + �

p

N=T ).

The eigenvalues of the dispersion matrix � are

�

1

= T�

2

u

+N�

2

v

+ �

2

w

= �

2

[1 + (T � 1)�+ (N � 1)�]

�

i

= N�

2

v

+ �

2

w

= �

2

[1 + (N � 1)� � �] with multiplicity T � 1

�

j

= T�

2

u

+ �

2

w

= �

2

[1 + (T � 1)�� �] with multiplicity N � 1

�

N+T

= � � � = �

NT

= �

2

w

= �

2

(1� �� �)

(22)

According to the results of Magness and McGuire (1962) the following in-

equality holds for the e�ciency when a linear function c

0

� of the parameter �

is estimated by the BLUE property of

b

�

�

and by the Kantorovich inequality

(see e. g. Rao (1973), p. 74)

1 �

Var (c

0

b

�

�

)

Var (c

0
b

�

0

)

�

4�

1

(�)�

NT

(�)

(�

1

(�) + �

NT

(�))

2

=

4(T�

2

u

+N�

2

v

+ �

2

w

)�

2

w

(T�

2

u

+N�

2

v

+ 2�

2

w

)

2

(23)

If we assume X

0

X = I

p

. This resukt can be also found in Hannan (1970,

p. 422). Obviously, the minimum e�ciency inf

c2R

p

Var (c

0

b

�

�

)=Var (c

0

b

�

0

) is

bounded from below by 1 �O(�

2

+ �

2

).

Alternatively, as in Wang et al (1994), we consider the spectral norm

d = jjCov(

b

�

0

) � Cov (

b

�

�

)jj

2

of the di�erence between the dispersion ma-

trix Cov (

b

�

0

) of the OLSE and the dispersion matrix Cov (

b

�

�

) of the BLUE.
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Note that the spectral norm jjGjj

2

of a matrix G is de�ned as jjGjj

2

=

sup

jjzjj=1

jjGzjj and, hence, d = �

1

(Cov (

b

�

0

)�Cov (

b

�

�

)) as Cov (

b

�

0

)�Cov (

b

�

�

)

is positive semide�nite and symmetric. We note that the Euclidean norm

jj

b

�

�

�

b

�

0

jj measures the distance between the two estimated values of � while

the spectral norm of Cov (

b

�

0

) � Cov (

b

�

�

) measures how far the dispersion

matrices of the estimates di�er.

Theorem 3.

d �

T�+N�

�

p

(X

0

X)

Remark. Let � = �

1

(�)=�

NT

(�) =

1+(T�1)�+(N�1)�

1����

denote the condition

number of the dispersion matrix �. Then we can reformulate the result of

Theorem 3 as

d �

f1 + (T � 1)� + (N � 1)�gf1�

1

�

g

�

p

(X

0

X)

:

By letting T = 1 we obtain d � f1 + (N � 1)�gf1�

1

�

g�

�1

p

(X

0

X) which

improves upon the inequality of Theorem 4 by Wang et al (1994) as � > 1.

Proof of Theorem 3. Let (X

0

X)

1=2

denote a square root of X

0

X, i. e.

X

0

X = (X

0

X)

1=2

(X

0

X)

1=2

, and (X

0

X)

�1=2

its inverse. Then we have

Cov (

b

�

0

)�Cov (

b

�

�

) = (X

0

X)

�1=2

[(X

0

X)

�1=2

X

0

�X(X

0

X)

�1=2

� (X

0

X)

1=2

(X

0

�

�1

X)

�1

(X

0

X)

1=2

](X

0

X)

�1=2

and, consequently, by Lemma 1

d � �

1

�

(X

0

X)

�1

�

�

�

1

�

(X

0

X)

�1=2

X

0

�X(X

0

X)

�1=2

�

� �

p

�

(X

0

X)

1=2

(X

0

�

�1

X)

�1

(X

0

X)

1=2

�	

:

Again, by Lemma 1

�

1

�

(X

0

X)

�1=2

X

0

�X(X

0

X)

�1=2

�

� �

1

(�)�

1

�

(X

0

X)

�1=2

X

0

X(X

0

X)

�1=2

�

= �

1

(�)

and, similarly,

�

p

�

(X

0

X)

1=2

(X

0

�

�1

X)

�1

(X

0

X)

1=2

�

= �

�1

1

�

(X

0

X)

�1=2

X

0

�

�1

X(X

0

X)

�1=2

�

� �

�1

1

(�

�1

) = �

NT

(�):

Combining these results we obtain

d �

�

1

(�)� �

NT

(�)

�

p

(X

0

X)

which completes the proof in view of (22). (Note also that �

1

(�)��

NT

(�) =

�

1

(�A+ �B).) 2
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4. Additional remarks.

The results of Section 3 can be extended to situations in which more than

two additional variance components are present. The additive structure (2)

of the random errors expands to

"

j

1

;...;j

k

= u

1;j

1

+ . . . + u

k;j

k

+ w

j

1

;...;j

k

:

Consequently, the dispersion matrix � can be written as � = �

2

�(�) where

the standardised dispersion

�(�) =

 

1�

k

X

j=1

�

j

!

I +

k

X

j=1

�

j

A

j

decomposes additively, � = (�

1

; . . . ; �

k

)

0

, �

j

� 0 and

P

k

j=1

�

j

< 1. I and A

j

are N � N matrices where N is the number of di�erent observations, e. g.

N =

Q

k

j=1

N

j

for a full factorial or, alternatively, N = N

2

1

for a Latin or

Graeco{Latin square. Then in generalisation of Theorem 1 we obtain

b

�

�

=

b

�

0

� (X

0

X)

�1

X

0

P

k

j=1

�

j

A

j

(Y �X

b

�

0

) +O(jj�jj

2

): (24)

Consequently, in extension of Theorem 2, we obtain

jj

b

�

�

�

b

�

0

jj �

�

1

�

P

k

j=1

�

j

A

j

�

�

1=2

p

(X

0

X)

jjY �X

b

�

0

jj+O(jj�jj

2

); (25)

where �

1

(

P

k

j=1

�

j

A

j

) =

P

k

j=1

N

N

j

�

j

in case of a full factorial, or �

1

(

P

k

j=1

�

j

A

j

)

= N

1

P

k

j=1

�

j

for a Latin or a Graeco{Latin square. Similarly, for Theorem 3

we have

d �

�

1

�

P

k

j=1

�

j

A

j

�

�

p

(X

0

X)

: (26)

Furthermore, also second order approximations are available in the spirit

of Wang et al (1994) by using multivariate Taylor expansions of second degree

b

�

�

=

b

�

0

� (X

0

X)

�1

X

0

F� (27)

� (X

0

X)

�1

X

0

n

P

k

j=1

�

j

F � F (I

N

�X(X

0

X)

�1

X

0

)F

o

� +O(jj�jj

3

);

where F =

P

k

j=1

�

j

A

j

and � = Y � X

b

�

0

. In particular, for the two{

dimensional situation of the previous sections with units and time points

we obtain

b

�

�

=

b

�

0

� (X

0

X)

�1

X

0

(�A+ �B)� (28)

+ (X

0

X)

�1

X

0

f(T � 1)�

2

A+ (N � 1)�

2

B � ��(A+B)

� (�A+ �B)X(X

0

X)

�1

X

0

(�A+ �B)g� +O(j�j

3

+ j�j

3

):
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