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In linear models with hierarchical interaction structures product type de-

signs are shown to be D{optimal simultaneously for the whole parameter vec-

tor and for testing against any hierarchical submodel. Moreover, product type

designs are also �

q

{optimal for the highest order interactions.

1. Introduction. In most experimental situations the outcome Y of an ex-

periment is inuenced by a number of di�erent factors which may interact with each

other. The aim of the present paper is to establish that, in the setting of generalized

designs in the sense of Kiefer's (1974) approximate theory, product type designs

prove to be optimal in models with general hierarchical interaction structures, i. e.

in models in which higher order interactions appear together will all corresponding

lower order interactions. For these optimal product type designs the components

can be chosen to be optimal in the corresponding marginal models in which only

one factor is active. (For additional readings on generalized designs we refer e. g. to

the monographs by Fedorov, 1972, Bandemer, 1977, and Pukelsheim, 1993.)

Example 1. Multilinear regression on [�1; 1]

K

. Typically hierarchical

interaction structures occur in multilinear regression. In this setting the most ba-
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0

+

P

K

k=1

�

k

x

k

just contains additive e�ects �

k

of the single factors. If additional interactions are present a �rst{order inter-
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be appropriate. Besides these symmetric interaction structures also models like

E(Y (x

1

; x

2

; x

3

)) = �
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+ �

1

x

1

+ �

2

x

2

+ �
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possess a hierarchical interac-

tion structure in which some, but not all, �rst{order interactions are present.

In Section 2 some general notations and assumptions are introduced, while fur-

ther examples are provided in Section 3 for hierarchical models which are covered

by the present approach. In Section 4 we will show in detail that the product

type designs are optimal for the highest order interaction terms with respect to the

broad class of Kiefer's (1974) eigenvalue criteria which include the commonly used

A{, D{ and E{criteria of minimizing the expected Euclidean distance, of minimiz-

ing the generalized variance and of minimizing the maximal normalized variance,

respectively.
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For the D{criterion stronger results will be established which show that product

type designs are D{optimal for the whole parameter vector and simultaneously op-

timal for testing hierarchical models against submodels which retain the hierarchical

interaction structure.

2. De�nitions and notations. Generally, a linear model is described by its

response function

E(Y (t

1

; . . . ; t

K

)) = �

0

+ f(t

1

; . . . ; t

K

)

>

�

f

; (1)

t = (t

1

; . . . ; t

K

) 2 T , where f is a vector of known regression functions on the design

region T and � = (�

0

; �

>

f

)

>

is the vector of the corresponding unknown parameters.

Throughout this paper we will assume that a constant term �

0

is included in each

model equation.

We start our considerations with the marginal models

E(Y

k

(t

k

)) = �

0

+ f

k

(t

k

)

>

�

k

; (2)

t

k

2 T

k

, in which only one factor of inuence is active. These models can be obtained

from the more complex hierarchical models by conditioning, i. e. by keeping all but

one factor at a �xed setting. The marginal parameters �

(k)

= (�

0

; �

>

k

)

>

consist of

a constant term �

0

and the e�ect �

k

of the kth factor. The marginal information

matrices are de�ned by I

k

(�

k

) =

R�

1

f

k

�

(1; f

>

k

) d�

k

, and for the complete marginal

parameter vector �

(k)

and the marginal e�ects �

k

= L

k

�

(k)

the marginal covariance

matrices are denoted by C

k

(�

k

) = I

k

(�

k

)

�1

and C

k

(�

k

; �

k

) = L

k

C

k

(�

k

)L

>

k

, respec-

tively, where L

k

is a suitably chosen selection matrix. Note that �

k

is identi�able

under �

k

i� I

k

(�

k

) is regular. Moreover, the matrices C

k

are proportional to the

covariances of the best linear unbiased estimators

To cover all of the hierarchical interaction models we introduce the general multi{

factor linear model

E(Y

H

(t

1

; . . . ; t

K

)) =

X

H2H

N

k2H

f

k

(t

k

)

>

�

H

; (3)

with interaction structure H on the design region of a pseudo{rectangle (Cartesian

product) T = �

K

k=1

T

k

= f(t

1

; . . . ; t

K

)

>

; t

k

2 T

k

; k = 1; . . . ;Kg. Thus, the set-

tings of the single component factors may vary independently of each other. Note,

however, that each component can have an arbitrary shape and can be higher{

dimensional itself.

Here, each interaction structure H is a subset of the power set P = fH;H �

f1; . . . ;Kgg of possible factor combinations, and

N

k2H

f

k

(t

k

) = f

k

1

(t

k

1

) 
 . . . 


f

k

m

(t

k

m

) is the regression function associated with the interactions for each particular

factor combination H = fk

1

; . . . ; k

m

g, where `
' denotes the Kronecker product. In

particular, a constant term is included in the model for H = ;. The singleton fkg

corresponds to the main e�ect of the kth factor, and pairs fk

1

; k

2

g are related to

�rst{order interactions (see e. g. Collombier, 1996, pp 34�, for factorial experiments).
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Particular classes of such models include Kronecker product type models

E(Y

P

(t

1

; . . . ; t

K

)) = (1; f

1

(t

1

)

>

)
 . . .
 (1; f

K

(t

K

)

>

)�; (4)

additive models

E(Y

f;;f1g;...;fKgg

(t

1

; . . . ; t

K

)) = �

0

+

X

K

k=1

f

k

(t

k

)

>

�

k

; (5)

and complete M{factor interaction models,

E(Y

H

(t

1

; . . . ; t

K

)) = �

0

+

X

K

k=1

f

k

(t

k

)

>

�

k

(6)

+ . . .

+

X

1�k

1

<...<k

M

�K

(f

k

1

(t

k

1

)
 . . .
 f

k

M

(t

k

M

))

>

�

k

1

;...;k

M

;

where H = fH;H � f1; . . . ;Kg; jHj � Mg. The general hierarchical model (3)

can be written, for short, as E(Y

H

(t

1

; . . . ; t

K

)) = f

H

(t

1

; . . . ; t

K

)

>

�, where the regres-

sion functions are given by f

H

(t

1

; :::; t

K

) = (

N

k2H

f

k

(t

k

))

H2H

with corresponding

information matrix I(�) =

R

f

H

f

>

H

d�.

For the parameters �

H

= L

H

� associated with the interaction of the factors

in H the generalized covariance matrix is C(�

H

; �) = L

H

I(�)

�

L

>

H

, where I(�)

�

is

any generalized inverse of I(�), in case �

H

is identi�able which will be assumed

throughout. For whole subsets �

H

�

= (�

H

)

H2H

�

of parameters we have �

H�

= L

H

�

�

where L

H

�

= diag(L

H

)

H2H

�

and C(�

H

�

; �) = L

H

�

I(�)

�

L

>

H

�

. In case H

�

= H we

writeC(�) = C(�; �), for short. These matricesC coincide with the usual covariance

matrices for an underlying exact design up to a multiplicative factor.

In case di�erent models with interaction structures H and H

0

are compared we

distinguish between the corresponding covariance matrices C

H

and C

H

0

etc. by

adding the appropriate subscript. In particular, for models with only one active

factor, the covariance matrixC

fkg

(�) coincides with the marginal covarianceC

k

(�

k

),

where the marginal design �

k

is the projection of � onto its kth component.

De�nition. (i) An interaction structure H is hierarchical if H 2 H implies

H

0

2 H for every H

0

� H.

(ii) An interaction H 2 H is maximal in H if H � H

0

2 H implies H

0

= H.

Equivalently, an interaction structure H is hierarchical if P(H) � H for every

H 2 H, where P(H) denotes the power set of H. An interaction is maximal if

it is not a proper subset of any other interaction included in the model. Finally,

for a subsystem H

�

of interactions let H(H

�

) =

S

H2H

�

H = fk; k 2 H for some

H 2 H

�

g be the collection of all active factors in H

�

.

In the following we will show that the product type design �

�

=

N

K

k=1

�

�

k

is

�

q

{optimal for maximal interactions, i. e. �

�

minimizes the q{\norm"

P

�

q

i

of the

eigenvalues �

i

of the covariance matrix C(�

H

; �) of the least squares estimator

^

�

H

for �

H

, if its components �

�

k

are �

q

{optimal for the parameter vectors �

k

of the direct

e�ects in the marginal models. Here,

N

K

k=1

�

k

= �

1


 . . .
 �

K

and `
' denotes the
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measure theoretic product. In particular, for discrete designs �

k

concentrated on a

�nite number of levels t

k

with weights w

k

(t

k

), the product is concentrated on all level

combinations (t

1

; . . . ; t

K

)

>

with weights w(t

1

; . . . ; t

K

) =

Q

K

k=1

w

k

(t

k

), respectively.

More generally, for every pair of designs �

H

on the factor region �

k2H

T

k

and

�

� on the

complementary region �

k 62H

T

k

corresponding to the remaining factors the resulting

product design on the whole design region is denoted by �

H

(�

H

;

�

�).

3. Some further examples. The scope of models which are covered by the

concept of hierarchical interaction structures is illustrated by the following model

classes in addition to the multilinear models mentioned in the introduction.

3.1. K{way layout. Every hierarchical K{way layout E(Y

H

(i

1

; . . . ; i

K

)) =

P

H2H

�

(H)

(i

k

)

k2H

, i

k

= 1; . . . ; I

k

, k = 1; . . . ;K, can be reparametrized to (3) if suit-

able identi�ability conditions are imposed. For example, in the additive model

E(Y (i

1

; . . . ; i

K

)) = �

0

+

P

K

k=1

�

(k)

i

k

one may require

P

I

k

i=1

�

(k)

i

= 0. In the �rst{order

interaction model E(Y (i

1

; . . . ; i

K

)) = �

0

+

P

K

k=1

�

(k)

i

k

+

P

K�1

k=1

P

K

`=k+1

�

(k;`)

i

k

;i

`

addi-

tional conditions like

P

I

k

i=1

�

(k;`)

i;j

=

P

I

`

j=1

�

(k;`)

i;j

= 0 are needed.

3. 2. Qualitative and quantitative factors. While the theory of optimal

designs is well developed for models with purely qualitative factors which may vary

only over a �nite number of levels (see 3.1) and for models with purely quantita-

tive factors which vary over a whole continuum of levels (like multilinear regression)

little is known for those models which contain both kinds of factors despite the

fact that they occur in many practical applications as has been pointed out e. g. by

Kurotschka (1988).

For illustrative purposes we con�ne to the simple case of a two{way layout

with an additional straight line regression on [�1; 1]. Speci�c models may be ad-

ditive E(Y

f;;f1g;f2g;f3gg

(i; j; x)) = �

(1)

i

+ �

(2)

j

+ �x or may contain all interactions

E(Y

P

(i; j; x)) = �

ij

+ �

ij

x or, as intermediate cases, the additive model is supple-

mented by some or all of the two{factor interactions �

ij

, �

(1)

i

x and �

(2)

j

x, e. g.

E(Y

f;;f1g;f2g;f3g;f1;2gg

(i; j; x)) = �

ij

+ �x (7)

or

E(Y

f;;f1g;f2g;f3g;f1;3g;f2;3gg

(i; j; x)) = �

(1)

i

+ �

(2)

j

+ �

(1)

i

x+ �

(2)

j

x: (8)

4. Optimality of product type designs. This section is organized as

follows. First, we establish the optimality of product type designs for the highest

order interaction in a Kronecker product model. Then this result is extended to

subsets of maximal interactions in arbitrary hierarchical models. Finally, for the

D{criterion, a more general result is obtained which allows for testing a hierarchical

model against any hierarchical submodel. In particular, D{optimality is established

for the whole parameter vector in a hierarchical model.
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Theorem 1. Let H = P and H = f1; . . . ;Kg. If �

�

k

is �

q

{optimal for �

k

in

the kth marginal model, k = 1; . . . ;K, then the product type design �

�

=

N

K

k=1

�

�

k

is

�

q

{optimal for the parameters �

H

associated with the interaction of all factors.

Proof. Note that �

H

= L� where L =

N

K

k=1

L

k

and �

k

= L

k

�

(k)

. Hence, the

covariance matrix factorizes according to C(�

H

; �

�

) =

N

K

k=1

C

k

(�

k

; �

�

k

). The �

q

{

optimality can now be obtained by means of the appropriate equivalence theorems.

(For q < 1 see e. g. Schwabe, 1996, Theorem 4.5.) For the E{citerion (q = 1) a

more implicit equivalence theorem (Pukelsheim, 1993, p 182) has to be used:

The design �

�

k

is E{optimal for �

k

in the kth marginal model i� there exists a

non{negative de�nite, symmetric matrix M

k

with trM

k

= 1 such that

a

k

(t

k

)

>

C

k

(�

�

k

)L

>

k

C

k

(�

k

; �

�

k

)

�1

M

k

C

k

(�

k

; �

�

k

)

�1

L

k

C

k

(�

�

k

)a

k

(t

k

) � 1=�

max

(C

k

(�; �

�

k

))

for all t

k

2 T

k

, where, as usual, tr and �

max

denote the trace and the largest eigen-

value of a matrix. Let M =

N

K

k=1

M

k

. Then M is non{negative de�nite, symmetric,

trM = 1, and

a(t)

>

C(�

�

)L

>

C(�

H

; �

�

)

�1

MC(�

H

; �

�

)

�1

LC(�

�

)a(t) � 1=�

max

(C(�

H

; �

�

)):

Hence, the same equivalence theorem proves the E{optimality of the product type

design �

�

for �

H

. 2

Note that H = f1; . . . ;Kg is the only maximal interaction in the full Kronecker

product type interaction model H = P. In models with general hierarchical interac-

tion structure H a maximal interaction H will be some proper subset of f1; . . . ;Kg.

Then only conditions are required for the active factors k 2 H contributing to the

maximal interaction H.

Corollary 1. Let H be hierarchical and H be maximal in H. If �

�

k

is �

q

{optimal

for �

k

in the kth marginal model, k 2 H, then �

�

= �

H

(

N

k2H

�

�

k

;

�

�) is �

q

{optimal

for �

H

, where

�

� is an arbitrary design on the region �

k 62H

T

k

for the remaining fac-

tors.

Proof. For the active factors involved in H the Kronecker product model

E(Y

P(H)

(t

k

)

k2H

) =

P

H

0

�H

N

k2H

0

f

k

(t

k

)

>

�

H

0

can be regarded as a submodel of the

original model with interaction structure H. The interaction H is maximal in P(H)

and, hence, the product type design

N

k2H

�

�

k

is �

q

{optimal for �

H

in the sub-

model by Theorem 1. As �

�

is a product of

N

k2H

�

�

k

and

�

� the covariance matrices

C

P(H)

(�

H

;

N

k2H

�

�

k

) = C

H

(�

H

; �

�

) coincide for both models which can be seen by

an orthogonalizytion argument similar to that used in Schwabe (1996), pp 77. Thus

the result follows by a usual re�nement argument. 2

For general q the main result is the following extension of the �

q

{optimality to

more than one maximal interaction;

Theorem 2. Let H be hierarchical, H

1

; . . . ;H

M

be maximal in H and H

�

=
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fH

1

; . . . ;H

M

g. If �

�

k

is �

q

{optimal for �

k

in the kth marginal model, k 2 H(H

�

),

then the design �

�

= �

H(H

�

)

(

N

k2H(H

�

)

�

�

k

;

�

�) is �

q

{optimal for �

fH

1

;...;H

M

g

, where

�

�

is an arbitrary design on the region �

k 62H(H

�

)

T

k

for the remaining factors.

Proof. The key observation is that the covariance matrix is block diagonal:

C(�

H

�
; �

�

) = diag(C(�

H

; �

�

))

H2H

�
because each H 2 H

�

is maximal. This follows

again by an orthogonalization argument. By Fan's (1954) result on the eigenvalues

of block matrices the �

q

{optimality of �

�

can be deduced for �

H

�

from the �

q

{

optimality of �

�

for every single �

H

, H 2 H

�

, established in Corollary 1. 2

For additive models, H = f;; f1g; . . . ; fKgg all direct e�ects fkg are maximal,

and we recover Theorem 5.13 in Schwabe (1996). As indicated there no general

results can be expected for the �

q

{optimality of product type designs in case q > 0,

if larger parts of the parameter vector are of interest, including lower order interac-

tions or the constant term �

0

. In contrast to that general statement some stronger

results can be obtained for the D{criterion (q = 0) (see Schwabe, 1996, Section 6.1,

and the literature quoted there for the models (4) to (6)).

Theorem 3. Let H be hierarchical, H

0

� H be a hierarchical subsystem of inter-

actions, and H

�

= HnH

0

. If �

�

k

is D{optimal in the kth marginal model, k 2 H(H

�

),

then the design �

�

= �

H(H

�

)

(

N

k2H(H

�

)

�

�

k

;

�

�) is D{optimal for �

H

�

, where

�

� is an ar-

bitrary design on the region �

k 62H(H

�

)

T

k

for the remaining factors.

Proof. First note that a design �

�

k

is D{optimal i� �

�

k

is D{optimal for �

k

(see

e. g. Schwabe, 1996, Theorem 3.3). Hence, the design �

�

is D{optimal for any set of

maximal interactions in view of Theorem 3. The proof will now be completed by a

�nite induction argument as follows:

Assume that the theorem is valid for a hierarchical subsystemH

00

� H. Let H be

maximal in H

00

. Then it su�ces to show that the theorem is also valid for H

00

nfHg,

because H

0

can be generated by successively deleting interactions H from H

00

which

are maximal in H

00

. In fact, by Lemma 1 in the Appendix, Corollary 1 and the

assumption we obtain

detC

H

(�

H

��

[fHg

; �) = detC

H

(�

H

��

; �) detC

H

00

(�

H

; �)

� detC

H

(�

H

��

; �

�

) detC

H

00

(�

H

; �

�

) = detC

H

(�

H

��

[fHg

; �

�

);

where H

��

= H nH

00

, for every design � which proves the assertion. 2

By formally lettingH

0

= ; in Theorem 3, i. e.H

�

= H, we derive theD{optimality

of the product type design for the whole parameter vector;

Corollary 2. Let H be hierarchical. If �

�

k

is D{optimal in the kth marginal

model, then the product type design �

�

=

N

K

k=1

�

�

k

is D{optimal.

Remark 1. The product type design �

�

is simultaneously D{optimal for �

H

�

for every hierarchical interaction structure H and every subset of interactions H

�

as

long as the remaining interaction structure H

0

= H nH

�

is hierarchical.
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Remark 2. Because of the simultaneous D{optimality established in Corol-

lary 2 the product type design �

�

is also D{optimal for more complex experimental

situations with multivariate observations where for each component a di�erent in-

teraction structure have to be assumed as considered by Kurotschka and Schwabe

(1996).

Remark 3. The restriction to hierarchical interaction structures can be relaxed

when additional assumptions are imposed on the interplay between the marginal re-

gression functions f

k

and the optimal marginal designs �

�

k

(see Schwabe, 1996, p

81).

Remark 4. The main criticism of product type designs is related to their

rapidly increasing number of support points for moderate to large numbers of fac-

tors. However, still in those situations their optimality is of practical interest for

the construction of good designs, because the knowledge of the hypothetically op-

timal information matrix allows for judging the performance of competing designs.

In particular, this knowledge can help to construct fractional designs concentrated

on a substantially smaller subset of design points which yield the same information

matrix and are, hence, optimal. Well{known examples include orthogonal designs

in factorial experiments (see e. g. Collombier, 1996). More recently Riccomagno,

Schwabe and Wynn (1997) achieved a substantial reduction of the number of sup-

port points by using space{�lling lattices in multi{factor Fourier models with un-

derlying trigonometric regression.

5. Applications. For all the models exhibited in Example 1 and Section 3

optimal designs can be generated as products of optimal marginals.

5.1. Multilinear regression on [�1; 1]

K

. The full 2

K

factorial design is si-

multaneously �

q

{optimal for every set of maximal interactions in every hierarchical

interactions model

E(Y

H

(x

1

; . . . ; x

K

)) =

X

H2H

�

H

Q

k2H

x

k

(9)

of multilinear regression. Moreover, the 2

K

factorial is D{optimal for the whole

parameter vector as well as for any set H

�

of higher interactions, such that the re-

maining interaction structureH

0

= HnH

�

is hierarchical. In particular, in the model

of completeM{factor interactions the 2

K

factorial is the unique D{optimal design if

2M � K. (It is also the unique D{optimal design for all interactions of m up to M

factors, i. e. H

�

= fH; H � f1; . . . ;Kg; m � jHj �Mg and the unique �

q

{optimal

design for all M{factor interactions.) In case 2M < K also suitable 2

d

fractions

can be optimal, 2M � d < K. For example, it is well{known that in the additive

model (M = 1) there exist optimal 2

d

fractional factorials for d � log

2

(K + 1) and

moderate K � 3 constructed from Hadamard matrices.

5.2. K{way layout. In every hierarchical K{way layout E(Y

H

(i

1

; . . . ; i

K

)) =

P

H2H

�

(H)

(i

k

)

k2H

the equireplicated design is D{optimal for testing each model with
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hierarchical interaction structure against each submodel which itself has a hierarchi-

cal interaction structure. (For the construction of optimal fractional factorials see

e. g. Collombier, 1996).

5. 3. Qualitative and quantitative factors. For all those di�erent models

introduced in Subsection 3.2 the equireplicated design on f1; . . . ; Ig � f1; . . .Jg �

f�1; 1g is D{optimal for the whole parameter vector (under suitable identi�ability

conditions) as well as for estimating (testing) the higher interaction terms.

6. Appendix: An auxiliary result. In this section we present a helpful

relation between the covariance matrices in a larger model E(Y (t)) = f

0

(t)

>

�

0

+

f

1

(t)

>

�

1

+ f

2

(t)

>

�

2

and those in a proper submodel E(Y

0

(t)) = f

0

(t)

>

�

0

+ f

1

(t)

>

�

1

:

Here, the covariance matrices in the submodel are denoted by C

0

. The following

statement links the determinants of the covariance matrices in both models.

Lemma 1. If �

1

and �

2

are identi�able under � in the larger model E(Y (t)) =

f

0

(t)

>

�

0

+ f

1

(t)

>

�

1

+ f

2

(t)

>

�

2

, then detC(�

1

; �

2

; �) = detC

0

(�

1

; �) detC(�

2

; �).

Proof. We partition the covariance matrix

C(�

1

; �

2

; �) =

�

C

1

C

12

C

>

12

C

2

�

according to the components �

1

and �

2

, C

j

= C(�

j

; �). By the formula for general-

ized inverses of partitioned matrices we obtain C

0

(�

1

; �) = C

1

�C

12

C

�1

2

C

>

12

and the

result follows from detC(�

1

; �

2

; �) = det(C

1

� C

12

C

�1

2

C

>

12

) detC

2

. 2

Remark 5. If f

0

is omitted then the result of Lemma 1 specializes to the

well{known relation detC(�) = detC

0

(�) detC(�

2

; �).
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