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1 Introduction

The outcomes of statistical experiments are usually described by the mean

response E(Y (x)) which expresses the dependence on one or several ex-

planatory variables x. To obtain an appropriate �t { and to ease the inter-

pretations { usually a low degree linear model is �tted arising from a suit-

able approximation. For example, polynomial approximations are obtained

by Taylor expansions. In practice, most commonly a linear or quadratic �t

is selected.

Low order approximations are desirable due to their simplicity. However,

they may fail to �t all characteristics of the response. Therefore, one is

tempted to use a higher order approximation which includes the lower or-

der functions as particular cases. The payo� for a better �t to the observed

data is a higher variability in the estimated response due to observational

errors which may cover the general structures by noise. To avoid the e�ects

of over{�tting one can choose a lower order model as long as no signi�-

cant deviations are detected and switch to a higher order model otherwise.

This kind of pre{test estimation has been treated in linear models e. g. by

Judge and Bock (1978), Giles (1991), Boscher (1991), Droge (1993) and

Benda (1996), and it is implemented in many statistical software packages

as stepwise regression procedures.

In the present paper we consider the situation that a higher order linear

model truely describes the response while for reasons of simplicity and ac-
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curacy it would be desirable to �t a lower order linear model if appropriate.

Under these assumptions Judge and Bock (1978) gave a detailed prescrip-

tion and derived explicit expressions for the mean squared error matrix.

The performance of the pre{test estimator depends on the decision rule

which selects the �tted model, on the design according to which the ex-

planatory variables are chosen and on the magnitude of the deviation from

the lower order model. In this note the performance is measured by the

maximal mean squared error in prediction. A minimax approach is used

to get rid of the inuence of the actual shape of the response. Two strate-

gies are proposed for obtaining suitable pairs of designs and decision rules.

First, following the common idea in stepwise regression the decison rule

is �xed and the design is chosen to minimize the overall maximal mean

squared error. This may lead to unsatisfactory results. Another strategy

introduced by Benda (1996) is based on the idea of achieving a prespeci�ed

e�ciency level in case the lower order model is true. Under this constraint

the design and the decision rule have to be chosen simultaneously.

2 The Pre-test Estimator

We assume that the observations Y

1

; : : : ; Y

N

are properly described by a

linear model
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vector of unknown parameters and the Z

n

denote uncorrelated homoscedas-

tic random errors. Then the vector of observations Y = (Y
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>
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be written as

Y = F� + Z (2)
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is the design matrix associated with the de-

sign X = (x
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; : : : ; x
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) 2 X
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1

; : : : ; Z
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is the error vector,

E(Z) = 0, Cov(Z) = �

2

Id

N

.

Although (1) holds true we may be willing to assume that a proper sub-

model E(Y

n

) = f

0

(x

n

)

>

�

0

su�ces to describe the mean response E(Y

n

) =

f(x

n

)

>

�, where the regression function f

0

of the submodel lies in the func-

tion space spanned by f , i. e. f

0

= C

0

f for some (p�q)�p selection matrix

C

0

. Alternatively this can be described by an additional linear constraint

L� = 0 on the parameter vector, where L in a q � p matrix of rank q.

For example if the observations Y are described by a polynomial model

E(Y ) =

P

p

i=1

x

i�1

�

i

of degree p � 1 then we may hope that also a poly-

nomial

P

p�q

i=1

x

i�1

�

i

of lower degree p� q � 1 may be appropriate. In this

case the constraint is given by L = (0; Id

q

).
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In the present situation it is reasonable, �rst to test whether the hypothesis

L� = 0 is true and then to estimate the response E(Y ) by the least squares

estimators in model (1) if L� = 0 is rejected and by the constrained least

squares estimator satisfying L

b

� = 0 if L� = 0 is accepted.

In the polynomial regression example we �t a polynomial of degree p�q�1

if the test con�rms that this lower degree polynomial is adequate, and we

�t a polynomial of degree p� 1 otherwise.

For notational convenience let F be of full column rank p � N . Denote

by

b

�

�

= (F

>

F )

�1

F

>

Y the least squares estimator in the unconstrained

model (1) and by

b

�

1

= (F

>

0

F

0

)

�1

F

>

0

Y the least squares estimator in the

constrained model, satisfying L

b

�

1

= 0, where F

0

= (f

0i

(x

n

))

i=1;:::;p

0

n=1;:::;N

is

the design matrix in the constrained model. Then the pre-test estimator

will be de�ned by

b

�

c

=

(

b

�

�

if U > c

b

�

1

if U � c

(3)

where

U =

N � p

q

Y

>
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is the statistic of the F -test for testing the hypothesis L� = 0, and c is a

prespeci�ed critical value.

This critical value c which governs the pre-test estimator

b

�

c

will be deter-

mined either by a �xed signi�cance level �, i.e. c is the (1� �) quantile of

the appropriate F -distribution, which is common use in the implemented

statistics software; or c may be chosen in order to guarantee a prespeci�ed

precision in the constrained model (Benda, 1996). Alternatively, c may also

be chosen to minimize the regret (Droge, 1993).

All these approaches require normality of the random errors Z which we

will assume throughout the paper.

3 Asymptotic Risk

For the mean squared error matrix E((

b

�

c

��)(

b

�

c

��)

>

) explicit formulae

have been given by Judge and Bock (1978) under the assumption of normal

errors. Starting from their results Benda (1996) derived an asymptotic rep-

resentation for large sample sizes N which is well adapted to the theory of

generalized designs interpreted as discrete design measures � on the desgin

region X .

We will con�ne to the situation of a one-dimensional constraint l

>

� = 0,
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i. e. q = 1. In that case the standardized asymptotic risk matrix is given by

�
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where the information matrix I(�) =

R

f(x)f (x)

>

�(dx) of the generalized

design � is assumed to be regular and g

c

is de�ned by

g

c

(�) = 1� F

�

2

3

;�

(c) +

�

2F

�

2

3

;�

(c) � F

�

2

5

;�

(c)

�

2� (6)

with F

�

2

�

;�

being the distribution function of the �

2

-distribution with �

degrees of freedom and noncentrality parameter � (see Benda, 1996, for

details, in particular, on the properties of the function g

c

(�)).

Here we will consider the case that l = (0; : : : ; 0; 1)

>

= e

p

is the pth unit

vector, i. e. we check whether the highest degree parameter �

p

equals 0 or

not. Hence, we test the model (1) against the proper submodel

Y =

p�1

X

i=1

f

i

(x)�

i

+ Z : (7)

Denote by f

0

= (f

1

; : : : ; f
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)

>
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0

(�) =

R

f

0

f

>

0

d� the regression func-

tion and the information matrix in the constrained model (7), respectively.

Then the standardized asymptotic risk can be rewritten as

�
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R(c; �;�) =

�
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�

I

0
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0
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�
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c
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>

p
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e

p

�

�

�

I

0
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I
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I
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where I

01
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R

f

0

f

p

d� and � = �

2

p

=(2�

2

e

>

p

I(�)

�1

e

p

) is the noncentrality

parameter.

4 The G-criterion

Reasonable optimality criteria are aiming at minimizing the mean squared

error E((f(x)

>

(

b

� � �))

2

) of the prediction f(x)

>

b

� compared to the true

mean response f(x)

>

�. In this note we will lay emphasis on the G-criterion

of minimizing the maximal variance

sup

x2X

E((f(x)

>

(

b

�

c

� �))

2

) = sup

x2X

f (x)

>

E((

b

�

c

� �)(

b

�

c

� �)

>

)f(x) (9)
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For this minimax criterion on the design regionX criterion the standardized

asymptotic risk becomes

sup

x2X

�

�2
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>

R(c; �;�)f(x)
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�

f
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f
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The noncentrality parameter � = (l
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2

=(2�

2

l

>

I(�)

�1

l) is a function of

the unknown parameters � and �

2

and, hence, the G-criterion given by

(10) is local. For example, if the constrained model is true we obtain for

the standardized asymptotic risk
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�
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>
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d
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d

0
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�
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Following an idea in Benda (1996) we propose a minimax approach which

aims at minimizing

sup

�2IR

p

sup
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�
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>
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d(�; c;x) (13)

to avoid the parameter dependence, where

d(�; c;x) = f

0
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>
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(f (x)
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is the maximum (in �) mean squared error function and

m(c) = sup

��0

g

c

(�) (16)

is �nite and bounded from below by 1 according to Lemma 2 in Benda

(1996).

Note that, like all criteria based on the mean squared error of the predic-

tion, both the local and global G-criteria (10) and (13) are invariant with

respect to a reparametrization of the model induced by a regular linear

transformation f ! Qf of the regression functions, subject to the condi-

tion that the constraint is not a�ected by the transformation, i. e. Ql = l.

More generally, the minimax G-criterion (13) remains equivariant if the

constraint is linearly transformed, i. e. Ql = l for some non-zero con-

stant . (For a treatment of equivariance under constraints we refer e. g. to

section 3 in Schwabe, 1996.)
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5 Polynomial Regression

In a polynomial regression model Y (x) =

P

p

i=1

�

i

x

i�1

+ Z of degree p� 1

on the standardized design region X = [�1; 1] the maximummean squared

error function d(�; c;x) is a polynomial of degree 2(p � 1) in the variable

x. Denote by m

i

=

R

x

i

�(dx), i = 0; : : : ; 2p � 2, the moments of the de-

sign � interpreted as a design measure, such that the (i; j)th entry of the

information matrix I(�) becomes m

i+j�2

.

Now, for every x and every critical value c �xed, we observe by repre-

sentation (15) that d(�; c;x) is minimized within the class of designs with

given lower moments m

i

, i = 1; : : : ; 2p� 3, if the highest momentm

2p�2

is

as large as possible. By the theory of canonical moments (see Karlin and

Studden, 1966) the highest order moment m

2p�2

attains its maximum for

prespeci�ed lower momentsm

i

, i < 2p�2, if � is concentrated on p di�erent

settings for the design variable x including both endpoints �1 and 1 of the

interval X .

Hence, every design � is uniformly (in x) dominated by a p-point design,

and we can con�ne our search for an optimal design to that class of designs

which are supported by f�1; x

2

; : : : ; x

p�1

; 1g for some x

2

; : : : ; x

p�1

2 X .

Example 1. For constant versus linear regression, p = 2, the unique

optimal design assigns equal weights

1

2

to both endpoints �1 and 1, irre-

spectively which critical value c is used.

The global G-criterion (13) is invariant with respect to sign change (x !

�x). It is, thus, reasonabale that optimal designs should share this symme-

try property. Again, every symmetric design is dominated by a symmetric

p{point design supported by f�1;�x

m�1

; : : : ;�x

1

; x

1

; : : : ; x

m�1

; 1g if p =

2m is even and by f�1;�x

m�1

; : : : ;�x

1

; 0; x

1

; : : : ; x

m�1

; 1g if p = 2m + 1

is odd, respectively, for some x

1

; : : : ; x

m�1

2 (0; 1).

Example 2. For linear versus quadratic regression, p = 3, the best sym-

metric design �

w

is concentrated on f�1; 0; 1g and assigns equal weights

1

2

w to each endpoint �1 and 1 and the remaining weight 1 � w to the

midpoint 0 of the interval. The predicted variance d(�

w

; c;x) is a sym-

metric 4th order polynomial in x and, hence, attains its maximum at ei-

ther x = 0 or x = 1 depending on whether w � w

1

or w � w

1

, where

w

1

=

m(c)+1

2m(c)+1

. The variance d(�

w

; c; 0) is decreasing while d(�

w

; c; 1) is

increasing in w. Thus, for a prespeci�ed signi�cance level �, i. e. a pre-

speci�ed critical value c satisfying F

�

2

1

;0

(c) = 1 � �, the optimal weight

w

�

= w

�

(c) is given by w

�

= w

1

=

m(c)+1

2m(c)+1

. The corresponding maximal

variance sup

x2X

d(�

w

�

(c)

; c;x) equals m(c) + 2.

For various critical values c corresponding to commonly used signi�cance

levels � the optimal weights w

�

are listed together with sup

x2X

d(�

w

�

; c;x),

the value of the global G-criterion (13), and sup

x2X

d

0

(�

w

�

; c;x), the stan-

dardized maximal mean squared error (11) if the constrained model is
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� c w

�

(c) sup

x2X

d(�

w

�

; c;x) sup

x2X

d

0

(�

w

�

; c;x)

0 1 1 1 2.00

0.005 7.88 0.53 10.31 2.94

0.01 6.63 0.53 9.00 2.95

0.025 5.02 0.54 7.35 2.99

0.05 3.84 0.55 6.18 3.03

0.10 2.71 0.57 5.09 3.09

0.25 1.32 0.61 3.85 3.12

0.50 0.45 0.65 3.20 3.05

0.75 0.10 0.66 3.02 3.01

1 0 0.67 3.00 3.00

TABLE 1. linear versus quadratic regression: prespeci�ed signi�cance levels

true, �

p

= 0, in Table 1. It is striking that the entries for the standard-

ized maximal mean squared error sup

x2X

d

0

(�

w

�

; c;x) = d

0

(�

w

�

; c; 1) =

1

w

(2 � (1 � w)F

�

2

3;0

(c)) corresponding to the true constrained model are

very close or even exceed the threshold sup

x2X

d(�

�

; 0;x) = 3 which is

the standardized maximal mean squared error obtained if the G{optimal

design �

�

and the corresponding least squares estimator

b

�

�

in the uncon-

strained model are used. Thus, the performance of this strategy of pre{test

estimation is unsatisfactory.

Note also that the optimal weight w

�

is decreasing in c from the G{optimal

weight w

�

(0) =

2

3

in the unconstrained model to the weight

1

2

which is

optimal for �

2

and provides the best model discrimination. In particular,

the weight w

�

(c) does not tend to the optimal weight w

�

(1) = 1 in the

constrained model, as the critical value c approaches in�nity.

6 Optimal Critical Values

As can be seen from Table 1 the standardized maximalmean squared error

of prediction sup

x2X

d(�

�

(c); c;x) of the best design �

�

= �

w

�

(c)

substan-

tially depends on the choice of the critical value c. Therefore the perfor-

mance of the estimator/design pair can be improved by also choosing the

critical value c simultaneously with �.

If there are no further restrictions it is straightforward to use c

�

= 0 as m(c)

attains its unique minimum at c = 0. Thus, the least squares estimator

b

�

�

for the unconstrained model minimizes the maximal mean squared error of

prediction and the design problem is completely solved.

Alternatively, we impose an e�ciency constraint sup

x2X

d

0

(�; c;x) = r

0

on the precision which guarantees a prespeci�ed performance in case the

constrained model is true.

To be more speci�c, let us recall some general results in the theory of op-
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timal designs (for further readings on this topic we refer to Atkinson and

Donev, 1992, and Pukelsheim, 1993). If �

�

and �

�

0

are G{optimal in the

full model or in the constrained model, respectively, and if the associated

least squares estimators

b

�

�

resp.

b

�

1

are applied, then the standardized

maximal mean squared errors equal the corresponding numbers of param-

eters in the models, i. e. sup

x2X

d(�

�

; 0;x) = sup

x2X

d

0

(�

�

; 0;x) = p and

sup

x2X

d

0

(�

�

0

;1;x) = p � 1.

We will lay more emphasis on the performance of the estimators

b

�

c

if the

constrained model is valid. To preserve a better performance we specify a

bound r

0

on the standardized asymptotic mean squared error d

0

, satisfying

p�1 < r

0

< p, which has to be attained by the competing estimator/design

pairs (c; �). Within this class where sup

x2X

d

0

(�; c;x) = r

0

we are looking

for the estimator/design pair (�

�

; c

�

) which minimizes the unconstrained

standardized maximal mean squared error sup

x2X

d(�; c;x). This pair will

be called G{optimal under the e�ciency constraint.

Example 3. For constant versus linear regression, p = 2, �

�

assigns equal

weights

1

2

to both endpoints �1 and 1, and c

�

is the (2 � r

0

){quantile of

the �

2

{distribution with 3 degrees of freedom, F

�

2

3;0

(c

�

) = 2� r

0

.

Example 4. For linear versus quadratic regression, p = 3, the situation is

more complicated. Again, we can con�ne to the symmetric 3{point designs

�

w

which assign weights

1

2

w to 1 and �1 and weight 1 � w to 0. Because

of d

0

(�; c; 0) = 1 +

w

1�w

(1 � F

�

2

3;0

(c)) and d

0

(�; c; 1) = 1 +

1

w

+

1�w

w

(1 �

F

�

2

3;0

(c)) the standardized asymptotic mean squared error d

0

(�; c;x) attains

its maximum at x = 0 if F

�

2

3;0

(c) � k(w) =

3w�2

2w�1

or at x = 1 if F

�

2

3;0

(c) �

k(w). Hence, to meet the e�ciency constraint the critical value c = c(w)

has to be chosen in dependence on the weight w according to

F

�

2

3;0

(c) =

�

1�(1�w)r

0

w

if w � w

0

2�r

0

w

1�w

if w � w

0

(17)

where w

0

=

r

0

�1

2r

0

�3

. Denote by r(w) = sup

x2X

d(�

w

; c(w);x) the maximal

standardized mean squared error in the unconstrained model which has to

be minimized.

For w � w

0

we observe that m(c(w)) is increasing in the weight w and,

hence, r(w) = 1+

w

1�w

m(c(w)) also increases in w. For the alternate case,

w � w

0

, c(w) and, hence, m(c) is decreasing in w. Thus, as long as w �

m(c(w))+1

2m(c(w))+1

< w

0

, the risk r(w) = 1 +

1

w

+

1�w

w

m(c(w)) decreases in w.

Consequently, we obtain for the optimal weight w

�

that

m(c(w)) + 1

2m(c(w)) + 1

� w

�

� w

0

=

r

0

� 1

2r

0

� 3

(18)

and

r(w

�

) = 1 +

w

�

1� w

�

m(c(w

�

)) (19)
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r

0

w

�

c

�

r(w

�

) �

2.0 1 1 1 0

2.1 0.92 6.25 73.61 0.01

2.2 0.86 4.64 30.79 0.03

2.3 0.81 3.66 18.35 0.06

2.4 0.78 2.95 12.60 0.09

2.5 0.75 2.37 9.32 0.12

2.6 0.73 1.87 7.19 0.17

2.7 0.71 1.42 5.69 0.23

2.8 0.69 1.01 4.57 0.32

2.9 0.68 0.58 3.70 0.44

3.0 0.67 0 3.00 1

TABLE 2. linear versus quadratic regression: e�ciency constraints

for the corresponding risk. Now, from (17) we get the relation

w =

2� F

�

2

3;0

(c(w))

r

0

� F

�

2

3;0

(c(w))

(20)

for w � w

0

and, hence,

r(w) = 1 +

1

r

0

� 2

(2 � F

�

2

3;0

(c(w)))m(c(w)): (21)

Numerical calculations indicate that (2 � F

�

2

3;0

(c))m(c) is increasing in

c. thus, r(w) is decreasing in w which yields an optimal weight w

�

=

w

0

=

r

0

�1

2r

0

�3

with corresponding standardized maximal mean squared er-

ror r(w

�

) = 1 +

r

0

�1

r

0

�2

m(c(w

�

)).

For various values of the e�ciency constraint r

0

= sup

x2X

d

0

(�

w

�

; c

�

;x)

these weights w

�

and their associated critical values c

�

= c(w

�

) are listed

in Table 2 together with r(w

�

) = sup

x2X

d(�

w

�

; c

�

;x), the value of the

global G-criterion (13), and the signi�cance levels � corresponding to c

�

.

Note that w

�

decreases in r

0

from the G{optimalweight 1 in the constrained

model for r

0

= 2 to the G{optimal weight

2

3

in the unconstrained model for

r

0

= 3. Moreover, the entries in Table 2 give evidence that higher e�ciencies

in the constrained model, i. e. smaller values of r

0

, result in larger global

maximal mean squared errors in the unconstrained model. Note also that

the constrained risk d

0

(�

w

�

; c

�

;x) attains its maximum at x = 1 while the

unconstrained risk d(�

w

�

; c

�

;x) attains its maximum at x = 0.

As both, the local and global G-criteria (10) and (13), are equivariant with

respect to linear reparametrizations of the model the optimality results ob-

tained in Examples 1 to 4 carry over to arbitray intervals [a; b] for the design

region X , if the optimal designs �

�

are appropriately transformed, e. g. �

w

assigns equal weights

1

2

w to both endpoints a and b and the remaining

weight 1� w to the midpoint

a+b

2

.
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7 Additional Remarks

Remark 1. For a given design � the pre-test estimator

b

�

c

outperforms

the unconstrained least squares estimator

b

�

�

if the parameter � lies in a

vicinity of the constraint l

>

� = 0. However, it is doubtful whether this is

still true if for �xed c the best design �

�

(c) is chosen (see Example 2). Hence,

the admissibility of the estimator-design pair (c; �

�

(c))has to be checked in

each particular case.

Remark 2. If the design �

�

is both G{optimal in the constrained model

and optimal for testing the constraint, then �

�

is G{optimal for the pre{test

estimators uniformly in all choices of the critical value c (see Example 1).

Acknowledgments: The present paper was �nished while the second au-

thor was visiting the University of Technology at Darmstadt. He wishes

to express his sincere thanks for the hospitality he met during this visit.

His work was partly supported by the research grant Ku719/2{2 of the

Deutsche Forschungsgemeinschaft at the Free University, Berlin.

References

Atkinson, A.C. and Donev, A.N. (1992). Optimum Experimental Designs.

Clarendon Press, Oxford

Benda, N. (1996). Pre{test estimation and design in the linear model. Jour-

nal of Statistical Planning and Inference, 52, 225{240

Boscher, H. (1991). Contamination in linear regression models and its in-

uence on estimators. Statistica Neerlandica, 45, 9{19

Droge, B. (1993). On �nite{sample properties of adaptive least squares

regression estimates. Statistics, 24, 181{203.

Giles, J.A. (1991). Pre{testing in a mis{speci�ed regression model. Com-

munications in Statistics | Theory and Methods, A 20, 3221{3238

Judge, G.G. and Bock, M.E. (1978). The Statistical Implications of Pre{

test and Stein{rule Estimators in Econometrics. North{Holland, Am-

sterdam

Karlin, S. and Studden, W.J. (1966).Tchebyche� Systems: With Applica-

tions in Analysis and Statistics. Wiley, New York.

Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York.

Schwabe, R. (1996). Optimum Designs for Multi{Factor Models. Lecture

Notes in Statistics, 113. Springer, New York.



References 11

Norbert Benda

Institut f

�

ur Medizinische Biometrie

Universit

�

at T

�

ubingen

Westbahnhofstra�e 55

D{72 070 T

�

ubingen

Germany

Rainer Schwabe

Technische Hochschule Darmstadt

Fachbereich Mathematik

Schlo�gartenstra�e 7

D{64 289 Darmstadt

Germany


