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Abstract. Symbolic objects are the basic elements for knowledge rep-

resentation in symbolic data analysis. This paper aims to integrate sym-

bolic objects into formal concept analysis in order to compare and tie

together both approaches.

1 Introduction

Symbolic objects are the basic elements of a formal language which has been

developed since 1987 in symbolic data analysis. The general aim was to extend

the �eld of application, methods and algorithms of classic data analysis to more

complex data. Meanwhile, the formalismof symbolic objects is not only used in a

broad �eld of data analysis, but also in knowledge representation and knowledge

processing.

From the point of view of formal concept analysis, the most interesting parts

of symbolic data analysis are those which are concerned with knowledge process-

ing and conceptual classi�cations. These parts of symbolic data analysis and

formal concept analysis both emphasize the intensional view. Hence, there are

various points of common interest which have been manifested by common con-

ferences on ordinal and symbolic data analysis in the last few years. Nevertheless,

the communication is still limited, mostly because of the di�erent formalisms.

This paper tries to integrate the language of symbolic objects in the wider

range of logically scaled many-valued contexts in formal concept analysis in

order to harmonize both approaches. For that, the basic notions of symbolic

data analysis are described in the language of formal concept analysis and some

di�erences are discussed.

A certain familiarity with at least one of both languages could surely be

helpful to appreciate this integration. That is because it is obviously not possible

to explain and motivate all notions of both approaches in detail. For a basic

introduction, please refer to [11] and [6] for formal concept analysis and to [2]

for symbolic data analysis. Nevertheless, the basic ideas of this article can be

understood without every formal detail.

2 Formalization of Data in many-valued Contexts

Knowledge processing in formal concept analysis and symbolic data analysis

usually starts with object-attribute-value relationships, a frequently used data



structure to code real-world problems. They can be represented in many-valued

contexts which are formally de�ned as quadruples (
; Y;O; I) where 
; Y , and O

are sets whose elements are called (individual) objects, attributes, and attribute

values, respectively, and I is a ternary relation with I � 
 � Y � O such that

(o; y; v) 2 I and (o; y; w) 2 I implies v = w. Thus, an attribute y of a many-

valued context (
; Y;O; I) may be considered as a partial map of 
 to O which

suggests writing y(o) = v whenever (o; y; v) 2 I. In the language of symbolic

objects, the attributes are often called variables. The observation set O

y

of the

variable y is a set satisfying y(
) � O

y

� O.

It is often emphasized that this formalization and the corresponding methods

allow the full freedom of choice for the observation sets. They can be intervals

of R in the case of quantitative variables as well as �nite sets or even power sets

for so-called qualitative variables (then, it would not be called obeservation set

anymore).

K Fabricator F Temperature T Weight W Price P Material M

One Kilo Bag Wolfskin 7

�

C 940 g 149,- Liteloft

Sund Kodiak 3

�

C 1880 g 139,- Hollow �ber

Kompakt Basic Ajungilak 0

�

C 1280 g 249,- MTI Loft

Finmark Tour Finmark 0

�

C 1750 g 179,- Hollow �ber

Interlight Lyx Caravan 0

�

C 1900 g 239,- Thermolite

Kompakt Ajungilak -3

�

C 1490 g 299,- MTI Loft

Touch the Cloud Wolfskin -3

�

C 1550 g 299,- Liteloft

Cat's Meow The North Face -7

�

C 1450 g 339,- Polarguard

Igloo Super Ajungilak -7

�

C 2060 g 279,- Terraloft

Donna Ajungilak -7

�

C 1850 g 349,- MTI Loft

Tyin Ajungilak -15

�

C 2100 g 399,- Ultraloft

Travellers Dream Yeti 3

�

C 970 g 379,- Goose-downs

Yeti light Yeti 3

�

C 800 g 349,- Goose-downs

Climber Finmark -3

�

C 1690 g 329,- Duck-downs

Viking Warmpeace -3

�

C 1200 g 369,- Goose-downs

Eiger Yeti -3

�

C 1500 g 419,- Goose-downs

Climber light Finmark -7

�

C 1380 g 349,- Goose-downs

Cobra Ajungilak -7

�

C 1460 g 449,- Duck-downs

Cobra Comfort Ajungilak -10

�

C 1820 g 549,- Duck-downs

Fox�re The North Face -10

�

C 1390 g 669,- Goose-downs

Mont Blanc Yeti -15

�

C 1800 g 549,- Goose-downs

Fig. 1. Many-valued context Sleeping Bags
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For illustration, we will consider a little example which is presented in de-

tail in [9]. It deals with a data set extracted from a katalogue about outdoor-

equipment. The objects are sleeping bags with the attributes fabricator F , min-

imal temperature T , weight W , price P and material M . Their attribute values

are represented in the table shown in �gure 1.

Additionally given structures on the observation sets O

y

can be formalized

by relations. Then the formalization has to be extended. We formally de�ne a

relational context as a tuple (
; Y; (O;R); I) where (
; Y;O; I) is a many-valued

context and R a set of relations on O. In particular, the observation sets O

y

� O

are often ordered, like the observation sets O

T

; O

W

; O

P

in our example, which

can be considered as subsets of the linearly ordered set (Z;�).

The basic approach of symbolic data analysis consists of extending the data

array by unary predicates which are constructed with attributes and attribute

values of the many-valued context. In our example, we could consider the sym-

bolic objects like

[M = fgoose-downs, duck-downsg] ^ [P = [250, 400]]

This predicate is satis�ed by all sleeping bags whose material is goose-down or

duck-down and which has a price between 200,- and 400,- DM. Using predicates

like these, one can describe objects and classes of objects in a more complex way

than by only using the attributes of the many-valued context.

For that, the terminology of symbolic objects is de�ned. This terminology

determines a derived context which is considered to be the extended data array.

In formal concept analysis, this procedure of de�ning a terminology and deriving

the context is called logical scaling. We shall give a short introduction to this

general procedure before we describe the speci�c terminology of symbolic objects:

3 Logical Scaling in Formal Concept Analysis

Formal concept analysis provides di�erent so-called scaling methods to transform

a many-valued context (
; Y;O; I) into a formal context (
;P;E) whose extents

can be thought of as the \meaningful" subsets of 
. From this formal context,

conceptual hierachies can be explored and represented by line diagrams based on

concept lattices (cf. [5]). It must be emphasized that the transformation itself can

never be conducted automatically because it depends on the research questions.

Hence, scaling is a �rst, purpose-oriented interpretation of the data.

The approach of logical scaling itself was developed when we tried to inte-

grate the language of symbolic objects into formal concept analysis (cf. [9]) and

is described in detail in [10]. The basic idea is to use a formal language to gen-

erate unary predicates from attributes and attribute values of the many-valued

context. These predicates form a terminology.

Formally, we de�ne a terminology as a tuple (P;N ; �) =: T where P is a set

of unary predicates, N a set of names of attributes and � a surjective naming

function �:N ! P. If the naming function is � equals id: P ! P, i. e. the

predicates are not named, we can write P for the terminology.
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�: N ! P

cheap 7! (Price � 250)

not expensive 7! (Price > 250^ � 400)

expensive 7! (Price > 400)

down �bres 7! (Material = goose-downs _ duck-downs)

synthetic �bre 7! (Material 6= goose-downs _ duck-downs)

good 7! ((T > 0 ^ � 7) ^ (W � 1000)) _

((T > �7 ^ � 0) ^ (W � 1400)) _

((T > �15 ^ � �7) ^ (W � 1700)) _

(T � �15) ^ (W � 2000))

acceptable 7! ((T > 0^ � 7) ^ (W � 1400)) _

((T > �7^ � 0) ^ (W � 1700)) _

((T > �15^ � �7) ^ (W � 2000)) _

(T; � �15)

bad 7! ((T > 0^ � 7) ^ (W > 1400)) _

((T > �7^ � 0) ^ (W > 1700)) _

((T > �15^ � �7) ^ (W > 2000))

Fig. 2. Example for a terminology

Let us consider a terminology for our example. Therefore, we specify a set of

attribute names like

N := fcheap, not expensive, expensive, down �bres,

synthetic �bres, good, acceptable, badg.

Every attribute name is assigned to a predicate which describes its special mean-

ing in this terminology. For the attributes cheap, not expensive and expensive, we

have speci�ed certain intervals of prices. The attributes down �bres and synthetic

�bres are decribed by the material, and the attributes good, bad and acceptable

refer to the relation between the minimal temperature and the weight: If a sleep-

ing bag does not stand low temperature although it is quite heavy, we want to

call it bad.

Obviously, all these attributes and their descriptions can only be justi�ed by

the question we have for our data analysis. Nevertheless, the decisions which are

taken here can always be discussed because they are explictly speci�ed in the

terminology.

When we scale logically the many-valued context K := (
; Y;O; I) by the

terminology T := (P;N ; �), we obtain the one-valued derived context K

T

:=

(
;N;E) where the relation E � 
 � N is given by the semantics of the de-

scribing predicates. For all objects o 2 
 and names of attributes m 2 N we

de�ne

oEm :() o satis�es �(m):
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One Kilo Bag � � � �

Sund � � �

Kompakt Basic � � � �

Finmark Tour � � �

Interlight Lyx � � �

Kompakt � � �

Touch the Cloud � � �

Cat's Meow � � � �

Igloo Super � � �

Donna � � �

Tyin � � �

Travellers Dream � � � �

Yeti light � � � �

Climber � � �

Viking � � � �

Eiger � � �

Climber light � � � �

Cobra � � � �

Cobra Comfort � � �

Fox�re � � � �

Mont Blanc � � � �

Fig. 3. Derived context Sleeping Bags

When we derive the many-valued context Sleeping Bags by the terminology

given in �gure 2, we obtain the derived context shown in �gure 3. Its objects are

the objects of the original context, and its attributes are the attribute names of

the terminology.

From the derived context, we can explore the conceptual structure by means

of formal concept analysis.We brie
y recall the basic de�nitions; for more details,

please refer to [12] or [6]. For a formal context (
;N;E) where 
 and N are

sets and E is a relation between 
 and N , a formal concept is de�ned as a pair

(A;B) with A � 
, B � N , A

E

:= fm 2 N j oEm for all o 2 Ag = B and

B

E

:= fo 2 
 j oEm for all m 2 Bg = A. A and B are called the extent and

the intent of the concept (A;B), respectively. The hierarchical order of concepts

is de�ned by (A

1

; B

1

) � (A

2

; B

2

) :() A

1

� A

2

. The set of all concepts of the

formal context (
;N;E) with the hierarchical order is a complete lattice. It is

called concept lattice of (
;N;E) and is denoted by B(
;N;E).
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acceptable

good

synthetic fibres

bad down fibres

expensive

not expensive

cheap

Cobra Comfort

Eiger

Mont Blanc

Foxfire

Cobra

Igloo Super

Touch the Cloud

Kompakt

Tyin

Donna

Cat's Meow

Climber

Yeti light

Travellers Dream

Viking

Climber light

Interlight Lyx

Finmark Tour

Sund

Kompakt Basic

One Kilo Bag

Fig. 4. Concept lattice of the logically scaled context Sleeping Bags

The concept lattice of the derived context Sleeping Bags is shown in �gure 4.

From this concept lattice, we can read o� interesting conceptual patterns. For

example, there is no sleeping bag out of down �bres which is cheap. On the other

hand, all expensive sleeping bags are made out of down �bres. All bad sleeping

bags are out of synthetic �bres whereas god sleeping bags are out of down or

synthetic �bres. The only good and cheap sleeping bags are \One Kilo Bag" and

\Kompakt Basic" which are necessarily out of synthetic �bres.

4 Symbolic Objects

For symbolic objects, Diday gives a general description which will be substan-

tiated later: A symbolic object is \a description which is expressed by means

of a conjunction of predicates, in terms of the values taken by the variables"

([2], p. 4). There are di�erent types of symbolic objects called events, assertion

objects, horde objects, synthesis objects etc., all of which are constructed by a

speci�c combination of basic symbolic objects: the events. In [2], it is proved

that horde objects and synthesis objects can be expressed by assertion objects

of a suitable many-valued context. For this reason, we only consider events and

assertion objects in the following paragraphs.

Events. Let (
; Y;O; I) be a many-valued context. A unary predicate p is called

an event if there exists an attribute y 2 Y and a subset V of the observation set

O

y

such that for all o 2 
 it holds

o satis�es p () y(o) 2 V:

In the formal language of symbolic objects, this predicate is denoted by the

expression [y = V ]. Note that, as well as the name \event" itself, the formal
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language which is used for the description of predicates is derived from the

language of statistics. Generally, the formalism used in symbolic data analysis

was strongly in
uenced by statistics.

Every event is a disjunction of atomic predicates, independent of the formal

language we chose. The event p can also be expressed in a formal language

used for logical scaling in formal concept analysis. Here, the event [y = V ] is

represented by the expression
_

v2V

(y = v):

Assertion Objects. The assertion objects are conjunctions of events. A unary

predicate p is called an assertion object if there exists a set X � Y of attributes

and subsets V

y

of the observation sets O

y

for all y 2 X such that, for all o 2 
,

it holds

o satis�es p () y(o) 2 V

y

for all y 2 X:

Such an assertion object is represented by the expression

V

y2X

[y = V

y

] or, in

the language of logical scaling, by

^

y2X

(

_

v2V

y

(y = v)):

The set of all predicates of this conjunctive normal form is called the terminology

T of the symbolic objects where the naming function is just the identity. (From

now on, we will write symbolic object meaning assertion object.)

The extended data array that symbolic data analysis is working with, can be

considered as the derived many-valued context K

T

:= (
; T ; E) whose objects

are the individual objects of K and whose attributes are the symbolic objects,

i. e. the assertion objects.

Obviously, the derived context is very large. For one single attribute y, there

are 2

jO

y

j

events. Thus, in practice, only a subset of symbolic objects will deter-

mine our terminology. For example, in the case of a quantitative variable y 2 Y

with observation set R, not all subsets of R are taken into account but only a

subset of the intervals. Further restrictions of the terminology are usually nec-

essary. Usually, the derived context is not explicitly calculated, but it provides

the formalism for the knowledge representation.

5 Basic Notions for Symbolic Objects

For the presentation of the basic notions of the language used in symbolic data

analysis, let us start with a many-valued context K := (
; Y;O; I). We construct

the set S of symbolic objects which consists of all predicates of the form

^

y2Y

[y = V

y

] where V

y

� O

y

for all y 2 Y:

We shall see that most of the basic notions used in symbolic data analysis have

direct correspondents in the language of formal concept analysis if we consider

the derived context K

S

:= (
;S; E) with

oE p :() o satis�es p for all o 2 
; p 2 S:
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Extension. In symbolic data analysis, the extension of the assertion object

p :=

^

y2X

[y = V

(p;y)

]

is de�ned as the set of all individual objects which satisfy p, that meansExt(p) :=

fo 2 
 j 8y 2 X y(o) 2 V

(p;y)

g: This de�nition of extension corresponds directly

to the extents de�ned in formal concept analysis. The attribute extent of an

attribute p in a formal context is speci�ed as the extent of the attribute concept

(p

E

; p

EE

), i. e. as p

E

:= fo 2 
 j oE pg = fo 2 
 j o satis�es pg = Ext(p): In

the same way, the equivalence and symbolic order of symbolic objects can easily

be explained in the derived context and its concept lattice.

Equivalence. Two symbolic objects p; q 2 S can be called equivalent (written

p � q) if their extensions are identical. In the derived context, two equivalent

symbolic objects have identical attribute extents and thus they have the same

attribute concept.

Symbolic order. The symbolic order of symbolic objects is a preorder de�ned

by the inclusion of extensions. We have

p � q :() Ext(p) � Ext(q) for all p; q 2 S:

That means, we can read o� the symbolic order in the concept lattice because it

re
ects the hierarchical order de�ned on formal concepts of the derived context.

A symbolic object p is less than another symbolic object q for the symbolic order

if the attribute concept (p

E

; p

EE

) is less than the attribute concept (q

E

; q

EE

) in

the concept lattice B(K

S

). In other words, the ordered set of equivalence classes

of symbolic objects is isomorphic to the ordered set of attribute concepts of the

derived context.

We conclude that if we consider symbolic objects to be attributes of a logically

derived context, the basic notions of the language of symbolic objects can easily

be integrated because they correspond to those of formal concept analysis. This

correspondence justi�es the interpretation of symbolic objects as more complex

attributes and not as more complex objects.

Intension. In contrast to extension, the notion of intension is rather di�erent

in the two aproaches. In symbolic data analysis, the intension of a set A � 
 of

objects is de�ned as a single symbolic object:

Int(A) :=

^

y2Y

[y = y(A)]

Thus, it is the conjunction of all symbolic objects whose extensions contain

A. In formal concept analysis, the intent of A � 
 is de�ned as the set of all

attributes whose extents contain A, i. e. as the set A

E

of attributes in the derived

context K

S

. That means, the two notions are not equal, but yet similar; they

have identical extensions. For all A � 
, we have

Ext(Int(A)) = Int(A)

E

= A

EE

= (A

E

)

E

:
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Union and Intersection. The de�nition of union and intersection given in the

literature of symbolic data analysis depends on the considered subset of symbolic

objects. A general de�nition can be given for arbitrary subsets U of the set S.

(cf. [1]).

The union in U � S of two symbolic objects p and q is de�ned as the

conjunction of all symbolic objects of U whose extension contains the extension

of p and q:

p t

U

q :=

^

fs 2 U j Ext(p) [Ext(q) � Ext(s)g

Accordingly for the intersection: the intersection in U � S of two symbolic

objects p and q is de�ned as the conjunction of all symbolic objects in U whose

extension contains all objects which are in the extension of p and q:

p u

U

q :=

^

fs 2 U j Ext(p) \Ext(q) � Ext(s)g

For the complete set S, union and intersection are de�ned as the intension of

Ext(p) [ Ext(q) and Ext(p) \ Ext(q) respectively. They can be speci�ed by

^

y2V

[y = V

(p;y)

] t

S

^

y2V

[y = V

(q;y)

] =

^

y2V

[y = V

(p;y)

[ V

(q;y)

]

and

^

y2V

[y = V

(p;y)

] u

S

^

y2V

[y = V

(q;y)

] =

^

y2V

[y = V

(p;y)

\ V

(q;y)

]

The extension of the union (intersection) of two symbolic objects is identical

to the extension of their disjunction (conjunction) which is not an element of

the terminology S. That is why union and intersection are de�ned. Using these

notions, conjunction and disjunction can be constructed without abandoning the

given syntax.

6 The Lattice of Symbolic Objects

Let < p>:= fq 2 S j q � pg be the equivalence class of the symbolic object

p 2 S, and S

�

the set of equivalence classes, i. e.

S

�

:=

�

<p>j p 2 S

	

:

Obviously, the symbolic (pre-)order � on S induces an order on S

�

. It can be

proved, that the supremum and the in�mumof two equivalence classes <p> and

<q> in S

�

are equal to the equivalence class of the union and the intersection

of two representatives, respectively:

<p> _ <q>=<p t

S

q> and <p> ^ <q>=<p u

S

q>

In�mumand supremum always exist and are commutative and associative. Thus,

it is proved in [2] that S

�

is a lattice for the induced symbolic order. We add that

the lattice is complete. The following theorem explains the coherence between

this lattice and the concept lattice of the logically derived context:
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Theorem1. Let K := (
;Y;O;I) be a many-valued context and let S :=

f

V

y2Y

[y = V

y

] j y 2 Y; V

y

� O

y

g be the terminology of the symbolic objects.

Then the lattice S

�

of equivalence classes of symbolic objects with the induced

symbolic order is isomorphic to the concept lattice of the logically derived context

K

S

:= (
;S; E).

Proof. In the concept lattice B(K

S

), every concept is an attribute concept,

i. e. for every (A;B) 2 B(K

S

) there exists a predicate a 2 S with (a

E

; a

EE

) =

(A;B). That is because for every concept extent A � 
 we have A = A

EE

=

Int(A)

E

. Thus, the concept (A;A

E

) is identical to the attribute concept of

the attribute Int(A). Consequently, the assignment ' : B(K

S

) ! S

�

with

'(p

E

; p

EE

) =<p> is a bijective. In fact, it is an order-isomorphism. ut

This theorem is important for the understanding of the formalism based on

symbolic objects. It points out that all sets of objects which are speci�ed by a

set of common attributes (i. e. all monothetic classes of objects) can be described

by a single attribute in the extended context.

If all concepts of the concept lattice are attribute concepts, the attribute

order describes the whole lattice. This is the reason for the language in symbolic

data analysis being so much concentrated on symbolic objects: The complete

conceptual structure of the data is given by the order of symbolic objects. In

consequence, the duality of intension and extension which is constitutive for the

approach is neglected.

Complete Symbolic Objects. Symbolic objects do not always specify explic-

itly all common attributes of the objects in their extensions. In other words,

these symbolic objects do not correspond to the intension of their extension.

That is only true for complete symbolic objects. A symbolic object p 2 S is

called complete if it holds p = Int(Ext(p)):

In [1, p. 15], it is pointed out, that \This notion agrees with the notion of

`concepts` used by, for instance, Wille (1981) and Ganter (1984) and `Galois

closure` used by Gu�enoche (1989) for binary tables [i. e. one-valued contexts]."

This is because concept intents always satisfy B = B

II

.

We can �nd further correspondences if we consider the structure of the

set C of all complete symbolic objects. It can be proved that the mapping

f : p 7! Int(Ext(p)) which assigns an equivalent complete symbolic object to

every symbolic object, is a closure operator on the preordered set (S;�). Conse-

quently, the set C of all complete symbolic objects is a lattice with the symbolic

order.

Lemma2. The lattice C of all complete symbolic objects is isomorphic to the

lattice S

�

of equivalence classes of symbolic objects.

Proof. We can �nd a complete symbolic object in every equivalence class <p> by

the closure operator f . Conversely, there is only one complete symbolic object

in every equivalence class because for p; q 2 C with < p >=< q >, we obtain

Ext(p) = Ext(q) which implies p = Int(Ext(p)) = Int(Ext(q)) = q. ut
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Although this theorem is not explicitly stated in symbolic data analysis, it

is important. By means of this isomorphism, we can guarantee that all subsets

of objects which can be described by symbolic objects can already be described

by a complete symbolic object. In other words, the set C of complete symbolic

objects builds a system of representatives of the equivalence classes of S. That

means, in the derived context K

S

:= (
;S; E), for every attribute there exists a

complete symbolic object with identical attribute extent. Thus, the subcontext

K

C

:= (
; C; E \ (
 � C)) has an isomorphic concept lattice. Together with

theorem 1 we conclude the following corollary:

Corollary3.

S

�

�

=

C

�

=

B(K

S

)

�

=

B(K

C

)

In other words, if we eliminate all incomplete symbolic objects of the context

K

S

:= (
;S; E), we obtain the subcontext K

C

:= (
; C; E \ (
 � C)) whose

extents are identical to those of K

S

. Thus, they have an isomorphic concept

lattice. In the language of formal concept analysis, K

C

is called a clari�ed context

of K

S

. This clari�ed context is the extended data array which symbolic data

analysis usually treats instead of the context K

S

.

7 Classi�cation and Knowledge Representation in

Symbolic Data Analysis

The language of symbolic objects we have presented, is used for various methods

of numerical and symbolic data analyis (cf. [3] for a survey). Here, we only give a

short survey on those domains which are concerned with conceptual classi�cation

and knowledge processing.

7.1 Identi�cation Problems

Symbolic objects are often used to process knowledge bases in order to solve

identi�cation problems. There are two main problems: either, a classi�cation of

a set of individual objects is to be found, or, an existing classi�cation is to be

represented in such a way that the assignment of individual objects to their

classes is as simple as possible. Both approaches are pursued for example by

Lebbe and Vignes (cf. e. g. [7]) who deal with various methods of identi�cation

in biology and medicine. Instead of trying to �nd complete descriptions for all

monothetic classes, they usually want to �nd so-called discriminants. These are

minimal sets of attributes to identi�y a class.

In describing existing classes (e. g. given by taxonomies), one frequently runs

into the problem of having to deal with non-monothetic classes. Thus, they

usually cannot be represented by assertion objects. In such cases, more complex

symbolic objects such as horde objects, synthesis objects, or rule objects need

to be used.

11



7.2 Classi�cation

In formal concept analysis, we determine all monothetic classes of the derived

context and deduce the concept lattice in order to explore the conceptual struc-

ture. Methods and algorithms have been developed to �nd dependencies and

conceptual patterns in the structure.

But as we have seen, the set of symbolic objects and even the restricted set

of complete symbolic objects is very large. This is why specifying all monothetic

classes is often considered as unfeasible in symbolic data analysis. Thus, criteria

and procedures must be developed to select the interesting classes.

Often, these classes are built by means of classical methods like clustering.

In a second step, these classes are described by symbolic objects. Then, these

symbolic objects are examined in order to �nd dependencies and regularities (cf.

e. g.[4], [1]). Evidently, the regularities which can be explored, depend on the

preceding method of classi�cation. This raises the question how far the methods

of classi�cation allow an appropriate interpretation with regard to the research

questions.

In general, the approach of formal concept analysis is di�erent. A preliminary

decision has to be made to select the interesting attributes. Then, all monothetic

classes are considered which are described by these selected attributes. Following

this approach, the necessary reduction can be made with regard to the subject

matter more easily because the criteria for the selection of attributes can be

deduced from the research question more directly than the selection of certain

classes.

7.3 Classi�cation of Classes

In symbolic data analysis, it is often emphasized that the symbolic objects them-

selves can be the objects of data analysis and can be treated with various meth-

ods. Not the individual objects, but classes of individual objects which are rep-

resented by symbolic objects are then analysed and classi�ed (cf. [1]). Therefore,

the notions elementary symbolic object and symbolic extension are de�ned.

Elementary Symbolic Objects. An assertion object p is called elementary

if it exists an object o 2 
 where

p =

^

y2Y

[y = y(o)]:

We can assign an elementary symbolic object to every individual object by the

mapping

" : 
 ! S with "(o) =

^

y2Y

[y = y(o)] =: o

S

:

Assuming that the original many-valued context is object-clari�ed (i. e. that

there are no two di�erent objects o; u 2 
 with y(o) = y(u) for all y 2 Y ), the

mapping " is injective. Thus, " is an embedding of the set 
 of individual objects

into the set S of symbolic objects. It identi�es the objects with their describing
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symbolic objects. The identi�cation is suggested by the notations o

S

:= "(o)

and "(
) := 


0

. In the language of formal concept analysis, the embedding "

assigns the object concept (o

EE

; o

E

) to every object o 2 
. The same concept

can be represented as the attribute concept of o

S

. The general concentration on

attributes suggests that we consider only the predicate o

S

, i. e. the elementary

symbolic object of the object o, and not its attribute concept.

Having substituted the individual objects by their describing elementary sym-

bolic object, the basic notions can be de�ned by means of elementary symbolic

objects:

Symbolic Extension. For a symbolic object p 2 S, the symbolic extension is

de�ned by

Ext




0

(p) := fo

S

2 


0

j o 2 Ext(p)g

In other words, the symbolic extension of p consists of the embedded individual

objects of the extension Ext(p). Obviously, the symbolic order, union and inter-

section of symbolic objects can also be de�ned by the symbolic extension instead

of the extension. We obtain the same lattice S

�

which is again isomorphic to C.

Using these notions, the individual objects have completely disappeared.

General Objects. A class C � 
 of individual objects which is described by

a symbolic object is called general object. For the transition from individual to

general objects, we use the embedding of the set 
 of individual objects into

the set S of symbolic objects and we describe a set G of general objects as a

subset of S. Using this notion, it is not necessary to know the whole context.

In particular, we do not need to specify the attribute value of every individual

object. Only the attribute values of every set of individual objects merged to

one general object C 2 G � S need to be known.

In the derived context, the transition from individual objects to general ob-

jects can only be realized by substituting the set 
 of individual objects by a

subset G of the power set P(
). If G is the set of all concept extents of K

S

it

can be proved that the new context has a concept lattice isomorphic to B(K

S

).

For G

0

� G, the corresponding concept lattice is a

V

-subsemilattice of B(K

S

).

Further research on the transition from contexts to so-called class-contexts is

needed. A �rst approach to a formal concept analysis of general objects is made

in [9].

Classes of General Objects. In [2], di�erent approaches are presented to

describe classes of symbolic objects. The simplest way is to assign again a sym-

bolic object to every class of symbolic objects, for example the intersection or

the union of its elements. Then, a preordered set of classes of symbolic objects

is obtained where equivalence and order of classes are de�ned by means of the

symbolic extension.

But if a class C � G of symbolic objects is described by the union

F

s2C

s of

all class-elements, the symbolic extension Ext




0

(

F

s2C

s) of this union sometimes

is bigger than the union

S

s2C

Ext




0

(s) of each symbolic extension. That is why

the extension of a class C � S is de�ned as the union of the symbolic extensions.

13



This notion raises some questions about the describability of class extensions by

means of symbolic objects.

This feature is described by the notion stability. It measures to what extent

a class can be described by a conjunction of events and thus, by its common

attributes. The most stable classes are the monothetic classes.

Given a class C � G, it can be interesting to know the cardinality of the

smallest subset of G which generates C. This feature is formalized by the notion

crumbling: the crumbling of a class C � G of symbolic objects is the smallest

number of symbolic objects of G whose union of extensions contain the extension

of C.

This notion measures to what extent the class C � G is represented by asser-

tion objects. In particular, it is equal to one if the class is most stable. Stability

and crumbling are often important criteria for the quality of a classi�cation of

symbolic objects.

7.4 Modal Symbolic Objects

Modal symbolic objects are considered to be an important extension for the

language of symbolic objects. They have been introduced to allow the symbolic

objects to be applied to knowledge representation of uncertain knowledge. They

are used to formalize restrictions like \it is possible that", \surely", \he does not

know if" or temporal restrictions.

Therefore, symbolic objects are not considered as predicates anymore but as

mappings from the set 
 of individual objects to an ordered set, usually the

interval [0; 1] � R. Then, the data array of symbolic data analysis is no more a

one-valued context (
;P;E), but a many-valued context (
;P; [0; 1]; I) where P

is a set of modal symbolic objects and I is de�ned by (o; p; x) 2 I :() p(o) = x.

This context corresponds exactly to the fuzzy-context by which fuzzy knowl-

edge is formalized in formal concept analysis. (It is treated in detail in the book

[8].) Nevertheless, the methods of knowledge processing for these contexts are

very di�erent in symbolic data analysis and formal concept analysis, but we will

not be able to discuss that issue in this paper (cf. [3] and [8] for a survey).

8 Discussion

Providing a formal language for attributes of many-valued contexts and by the

approach of logical scaling, we could tie together the general approaches of sym-

bolic objects and formal concept analysis in order to extend the scope of knowl-

edge representation. The introduction of logical scaling allows us to integrate the

most important notions for the language of symbolic objects into formal concept

analysis. This is a connection both approaches can gain from.

Methods and experiences from formal concept analysis now are directly avail-

able for research in symbolic data analysis: Computation methods for dependen-

cies and implications of attributes and a relational language of attributes and

predicates, to name just two features.
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Conversely, formal concept analysis has already gained insights which led to

results like the new method logical scaling. Among the remaining material for

future research are the analogy of modal symbolic objects and fuzzy concepts a

well as a formal concept analysis of general objects.

References

1. Diday, E. / Brito, P. (1989): Symbolic cluster analysis, in: O. Opitz (ed.): Proceed-

ing der 13. Konferenz der Gesellschaft f�ur Klassi�kation, Universit�at Augsburg

2. Diday, E. (1987): Introduction �a l'approche symbolique en analyse des donn�ees, in:

Actes des journ�ees symboliques-num�eriques pour l'apprentissage de connaissances

�a partir des donn�ees, Paris

3. Diday, E. (1993): From data to knowledge. Boolean, probabilist, possibilist and

belief objects for Symbolic Data Analysis. Une introduction �a l'analyse des donn�ees

symboliques, INRIA{Rocquencourt

4. Diday, E. / Roy, L. (1988): Generating rules by symbolic data analysis and appli-

cation to soil feature recognition, in: Actes des 8�emes Journ�ees Internationales: Les

syst�emes experts et leurs applications, Avignon

5. Ganter, B. / Wille, R. (1989): Conceptual scaling, in: F. Roberts (ed.): Appli-

cations of combinatorics and graph theory to the biological and social sciences,

Springer{Verlag, New York, 139 { 167

6. Ganter, B. / Wille, R. (1996): Formale Begri�sanalyse. Mathematische Grund-

lagen, Springer{Verlag, Berlin { Heidelberg

7. Lebbe, J. / Vignes, R. / Diday, E. (1987): Generate identi�cation graphs and

rules by features selection from set of symbolic objects, in: Actes des journ�ees

symboliques-num�eriques pour l'apprentissage de connaissances �a partir des

donn�ees, Paris

8. Pollandt, S. (1996): Fuzzy-Begri�e. Formale Begri�sanalyse unscharfer Daten,

Springer{Verlag, Berlin { Heidelberg

9. Prediger, S. (1996): Symbolische Datenanalyse und ihre begri�sanalytische Ein-

ordnung, Masters Thesis, FB Mathematik, Technische Hochschule Darmstadt

10. Prediger, S. (1997): Logical Scaling in Formal Concept Analysis, in: Dickson Lukose

et.al. (eds): Conceptual Structures: Ful�lling Peirce's Dream. Proceedings of the

Fifth International Conference on Conceptual Structures (ICCS '97), Lecture Notes

in Arti�cial Intelligence No. 1257, Springer { Verlag, Berlin

11. Wille, R. (1982): Restructuring lattice theory: an appraoch based on hierarchies of

concepts, in: I. Rival (ed.): Ordered sets. Reidel, Dordrecht{Boston, 445 { 470

12. Wille, R. (1992): Concept Lattices and Conceptual Knowledge Systems, in: Com-

puters & Math. Applications, vol. 23, no. 5

15



This article was processed using the L

A

T

E

X macro package with LLNCS style

16


