
Optimal Symmetric Designs

for a One-way Layout with Covariates

Rainer Schwabe

�

Technische Hochschule Darmstadt, Fachbereich Mathematik,

Schlo�gartenstra�e 7, 64 289 Darmstadt, Germany

ABSTRACT: For the general class of �

q

-criteria optimal desgins are charac-

terized which re
ect the inherent symmetry in a one-way layout with covariates. In

particular, the eigenvalues of the covariance matrices are related to those in suitably

chosen marginal models depending on the underlying interaction structure.

AMS 1991 classi�cation: 62K05

Keywords: D-optimal design, A-optimal design, E-optimal design, sym-

metric desgin, symmetric model, marginal model, additive model, partial in-

teractions, qualitative and quantitative factors.

1. Introduction.

In most experimental situations several factors are active which in
uence the

outcome of the experiment. If the factors may, additionally, interact with each

others it is usually hard to �nd a good, or even optimal, design.

In the case that one of the factors is qualitative its in
uence can be described by

a one-way layout with a �nite number of di�erent treatments. In this situation it is

reasonable to assume a further structure in the underlying linear model which is left

unchanged by relabeling the levels of that qualitative factor. Essentially this is true

if the structure of interactions does not depend on the actual level. Those models

will be speci�ed in Section 2. A good design should re
ect this inherent symmetry

property.

Optimal designs aim at miniminzing certain characteristics of the covariance ma-

trix for the estimators of the unknown parameters in the model. E. g. the common

A-, D- and E-criteria are all based on the eigenvalues of the covariance matrix. In

this paper we consider the larger family of �

q

-criteria, and we optimize within the

class of generalized designs (for more background informations on this topic we refer

�
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to Kiefer, 1974, or the mongraphs by Bandemer et al., 1977, Atkinson and Donev,

1992, and Pukelsheim, 1993, besides others).

�

q

-criteria are invariant with respect ot permutations of the levels of the qual-

itative factor. Hence, optimal designs can be found in the essentially complete

class of symmetric (invariant) designs. Kurotschka, Schwabe and Wierich (1992)

derived D-optimal designs for certain interaction structures in linear models with

both qualitative and quantitative factors of in
uence. This approach was extended

by Schwabe (1996, Section 6.2) to general models symmetric in one factor and to

the A-criterion. Recently, for those classes treated by Kurotschka et al. (1992)

E-optimal designs were calculated by Schwabe (1996b). (See Schwabe, 1996, for

further references.)

Besides the general symmetric model also the related marginal models are intro-

duced in the next section. Then, in Section 3, results are obtained for the class of all

�

q

-criteria which aim at minimizing the \q-norm" of the eigenvalues of the covari-

ance matrix. The proofs are based on an explicit representation of the eigenvalues in

terms of the marginal models. Hence, the optimal designs are characterized by con-

ditions on their marginals which leads to a substantial reduction of the complexity

of the optimization problem.

Related results are obtained in the subsequent sections 4 and 5 for invariant

parts of the parameter vectors and for models with an explicitly included mean

function. In particular, if the only interest is in the overall mean function then

the symmetrization leads to a uniform improvement. Finally, extensions to higher

dimensional models are indicated in Section 6.

2. Symmetric models.

In this paper we consider the two-factor linear models

E(Y (j; x)) = f

0

(x)

>

�

0

+ f

1

(x)

>

�

j

; (1)

j 2 1; :::; J; x 2 X , which show an invariant structure with respect to permutations

of the levels j of the qualitative factor. The factor x can be of arbitrary type:

quantitative, qualitative, or higher dimensional itself.

To be more precise, let � = (�

>

0

; �

>

1

; :::; �

>

J

)

>

be the vector of unknown parameters

in (1) and a

1

= (1

f1g

; :::;1

fJg

)

>

the vector of indicator functions 1

fjg

on f1; :::; Jg.

The model (1) can be rewritten in the common general linear model notation E(Y ) =

a

>

� as

E(Y (j; x)) = (f

0

(x)

>

; a

1

(j)

>


 f

1

(x)

>

)�; (2)

where \
" denotes the usual Kronecker (tensor) product of matrices and vec-

tors, respectively. It can easily be veri�ed that permutations of the levels j of
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the qualitative factor induce orthogonal transformations of the regression function

a = (f

>

0

; a

>

1


 f

>

1

)

>

in the representation (2) (see Schwabe, 1996, p 83).

For every criterion which is convex and invariant with respect to these transfor-

mations any design � is dominated by its symmetrization

�

�

1


 �

2

where

�

�

1

is the

uniform design on f1; :::; Jg, i. e.

�

�

1

(j) =

1

J

, �

2

is the second marginal of �, i. e.

�

2

(x) =

P

J

j=1

�(j; x); and \
" denotes the product of designs, i. e. �

1


 �

2

(j; x) =

�

1

(j)�

2

(x). The symmetric product designs

�

�

1


�

2

constitute an essentially complete

class. It remains to optimize with respect to the second marginal design �

2

.

To characterize the optimal marginal design �

�

2

particular marginal models are of

interest in which only the second factor x and its corresponding regression function

f

0

and f

1

are involved. The standard marginal model

E(Y

2

(x)) = f

0

(x)

>

�

0

+ f

1

(x)

>

�

1

; (3)

x 2 X , is obtained by �xing the �rst factor to some arbitrary level. Note that the

speci�c choice of the �rst level does not a�ect the struture of (3), i. e. the regression

functions do not depend on j. To avoid technicalities we assume throughout the

paper that the components of f = (f

>

0

; f

>

1

)

>

are linearly independent on X . This

guarantees that the whole parameter vector can be estimated in both the marginal

model (3) and the two-factor model (1) if the designs are rich enough. In particular,

the information matrix I(

�

�

1


 �

2

) =

R

aa

>

d(

�

�

1


 �

2

) is regular if and only if the

corresponding marginal information matrix I

2

(�

2

) =

R

ff

>

d�

2

is regular. A second

important model is the weighted marginal model

E(

e

Y

2

(x)) = f

0

(x)

>

�

0

+

1

p

J

f

1

(x)

>

�

1

; (4)

x 2 X . This is obtained from the standard marginal model (3) by a reparametriza-

tion which increases the in
uence of �

1

by a factor related to the number J of levels

of the �rst factor. Finally, we are also interested in the restricted marginal model

E(Y

(1)

2

(x)) = f

1

(x)

>

�

1

; (5)

x 2 X , which consists of that part of the regression function interacting with the

�rst factor. The corresponding information matrices are denoted by

e

I

2

(�

2

) =

0

@

R

f

0

f

>

0

d�

2

1

p

J

R

f

0

f

>

1

d�

2

1

p

J

R

f

1

f

>

0

d�

2

1

J

R

f

1

f

>

1

d�

2

1

A

(6)

and I

(1)

2

(�

2

) =

R

f

1

f

>

1

d�

2

for the weighted marginal model (4) and the restricted

marginal model (5), respectively.
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3. Optimal designs.

We start with the inference on the whole parameter vector � = (�

>

0

; �

>

1

; :::; �

>

J

)

>

.

The �-criteria aim at minimizing the \q-norm" �

q

(�) =

P

p

i=1

�

q

i

of the eigenval-

ues �

1

; :::; �

p

of the covariance matrix C(�) = I(�)

�1

, 0 < q < 1, or equivalently

at maximizing the \inversed q-norm" �

q

(�)

�1

= (

P

p

i=1

�

�q

i

)

�1

, of the eigenvalues

�

1

; :::; �

p

of the information matrix I(�). This includes the common A-criterion

�

1

(�) = trace(C(�)); and the D- and E-criteria are obtained as limiting cases

�

0

(�) = det(C(�)) = det(I(�))

�1

and �

1

(�) = �

max

(C(�)) = �

min

(I(�))

�1

respec-

tively. These �

q

-criteria are invariant under the permutations of the levels of the

�rst factor because the eigenvalues of I(�) =

R

aa

>

d� and, hence, of C(�) are pre-

served under the induced orthogonal transformations of the regression function a.

Thus we can con�ne to the essentially complete class of symmetric designs

�

�

1


 �

2

.

The corresponding information matrices are given by

I(

�

�

1


 �

2

) =

0

@

R

f

0

f

>

0

d�

2

1

J

1

>

J




R

f

0

f

>

1

d�

2

1

J

1

J




R

f

1

f

>

0

d�

2

1

J

E

J




R

f

1

f

>

1

d�

2

1

A

(7)

where E

J

and 1

J

denote the J � J identity matrix and the J -dimensional vector

with all entries equal to one, respectively.

Lemma 1. Let

e

�

1

; :::;

e

�

p

2

be the eigenvalues of

e

I

2

(�

2

) and let �

(1)

1

; :::; �

(1)

p(1)

be the

eigenvalues of I

(1)

2

(�

2

), respectively. Then the eigenvalues of I(�

1


 �

2

) are given by

e

�

1

; :::;

e

�

p

2

and J � 1 replicates of

1

J

�

(1)

1

; :::;

1

J

�

(1)

p(1)

.

Proof. If

e

z = (

e

z

>

0

;

e

z

>

1

)

>

is an eigenvector of

e

I

2

(�

2

) associated with the eigenvalue

e

�

i

partitioned according to the dimensions of f

0

and f

1

, then z = (

e

z

>

0

;

1

p

J

(1

J




e

z

1

)

>

)

>

is an eigenvector of I(

�

�

1


 �

2

) with eigenvalue �

i

which proves the �rst part. For the

remaining eigenvalues let z

(1)

be an eigenvector of I

(1)

2

(�

2

) associated with �

(1)

i

. There

are J � 1 linearly independent J -dimensional contrasts `

1

; :::; `

J�1

, i. e. `

>

j

1

J

= 0.

Then z = (0; (`

j


 z

(1)

)

>

)

>

is an eigenvector of I(

�

�

1


 �

2

) with eigenvalue

1

J

�

(1)

i

. 2

With this preliminary result it is straightforward to characterize the optimal

designs. To this end denote by �

2;q

,

e

�

2;q

and �

(1)

2;q

the �

q

-criterion functions in the

marginal models (3) to (5), respectively.

Theorem 1. The symmetric design

�

�

1


 �

�

2

is

(i) �

q

-optimal if �

�

2

minimizes

e

�

2;q

(�

2

) + (J � 1)J

q

�

(1)

2;q

(�

2

), for 0 < q <1.

(ii) D-optimal if �

�

2

maximizes det(I

2

(�

2

)) det(I

(1)

2

(�

2

))

J�1

.

(iii) E-optimal if �

�

2

is E-optimal in the weighted marginal model (4).
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Proof. By Lemma 1 we can calculate �

q

(

�

�

1


 �

2

) from the marginals. For

0 < q < 1 we have �

q

(

�

�

1


 �

2

) =

e

�

2;q

(�

2

) + (J � 1)J

q

�

(1)

2;q

(�

2

) which immediately

establishes (i).

For the D-criterion det(I(

�

�

1


 �

2

)) = J

p

2

+(J�1)p(1)

det(

e

I

2

(�

2

)) det(I

(1)

2

(�

2

))

J�1

and,

additionally, det(

e

I

2

(�

2

)) = cdet(I

2

(�

2

)), for some constant c > 0, as (4) is a repara-

metrization of (3) which, together, prove (ii).

Finally, for the E-criterion �

min

(I(

�

�

1


 �

2

)) = min(�

min

(

e

I

2

(�

2

));

1

J

�

min

(I

(1)

2

(�

2

))):

As the restricted marginal model (5) can be considered as a submodel of (4) after

scaling by

1

p

J

we obtain

1

J

�

min

(I

(1)

2

(�

2

)) � �

min

(

e

I

2

(�

2

)) by a common re�nement

argument. Hence, �

min

(I(

�

�

1


 �

2

)) = �

min

(

e

I

2

(�

2

)) which proves (iii). 2

For q = 1 we obtain that the symmetric design

�

�

1


 �

�

2

is A-optimal if �

�

2

min-

imizes trace(

e

I

2

(�

2

)) + J(J � 1) trace(I

(1)

2

(�

2

)). Note that the conditions on �

�

2

are

weighted optimality criteria as introduced by L�auter (1974) in the situation of model

uncertainty.

Example 1. An experimental situation in which di�erent treatments j =

1; :::; J can be applied at various dose levels x, 0 � x � b, is described by the linear

model E(Y (j; x)) = �

0

+ �

j

x which �ts into (1) with f

0

= 1 and f

1

(x) = x.

By a majorization argument the optimal marginal design �

�

2

is concentrated on

the endpoints of the interval [0; b], i. e. �

�

2

2 �

0;b

= f�

2

; �

2

(b) = w; �

2

(0) = 1 � wg.

It remains to determine the optimal weight w

�

= �

�

2

(b) at the maximal dose b.

For �

2

2 �

0;b

the eigenvalues of the information matrices in the relevant marginal

models (4) and (5) are given by

e

� =

1

2

�

1 +

b

2

J

w �

�

(1�

b

2

J

w)

2

+ 4

b

2

J

w

2

�

1=2

�

and

�

(1)

= b

2

w, respectively. According to Theorem 1 the D-, A- and E-optimal weights

w

�

are calculated as w

�

D

= 1=(J+1), w

�

A

= J=(J+(J+b

2

)

1=2

) and w

�

E

= 2J=(4J+b

2

).

In an additive model without interactions, f

1

= 1, the conditions of Theorem 1

substantially simplify as I

(1)

2

(�

2

) = 1 (see e. g. Schwabe, 1996, Corollary 6.15, for the

A- and D-criterion)

Corollary 1. In the additive model E(Y (j; x)) = f

0

(x)

>

�

0

+ �

j

the symmetric

design

�

�

1


 �

�

2

is �

q

-optimal if �

�

2

is �

q

-optimal in the weighted marginal model

E(Y

2

(x)) = f

0

(x)

>

�

0

+

1

p

J

�

1

, for 0 � q � 1.

As a consequence we recover the D-optimality of the product

�

�

1


 �

�

2

of the D-

optimal marginals in an additive model.

Example 2. One particular additive model is given by a one-way layout with

additional regression E(Y (j; x)) = �

j

+ �

0

x, where f

0

(x) = x. As in Example 1

5



the optimal marginal design �

�

2

is concentrated on the endpoints of the interval by

a majorization argument, i. e. �

�

2

2 �

0;b

in case X = [0; b].

The eigenvalues are

e

� =

1

2J

�

1 + Jb

2

w � ((1 � Jb

2

w)

2

+ 4Jb

2

w

2

)

1=2

�

for �

2

2 �

0;b

in the weighted marginal model. Consequently, the D-, A- and E-optimal weights

are w

�

D

= 1=2, w

�

A

= 1=((Jb

2

+ 1)

1=2

+ 1) and w

�

E

= 2=(Jb

2

+ 4), respectively.

Example 3. In a two-way layout E(Y (i; j)) = �

i

+ �

j

two di�erent kinds

of treatments are simultaneously applied, i = 1; :::; I, j = 1; :::; J , which do not

interact with each other. To identify the parameters we assume a control level I

for the �rst factor, i. e. we impose the identi�ability condition �

I

= 0. Here, the

qualitative factor with levels i = 1; :::; I plays the role of the second factor x in (1),

and f

0

= (1

1

; :::;1

I�1

)

>

is a vector of indicator functions on f1; :::; Ig.

Further symmetry considerations based on permutations of the actual treatment

(non-control) levels i = 1; :::; I � 1 shows that we can con�ne to the essentially

complete class of marginal designs �

2

on f1; :::; Ig with equal weights for those actual

treatment levels, �

2

(1) = ::: = �

2

(I � 1) = w and �

2

(I) = 1 � (I � 1)w. For such

designs

e

�

1;2

=

1

2J

�

1 + Jw � ((1� Jw)

2

+ 4(I � 1)Jw

2

)

1=2

�

and

e

�

3

= ::: =

e

�

I

= w

are the eigenvalues in the weighted marginal model. The D-, A- and E-optimal

weights w

�

are w

�

D

= 1=I, w

�

A

= 1=(I�1+(J+I�1)

1=2

) and w

�

E

= 2=(J+4(I�1)).

For illustrative purposes we add another example with a more complicated inter-

action structure.

Example 4. In the modelE(Y (j; x)) = �

j1

+�

j2

x+�

0

x

2

the second factor shows

a quadratic response, where the intercept and the slope depend on the treatments

j = 1; :::; J while the curvature is constant over the groups. Hence, the marginal

regression functions are f

0

(x) = x

2

and f

1

(x) = (1; x)

>

.

(i) If the quantitative factor x varies over a symmetrical interval, x 2 [�b; b], with

respect to some reference point x

0

= 0, then, by a symmetrization and majorization

argument, the optimal marginal design �

�

2

is concentrated on f�b; 0; bg with equal

weights on the endpoints, �

�

2

2 �

(symm)

�b;0;b

= f�

2

; �

2

(b) = �

2

(�b) = w; �

2

(0) = 1� 2wg.

e

�

1;2

=

1

2J

�

1 + 2Jb

4

w � ((1 � 2Jb

4

w)

2

+ 16Jb

4

w

2

)

1=2

�

,

e

�

3

=

2

J

b

2

w and �

(1)

1

= 1,

�

(1)

2

= 2b

2

w are the eigenvalues for (4) and (5), respectively. Consequently, w

�

D

=

1

2

(J + 1)=(J + 2) and w

�

A

=

1

2

(J

2

b

2

+ 1)

1=2

=((J

2

b

2

+ 1)

1=2

+ (Jb

4

+ 1)

1=2

) are the D-

and A-optimal weights. For the E-criterion the optimal weight is w

�

E

= 1=(Jb

4

+ 4)

if both the interval and the number of treatments are small, Jb

2

� 2. For larger

intervals or higher number of treatments, Jb

2

� 2, the smallest eigenvalue of

e

I

2

(�

�

2

)

has multiplicity two, and the E-optimal weight is w

�

E

=

1

2

(Jb

2

� 1)=(Jb

4

+Jb

2

� b

2

).

(ii) For general intervals, x 2 [a; b], we note that a translation in x preserves the

structure of the model, up to a linear transformation of the regression functions.
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Hence, the D-optimal design will be transformed accordingly, and the D-optimal

weights are

1

2

(J + 1)=(J + 2) at the endpoints and (J � 1)=(J + 2) at the midpoint

of that interval.

For various other interaction structures between a one-way layout and a quadratic

response complete lists of D-, A- and E-optimal designs are presented in Schwabe

(1996, p 94, and 1996b) in the special case of a standardized symmetric marginal

design region [�1; 1].

4. Symmetric subsystems of parameters.

In many situations the main interest is in parts of the parameters rather than in

the whole parameter vector itself. This can be described by a linear functional  

on � with  (�) = L�. Then the �

q

-criteria aim at minimizing the \q-norm" of the

eigenvalue �

1

; :::; �

p( )

of the covariance matrix C

 

(�) = LI(�)

�

L

>

within the class

of those design for which  is identi�able. In this case I(�)

�

can be any arbitrary

generalized inverse of I(�). We will treat symmetric parameter subsystems which

are not a�ected by the permutations of the levels j of the qualitative factor besides

a possible orthogonal transformation applied to  . These transformations preserve

the eigenvalues of the covariance matrix C

 

and the �

q

-criteria are invariant with

respect to permutations of j. Hence, we can con�ne to symmetric designs

�

�

1


�

2

and

we will characterize the optimal marginal design �

�

2

by properties in the standard

marginal model (3). As for the information matrices the covariance matrices in the

marginal models are indicated by an additional subscript \

2

".

First we consider the parameters

�

� = (�

>

0

;

�

�

>

1

)

>

which are related to the mean re-

sponse function

1

J

P

J

j=1

E(Y (j; x)) = f

0

(x)

>

�

0

+f

1

(x)

>

�

�

1

and, hence,

�

�

1

=

1

J

P

J

j=1

�

j

.

Theorem 2. C

�

�

(�) � C

�

�

(

�

�

1


 �

2

) for every design �, where �

2

is the second

marginal of �.

Remark. Here \�" denotes the usual uniform matrix ordering, i. e. A � B if

A�B is positive semide�nite.

Proof of Theorem 2. For a symmetric design

�

�

1


 �

2

a generalized inverse of

the information matrix is given by

I(

�

�

1


 �

2

)

�

=

0

@

C

0

(�

2

) �1

>

J


 C

01

(�

2

)

�1

J


 C

>

01

(�

2

) 1

J

1

>

J


 C

1

(�

2

) + (JE

J

� 1

J

1

>

J

)
 I

(1)

(�

2

)

�

1

A

(8)

where C

0

; C

01

; and C

1

denote the blocks in an appropriately partitioned generalized

7



inverse

I

2

(�

2

)

�

=

0

@

C

0

(�

2

) C

01

(�

2

)

C

>

01

(�

2

) C

1

(�

2

)

1

A

of the information matrix in the standard marginal model (3) (see Schwabe, 1996,

p 86, for the particular shape). In particular, if the components �

0

or �

1

are identi-

�able, then C

0

(�

2

) = C

2;�

0

(�

2

) and C

1

(�

2

) = C

2;�

1

(�

2

) are the corresponding covari-

ance matrices.

From (8) we obtain that C

�

�

(

�

�

1


�

2

) = C

2

(�

2

). Now, the standard marginal model

(3) can be regarded as a submodel of (1), at least, after some reparametrization which

leaves

�

� unchanged. Hence, by a common re�nement argument C

�

�

(�) � C

2

(�

2

),

where �

2

is the marginal of �, which completes the proof. 2

Note that the previous result can also be obtained by a straightforward argument

that the parameter vector

�

� associated with the mean response is invariant with

respect to the permutations of j. In the sequel we will make extensive use of the

representation (8) for the generalized inverse of the information matrix I(

�

�

1


 �

2

)

obtained in the proof of Theorem 2. As a direct consequence we get the following

characterization which relates the �

q

-optimality for

�

� and parts of it to properties

in the standard marginal model (3).

Corollary 2. The symmetric design

�

�

1


 �

�

2

is �

q

-optimal

(i) for

�

� if �

�

2

is �

q

-optimal.

(ii) for

�

�

1

if �

�

2

is �

q

-optimal for �

1

.

(iii) for

�

�

0

if �

�

2

is �

q

-optimal for �

0

.

Next we are interested in the parameters associated with the interactions,  (�) =

(�

>

1

; :::; �

>

J

)

>

, and we look for designs which are optimal for �

1

; :::; �

J

(for  ).

Lemma 2. Let �

1

; :::; �

p(1)

be the eigenvalues of the covariance matrix C

2;�

1

(�

2

)

for �

1

in the standard marginal model, and let �

(1)

1

; :::; �

(1)

p(1)

be the eigenvalues of

C

(1)

2

(�

2

) = I

(1)

2

(�

2

)

�1

. Then the eigenvalues of the covariance matrix C

�

1

;:::;�

J

(

�

�

1




�

2

) for  (�) = (�

>

1

; :::; �

>

J

)

>

are given by J�

1

; :::; J�

p(1)

and J � 1 replicates of

J�

(1)

1

; :::; J�

(1)

p(1)

.

Proof. By (8) the covariance matrix

C

�

1

;:::;�

J

(

�

�

1


 �

2

) = 1

J

1

>

J


C

2;�

1

; (�

2

) + (JE

J

� 1

J

1

>

J

)
C

(1)

2

(�

2

)

is a combination of the associated covariance matrices in the marginal models. If

z is an eigenvector of C

2;�

1

(�

2

) associated with the eigenvalue �

i

, then 1

J


 z is an

eigenvector of C

�

1

;:::;�

J

(

�

�

1


�

2

) with eigenvalue J�

i

. For the remaining eigenvalue we

conclude as in the proof of Lemma 1 that `

>


z

(1)

is an eigenvector ofC

�

1

;:::;�

J

(

�

�

1


�

2

)

8



with eigenvalue J�

(1)

i

if ` is a contrast and z

(1)

is an eigenvector ofC

(1)

2

(�

2

) associated

with the eigenvalue �

(1)

i

. 2

Denote by and �

2;q;�

1

the �

q

-criterion function for �

1

in the standard marginal

model (3).

Theorem 3. The symmetric design

�

�

1


 �

�

2

is

(i) �

q

-optimal for �

1

; :::; �

J

if �

�

2

minimizes �

2;q;�

1

(�

2

) + (J � 1)�

(1)

2;q

(�

2

), for 0 <

q <1.

(ii) D-optimal for �

1

; :::; �

J

if �

�

2

minimizes det(C

2;�

1

(�

2

)) det(C

(1)

2

(�

2

))

J�1

.

(iii) E-optimal for �

1

; :::; �

J

if �

�

2

is E-optimal for �

1

in the standard marginal

model (3).

Proof. (i) and (ii) follow directly from Lemma 2. For (iii) we have to note,

again, that �

max

(C

(1)

2

(�

2

)) � �

max

(C

2;�

1

(�

2

)) by a re�nement argument. 2

In the case q = 1 we obtain that the symmetric design

�

�

1


 �

�

2

is A-optimal for

�

1

; :::; �

J

if �

�

2

minimizes trace(C

2;�

1

(�

2

)) + (J � 1) trace(C

(1)

2

(�

2

)):

Example 5. In the setting of the treatment dose model of Example 1 the main

interest is in the treatment e�ects �

1

; :::; �

J

which represent the slopes corresponding

to the dose e�ects of each single treatment. Again, we can con�ne to the essentially

complete class �

0;b

of marginal designs concentrated on a zero and a maximal dose

level. The marginal covariance matrices C

2;�

1

(�

2

) = (b

2

w(1 � w))

�1

and C

(1)

2

(�

2

) =

(b

2

w)

�1

reduce to one-dimensional quantities, from which the optimal weights w

�

D

=

J=(J + 1), w

�

A

=

p

J=(

p

J + 1) and w

�

E

=

1

2

are obtained which produce a D-, A-

and E-optimal design, respectively.

Example 6. In the setting of Example 4 the intercept and the slope of a

quadratic covariate are in
uenced by the treatment levels. The associated parame-

ters are of particular interest, here.

(i) On a symmetric design region X = [�b; b] we can con�ne, again, to the

class �

(symm)

�b;0;b

of symmetric three-point designs. The eigenvalues of the marginal

covariance matrices C

2;�

1

and C

(1)

2

associated with the treatment e�ects are found

to be �

1

= (1 � 2w)

�1

, �

2

= �

(1)

2

= (2b

2

w)

�1

and �

(1)

1

= 1. This gives D- and

A-optimal weights w

�

D

=

1

2

J=(J + 1) and w

�

A

=

1

2

p

J=(

p

J + b) for the treatment

e�ects �

1

; :::; �

J

. For the E-criterion the two cases of small and large intervals have

to be distinguished: w

�

E

= (b

4

+ 4)

�1

for b

2

� 2 and w

�

E

=

1

2

b

�4

(b

2

� 1) for b

2

� 2.

(ii) For the asymmetric design region [0; b] we notice that in contrast to the

inference on the full parameter vector the D-optimal designs cannot be obtained

by translations from the symmetric interval. By means of the Kiefer-Wolfowitz

equivalence theorem the optimal marginal design �

�

2

can be found in the class �

0;x;b

9



J 1 2 3 4 5 10 20 50 ::: 1

w

�

0

0:500 0:470 0:468 0:470 0:472 0:482 0:490 0:495 ::: 0:500

w

�

b

0:073 0:219 0:289 0:334 0:364 0:428 0:463 0:485 ::: 0:500

w

�

x

0:427 0:311 0:243 0:196 0:164 0:090 0:047 0:020 ::: 0:000

x

�

=b 0:414 0:486 0:506 0:510 0:510 0:508 0:505 0:502

Table 1: Weights and locations of the interior design points of D-optimal designs

in a one-way layout with quadratic covariate on the interval [0; b]:

inference on the interaction parameters

of three-point designs with �

2

(0) = w

0

, �

2

(b) = w

b

and �

2

(x) = w

x

= 1�w

0

�w

b

for

some x, 0 < x < b. Numerical solutions to this problem are given in Table 1.

Finally, in a model without interactions the optimality for �

1

in the marginal

directly carries over to the optimality for the treatment e�ects �

1

; :::; �

J

Corollary 3. In the additive model E(Y (j; x)) = f

0

(x)

T

�

0

+ �

j

the symmetric

design

�

�

1


�

�

2

is �

q

-optimal for �

1

; :::; �

J

simultaneously in q 2 [0;1], if �

�

2

is optimal

for the constant term �

1

in the marginal model E(Y

2

(x)) = f

0

(x)

>

�

0

+ �

1

.

5. Explicit mean function.

In contrast to the previous sections we consider now an extended form

E(Y (j; x)) = f(x)

>

�

� + f

1

(x)

>

�

j

(9)

of the model (1) in which an explicit mean function f(x)

>

�

� =

1

J

P

J

j=1

E(Y (j; x)) is

present, and where f = (f

>

0

; f

>

1

)

>

and

�

� = (�

>

0

;

�

�

>

1

)

>

are de�ned as before. The

identi�ability of � = (

�

�

>

; �

>

1

; :::; �

>

J

)

>

is accomplished by the natural side condition

P

J

j=1

�

j

= 0 , which makes f

1

(x)

>

�

j

to the treatment e�ect of level j compared to

the mean response f(x)

>

�

�.

As the indenti�cation condition is invariant with respect to the permutations of

the levels j the �

q

-criteria remain to be invariant also in the model (9), 0 < q � 1.

It is straightforward from (8) that

C(

�

�

1


 �

�

2

) =

0

@

C

2

(�

2

) 0

0 (JE

J

� 1

J

1

>

J

)
C

(1)

2

(�

2

)

1

A

(10)

is the covariance matrix of a symmetric design in the present extended model.
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Theorem 4. The symmetric design

�

�

1


 �

�

2

is

(i) �

q

-optimal in (9) if �

�

2

minimizes �

2;q

(�

2

) + (J � 1)J

q

�

(1)

2;q

(�

2

), 0 < q <1.

(ii) E-optimal in (9) if �

�

2

maximizes min(�

min

(I

2

(�

2

));

1

J

�

min

(I

(1)

2

(�

2

))).

Proof. The non-zero eigenvalues of the covariance matrix C

�

1

;:::;�

J

(

�

�

1


 �

2

) =

(JE

J

� 1

J

1

>

J

)
C

(1)

2

(�

2

) are J � 1 replicates of J�

(1)

1

; :::; J�

(1)

p(1)

as can be seen from

the proof of Lemma 2. Hence, by the block diagonal structure of (10) the result is

immediate. 2

For q = 1 we obtain that the symmetric design

�

�

1


�

�

2

is A-optimal if �

�

2

minimizes

trace(I

2

(�

2

)

�1

) + J(J � 1) trace(I

(1)

2

(�

2

)

�1

):

Example 7. The model E(Y (j; x)) = �

01

+ �

02

x + �

j

x is the extended form

of the treatment dose model of Example 1. Again, �

�

2

2 �

0;b

, and the A-optimal

weight is w

�

A

= (J

2

�J+1)

1=2

=((J

2

�J+1)

1=2

+(b

2

+1)

1=2

). For the E-criterion the

optimal weight is given by w

�

E

= J(J � 1)=(J

2

+ Jb

2

� b

2

), for J � 2. Note that for

J = 2 the optimal weight w

�

E

= 2(b

2

+ 4)

�1

is the same as in the marginal model.

Example 8. For the quadratic response model of Example 4 with an explicit

mean response the A- and E-optimal weights of �

�

2

2 �

(symm)

�b;0;b

are given by w

�

A

=

1

2

((J

2

� J + 1)b

2

+ 1)

1=2

=

�

((J

2

� J + 1)b

2

+ 1)

1=2

+ (b

4

+ 1)

1=2

�

, w

�

E

= (b

4

+ 4)

�1

if

Jb

2

� 2, and w

�

E

=

1

2

J(Jb

2

� 1)=(J

2

b

2

+ Jb

4

� b

2

) if Jb

2

� 2.

In case of no interactions the optimization problem can be completely reduced to

the marginal model as follows

Corollary 4. In the additive model E(Y (j; x)) = f(x)

>

�

�

0

+ �

j

with explicit

mean, f = (f

>

0

;1)

>

, the symmetric design

�

�

1


 �

�

2

is �

q

-optimal if �

�

2

is �

q

-optimal

in the marginal model E(Y

2

(x)) = f

0

(x)

>

�

0

+ �

1

, for 0 < q � 1.

Remark. For the treatment e�ects compared to the mean response it follows

directly from (10) that the symmetric design

�

�

1


 �

�

2

is �

q

-optimal for �

1

; :::; �

J

if �

�

2

is �

q

-optimal in the restricted marginal model (5).

6. Higher dimensions.

The previous results can be extended to K-way layouts

E(Y (j

1

; :::; j

K

; x)) = f(x)

>

�

� +

X

K

k=1

f

k

(x)

>

�

(k)

j

k

; (11)

j

k

= 1; :::; J

k

, k = 1; :::;K, with covariates, x 2 X , and with an explicit mean func-

tion f(x)

>

�

� =

1

J

K

�:::�J

K

P

J

1

j

1

=1

:::

P

J

K

j

K

=1

E(Y (j

1

; :::; j

K

; x)). The f

k

are the regression

functions associated with the kth restricted marginal model E(Y

(k)

2

(x)) = f

k

(x)

>

�

k

11



in the factor x, and the components of f

k

are assumed to be contained in the

space spanned by the components of f . Furthermore the natural side condition

P

J

k

j=1

�

(k)

j

= 0 is imposed on each component to indentify the parameters.

Again, symmetry considerations show that each design � is dominated by its

symmetrization

�

�

1;:::;K


 �

2

with respect to every �

q

-criterion, where

�

�

1;:::;K

is the

uniform design on all level combinations (j

1

; :::; j

K

) of the K-way layout and �

2

is

the marginal of � for the factor x. The covariance matrix C(

�

�

1;:::;K


 �

2

) is block

diagonal, and Theorem 4 can repeatedly applied to each of the K qualitative factors.

For example, if �

�

2

minimizes trace(I

2

(�

2

)

�1

)+

P

K

k=1

J

k

(J

k

�1) trace(I

(k)

2

(�

2

)

�1

), where

I

(k)

2

(�

2

) =

R

f

k

f

>

k

d�

2

is the information matrix in the kth restricted marginal model,

then the symmetric design

�

�

1;:::;K


 �

�

2

is A-optimal.

For the D-criterion a minimal reparametrization of the model (11) has to be

considered or, equivalently, the product of the non-zero eigenvalues of the covariance

matrixC(

�

�

1;:::;K


�

2

) is to be minimized. With this approach aD-optimal symmetric

design

�

�

1;:::;K


 �

�

2

is obtained if �

�

2

maximizes det(I

2

(�

2

))

Q

K

k=1

det(I

(k)

2

(�

2

))

J

k

�1

.

Again, for the additive model E(Y (j

1

; :::; j

k

; x)) = f

0

(x)

>

�

0

+ �

0

+

P

K

k=1

�

(k)

j

k

the situation substantially simpli�es, and the symmetric design is �

q

-optimal if its

marginal associated with the factor x is �

q

-optimal in the corresponding marginal

model E(Y

2

(x)) = f

0

(x)

>

�

0

+ �

0

.
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