
On the convolution type kernel regression estimator

By

Eva Herrmann, Darmstadt

Abstract

This paper discusses modi�cations of the convolution type kernel regression estimator. One

modi�cation uses kernel quantile estimators and is analyzed more detailed. This regression

estimator combines advantages of local polynomial and kernel regression estimators and can

be applied for small to large sample size. Its properties are illustrated by simulation results

and asymptotic theory. Especially the minor e�ect of bandwidth choice for the kernel quantile

estimator on the regression estimator is demonstrated. A simple adaptation on sample size leads

to an interesting regression estimator.

1 Introduction

Suppose that a nonparametric estimator of the conditional mean

r(t) = E(Y jT = t)

should be derived from a sample of n independent and identically distributed bivariate random

variables. Let (T

i

; Y

i

) denote the sample points which are already ordered in the �rst variable

and let "

i

= Y

i

� E(Y jT = T

i

) denote the residuals. Then we have a nonparametric regression

model in the form

Y

i

= r(T

i

) + "

i

(1.1)

for i = 1; : : : ; n, where r is the unknown regression function. For the sake of simplicity we

suppose that T

1

; : : : ; T

n

and r are restricted to the unit interval. Several types of kernel regres-

sion estimators for estimating the regression function nonparametrically have been proposed

and discussed in literature. Let K be a kernel function of order k and h be a bandwidth.

Mainly important kernel estimators are the Nadaraya-Watson type estimator (Nadaraya, 1964,

Watson, 1964)
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the Gasser-M�uller type estimator (Gasser and M�uller, 1979)

r̂

2

(t;h) =

n

X

i=1

Z

s

i

s

i�1

1

h

K

�

t� u

h

�

duY

i

with the additional de�nitions s

0

= 0, s

i

=

1

2

(T

i

+ T

i+1

) for i = 1; : : : ; n � 1 and s

n

= 1, the

Priestley-Chao type estimator (Priestley and Chao, 1972)

r̂

3

(t;h) =

n

X

i=2

(T

i

� T

i�1

)

1

h
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�
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i

h

�

Y

i

and the local polynomial estimator r

4

of order p with kernel weights as solution of

n

X
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�
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�
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j
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A

2

= min!

proposed e.g. by Stone (1977) and Cleveland (1979). These are closely related nonparamet-

ric regression estimators and in the situation of a regression model (1.1) with nonrandom

but equidistant design-points T

1

; : : : ; T

n

they nearly coincide. Nevertheless, there remain well-

known di�erences between them in case of random design points. Here, the Gasser-M�uller and

the Priestly-Chao type kernel estimators are ine�cient asymptotically since their asymptotic

variance is about twice or 1.5 times the variance of the asymptotically minimax optimal lin-

ear estimator. The local polynomial estimator and the Nadaraya-Watson estimator can have

in�nite variance but the conditional variance equals almost everywhere the variance of the as-

ymptotically minimax optimal linear estimator, e.g. Fan (1993). See Seifert and Gasser (1995)

for a more detailed analysis of the �nite sample variance of the local polynomial estimator. The

Nadaraya-Watson estimator instead has an undesirable bias term for non equidistant design

in addition to the asymptotic bias of the other kernel estimators. These and other aspects of

the di�erent choices of the weights for a kernel regression estimator are discussed in detail in

several papers, e.g. Gasser and Engel (1990), Fan (1993), Jones, Davies and Park (1994) and

the discussion papers of Chu and Marron (1991) and Hastie and Loader (1993).

Here we will mainly restrict our attention on the Gasser-M�uller and the Priestley-Chao estima-

tor. The next section will give an overview on several modi�cations which had been proposed

recently. They are illustrated by some simulation examples. In the third section some asymp-

totic results are proved on optimal choice of the additional smoothing parameter. Technical

parts of the proofs are deferred to the Appendix.
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2 Comparison of convolution type kernel methods

We now concentrate on some modi�cations of the estimators r̂

2

and r̂

3

which are often refered

to as convolution type kernel estimators. It has been shown recently by several authors that

it is possible to modify these estimators in a way that bias and variance terms have the same

asymptotic representations as the local polynomial estimator but also in an unconditional way.

They do not share the numerical di�culties of the local polynomial estimators for sparse regions.

The asymptotic representation of MSE which seemed to be most appropriate (compare e.g. Chu

and Marron, 1991 and Jones et al., 1994) for kernel estimation is given by

MSE(r̂

�

2

(t;h)) =

h

2k

k!

n

r

(k)

(t)

o

2

Z

x

k

K(x) dx+

�

2

(t)

R

fK(x)g

2

dx

nhf(t)

+ o(h

2k

+ n

�1

h

�1

); (2.1)

where �

2

(t) = V ar(Y jT = t) and f denotes the density of T . Both functions are supposed to

be twice continuously di�erentiable on the unit interval and to be bounded away from zero.

The regression function r is assumed to be at least k-times continuously di�erentiable.

The convolution type kernel methods discussed here all have the joint form

r̂

�

2

(t;h) =
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X
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i
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i
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i
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�
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�
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i

(2.2)

of a generalized Gasser-M�uller type estimator or

r̂

�

3

(t;h) =

n

X

i=1

c

i

(b

i

� a

i

)

1

h

K

�

t�T

i

h

�

Y

i

of a generalized Priestley-Chao type estimator. Since di�erences between both estimators are

very small we concentrate on the generalized Gasser-M�uller type estimator in the following. If

polynomial kernels are used the integration does not lead to further di�culties and r̂

�

2

has the

slight computational advantage of adapting to sparse regions for arbitrarily small bandwidths

automatically and of summing up to 1 at least for c

i

= 1 and a

i+1

= b

i

but compare Jones et al.

(1994) for a di�erent point of view. With a

1

= 0, a

i

= 0:5(T

i�1

+ T

i

) for i = 2; : : : ; n, b

i

= a

i+1

for i = 1; : : : ; n�1 and b

i

= 1, c

i

= 1 for all i = 1; : : : ; n we obtain the form of the Gasser-M�uller

estimator r̂

2

. This estimator was �rst motivated from a nonparametric regression model with

�xed design variables. Its problems for the random design case stem from the variability of the

di�erences b

i

� a

i

which leads to an in
ation of the variance of r̂

2

and r̂

3

. Hence the proposed

modi�cations will reduce this variability.
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A di�erent modi�cation of the Gasser-M�uller type estimator with the use of binning methods

can be found in Kneip and Engel (1994). They prove that such a regression estimator does

have MSE of the form (2.1).

2.1 Enlarging the integration regions

One approach is given by Hall and Turlach (1995) by de�ning either

a

i

= �

�1

�

X

j=1

T

i��+j

; b

i

= �

�1

�

X

j=1

T

i+j�1

and c

i

=

1

� � 1

(2.3)

or a

i

= T

i��+1

, b

i

= T

i+�

and c

i

= 1=(2� � 1). For � = 2 and the �rst de�nitions we obtain the

Gasser-M�uller estimator r̂

2

. Using � > 2 may lead to values a

i

, b

i

which do not satisfy a

i+1

= b

i

for i = 1; : : : ; n � 1. Hence the modi�ed estimator can not be interpreted in a simple way as

convolution of K and a step function with values Y

i

as the original Gasser-M�uller approach.

Because of the additional averaging it does decrease the variance of the di�erences b

i

� a

i

. Hall

and Turlach (1995) proved that the asymptotic representation of the mean squared error of

equation (2.1) holds for all � which tend to in�nity more slowly than n

�

for each � > 0 under

the usual regularity conditions. They also give a proposal to choose the additional parameter

� as largest integer smaller than or equal to log n which is motivated from simulation results.

2.2 Using quantile estimators

A second approach is sketched by Chu and Marron (1991) who propose to choose

a

i+1

= b

i

=

2�+2

X

j=1

1

2� + 2

X

i��+j�1

and c

i

= 1 for i = � + 1; : : : ; n � � � 1. Obviously the Gasser-M�uller estimator r̂

2

is obtained

for � = 0. This approach is discussed by Jones et al. (1994) who use the Priestley-Chao

kernel estimator and are therefore mainly interested in b

i

�a

i

. They also sketch a more general

proposal with a kernel function K

s

and a bandwidth g by

a

i+1

= b

i

=

n

X

j=1

T

j

1

g

K

s

 

(i=n)� (j=n))

g

!

(2.4)
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and c

i

= 1. Using the uniform kernel as kernel function K

s

and bandwidth g = (� +1)=n gives

the discrete form above. Here a

i

and b

i

are kernel quantile estimators of the design distribution.

This approaches still allows the interpretation as convolution of the kernel function K and a

step function but the condition that T

i

2 [a

i

; b

i

] is no longer guaranteed. Nevertheless, Jones et

al. (1994) state without proof that for the estimators chosen as in (2.3) additional bias terms

will be of order O(�

2

n

�2

) and mean squared error will have the form of equation (2.1) as long

as � tends to in�nity with n more slowly than n and faster than nh

k

. They illustrate the e�ect

of choosing � in a simulation example but they do not give a rule of thumb for choosing � in

practice.

In the following we will study the general form of this estimator with kernel quantile estimators

for the design distribution. In order to avoid slight symmetry problems which are included in

de�nition of (2.4) and to adapt automatically to arbitrarily small bandwidths g > 0 we choose

a

i

=

n

X

j=1

T

j

Z

j+0:5

n+1

j�0:5

n+1

1

g

K

s

 

i�0:5

n+1

� v

g

!

dv b

i

=

n

X

j=1

T

j

Z

j+0:5

n+1

j�0:5

n+1

1

g

K

s

 

i+0:5

n+1

� v

g

!

dv (2.5)

for i = 1; : : : ; n and c

i

= 1 with a symmetric kernel function K

s

of order k

s

2 f2; 4g. For

g �

1

n+1

we obtain the Gasser-M�uller estimator r̂

2

. Of course we should modify the quantile

estimator in the boundary region e.g. by the use of boundary kernels instead of K

s

. The

unconditionally asymptotic mean squared error of this estimator is derived in the next section.

Thereby we have to look at second order terms in order to �nd an asymptotically optimal

bandwidth g which is shown to be of order n

�(3k+1)=((2k+1)(ks+1))

, typically. From a practical

point of view and since only second order terms of the mean squared error are minimized we

may use the general proposal g = 0:75(n + 1)

�(3k+1)=((2k+1)(ks+1))

.

2.3 Simulation Examples

The following �gures illustrate the described estimators. We have an example of n = 50 design

points in [0; 1] and have a look at the weights of the di�erent estimators for t = 1=2 using the

biweight kernel function K(x) = 15=16(1� x

2

)

2

I

[�1;1]

and bandwidth h = 1=2.

Figure 1 shows the weights associated to the observations Y

i

at points Y

i

for the Nadaraya-
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Watson estimator r̂

1

and the local linear estimator r̂

4

.
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Figure 1: Weights of the Nadaraya-Watson kernel estimator (left) and of the local linear

estimator (right) for a simulation example with n = 50 design points

The Gasser-M�uller estimator r̂

2

and the modi�cations proposed by Hall and Turlach are shown

in Figure 2 for � = 3 to � = 5.
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Figure 2: Weights of the Gasser-M�uller kernel estimator (left, above) and of the modi�ed

estimation (2.2) with de�nitions (2.3) for � = 3 (right, above), � = 4 (left, below) and � = 5

(right, below). Simulation example as in Figure 1.

Figure 3 instead illustrates the modi�cation of estimator (2.2) with de�nitions (2.5). Thereby

the bandwidths g = 0:1(n + 1)

�7=15

, g = 0:5(n + 1)

�7=15

, g = 0:75(n + 1)

�7=15

and g =

1:0(n + 1)

�7=15

are used. It demonstrates that the modi�cation mainly performs a smoothing

of the weights.
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For a further comparison we calculate the conditional bias and variance of these design points

for regression function r

1

with r

1

(x) = 5(x�

1

2

)

2

, regression function r

2

with r

2

(x) = 2 � 5x+

5 exp f�400(x � 0:5)

2

g (compare e.g. Seifert and Gasser, 1995 and Hall and Turlach, 1995)

and r

3

(x) = 5 sin(x�=2) and constant variance �

2

. As can be expected from the �gures the

modi�cations of Figure 2 reduce variance for � = 3 to 5. For � = 5 the variance is about the

same as for the local linear estimator, bias is slightly increased, typically.

The modi�cations of Figure 3 also reduce variance. For g = 0:5(n + 1)

�7=15

we have about

the same variance as for the local polynomial estimator, for g = 0:75(n + 1)

�7=15

and g =

1:0(n+ 1)

�7=15

it is signi�cantly smaller whereas bias is nearly unchanged here.
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Figure 3: Weights of the Gasser-M�uller kernel estimator (left, above) and of the modi�ed

estimation (2.2) with de�nitions (2.5) and bandwidths g = 0:1(n + 1)

�7=15

(left, above), g =

0:5(n+ 1)

�7=15

(right, above), g = 0:75(n+ 1)

�7=15

(left, below) and g = 1:0(n+ 1)

�7=15

(right,

below). Simulation example as in Figure 1.

More exact information of the modi�ed estimators can be obtained by calculating the relative

e�ciency as it was de�ned in Seifert and Gasser (1995) and has also be done in Hall and

Turlach (1995). Thereby conditional mean integrated squared error for the global bandwidths

which minimizes this error are obtained from simulations. The asymptotical optimal mean

integrated squared error is divided by the mean of 500 such replications. As was illustrated in
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Seifert and Gasser (1995) such a measure re
ects only a small part of the instability of the local

polynomial estimator for small sample size. To obtain results which are comparable to the ones

obtained by Seifert and Gasser (1995) and Hall and Turlach (1995) we use regression function

r

2

, sample sizes n = 25, 50, 100, 250, 500, 1000, 1500 and 2500 and constant variance function

�

2

= 0:5. The design points are obtained from uniformly distributed pseudo random numbers.

Figure 4 shows the results for the local linear estimator and the Gasser-M�uller estimator and

the modi�ed estimator (2.2) with de�nitions (2.5) and bandwidth g = 0:75(n+ 1)

�7=15

.

0

0.2

0.4

0.6

0.8

1
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Figure 4: Relative e�ciency of the local linear estimator (joined), the Gasser-M�uller estimator

(dashed) and the modi�ed estimator (2.2) with (2.5) and g = 0:75(n + 1)

�7=15

(dotted) for

regression function r

2

and �

2

= 0:5.

As in Hall and Turlach (1995) and Seifert and Gasser (1995) we do exclude boundary problems

by computing additional observations outside the unit interval.

It is easy to see that the modi�cations lead to an estimator with mean integrated squared error

slightly worse than the Gasser-M�uller estimator for small sample sizes and a good and e�cient

behaviour for large sample sizes. This was also re
ected by simulations with di�erent regression

design and variance functions. Figure 5 shows e.g. the analogous results for regression function

r

1

with a linear design density f

1

, f

1

(x) = 0:1+1:9 �x, and variance �

2

= 0:1 and for regression

function r

3

with a truncated N(0:5; 0:25) design density and variance �

2

= 0:25.

Summarizing these results and several others from simulations with di�erent variances and

regression functions one can state that the proposed estimator behaves better than a local

linear estimator with epanechnikov weights for relatively small bandwidth and small sample

size whereas it behaves much better than the Gasser-M�uller kernel estimator for relatively large

bandwidths and large sample size. Especially it does not share the numerical instabilities of
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the local polynomial estimators in sparse regions. There was only one situation observed in

simulations with a variable regression function, a very small variance and small sample size

where the general bandwidth g = 0:75(n + 1)

�(3k+1)=((2k+1)(ks+1))

leads to a signi�cant increase

of bias and hence was too large.
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Figure 5: Relative e�ciency of the local linear estimator (joined), the Gasser-M�uller estimator

(dashed) and the modi�ed estimator (2.2) with (2.5) and g = 0:75(n + 1)

�7=15

(dotted) for

regression function r

1

and �

2

= 0:1 and linear design density (left) and for regression function

r

3

and �

2

= 0:25 and a truncated normal design (right).

The proposed kernel estimator with the general bandwidth g = 0:75(n + 1)

�(3k+1)=((2k+1)(ks+1))

can also be used for �xed design, since the di�erences to the unmodi�ed Gasser-M�uller estimator

are very small then and vanish asymptotically. This nice property does not hold for the approach

of Hall and Turlach (1995).

It can also be used for mixed design situations e.g. a design with �xed points which are slightly

disturbed and similar situations. It does also perform well for multiple data points and shares

the nice property of local polynomial estimators by using the mean of such points at least

asymptotically. This is not true for the classical Gasser-M�uller estimator, compare Chu and

Marron (1991) for a discussion of this property.

3 Consistency results and asymptotically optimal band-

width

Here we analyze mean squared error and mean integrated squared error of estimator r̂

�

2

from

equation (2.2) with de�nitions (2.5) unconditionally.

As before we suppose that we use a kernelK of order k and a kernelK

s

of order k

s

= 2 or k

s

= 4

both with support [�1; 1] and appropriate boundary modi�cations. Thereby we say as usual
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that a kernel L is of order ` if

R

x

j

L(x) dx = �

0;j

for j = 0; : : : ; `� 1 and

R

x

`

L(x) dx 6= 0. We

also suppose that K, K

s

and the respective boundary kernels satisfy the smoothness conditions

which are stayed in the beginning of Appendix A.2. We will use the following abbreviations

�

j

(L) =

Z

1

�1

x

j

L(x) dx and M(L) =

Z

1

�1

fL(x)g

2

dx

for an arbitrary kernel function L. In the following we will use the notation K(�; t; h) to indicate

a possible dependence of the kernel function on t and h at the boundary when using boundary

kernels.

The regression function r is assumed to be at least k-times and the quantile function F

�1

of

the design variable T is assumed to be at least 4-times continuously di�erentiable on [0; 1].

First we prove an asymptotic result on the local bias B(t;h; g) of the kernel estimator.

Proposition 1: The kernel estimator r̂

�

2

(t;h) from (2.2) with de�nitions (2.5), h = o(1),

g = o(1), n

�1

h

�2

= o(1) and n

�1

g

�2

= o(1) satis�es

B(t;h; g) =

h

k

k!

r

(k)

(t)�

k

(K) +

g

ks

(ks)!

r

0

(t)(F

�1

)

(ks)

(F (t))�

ks

(K

s

) +R(t;h)

+o(g

ks

) +O(n

�1

+ n

�1

g

1=2

h

�1

+ g

2ks

h

�1

)

uniformly for all t 2 [h+ g; 1� h� g]. Thereby the rest R(t;h) = o(h

k

) does not depend on the

bandwidth g. Additionally it holds

sup

t2[0;1]

jB(t;h; g)�

h

k

k!

r

(k)

(t)�

k

(K(�; t; h))j =

~

R(h) +O(g

ks

) +O(n

�1

+ n

�1

g

1=2

h

�1

+ g

2ks

h

�1

)

with a rest

~

R(h) = o(h

k

) that does not depend on g.

Proof of Proposition 1: The typically dominating bias term is given by

B

1

(t;h) =

Z

K(x; t; h)r(t� hx) dx� r(t)

and does not depend on g. With usual arguments, compare e.g. M�uller (1988) we �nd the well

known representation

B

1

(t;h) =

h

k

k!

r

(k)

(t)�

k

(K) +R(t;h);
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where R and

~

R(h) = sup

t2[0;1]

jB

1

(t;h)�

h

k

k!

r

(k)

(t)�

k

(K(�; t; h))j

satisfy the proposed bounds of convergence.

We are now analyzing the additional bias term

B

2

(t;h; g) = B(t;h; g)�B

1

(t;h)

= E

 

n

X

i=1

Z

b

i

a

i

1

h

K

�

t� u

h

; t; h

�

fr(T

i

)� r(u)g du

!

:

For �xed design and T

i

2 [a

i

; b

i

] for all i = 1; : : : ; n which is satis�ed e.g. for the Gasser-M�uller

estimator we obtain the known bound jB

2

j �

C

n

for some global constant C > 0 (M�uller, 1988).

Since the condition T

i

2 [a

i

; b

i

] is no longer guaranteed we have to analyze B

2

more thoroughly.

Denote

S

2

=

n

X

i=1

Z

b

i

a

i

1

h

K

�

t� u

h

; t; h

�

fr(T

i

)� r(u)g du

and

�

t

i

= (F

�1

)(

i

n + 1

). We can �nd �

i

2 (a

i

; b

i

) and �

i

; �

i

; �

i

2 [0; 1] with

S

2

=

n

X

i=1

1

h

(b

i

� a

i

)

�

K

�

t�

�

t

i

h

; t; h

�

+K

�

t� �

i

h

; t; h

�

�K

�

t�

�

t

i

h

; t; h

��

fr(T

i

)� r(�

i

)g

=

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)r

0

(

�

t

i

)K

�

t�

�

t

i

h

; t; h

�

+

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)f�

i

(T

i

�

�

t

i

) + (1� �

i

)(�

i

�

�

t

i

)gr

00

(�

i

)K

�

t� �

i

h

; t; h

�

+

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)

�

K

�

t� �

i

h

; t; h

�

�K

�

t�

�

t

i

h

; t; h

��

r

0

(�

i

):

For the expectation of the �rst sum, it follows from Lemma 1 (ii) that

E

 

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)r

0

(

�

t

i

)K

�

t�

�

t

i

h

; t; h

�

!

=

n

X

i=1

(F

�1

)

0

�

i

n+ 1

�

(n+ 1)h

(F

�1

)

(ks)

�

i

n+ 1

�

r

0

(

�

t

i

)K

�

t�

�

t

i

h

; t; h

�

g

ks

ks!

�

ks

(K

s

(�;

i

n + 1

; h))

+O(n

�1

) + o(g

ks

):

11



Application of Lemma 4(i) and (ii) of the Appendix on the expectation of the second sum yields

E

 

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)f�

i

(T

i

�

�

t

i

) + (1 � �

i

)(�

i

�

�

t

i

)gr

00

(�

i

)K

�

t� �

i

h

; t; h

�

!

= O(n

�1

+ g

2ks

):

Using the uniform Lipschitz continuity of kernel K and applying Lemma 4 (ii) of the Appendix

proves

E

 

n

X

i=1

1

h

(b

i

� a

i

)(T

i

� �

i

)

�

K

�

t� �

i

h

; t; h

�

�K

�

t�

�

t

i

h

; t; h

��

r

0

(�

i

)

!

= O(n

�1

g

1=2

h

�1

+ n

�1=2

g

ks

h

�1

+ g

2ks

h

�1

):

Hence we obtain

E(S

2

) =

n

X

i=1

(F

�1

)

0

�

i

n+ 1

�

(n+ 1)h

(F

�1

)

(ks)

�

i

n+ 1

�

r

0

(

�

t

i

)K

�

t�

�

t

i

h

; t; h

�

g

ks

ks!

�

ks

(K

s

(�;

i

n+ 1

; h))

+O(n

�1

) + o(g

ks

) +O(n

�1

g

1=2

h

�1

+ g

2ks

h

�1

)

= O(n

�1

+ g

ks

) +O(n

�1

g

1=2

h

�1

+ g

2ks

h

�1

)

uniformly in t 2 [0; 1]. In the inner part, e.g. for t 2 [h + g; 1 � h � g] we obtain the uniform

approximation

E(S

2

) =

g

ks

ks!

�

ks

(K

s

)

Z

1

0

1

h

K

�

t� u

h

; t; h

�

r

0

(u)(F

�1

)

(ks)

(F (u)) du

+O(n

�1

) + o(g

ks

) +O(n

�1

g

1=2

h

�1

+ g

2ks

h

�1

):

With the standard approximation of this integral Proposition 1 is proved. 2

Proposition 1 shows that it might be possible to choose the bandwidths h and g in such a way

that the leading terms both vanish. This is possible if

r

(k)

(t)r

0

(t)(F

�1

)

(ks)

(F (t)) < 0

is satis�ed. Then both bandwidths have to be chosen locally and as consistent estimators of

the optimal ones. This seems to be very di�cult in practise and additionally such an approach

would lead to a kernel estimator with very di�erent bias behaviour. The idea for introducing

12



quantile estimators instead was mainly to reduce variance and to obtain an estimator with

MSE as in (2.1). Hence it might be more useful to assume g

ks

= o(h

k

) as was already done by

Jones et al. (1994). The next proposition deals with the asymptotic expression of the variance

V (t; g; h) of the kernel estimator.

Proposition 2: The kernel estimator r̂

�

2

(t;h; g) of equation (2.2) with de�nitions (2.5), h =

o(1), g = o(1), n

�1

h

�2

= o(1) and n

�1

g

�2

= o(1) satis�es

V (t;h; g) =

�

2

(t)M(K)

f(t)nh

n

1 +

4

ng

M(K

s

)

o

+O(n

�2

h

�3

+ n

�2

gh

�4

+ n

�1

g + n

�1

g

ks

h

�2

+ n

�1

g

2ks

h

�4

+ g

2ks

+ g

4ks

h

�4

)

uniformly for all t 2 [h+ g; 1� h� g] and

V (t;h; g) =

�

2

(t)M(K(�; t; h))

f(t)nh

+O(n

�2

g

�1

h

�1

)

+O(n

�2

h

�3

+ n

�2

gh

�4

+ n

�1

g + n

�1

g

ks

h

�2

+ n

�1

g

2ks

h

�4

+ g

2ks

+ g

4ks

h

�4

)

uniformly for all t 2 [0; 1].

Proof of Proposition 2: Here we use the well known decomposition

V ar(r̂

�

2

(t;h; g)) = V ar(E(r̂

�

2

(t;h; g)jT

1

; : : : ; T

n

) + E(V ar(r̂(t;h; g)jT

1

; : : : ; T

n

)):

The �rst term the variance of the conditional mean is now proved to be neglectable. It follows

from the Cauchy-Schwarz inequality with some suitable constant C

V ar(E(r̂

�

2

(t;h; g)jT

1

; : : : ; T

n

)) = V ar(S

2

)

= V ar

h

n

X

i=1

1

h

(b

i

� a

i

)K

�

t� �

i

h

; t; h

�

(T

i

� �

i

)r

0

(�

i

)

i

� 2E

h

n

X

i=1

1

h

(b

i

� a

i

)K

�

t�

�

t

i

h

; t; h

�

(T

i

� �

i

)r

0

(�

i

)

i

2

+2E

h

n

X

i=1

1

h

2

(b

i

� a

i

)(�

i

�

�

t

i

)K

0

�

t� �

i

h

; t; h

�

(T

i

� �

i

)r

0

(�

i

)

i

2

� Cmax

i

E

"

(n+ 1)

2

(b

i

� a

i

)

2

(T

i

� �

i

)

2

�

K

�

t�

�

t

i

h

; t; h

��

2

fr

0

(�

i

)g

2

#

+2max

i

E

�

(n + 1)

2

h

4

(b

i

� a

i

)

2

(�

i

�

�

t

i

)

2

(T

i

� �

i

)

2

n

K

0

�

t� �

i

h

; t; h

�o

2

fr

0

(�

i

)g

2

�

= O(n

�1

g + g

2ks

) +O(n

�2

gh

�4

+ n

�1

g

2ks

h

�4

+ g

4ks

h

�4

):
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The last approximation follows directly from Lemma 3 (iv) and Lemma 4 (ii) of the Appendix.

Typically, the conditional variance of the kernel estimator will give the leading term of the

approximations.

We obtain with suitable values �

i

2 (a

i

; b

i

)

(n+ 1)hV ar(r̂(t;h; g)jT

1

; : : : ; T

n

)

=

n

X

i=1

1

(n+ 1)h

�

2

(T

i

)(n+ 1)

2

(b

i

� a

i

)

2

n

K

�

t� �

i

h

; t; h

�o

2

=

n

X

i=1

1

(n+ 1)h

�

2

(

�

t

i

)(n+ 1)

2

(b

i

� a

i

)

2

�

K

�

t�

�

t

i

h

; t; h

��

2

�2

n

X

i=1

1

(n+ 1)h

2

�

2

(

�

t

i

)(n+ 1)

2

(b

i

� a

i

)

2

(�

i

�

�

t

i

)K

0

�

t�

�

t

i

h

; t; h

�

K

�

t�

�

t

i

h

; t; h

�

+

n

X

i=1

1

(n+ 1)h

(�

2

)

0

(

�

t

i

)(n+ 1)

2

(b

i

� a

i

)

2

(T

i

�

�

t

i

)

�

K

�

t�

�

t

i

h

; t; h

��

2

+

�

R:

Because of the uniform Lipschitz continuity of K

0

and (�

2

)

0

and Lemma 3 (i) to (iii) of the

Appendix we obtain the approximation

�

R = O(n

�1

h

�2

+ n

�1=2

g

ks

h

�1

+ g

2ks

h

�2

). Additionally,

Lemma 2 (ii) ensures that

n

X

i=1

1

(n+ 1)h

(�

2

)

0

(

�

t

i

)(n+ 1)

2

(b

i

� a

i

)

2

(T

i

�

�

t

i

)

�

K

�

t�

�

t

i

h

; t; h

��

2

= O(n

�1

)

whereas it follow from Lemma 2 (iii) that

n

X

i=1

1

(n+ 1)h

2

�

2

(

�

t

i

)(n+ 1)

2

(b

i

� a

i

)

2

(�

i

�

�

t

i

)K

0

�

t�

�

t

i

h

; t; h

�

K

�

t�

�

t

i

h

; t; h

�

= O(n

�1

h

�1

+ g

ks

h

�1

):

Therefore Lemma 2(i) yields

E[V ar(r̂(t;h; g)jT

1

; : : : ; T

n

)]

=

n

X

i=1

1

(n+ 1)

2

h

2

�

2

(

�

t

i

)

n

(F

�1

)

0

�

i

n+ 1

�o

2

�

K

�

t�

�

t

i

h

; t; h

��

2

+O(n

�2

g

�1

h

�1

+ n

�2

h

�3

+ n

�1

g

ks

h

�2

+ n

�1

g

2ks

h

�3

):

A standard integral approximation completes the proof of the uniform bound.
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The leading term in the inner part can be obtained analogously by application of Lemma 2(i)

and we obtain uniformly for t 2 [h+ g; 1 � h � g]

E[V ar(r̂(t;h; g)jT

1

; : : : ; T

n

)]

=

n

X

i=1

1

(n+ 1)

2

h

2

�

2

(

�

t

i

)

n

(F

�1

)

0

�

i

n+ 1

�o

2

�

K

�

t�

�

t

i

h

; t; h

��

2
n

1 +

4

(n+1)g

M(K

s

)

o

+O(n

�2

h

�3

+ n

�1

g

ks

h

�2

+ n

�1

g

2ks

h

�3

):

Hence the Proposition follows from a standard integral approximation. 2

If the results of both propositions are combined it follows that MSE has the asymptotic form

of equation (2.1) for all t 2 (0; 1) as long as g

ks

h

�k

! 0 and gh

�1

! 0 and the assumptions

of these propositions are satis�ed. Hence the asymptotically optimal local bandwidth h

ASY

is

given by

h

ASY

=

 

�

2

(t)(k!)

2

M(K)

nf(t)fr

(k)

(t)g

2

2k�

k

(K)

2

!

1=(2k+1)

as long as r

(k)

(t) 6= 0. In the following we assume that h is of optimal order, i.e. h � n

�1=(2k+1)

.

Proposition 1 and Proposition 2 prove for g

ks

= o(n

�k=(2k+1)

) and g = o(n

�1=(2k+1)

) that at

least for ks = 2 and for all t 2 (0; 1) the modi�ed regression estimator satis�es

MSE(r̂

�

2

(t;h)) =

h

2k

k!

n

r

(k)

(t)

o

2

�

k

(K)

2

+

�

2

(t)M(K)

nhf(t)

+R

�

(t;h)

h

k

g

ks

r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t))

�

k

(K)�

ks

(K

s

)

k!ks!

+

�

2

(t)4M(K)M(K

s

)

n

2

hgf(t)

+ o(h

k

g

ks

+ n

�2

g

�1

h

�1

):

with a rest term R

�

(t;h) = o(h

2k

) which does not depend on g. For ks = 4 the bounds of

the propositions are not su�cient for such a statement. But if the equation above holds a

bandwidth g which minimizes the in
uence on MSE asymptotically is given by

g

ASY

(h) =

 

�

�

2

(t)4M(K)M(K

s

)k!ks!

n

2

h

k+1

f(t)r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t))�(K)�

ks

(K

s

)

!

1=(ks+1)

if r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t)) < 0 and

g

ASY

(h) =

 

�

2

(t)4M(K)M(K

s

)k!(ks� 1)!

n

2

h

k+1

f(t)r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t))�

k

(K)�

ks

(K

s

)

!

1=(ks+1)
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if r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t)) > 0. Especially we have

g

ASY

(h

ASY

) =

 

�

f�

2

(t)g

k

r

(k)

(t)

n

3k+1

ff(t)g

k

fr

0

(t)(F

�1

)

(ks)

(F (t))g

2k+1

!

1=(ks+1)(2k+1)

C

1

(K;K

s

)

if r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t)) < 0 and

g

ASY

(h

ASY

) =

 

f�

2

(t)g

k

r

(k)

(t)

n

3k+1

ff(t)g

k

fr

0

(t)(F

�1

)

(ks)

(F (t))g

2k+1

!

1=(ks+1)(2k+1)

C

2

(K;K

s

)

if r

0

(t)r

(k)

(t)(F

�1

)

(ks)

(F (t)) > 0 for some kernel constants C

1

, C

2

. The following corollary

summarizes the asymptotic results on MSE.

Corollary: The kernel estimator r̂

�

2

(t;h; g) of equation (2.2) with de�nitions (2.5), h �

n

�1=(2k+1)

and g � n

�(3k+1)=(2k+1)(ks+1)

satis�es

MSE(r̂

�

2

(t;h)) =

h

2k

k!

n

r

(k)

(t)

o

2

�

k

(K) +

�

2

(t)M(K)

nhf(t)

+R

�

(t;h) +O(n

��

);

with � = minf4kks+ ks+ k; 2kks + ks+ 5k + 2g=((2k + 1)(ks+ 1)) > 1.

Additionally, for any continuous weight function w on [0; 1] we obtain

MISE(r̂

�

2

(�;h)) =

Z

1

0

w(t)MSE(r̂

�

2

(t;h)) dt

=

h

2k

k!

Z

n

r

(k)

(t)�

k

(K(�; t; h)

o

2

dt+

Z

�

2

(t)M(K(�; t; h))

f(t)

dt

1

nh

+R

��

(h) +O(n

��

);

with � as above and a rest term R

��

(h) = o(h

2k

) which does not depend on g.
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A Appendix

Here in the Appendix some important results on order statistics and kernel quantile estimators

are summarized.

A.1 On order statistics

Let T

1

; : : : ; T

(n)

be the ordered sample of n independent and identically distributed continu-

ous random variables with joint cumulative distribution function F . We assume that F is

strictly increasing and that F

�1

is at least four times continuously di�erentiable with bounded

derivatives on (0; 1). Then it is well known that T

1

; : : : ; T

n

have the same distribution as

F

�1

(U

(1)

); : : : ; F

�1

(U

(n)

) where U

(1)

; : : : ; U

(n)

are the order statistics from n iid. Uniform(0,1)

random variables. Asymptotic properties can be derived from Taylor approximations using

expressions of the central moments of the uniform order statistics, compare e.g. David (1980,

section 4.6) and Arnold, Balakrishman and Nagaraja (1986, section 5.5). We obtain by Taylor

expansion

T

i

= F

�1

�

i

n+1

�

+

3

X

k=1

�

U

(i)

�

i

n+1

�

k

(k!)

(F

�1

)

(k)

�

i

n+1

�

+

�

U

(i)

�

i

n+1

�

(4)

4!

(F

�1

)

(4)

(�

i

)

for some suitable �

i

2 (0; 1) and all i = 1; : : : ; n.

A general formula of moments of the uniform order statistics U

(i)

is given e.g. in David (1980,

section 3.1). It can be used to prove directly

E

�

U

(i)

�

i

n+1

�

2k

�

C

2k

(n + 1)

k

, E

�

U

(i)

�

i

n+1

�

2k�1

�

C

2k�1

(n + 1)

k

for all i = 1; : : : ; n and at least for k � 12. Additionally, we have

E

�

U

(i)

�

i

n+1

� �

U

(j)

�

j

n+1

�

=

minfi; jg(n+ 1 �maxfi; jg)

(n+ 1)

2

(n+ 2)

;

for all i; j = 1; : : : ; n, compare e.g. David (1980, section 3.1).

Denote

�

t

i

= F

�1

�

i

n+1

�

then it follows from the equations given above for all i; j; k = 1; : : : ; n

and a suitable constant C:

E(T

i

�

�

t

i

) �

C

n+ 1

(1)
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E(T

i

�

�

t

i

)(T

j

�

�

t

j

)

=

minfi; jg(n+ 1�maxfi; jg)

(n+ 1)

3

(F

�1

)

0

�

i

n + 1

�

(F

�1

)

0

�

j

n+ 1

�

+O(n

�2

)

�

C

n+ 1

; (2)

and additionally

EjT

i

�

�

t

i

j

`

�

C

(n+ 1)

`=2

(3)

at least for ` � 12. Further using the Lipschitz-continuity of (F

�1

)

0

we can conclude

jE (T

i

�

�

t

i

� T

j

+

�

t

j

) j

=

�

�

�

�

i(n+ 1 � i)

(n+ 1)

3

(F

�1

)

0

�

i

n+1

�

�

j(n+ 1 � j)

(n+ 1)

3

(F

�1

)

0

�

j

n+1

�

�

�

�

�

+O(n

�2

)

�

~

C

ji� jj

(n+ 1)

2

(4)

and similarily

jE(T

k

�

�

t

k

)(T

i

�

�

t

i

� T

j

+

�

t

j

)j �

~

C

ji� jj

(n+ 1)

2

(5)

and at least for ` � 4

E(T

k

�

�

t

k

)

2`

(T

i

�

�

t

i

� T

j

+

�

t

j

)

2

�

~

C

ji� jj

(n + 1)

`+2

(6)

for some suitable constant

~

C.

A.2 On kernel quantile estimators

Several forms of kernel quantile estimators and related quantile estimators and some aspects of

bandwidth choice are described e.g. in Sheather and Marron (1990). The asymptotic de�ciency

and distribution was calculated by Falk (1984)and Falk (1985) respectively and a Bahadur

representation was derived by Xiang (1994).

Here we need further approximations since we are mainly interested in moments on di�erences

of these quantile estimators and also second order terms. In the following we state and proof

some bounds for such moments. For a �xed bandwidth g we de�ne a kernel estimator of the

p-th quantile, p 2 [

0:5

n+1

;

n+0:5

n+1

] by

q̂(p) =

n

X

j=1

w

j

(p; g)T

j
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with the abbreviation

w

j

(p; g) =

Z

j+0:5

n+1

j�0:5

n+1

1

g

K

s

�

p � u

g

; p; g

�

du:

The kernel K

s

used in the inner part of [0; 1] is assumed to have support[�1; 1], to be con-

tinuously di�erentiable on IR and of order ks = 2 or ks = 4. In the boundary region we use

boundary kernels of the same order. We suppose that these boundary kernels and their deriv-

atives are Lipschitz-continuous functions of p=g in the left boundary region and of (1� p)=g in

the right boundary region. Besides we assume that their support lies in [�2; p=g] for the left

boundary and in [�p=g; 2] for the right boundary region.

The kernel K used for kernel regression estimation in the inner part of [0; 1] is also assumed to

have support[�1; 1], to be continuously di�erentiable on IR and of order k � 2. In the boundary

region we also use boundary kernels of the same order. Again we suppose that these boundary

kernels and their derivatives are Lipschitz-continuous functions of p=g in the left boundary

region and of (1� p)=g in the right boundary region. Besides we assume that their support lies

in [�2; p=g] for the left boundary and in [�p=g; 2] for the right boundary region. Besides we

suppose that �

k

(K) > 0 and �

ks

(K

s

) > 0.

For simpli�cation of the notation we do not only assume that g = o(1) and n

�1

g

�1

= o(1) but

also that n

�1

g

�2

= o(1). We obtain by Taylor expansions of the bias terms

q̂(p)�

n

X

j=1

w

j

(p; g)(T

j

�

�

t

j

) =

n

X

j=1

w

j

(p; g)

�

t

j

=

g

ks

(ks)!

�

ks

(K

s

(�; p; g)) (F

�1

)

(ks)

(p) + F

�1

(p) +O(n

�1

) + o(g

ks

):

For i = 1; : : : ; n this gives an uniform approximation

q̂(p)�

�

t

i

=

n

X

j=1

w

j

(

i

n+ 1

; g)(T

j

�

�

t

j

) +

g

ks

(ks)!

�

ks

�

K

s

�

�;

i

n+ 1

; g

��

(F

�1

)

(ks)

(

i

n+ 1

)

+O(n

�1

) + o(g

ks

) (7)

for all p 2 [

i�0:5

n+1

;

i+0:5

n+1

]. One should note that for random p with values in [

i�0:5

n+1

;

i+0:5

n+1

] the error

terms bounded by O(n

�1

) + o(g

ks

) may be random terms.

Now we de�ne a

i

= q̂

�

i� 0:5

n+ 1

�

and b

i

= q̂

�

i+ 0:5

n+ 1

�

for i = 1; : : : ; n and use the abbreviation

�w

j

(i; g) = (n + 1)

n

w

j

�

i+ 0:5

n+ 1

; g

�

� w

j

�

i� 0:5

n+ 1

; g

�o
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for j = 1; : : : ; n. Hence we can write (n+1)(b

i

�a

i

) =

P

�w

j

(i; g)T

j

. Moments of this expression

will be analyzed in the following lemmas.

Lemma 1: With quantile estimators a

1

; : : : ; a

n

and b

1

; : : : ; b

n

de�ned as above we obtain

(i) E(n+ 1)(b

i

� a

i

) = (F

�1

)

0

(

i

n+ 1

) +O(n

�1

+ g

ks�1

)

(ii) E(n+ 1)(b

i

� a

i

)(T

i

� q̂(p

i

)) =

�(F

�1

)

0

(

i

n+ 1

)(F

�1

)

(ks)

(

i

n+ 1

)

g

ks

(ks)!

�

ks

�

K

s

�

�;

i

n+ 1

; g

��

+O(n

�1

)+o(g

ks

) for a random

variable p

i

with values in [(i� 0:5)=(n+ 1); (i+ 0:5)=(n + 1)].

Proof of Lemma 1:

(i) Firstly, it follows from Lipschitz-continuity of the kernel function

j �w

j

(i; g)j �

C

ng

2

and

n

X

j=1

j �w

j

(i; g)j �

C

ng

(8)

for some suitable constant C.

Now we are analyzing

n

X

j=1

�w

j

(i; g)q(

j

n + 1

) for an arbitrary ks-times continuously di�erentiable

function q on [0; 1]. Since K

0

s

(�; p; g) is Lipschitz-continuous in p=g we obtain

�w

j

(i; g)q(

j

n+ 1

)

�

Z

j+0:5

n+1

j�0:5

n+1

n+ 1

g

(

K

s

 

i+0:5

n+1

� u

g

;

i+ 0:5

n+ 1

; g

!

�K

s

 

i�0:5

n+1

� u

g

;

i� 0:5

n+ 1

; g

!)

q(u) du

=

Z

j+0:5

n+1

j�0:5

n+1

n+ 1

g

(

K

s

 

i+0:5

n+1

� u

g

;

i+ 0:5

n+ 1

; g

!

�K

s

 

i�0:5

n+1

� u

g

;

i� 0:5

n+ 1

; g

!)

�

j

n+ 1

� u

�

q

0

(

j

n+ 1

) du+O(n

�3

g

�2

)

=

Z

j+0:5

n+1

j�0:5

n+1

n+ 1

g

(

K

s

 

i+0:5

n+1

�

j

n+1

g

;

i+ 0:5

(n+ 1)

; g

!

� K

s

 

i�0:5

n+1

�

j

n+1

g

;

i� 0:5

(n+ 1)

; g

!)

(

j

n+ 1

� u)q

0

(

j

n + 1

) du+O(n

�3

g

�3

)

= O(n

�3

g

�3

):

This leads to the following approximation

n

X

j=1

�w

j

(i; g)q(

j

n+ 1

)
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=

Z

1

0

n + 1

g

(

K

s

 

i+0:5

n+1

� u

g

;

i+ 0:5

n+ 1

; g

!

�K

s

 

i�0:5

n+1

� u

g

;

i� 0:5

n+ 1

; g

!)

q(u) du

+O(n

�2

g

�2

)

= (n+ 1)fq(

i+ 0:5

n + 1

)� q(

i� 0:5

n+ 1

)g+O(n

�2

g

�2

)

+

Z

1

�1

Z

1

0

(gx)

ks

(ks� 1)!

�

ks

n

q

(ks)

(

i+ 0:5

n+ 1

� gx(1 � �))K

s

�

x;

i+ 0:5

n+ 1

; g

�

�q

(ks)

(

i� 0:5

n+ 1

� gx(1� �))K

s

�

x;

i� 0:5

n+ 1

; g

�o

d� dx

= q

0

(

i+ 0:5

n+ 1

) +O(n

�1

) +

8

<

:

O(g

ks

) , for

i� 1

n+ 1

� g and

n� i

n+ 1

� g

O(g

ks�1

) , else.

(9)

Hence we have especially the following approximation of bias terms of (n+ 1)(b

i

� a

i

)

(n+ 1)(b

i

� a

i

) =

n

X

j=1

�w

j

(i; g)F

�1

�

j

n+ 1

�

+

n

X

j=1

�w

j

(i; g)(T

j

�

�

t

j

)

= (F

�1

)

0

(

i

n+ 1

) +

n

X

j=1

�w

j

(i; g)(T

j

�

�

t

j

) +O(n

�1

+ g

ks�1

): (10)

Now the �rst part of Lemma 1 follows immediately from (1), (9) and (10).

(ii) Using (7), (8) and (10) we obtain

E(n + 1)(b

i

� a

i

)(t

i

� q̂(p

i

))

= E

�n

(F

�1

)

0

�

i

n+ 1

�

+

n

X

j=1

�w

j

(i; g)(T

j
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) +O(g

ks�1
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o
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�
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+
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w
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+
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�
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�
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+O(1)E
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(
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+
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�

n

X

j=1

�w

j

(i; g)(T

j

�

�

t

j

)

�

�

�:

23



Hence application of (1), (4) and (6) and of Ej

n

X

j=1

�w

j

(i; g)(T

j

�

�

t

j

)j = o(1) gives

E(n+ 1)(b

i

� a

i

)(T

i

� q̂(p

i

))

=

g

ks

(ks)!

�

ks

�

K

s

(�;
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n+ 1
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�

(F

�1

)

0
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n+ 1

�

(F

�1

)

(ks)

�

i

n+ 1

�

+O(n

�1

) + o(g

ks

):

This proves Lemma 1. 2

Lemma 2: The quantile estimators a

1

; : : : ; a

n

and b

1

; : : : ; b

n

de�ned as above satisfy uniformly

for all i = 1; : : : ; n

(i) E(n+ 1)

2

(b

i

� a

i

)

2

=

n

(F

�1

)

0

�

i

n+ 1

�o

2

+O(n

�1

g

�1

)

and E(n + 1)

2

(b

i

� a

i

)

2

=

n

(F

�1

)

0

�
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n+ 1

�o

2

n

1 +

4

ng

M(K

s

)

o

+ O(n

�1

) for all i of the

inner part, e.g. those who satisfy

i� 1

n+ 1

� g and

n � i

n+ 1

� g.

(ii) E(n+ 1)

2

(b

i

� a
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2

(T
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�

t
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) = O(n

�1
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(iii) E(n+ 1)

2

(b

i

� a
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(q̂(p

i

)�

�

t

i

) = O(n

�1

+ g

ks
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with a random variable p

i

with values in [(i� 0:5)=(n + 1); (i+ 0:5)=(n + 1)].

Proof of Lemma 2:

(i) As described in Appendix A.1 we can expand (n + 1)

2

(b

i

� a

i

)

2

with use of an suitable

midpoint �

j

by

(n+ 1)

2

(b

i

� a

i

)

2

=

n
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:

Using the bounds on the central moments of the uniform order statistics gives
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+

1

n+ 1

n

n

X
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n
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Hence application of equation (9) leads to
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=
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Note that analogously to equation (9) we obtain for arbitrary continuously di�erentiable func-

tions q

1
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)
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This proves the uniform bound of part (i). In the inner part, i.e. for

i� 1

n+ 1

� g and

n � i

n+ 1

� g,

integration by parts yields
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This completes the proof of part (i).

(ii) This part can be proved similar to Lemma 1 (ii). Expansion of (n + 1)
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Hence application of equations (8) and (9) gives
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(iii) Applying the approximations of equation (8) and (10) we obtain
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=
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�
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Hence it remains to show that E
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the asymptotic expression of equation (2) we obtain
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This completes the proof of Lemma 2. 2

Lemma 3: For the quantile estimators a

1

; : : : ; a

n

and b

1

; : : : ; b

n

de�ned as above and a random

variable p

i
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Proof of Lemma 3:

(i) Applying equation (10) we can write
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With the same arguments as in the proof of Lemma 2 (ii) and using the asymptotic bounds of

equation (3) we obtain
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(ii) As in (i) using equations (3), (7) and (10) we obtain
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(iii) Using equations (3), (7) and (10) we otain in this situation
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(iv) Expanding the products as before and using equations (3), (7) and (10) we obtain
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Thereby the last equation follows from the bounds of equation (4) and (6). 2
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Proof of Lemma 4:

(i) With similar arguments as above we obtain
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(ii) Besides the application of equation (3), (7) and (10) we use the bounds of (6) and obtain

E(n+ 1)

2

(b

i

� a

i

)

2

(T

i

� q̂(p

i

))

2

(q̂(p

i

)�

�

t

i

)

2

29



= E

n

n

X

j=1

�w

j

(i; g)(T

j

�

�

t

j

) +O(1)

o

2

n

n

X

j=1

w

j

�

i

n+ 1

; g

�

(T

i

�

�

t

i

� T

j

+

�

t

j

) +O(g

ks

+ n

�1

)

o

2

n

n

X

j=1

w

j

�

i

n+ 1

; g

�

(T

j

�

�

t

j

) +O(g

ks

+ n

�1

)

o

2

= O(n

�2

g + n

�1

g

2ks

+ g

4ks

):

2

Eva Herrmann

Fachbereich Mathematik

Technische Hochschule Darmstadt

Schlo�gartenstra�e7

D{64289 Darmstadt, F.R.G.

30


