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Abstract

For the convection-di�usion equation in two dimensions we derive the cell orientated

discretization which is based on the method of lines leading to di�erential-algebraic

equations and their time integration by implicit methods. This approach is well-suited

in convection-dominated cases. The e�ciency of the method depends on the solution

of the arising linear systems mainly. Motivated by the de�niteness properties of these

unsymmetric systems we choose a multigrid method with problem adapted transfer

operators. The interpretation of the cell orientated discretization in a �nite-volume

or a Petrov-Galerkin context leads to di�erent de�nitions of restriction and prolonga-

tion. In combination with smoothers which are exact solvers in the convection case

(Gauss-Seidel, ILU) we achieve a robust multigrid iteration. Finally we present nu-

merical results concerning the quality of the transfer operators as well as the various

smoothing iterations. The independance of the convergence rate from the gridsize and

the behaviour of various time integration schemes are also examined.

1 Introduction

As a model problem for the derivation of our discretizations we consider the unsteady

linear convection-di�usion equation of the form

u

t

+ Lu = q with Lu =r � (�u� �ru) (1)

on a bounded domain 
 � R

2

with constant di�usion coe�cient � > 0 and a given

divergence free velocity �eld �(x) in R

2

. The initial and boundary conditions are given

by

u(x; 0) = u

0

(x) on 


u(x; t) = u

D

(x) on �

D

� �

in

:= fx 2 @
 ; �(x) �n � 0g

@

n

u(x; t) = 0 on �

N

� @
 n �

D

:

(2)
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In the convection dominated case (j�j � �) boundary layers can occur due to Dirichlet

conditions on the out
ow boundary if �

D

n �

in

6= ; and internal layers have to be

considered when using nonsmooth Dirichlet data u

D

.

The cell orientated discretization is based on the method of lines and an appropriate

treatment of the space operator L. This approach is well suited for problems aris-

ing in the convection dominated case even when using coarse grids with high P�eclet

number Pe = hj�j

max

=�. The derivation of the semidiscretization and its implicit time-

integration leading to the cell orientated discretization are described in the next section.

Afterwards we study the properties of the resulting linear systems.

The e�ciency of the whole method is essentially in
uenced by the computational e�ort

for solving the linear systems. In the case of a self-adjoint elliptic operator L the multi-

grid approach leads to an e�cient solver. Therefore a multigrid method should work

for di�usion dominated problems. For the convection equation (� = 0) the linear sys-

tems can be written in triangular form with a numeration adapted to the velocity �eld.

Thus, the Gauss-Seidel or ILU iteration are fast solvers in convection dominated situa-

tions. For the development of a robust multigrid method we combine the multigrid idea

with these iteration methods as smoothers. A main component to get a reliable multi-

grid algorithm is the speci�cation of problem dependent restriction and prolongation

operators. The multigrid method is described in section 3.

Finally numerical results concerning the quality of our discretization and the expected

behaviour of the multigrid algorithm are presented.

2 Cell orientated discretization

The convection-di�usion equation (1) is a parabolic conservation law which can be

written in integral form as one possibility of a weak formulation

d

dt

Z

~




udV +

I

@

~




[� � nu� � @

n

u] ds =

Z

~




qdV for all

~


 � 
 (3)

where

~


 is a domain with piecewise smooth boundary @

~


.

2.1 Semidiscretization

The cell orientated semidiscretization is based on a �nite volume approach for (3) using

the method of lines. This semidiscretization is introduced and described in detail in [5].

In the following we will outline the main steps of its derivation under the simplifying

assumption of a constant velocity �eld � with nonvanishing components.

For a rectangular cell V with edges S

i

(see �g 1) (3) leads to

d

dt

Z

V

udV +

4

X

i=1

� � n

i

Z

S

i

uds� �

Z

S

i

@

n

u ds =

Z

V

qdV : (4)
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Figure 1: local cell, grid and neighbouring cells

Equation (4) motivates the use of average values of u and their semidiscrete analogues

u

V

� u(V ) :=

1

jV j

Z

V

udV (cell average) ;

u

S

� u(S) :=

1

jSj

Z

S

u ds (edge average) ;

@

n

u

S

� @

n

u(S) :=

1

jSj

Z

S

@

n

u ds (edge average of normal derivatives)

(5)

where jV j and jSj indicate the measure of V and S, respectively.

For a rectangular grid with cells V 2 V and edges S 2 S (see �g 1) the �nite volume

equation (4) has for all V 2 V the semidiscrete counterpart

jV j

d

dt

u

V

+

4

X

i=1

jS

i

j [� � n

i

u

S

i

� �@

n

u

S

i

] = jV jq

V

: (6)

Here, q

V

denotes the exact evaluation of q(V ) or for practical purposes an approximation

by a cubature formula. Rewriting the boundary conditions in the form

u

S

(0) = u

D

(S) for S 2 @S

D

:= fS 2 S : S � �

D

g ;

@

n

u

S

(0) = 0 for S 2 @S

N

:= fS 2 S : S � �

N

g

(7)

we get an underdetermined system. Thus we have to de�ne additional conditions for

edge averages u

S

, @

n

u

S

. In �nite volume methods u

S

and @

n

u

S

are substituted by a

linear combination of cell averages in the neighbourhood of S so that they are formulated

usually in terms of the cell averages only.

In contrast to this explicit 
ux representation we use an implicit one given by the

representation of the normal derivative @

n

u

S

in a cell V as a linear combination of the

local averages

@

n

u

S

= �

V

u

V

+

4

X

i=1

�

S

i

u

S

i

: (8)

The coe�cients are determined by postulating the validity of (8) on a local trial space

S

V

= span

�

1; x

1

; x

2

; exp

�

�

1

�

x

1

�

; exp

�

�

2

�

x

2

��

(9)
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containing the exponential functions as homogeneous solutions of the steady convection-

di�usion equation (1) and all polynomials of degree 1. This choice enables the elimina-

tion of the normal derivatives in (6) and (7).

For each interior edge S belonging to two cells V

+

, V

�

(see �g 1) the normal derivatives

@

n

u

S

only have di�erent signs so that we get additional constraints in terms of the

unknowns ~u

V

:= (u

V

)

V 2V

and ~u

S

:= (u

S

)

S2S

only. These equations combined with the

�nite volume equations (4) and boundary conditions altered by the elimination of the

normal derivatives de�ne a di�erential-algebraic system of the form

M

d

dt

~u+B~u =

~

b ()

 

V 0

0 0

!

d

dt

 

~u

V

~u

S

!

+

 

B

11

B

12

B

21

B

22

! 

~u

V

~u

S

!

=

 

~

b

1

~

b

2

!

(10)

where V = diag(jV j)

V2V

.

Similarly to �nite element methods the sti�ness matrix B can be generated by cell

matrices acting only on the variables of one cell.

2.2 Interpretation as a Petrov-Galerkin method

In the preceding subsection we have given a derivation of the semidiscretization as

a �nite-volume-type method under the assumption of constant velocity �eld �. In

view of the extension to a variable velocity �eld �(x) it is helpful to formulate (10)

as an equivalent Petrov-Galerkin method. In the one-dimensional case this leads to a

conforming, and in two dimensions to a nonconforming method.

In one dimension the weak formulation of (1) utilizing test functions reads for homoge-

neous Dirichlet data:

Find u 2 H

1

E

(
) : (u

t

;  ) + �(u

x

;  

x

) + �(u

x

;  ) = (q;  ) for all  2 H

1

E

(
) : (11)

Here, (�; ) =

R




� dx denotes the L

2

-scalar product associated with an interval 
 and

H

1

E

(
) is the Sobolev space H

1

(
) with the essential (Dirichlet) boundary conditions.

In contrast to �nite element methods the speci�cation of di�erent subspaces of H

1

E

(
)

for the trial and test functions de�nes a conforming Petrov-Galerkin method. For a cell

V = (x

j�1

; x

j

) the local trial space S

V

and test space T

V

are { in analogy to (9) { given

by

S

V

= spanf1; x; exp

 

�x

�

!

g and T

V

= spanf1; x; exp

 

�

�x

�

!

g :

The exponential function � = exp (

�x

�

) is a solution of the homogeneous equation L� = 0

whereas  = exp (�

�x

�

) ful�lls the adjoint problem L

�

 = 0. In the limit case � = 0

we get by continuation from (11) S

V

= T

V

= spanf1; x; x

2

g, which de�nes a Galerkin

approach for this self-adjoint problem.

Using nodal values �

j

= �(x

j

), j 2 J and �

V

= �(V ) the nodal basis of S reads

S = spanf�

j

(x); j 2 J ; �

V

(x); V 2 Vg : (12)
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Similarly we can derive a nodal basis for

T = spanf 

j

(x); j 2 J ;  

V

(x); V 2 Vg : (13)

The nodal functions for the self-adjoint and a convection dominated example are shown

in �g 2. Approximating the evolutionary term and the right hand side of (11) by the

sums

(u

t

;  ) �

X

V 2V

jV ju

t

(V ) (V ) ; (q;  ) �

X

V2V

jV jq

V

 (V ) (14)

we obtain the semidiscrete system in form (10).

Remark 2.1 The approximations (14) can be interpreted as lumping of the mass ma-

trices consisting of the inner products (�; ) for the nodal functions � 2 S and  2 T .

| | | |

-

-

-

| | | |

-

-

-

| | | |

-

-

-

| | | |

-

-

-

| | | |

-

-

-

| | | |

-

-

-

Figure 2: Trial functions for Pe=0 and Pe=10

In the 2D-case the local trial and test spaces are de�ned by

S

V

= spanf1; x

1

; x

2

; exp

 

�

V;1

x

1

�

!

; exp

 

�

V;2

x

2

�

!

g

T

V

= spanf1; x

1

; x

2

; exp

 

�

�

V;1

x

1

�

!

; exp

 

�

�

V;2

x

2

�

!

g ;

5



where (�

V;i

) � �

i

(V ) are local approximations in case of variable velocity. We can

derive an analogous representation to the trial space (12) and the test space (13) with

the cell averages and the edge averages from (5) as nodal values. This means that the

nodal functions are not continuous at interior edges because only edge averages are

considered. Having these nonconforming spaces we can de�ne a weak formulation as

Find � 2 S : (�

t

;  ) +

X

V2V

Z

V

(�r� �r + � �r� )dV = (q;  ) for all  2 T :

To obtain the semidiscretization we approximate the terms (�

t

;  ) and (q;  ) by (14).

For constant velocity the remaining sum of integrals is evaluated exactly whereas a local

approximation of the integrals

R

V

�r� dV is applied for variable velocity �eld using

the values �

S

� �(S).

The sti�ness matrix B in (10) is assembled by the cell matrices

B

V;i

=

jS

i

j

2

8

<

:

cof

 

�

V;i

;

2�

jS

i+1

j

!

0

B

@

4 �2 �2

�2 1 1

�2 1 1

1

C

A

+

2�

jS

i+1

j

0

B

@

0 0 0

0 1 �1

0 �1 1

1

C

A

+

0

B

@

0 ��

S

i+2

;i

� �

V;i

�

S

i

;i

+ �

V;i

�

S

i+2

;i

+ �

V;i

0 ��

V;i

��

S

i

;i

� �

V;i

�

V;i

0

1

C

A

9

=

;

for V 2 V and i = 1; 2 ,

B

S

= �

S

�n

S

for S 2 S

N

:

The cell matricesB

V;i

are connected to the cell vectors ~u

V;i

:= (u

V

; u

S

i+2

; u

S

i

)

T

ignoring

of rows and columns belonging to Dirichlet data u

S

for S 2 S

D

. The scalar B

S

is

associated with u

S

for Neumann boundaries S 2 S

N

. The function cof is de�ned by

cof(�; �) =

8

>

>

>

>

<

>

>

>

>

:

�

 

coth(

�

�

)�

�

�

!

�1

; �; � 6= 0

j�j ; � = 0

3� ; � = 0

:

2.3 Time integration

The semidiscrete system (10) is a semi-explicit di�erential-algebraic system of index 1

since the submatrix B

22

is regular [2].

The corresponding initial data ~u(0) = ~u

0

should be consistent in the sense that the

algebraic equations are satis�ed, i.e.

B

21

~u

0

V

+B

22

~u

0

S

=

~

b

2

(0) :

Resolving the algebraic part of (10) for the variables ~u

S

and substituting into the

di�erential part we get the underlying system

V

d

dt

~u

V

+ [B=B

22

]~u

V

=

~

b

1

�B

12

B

�1

22

~

b

2

(15)
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of ordinary di�erential equations where [B=B

22

] := B

11

� B

12

B

�1

22

B

21

denotes the

Schur complement of B. As a discrete analogue of the partial di�erential equation

(1) this is a sti� system which describes the time behaviour of (10). Therefore it is

reasonable to integrate (15) by implicit methods. Since the Schur complement should

not be computed explicitly we make use of methods producing identical cell averages

~u

n

V

at time level n when applied to the semidiscretization (10) or the underlying system

(15). At each time step it is necessary to solve one or more systems of linear equations

having the form (for constant time steps �t)

A~u =

~

f with A =




�t

M +B : (16)

The parameter 
 > 0 depends on the chosen method only. The vector ~u is either an

approximation on the next time level or an increment.

Studying the quality of linear solvers for (16) it is adequate to restrict ourselves to

the method of Gear (2-step backward di�erentiation formula) and the Crank-Nicolson

scheme. These and other schemes including implicit Runge-Kutta methods are dis-

cussed in [5] with regard to this problem.

2.4 Convergence results

The following results are proved in [5]. Combining the asymptotic stability of the

underlying system (15) which is uniformly in h = maxfjSj; S 2 Sg and the consistency

of the semidiscretization with regard to the average values we obtain

Theorem 2.2 The cell orientated semidiscretization of the convection-di�usion prob-

lem (1, 2) is convergent of order 2 for quasi-uniform grids in the discrete l

2

-norm

k~u

V

k

2

:=

X

V2V

jV ju

2

V

. This reduces to order 1 in the convection case � = 0 and also

for an arbitrary rectangular grid.

With similar techniques as in the semidiscrete situation this theorem can be extended to

the full discretization by using contractivity and convergence results for time integration

methods.

Theorem 2.3 The cell orientated discretization is convergent in the grid parameter h

with the order stated in Theorem 2.2 and of order 2 in �t. For the method of Gear

there is no restriction on the coupling of h and �t.

2.5 Properties of the linear systems

First of all we ascertain that (16) is an illconditioned sparse linear system with a pattern

of in
uence illustrated in �g 3. For the application of multigrid methods we analyse

the de�niteness of the sti�ness matrix B, the matrix A in (16) arising during time

integration and the corresponding Schur complement. In the following we are assuming

that h

min

:= minfjSj; S 2 Sg � C

h

h with a constant C

h

> 0 independent of h.
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Theorem 2.4 The sti�ness matrix B is positive de�nite uniformly in h

2

, i. e.

~

�

T

B

~

� � �Ch

2

~

�

T

~

� for all

~

� (17)

with a constant C > 0 independent of h.

Proof:

(i) We consider the quadratic form of B by assembling the cell matrices and esti-

mating their local parts. Using the relations

cof(�; �) � j�j and �

S

� n

S

� 0 for S 2 @S

N

we obtain for a parameter � 2 (0; 3]

~

�

T

B

~

� =

X

V2V

2

X

i=1

~

�

T

V;i

B

V;i

~

�

V;i

+

X

S2@S

N

B

S

�

2

S

� �

X

V2V

2

X

i=1

jS

i

j

jS

i+1

j

~

�

T

V;i

8

>

<

>

:

3

0

B

@

4 �2 �2

�2 1 1

�2 1 1

1

C

A

+

0

B

@

0 0 0

0 1 �1

0 �1 1

1

C

A

9

>

=

>

;

~

�

V;i

� �C

h

X

V2V

2

X

i=1

~

�

T

V;i

K

V;i

(�)

~

�

V;i

=: �C

h

~

�

T

K(�)

~

�

with

K

V;i

(�) := �

0

B

@

4 �2 �2

�2 1 1

�2 1 1

1

C

A
+

0

B

@

0 0 0

0 1 �1

0 �1 1

1

C

A
: (18)

In contrast to B the matrix K(�) is symmetric and independent of �. The

elimination of the Dirichlet data is formally done by setting �

S

:= 0, S 2 @S

D

in

the cell vectors

~

�

V;i

.

(ii) Since K

11

is diagonal the Schur complement [K=K

11

](�) can be computed in

terms of the cell matrices K

V;i

(�) locally (static condensation). Choosing � = 2

[K=K

11

](2) can be interpreted as a �nite-di�erence discretization of ��u = 0

with a crossed 5-point-stencil shown in �g 4. Thereby it is well-known that

~

�

T

S

[K=K

11

](2)

~

�

S

� C

1

h

2

~

�

T

S

~

�

S

: (19)

By setting � = 1 the matrixK

22

(1) is also diagonal. This leads to [K=K

22

](1) as

the standard 5-point-stencil of the Laplacian (see �g 4). Therefore we have

~

�

T

V

[K=K

22

](1)

~

�

V

� C

2

h

2

~

�

T

V

~

�

V

: (20)

The constants C

1

; C

2

> 0 are independent of h.
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(iii) Splitting the quadratic form of K = K(�) into two parts using the Schur com-

plements we have for arbitrary � 2 (0; 3]

~

�

T

K

~

� =

~

�

T

V

[K=K

22

]

~

�

V

+

~

~

�

T

S

K

22

~

~

�

S

�

~

�

T

V

[K=K

22

]

~

�

V

with

~

~

�

S

=

~

�

S

+K

�1

22

K

12

~

�

V

and

~

�

T

K

~

� =

~

�

T

S

[K=K

11

]

~

�

S

+

~

~

�

T

V

K

11

~

~

�

V

�

~

�

T

S

[K=K

11

]

~

�

S

with

~

~

�

V

=

~

�

V

+K

�1

11

K

21

~

�

S

:

Combining these results with equations (18), (19) and (20) we obtain �nally

~

�

T

B

~

� � �C

h

h

2

maxfC

1

~

�

T

S

~

�

S

; C

2

~

�

T

V

~

�

V

g

� �C

h

h

2

minfC

1

; C

2

g

1

2

�

~

�

T

S

~

�

S

+

~

�

T

V

~

�

V

g

�

= �Ch

2

~

�

T

~

� with C :=

1

2

C

h

minfC

1

; C

2

g :

�

V

V

+

V

�

V V

�

V

+

Figure 3: Pattern of in
uence

Corollary 2.5 The matrix A of (16) and its Schur complement [A=A

22

] are positive

de�nite uniformly in h

2

, i. e.

~

�

T

A

~

� � �Ch

2

~

�

T

~

� for all

~

� (21)

and

~

�

T

V

[A=A

22

]

~

�

V

�

�

�C +




�t

C

2

h

�

h

2

~

�

T

V

~

�

V

for all

~

�

V

where C > 0 is the constant from (17).

Proof: The de�nition of M in (10) yields

~

�

T

M

~

� =

~

�

T

V

V

~

�

V

� min

V2V

fjV jg

~

�

T

V

~

�

V

� C

2

h

h

2

~

�

T

V

~

�

V

� 0: (22)
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In combination with (16) and (17) this gives (21) directly.

The connection between the Schur complement [B=B

22

] and B is established by

~

�

T

B

~

� =

~

�

T

V

[B=B

22

]

~

�

V

with

~

� :=

 

I

�B

�1

22

B

21

!

~

�

V

(23)

for arbitrary

~

�

V

.

From [A=A

22

] =




�t

V + [B=B

22

], (17), (22) and (23) we have the estimation

~

�

T

V

[A=A

22

]

~

�

V

=




�t

~

�

T

V

V

~

�

V

+

~

�

T

B

~

� �




�t

C

2

h

h

2

~

�

T

V

~

�

V

+ �Ch

2

~

�

T

~

�

�

�

�C +




�t

C

2

h

�

h

2

~

�

T

V

~

�

V

:

�

-1

-1

-1 4 -1

-1

-1 -1

4

-1

Figure 4: 5-point stencil and crossed 5-point stencil

3 Multigrid iteration

3.1 Basic multigrid algorithm

For solving the linear system (16) by a multigrid method we consider the discretization

matrices

A

0

;A

1

; : : :A

l

max

= A with A

l

2 R

N

l

�N

l

on a sequence of nested grids

G

0

� G

1

� : : : � G

l

max

Let s

l

: R

N

l

! R

N

l

be a smoothing iteration, p

l

: R

N

l�1

! R

N

l

a prolongation and r

l

:

R

N

l

! R

N

l�1

a restriction operator for l = 1; : : : ; l

max

. The (multiplicative) multigrid

method then reads (see [1, 3, 13])

10



Algorithm 3.1

MGM(l; ~u;

~

f )

if (l = 0)

~u := (A

0

)

�1

~

f (exact solution on coarsest grid)

else

~u := s

l

(~u;

~

f ; �

1

) (presmoothing)

~

d := r

l

(A

l

~u�

~

f) (restriction of defect)

~v := 0

for j = 1; : : : ; � do MGM(l � 1; ~v;

~

d)

~u := ~u� p

l

~v (coarse grid correction)

~u := s

l

(~u;

~

f ; �

2

) (postsmoothing)

endif

For the choice of � = 1 we get the V-cycle and for � = 2 the W-cycle. As mentioned

in the introduction the Gauss-Seidel and the ILU iteration [4, 6] are fast solvers in the

convection dominated case in combination with a numbering in direction of the velocity

�eld. We are using these methods as smoothing iterations in our computations. For the

solution on the coarsest grid we are making use of the GMRES method [10, 14]. The

number of iterations in pre- and postsmoothing are denoted by �

1

and �

2

, respectively.

3.2 Restriction and prolongation

For the description of restriction and prolongation operators we assume that a cell V

belonging to G

l�1

consists of four adjacent �ne grid cells

~

V

k

on level l as shown in �g

5. The two interpretations of our discretization lead to di�erent constructions of these

operators. The index l is neglected when the meaning is obvious.

S

1

S

4

V

S

3

S

2

~

V

1

~

V

3

~

V

4

~

V

2

Figure 5: local notations
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3.2.1 Finite volume approach

The underlying system (15) of ordinary di�erential equations motivates to understand

the di�erential part of the semidiscrete system (10) as �nite volume equations and the

algebraic part as constraints. Transferring this point of view to the linear system (16)

we consider �rst of all the Schur complement system

[A=A

22

]~u

V

=

~

f

1

�A

12

A

22

�1

~

f

2

=

~

f

Schur

(24)

which determines the cell averages ~u

V

independently of the edge averages ~u

S

. Thus, we

have to derive a restriction and prolongation for the parts corresponding to cells.

The defect vector for this Schur complement system is given by

~

d

V

= [A=A

22

]~u

V

�

~

f

Schur

.

Its components d

V

should be approximations to the integral of a defect function

~

d(x),

i.e.

d

V

�

Z

V

~

d(x)dx (25)

which is motivated by the �nite volume approach described in section 2.1.

This de�nes a restriction r

l

V

by means of

(r

l

V

~

d

l

V

)

V

:=

4

X

i=1

d

l

~

V

i

�

4

X

i=1

Z

~

V

i

~

d(x)dx =

Z

V

~

d(x)dx � d

l�1

V

for all V 2 V: (26)

With respect to the scalar products

~

d

T

V

V

�1

~

d

V

for defect vectors and ~u

T

V

V ~u

V

for cell

averages the corresponding prolongation p

l

V

simply reads

p

l

V

= (r

l

V

)

T

: (27)

The resulting multigrid algorithm is not really e�cient since the Schur complement

[A=A

22

] should not be computed explicitly. Hence we have to extend the grid transfer

operators including the edge components to get a comparable multigrid method for the

whole system.

The matrix A can be decoupled by the block decomposition

A =

 

I A

12

A

�1

22

0 I

! 

[A=A

22

] 0

0 A

22

! 

I 0

A

�1

22

A

21

I

!

= (I +U)

^

A(I +L) (28)

where the back transformations are given by the identities (I + U )(I � U) = I and

(I + L)(I �L) = I. Using this we are able to de�ne a decoupled system by

^

Aû =

^

f

with û = (I +L)u and

^

f = (I �U)f .

For this system the restriction and the prolongation should also be decoupled, i.e.

r̂

l

:=

 

r

l

V

0

0 r

l

S

!

; p̂

l

:=

 

p

l

V

0

0 p

l

S

!

(29)

12



with r

l

V

and p

l

V

from (26, 27) and analogously

(r

l

S

~

d

l

S

)

S

:=

2

X

i=1

d

l

~

S

i

; p

l

S

= (r

l

S

)

T

for all S 2 S (30)

where

~

S

1

;

~

S

2

are the �ne grid parts of S.

Assuming that the defect vector transforms like the right hand side and the correction

vector like a solution vector the corresponding transfer operators of the original system

are

r

l

:= (I +U

l�1

)r̂

l

(I �U

l

); (31)

p

l

:= (I �L

l

)p̂

l

(I +L

l�1

): (32)

Theorem 3.2 Under the assumption of exact solution on the coarse grid the defect

corrections for the cell variables according to the Schur complement system (24) and

the original system (16) are identical.

Proof: The correction vector belonging to (16) is de�ned by

�~u

l

= p

l

(A

l�1

)

�1

r

l

�

A~u

l

�

~

f

l

�

and for the Schur complement system by

�~u

l

Schur

= p

l

V

�

[A=A

22

]

l�1

�

�1

r

l

V

�

[A=A

22

]

l

~u

l

V

�

~

f

l

Schur

�

with exact solution on the coarse level l � 1. Hence we have to show that

�

�~u

l

�

V

= �~u

l

Schur

: (33)

Using the de�nitions (31, 32) for the restriction and the prolongation, the factorization

(28) and the block diagonal structure of p̂

l

, r̂

l

and

^

A

l�1

we get

�~u

l

= (I �L

l

)p̂

l

(I +L

l�1

)

�

A

l�1

�

�1

(I +U

l�1

)r̂

l

(I �U

l

)

�

A

l

~u

l

�

~

f

l

�

= (I �L

l

)p̂

l

�

^

A

l�1

�

�1

r̂

l

�

^

A

l

(I +L

l

)~u

l

� (I �U

l

)

~

f

l

�

= (I �L

l

)

0

@

p̂

l

V

�

[A=A

22

]

l�1

�

�1

r

l

V

0

0 p̂

l

S

(A

l�1

22

)

�1

r̂

l

S

1

A

 

[A=A

22

]

l

~u

l

V

�

~

f

l

Schur

A

l

21

~u

l

V

+A

l

22

~u

l

S

�

~

f

l

2

!

:

Evaluating the cell part of this product the assertion (33) follows directly. �

For the implementation of the operators (29) it is important that a system with the

matrix A

22

can be solved at low costs.

Remark 3.3 The matrix A

22

= B

22

of (16) is strictly diagonal dominant for � > 0

and reduces to triangular form for � = 0 with a numbering in convection direction. For

that reason the Gauss-Seidel method is a fast solver for systems involving this matrix.

This is also true for the ILU iteration.

13



3.2.2 Petrov-Galerkin approach

For �nite element methods the prolongation and restriction operator are naturally de-

�ned in terms of the nodal functions using the corresponding function spaces [3].

For a conforming method with nested �nite element spaces S

0

� S

1

� � � � � S

l

max

and

a nodal basis S

l

= spanf�

l;i

; i = 1; : : : ; N

l

g we can express the nodal functions on level

l� 1 by

�

l�1;j

(x) =

N

l

X

i=1

�

l�1;j

(i)�

l;i

(x) ; j = 1; : : : ; N

l�1

where �(i) denotes the nodal value of � for the index i. Hence we have the identity

u

l�1

(x) =

N

l�1

X

j=1

u

l�1

j

�

l�1;j

(x) =

N

l

X

i=1

N

l�1

X

j=1

�

l�1;j

(i)u

l�1

j

�

l�1;j

(x):

The canonical prolongation ~p

l

on the ansatz spaces is de�ned by the inclusion

S

l

3 ~p

l

u

l�1

= u

l�1

=

N

l

X

i=1

N

l�1

X

j=1

�

l�1;j

(i)u

l�1

j

�

l;i

2 S

l�1

with the prolongation matrix given as

(p

l

)

ij

= �

l�1;j

(i) for i = 1; : : : ; N

l

; j = 1; : : : ; N

l�1

:

The corresponding restriction matrix r

l

for the residuals tested by the nodal functions

is

r

l

= (p

l

)

T

:

Considering Petrov-Galerkin methods the prolongation is connected to the trial spaces

S

l

and the restriction to the test spaces T

l

. Therefore we have

(p

l

)

ij

= �

l�1;j

(i); (r

l

)

ji

= 	

l�1;j

(i) for i = 1; : : : ; N

l

; j = 1; : : : ; N

l�1

:

In our case the nodal values are the averages (5) indexed by V 2 V and S 2 S instead

of i. For the one-dimensional problem the evaluation is evident. In two dimensions

we have to deal with nonconforming nodal functions. Due to the discontinuity at the

boundary D of supp(�

l�1;j

) and supp(	

l�1;j

). We de�ne the edge averages for S � D

to be zero as it would be in the conforming case:

�

l�1;j

(S) :=

8

<

:

1

2

�

l�1;j

j

D

(S) for S 2 S n @S

�

l�1;j

j

D

(S) for S 2 @S

and for the restriction, analogously.

Fig 6 illustrates the prolongation and restrictions for the limit cases of the di�usion and

the convection problem in form of collection stencils for r

l

and distribution stencils for

p

l

.
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Figure 6: Prolongation and restriction

4 Numerical results

For our numerical computations we consider four test problems [5, 9, 12] for the linear

convection-di�usion equation (1, 2).

Problem 4.1

Lu = 0 in 
 = (0; 1) � (0; 1)

with � = (cos�; sin�)

T

and u(x; y) = x

2

+y

2

on �. The angle � is varying in multiples

of 15

�

.

0

1

�1 0 1
inlet outlet

D D

D

Figure 7: Streamlines and boundary conditions for problem 4.2
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Problem 4.2

Lu = 0 in 
 = (�1; 1) � (0; 1)

with � = (� 

y

;  

x

)

T

given by the stream function  = (1� x

2

)(1 � y

2

) and

u(x; y) =

(

1 + tanh(10[2x+ 1]) on �

inlet

:= f(x; y) 2 � : �1 � x � 0; y = 0)g ;

0 on �

D

n f�

inlet

[ �

N

g ;

@u

n

(x; y) = 0 on �

N

:= f(x; y) 2 � : 0 � x � 1; y = 0)g :

Problem 4.3

u

t

��u = 0 in 
 = (0; 1) � (0; 1) with

u(x; y) = 0 on �

D

:= f(x; y) 2 � : x = 0 or y = 0)g

@u

n

(x; y) = 0 on �

N

:= � n �

D

:

The initial condition is taken from the exact solution

u(x; t) = sin(

�

2

x) sin(

�

2

y) exp(�

�

2

2

t) + sin(

3�

2

x) sin(

3�

2

y) exp(

�9�

2

2

t): (34)

Problem 4.4 (rotating hump)

u

t

+ � �ru = 0 in 
 = (�1; 1)� (�1; 1)

with � = (� 

y

;  

x

)

T

,  =

x

2

+y

2

2

and

u(x; 0) =

(

1

2

�

1 + cos(

5

2

�r)

�

in r = kx� x

0

k

2

�

2

5

;

0 else ;

u(x; t) = 0 on � :

First of all we have to illustrate the quality of the cell-orientated discretization. This is

in
uenced by the approximation in space mainly. Therefore it is convenient to consider

the steady problem 4.2. Fig 8 shows the results on a 40� 40 grid and various values of

�. The isolines of the computed solution depicted on the left are indicating that there

is no arti�cal crosswind di�usion. And on the right hand side the good coincidence

between the nodal values of the approximation and the exact solution can be observed

[11].

As a smoother we consider the Gauss-Seidel and ILU iteration which are exact solvers

in the convection case with a numbering in the direction of the velocity. This governs

the excellent behaviour of the multigrid method in convection dominated cases. On the

other hand the Gauss-Seidel method (GS) leads to low e�ciency for di�usion dominated

problems. This di�culty can be weakened by choosing a relaxation factor greater than

1, e.g. ! = 1:25 in the SOR method. Unfortunately we achieve a breakdown in the

convection dominated case. Another alternative for the di�usion equation is the use of
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alternating line Gauss-Seidel iterations which is not suitable for a numeration in the

� = 10

�1

� = 10

�2

� = 10

�3

� = 10

�6

� = 10

�1

� = 10

�2

� = 10

�3

� = 10

�6

u

u

u

u

Figure 8: The quality of the cell orientated discretization
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direction of the velocity [7].

The averaged reduction factor is de�ned by

%

M

:=

 

kr

�

k

2

kr

0

k

2

!

1

�

with � = number of multigrid cycles :

We illustrate the behaviour of di�erent smoothers for problem 4.1 with various param-

eters on a 64 � 64 grid with 12416 unknowns. Table 10 shows the reduction factor %

M

for the �nite volume transfer operators and table 9 for the operators corresponding to

the Petrov-Galerkin interpretation. For all computations we set the number of pre- and

postsmoothing iterations to �

1

= �

2

= 2.

smoothing iteration " n � 0

�

15

�

30

�

45

�

60

�

75

�

90

�

135

�

�45

�

ILU 1 :268 :272 :272 :272 :272 :272 :268 :258 :258

0:1 :215 :215 :221 :223 :221 :215 :215 :225 :225

0:01 :087 :097 :085 :079 :085 :097 :087 :096 :097

0:001 :028 :010 :005 :003 :005 :010 :028 :022 :022

GS 1 :911 :908 :906 :905 :906 :908 :911 :905 :905

0:1 :870 :855 :845 :840 :845 :855 :869 :842 :842

0:01 :369 :352 :324 :310 :324 :352 :369 :345 :345

0:001 :087 :047 :025 :015 :025 :047 :087 :061 :061

SOR (! = 1:25) 1 :720 :702 :704 :701 :704 :702 :720 :700 :700

0:1 :630 :610 :594 :586 :594 :610 :630 :556 :556

0:01 :260 :193 :170 :162 :170 :193 :260 :161 :161

Table 9: Finite volume restriction and prolongation

Comparing these two tables we can see that the convergence for restriction and prolon-

gation of the �nite volume type is much better than in the Petrov-Galerkin case. As

expected the reduction factor is very good for � small. Anyway we have to mention

that the multigrid method does not converge for the SOR method and � = 0:001 as well

as in the Petrov-Galerkin case for the Gauss-Seidel iteration and � = 1. The crucial

point for the choice of the smoothing iteration is the reduction factor for the di�usion

dominated case (� = 0:1 and � = 1).

In the aim of robustness we therefore prefer the ILU method which is used in connection

with the �nite volume restriction and prolongation in all subsequent computations.

In addition, the di�erent columns of these tables indicate that the results are essentially

independent of the velocity direction (i.e. the angle �).

One of the main features of a multigrid method is that the convergence rate is uniformly

bounded by some number smaller than 1. Our numerical experiments for problem 4.1
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smoothing iteration " n � 0

�

15

�

30

�

45

�

60

�

75

�

90

�

135

�

�45

�

ILU 1 :538 :538 :538 :538 :538 :538 :538 :542 :542

0:1 :421 :429 :445 :455 :445 :429 :421 :457 :457

0:01 :143 :136 :152 :157 :152 :136 :143 :190 :190

0:001 :024 :008 :006 :007 :006 :008 :024 :014 :014

GS 0:1 :675 :695 :643 :633 :643 :695 :675 :634 :634

0:01 :407 :370 :278 :221 :278 :371 :407 :285 :285

0:001 :076 :044 :018 :016 :018 :044 :076 :032 :032

SOR (! = 1:25) 1 :921 :917 :914 :913 :914 :917 :921 :913 :913

0:1 :557 :559 :546 :539 :546 :559 :557 :544 :544

0:01 :226 :136 :110 :108 :108 :136 :226 :118 :118

Table 10: Petrov-Galerkin restriction and prolongation
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Figure 11: convergence rates for various di�usion parameters

with varying grid size h and di�erent values of � shown in �gure 11 are con�rming this

property. For �xed grid size h the convergence rate is increasing in �. The gap between

the convergence rate for � = 1 and the other ones becomes smaller on �ner grids. The

uniform boundedness in h and { in the sense of robustness { even in � is determined by

the top line which seems to be bounded by 0:4.

In theorem 2.2 we have stated the convergence of order 2 in h and �t. For the heat

equation there should be no restriction on the coupling of h and �t. In tables 12 and
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hn�t

1

16

1

32

1

64

1

128

1

16

3:03 � 10

�4

1:66 � 10

�4

1:04 � 10

�4

8:87 � 10

�5

1

32

2:42 � 10

�4

1:03 � 10

�4

4:11 � 10

�5

2:58 � 10

�5

1

64

2:27 � 10

�4

8:72 � 10

�5

2:53 � 10

�5

1:01 � 10

�5

1

128

2:24 � 10

�4

8:32 � 10

�5

2:14 � 10

�5

6:13 � 10

�6

Table 12: Method of Gear with Euler Method as �rst step

hn�t

1

16

1

32

1

64

1

128

1

16

9:17 � 10

�4

2:91 � 10

�4

1:36 � 10

�4

9:69 � 10

�5

1

32

8:54 � 10

�4

2:29 � 10

�4

7:28 � 10

�5

3:34 � 10

�5

1

64

8:38 � 10

�4

2:13 � 10

�4

5:70 � 10

�5

1:82 � 10

�5

1

128

8:34 � 10

�4

2:09 � 10

�4

5:32 � 10

�5

1:43 � 10

�5

Table 13: Crank-Nicolson method

13 we have computed the error of the numerical solutions in the discrete `

2

-norm using

the exact solution (34). These computations are in good agreement with the theoretical

results. By a least square approximation for the error norm in the form

e(h;�t) � C

1

h

2

+ C

2

�t

2

we have computed

C

1

= 0:0214 ; C

2

= 0:0840 (method of Gear),

C

1

= 0:0214 ; C

2

= 0:2132 (Crank-Nicolson method).

The correspondence between the constants C

1

for both methods shows that the error

can be splitted into a semidiscretization error and an error due to the time integrator.

Better results are obtained for the method of Gear which has the smaller constant C

2

.

In the convection problem 4.4 the initial condition is transported along the streamlines

which are concentric circles. Here the initial 'hump' should be rotated with periodicity

of 2�. Fig 11 shows the results with Gear and Crank-Nicolson method for one rotation

at times t = i

�

2

, i = 0; : : : ; 4 on a 64 � 64-grid with 200 time steps. The height of

the hump decreases about 3% for the Gear method which is an e�ect of its damping

behaviour. The shape of the hump is rotated by both methods without signi�cant

deformation or translation. The quality of these results is good in comparison with

[8, 9].
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Figure 14: Di�erent time integrators (Gear and Crank-Nicolson method)

5 Conclusion

We have presented a cell orientated semidiscretization for the convection-di�usion equa-

tion in two dimensions which is problem adapted and appropriate for convection domi-
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nated as well as di�usion dominated cases. The applicability in connection with implicit

time integrators is mainly determined by the solution method for the linear systems.

A multigrid method for these systems was derived. The variant based on a �nite volume

interpretation for restriction and prolongation together with an ILU smoothing iteration

turns out to be robust and very e�cient.
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