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Abstract

Even with advanced geometric modeling systems, creating freeform surfaces is a challenging task. Laser range

scanners offer a promising alternative for model acquisition—the 3D scanning of existing objects or clay maquettes.

The problem of converting the dense point sets produced by laser scanners into useful geometric models is referred to

as surface reconstruction.

In this paper, we present a procedure for reconstructing a tensor product B-spline surface from a set of scanned

3D points. Unlike previous work which considers primarily the problem of fitting a single B-spline patch, our goal

is to directly reconstruct a surface of arbitrary topological type. We must therefore define the surface as a network

of B-spline patches. A key ingredient in our solution is a scheme for automatically constructing both a network of

patches and a parametrization of the data points over these patches. In addition, we define the B-spline surface using a

surface spline construction, and demonstrate that such an approach leads to an efficient procedure for fitting the surface

while maintaining tangent plane continuity. We explore adaptive refinement of the patch network in order to satisfy

user-specified error tolerances, and demonstrate our method on both synthetic and real data.

1 Introduction

In the fields of computer graphics and computer-aided design (CAD), advanced modeling systems such as

Softimage 3D, Alias/Wavefront, CATIA, and PRO/ENGINEER have made possible the design of highly

detailed models. Even so, it is still difficult with these systems to directly create organic shapes such as

human faces and freeform surfaces such as car-body panels.

The advent of laser range scanners offers an alternative means of acquiring geometric models: the 3D

scanning of existing objects. With 3D scanning, modeling systems can import organic or sculptured shapes

that would otherwise be difficult to create. For instance, in the automobile industries, many artists prefer to

initially sculpt car bodies in clay, as they find that CAD systems lack the tactile and visual advantages of the

traditional medium. Similarly, many models used in computer graphics are first created in clay or wood and

subsequently scanned into digital forms. In addition, 3D scanning permits reverse engineering, allowing

existing manufactured parts to be incorporated or modified into new CAD designs.

Laser range scanners produce large collections of points on surfaces of objects. The problem of

converting these data points into useful geometric models is referred to as surface reconstruction. There

is a large body of literature on the reconstruction of surfaces of simple topological type, such as deformed

planar regions and spheres (see Section 2). Methods have been developed to reconstruct meshes of arbitrary
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topological type [12, 31], but the resulting representations are often verbose since many planar faces are

required to accurately model curved surfaces (e.g. Figure 9l). For this reason, it is desirable to use a

representation with smooth surface primitives. Some recent work addresses the problem of reconstructing

smooth surfaces of arbitrary topological type using subdivision surfaces [10] and algebraic surfaces [2, 21].

However, these two smooth surface representations are not commonly supported within current modeling

systems. Indeed, for better or worse, the ubiquitous smooth surface primitive is the tensor product B-spline

patch. The general class of non-uniform rational B-splines (NURBS) is considered by many the de facto

CAD standard.

In this paper we present a procedure for automatically reconstructing a B-spline surface S of arbitrary

topological type from an unorganized set of points P = fp1; : : : ;pNg. To our knowledge, this reconstruction

problem has not been addressed previously. The problem presents two major difficulties:

� Since a single B-spline patch can only represent surfaces of simple topological type (deformed planar

regions, cylinders, and tori), a surface of arbitrary topological type must be defined as a network of

B-spline patches. Automatically constructing both a network of patches and a parametrization of the

data points over these patches is a difficult task.

� The reconstructed B-spline patch network is often expected to be smooth (by which we mean tangent

plane continuous or G1). Enforcing G1 continuity between adjacent patches while at the same time

fitting the patch network to the points is a challenging problem.

Our B-spline reconstruction procedure adapts the previous surface reconstruction work of Hoppe

et al. [11, 12], the parametrization work of Eck et al. [5], and the B-spline construction scheme of Pe-

ters [23], as summarized in Sections 3.1, 3.2, and 3.4 respectively. The main contributions of this paper

are:

� It presents a combinatorial optimization method for building a quadrilateral domain from a triangular

one (Section 3.3), a crucial step in constructing the B-spline patch network. The optimization method

makes use of harmonic maps to minimize distortion in the resulting reparametrization.

� It presents an efficient method for fitting a G1 B-spline surface of arbitrary topological type to

unorganized points. The fitting method makes use of a surface spline construction to maintain G1

continuity between patches. As a consequence, fitting the surface to the data involves only a sparse

linear least squares problem with a few linear constraints.

� It introduces a scheme for adaptive refinement of the quadrilateral patch network, and demonstrates

the use of this refinement strategy in attempting to fit B-spline surfaces within user-specified error

tolerances.

� It demonstrates how all these techniques can be brought together into an effective procedure addressing

an important problem in computer graphics and geometric modeling: automatic reconstruction of B-

spline surfaces of arbitrary topological type.

In addition to surface reconstruction, our procedure can also be applied to the problem of surface

approximation. That is, it can be used to approximate an arbitrary initial surface S0 with a B-spline surface

(e.g. Figures 10j–10l) as shown in Section 4.
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2 Related Work

Reconstruction of B-spline surfaces There has been considerable work on fitting B-spline surfaces to

3D points. However, most methods either assume that the surface has simple topological type, or require

user intervention in setting up the patch network.

For instance, Dietz [3], Hoschek and Schneider [14], Rogers and Fog [26], and Sarkar and Menq [27]

assume that the surface is a single open B-spline patch (a deformed quadrilateral region), possibly with

trimmed boundaries. Forsey and Bartels [8] consider fitting a single hierarchical B-spline patch to gridded

data. Schmitt et al. [28] assume that the surface is a deformed cylinder and explore adaptive refinement of

the B-spline surface in fitting cylindrical range data.

Andersson et al. [1], Fang and Gossard [6], and Milroy et al. [20] fit B-spline surfaces of arbitrary topo-

logical type, but require the user to manually delineate the patch boundaries either by labeling “boundary

points” or by drawing boundary curves on an approximating surface. Furthermore, the initial parametriza-

tions of the data points is critical in the fitting process, as demonstrated by Ma and Kruth [19], and these

schemes may require additional user intervention to obtain good initial parameter distributions.

In contrast, our method is able to reconstruct a B-spline surface of arbitrary topological type without

user assistance. One of the key steps is the automatic construction of a low-distortion initial parametrization

of the data points. To our knowledge this has not been done before. Moreover, the surface consists of a

network of low-degree, tensor-product B-spline patches that meet with G1 continuity.

Reconstruction of other surface representations Hoppe et al. [10] reconstruct piecewise smooth surfaces

of arbitrary topological type using a subdivision surface representation. As part of the fitting process, they

optimize both the connectivity and geometry of the control mesh defining the subdivision surface.

Both Bajaj et al. [2] and Moore and Warren [21] reconstruct G1 piecewise algebraic surfaces of arbitrary

topological type. Their surfaces are defined as algebraic patches within 3D tetrahedral triangulations ofR3.

They consider adaptive refinement of the 3D triangulation based on the quality of fit.

Turk and Levoy [31] reconstruct dense meshes by “zippering” together multiple overlapping range

images. The dense meshes they produce are most appropriate for capturing models with fine geometric

detail.

3 Algorithm

Our B-spline surface reconstruction algorithm consists of 5 successive steps. We first present a brief

overview of these steps and illustrate them with the example in Figure 9. Sections 3.1–3.5 describe the

details of the 5 steps.

1. Constructing an initial parametrization over a dense approximating mesh M0:

Using the previous surface reconstruction work of Hoppe et al. [11, 12], Step 1 constructs from

an unorganized set of points P = fp1; : : : ;pNg (Figure 9a) an initial surface approximation in the

form of a dense triangular mesh M0 (Figure 9b). The points P are projected onto M0 to obtain their

initial parametrizations. Our purpose in constructing M0 is to find a parametric domain of the correct
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topological type. Of course, this particular domain is unwieldy since it may consist of thousands of

faces.

2. Reparametrizing over a simple triangular base complex K
4

:

Using the parametrization work of Eck et al. [5], Step 2 automatically constructs from the initial mesh

M0 both a simple base complex K
4

(Figure 9e) and a continuous parametrization �

4

: K
4

! M0.

As the construction exploits the mathematical framework of harmonic maps, the parametrization �

4

tends to have low metric distortion. The parametrization of P from Step 1 are mapped through �

�1
4

to

obtain new parametrizations over K
4

.

3. Reparametrizing over a quadrilateral domain complex K
2

:

By merging faces of K
4

pairwise, Step 3 constructs a new base complex K
2

whose faces consist

solely of quadrilaterals (Figure 9f). The merging process is cast as a combinatorial graph optimization

problem, whose goals are both to find a maximum pairing and to minimize parametric distortion. We

again make use of harmonic maps to find a good reparametrization of the points P from K
4

to K
2

.

4. B-spline fitting:

Step 4 defines over each face f of K
2

a tensor product B-spline patch sf using the surface splines

scheme of Peters [23] such that the patches sf collectively form a G1 B-spline surface S. More

precisely, this construction consists of two steps. First, a control mesh Mx is defined by topologically

subdividing K
2

. Second, the control points d
f
r;s of sf are defined as affine combinations of the vertices

Vx of Mx. Fitting S to the points P is cast as an optimization problem over Vx, and is solved by

alternating between a linear least squares fitting step and a parameter correction step. The result of

this fitting process is shown in Figures 9g–9i.

5. Adaptive refinement:

In order for P and S to differ by no more than a user-specified error tolerance �, Step 5 adaptively

subdivides the faces of K
2

into smaller quadrilateral subfaces based on the fit errors. After each step

of subdivision, Step 4 is reinvoked to fit the refined surface. Further subdivisions are performed until

the error tolerance � is satisfied. The result is a refined domain complex K
2+ (Figure 9j) and a new

control mesh (Figure 9k) defining a new B-spline surface S (Figure 9l) within � of P.

3.1 Constructing an initial parametrization over a dense approximating mesh M0

From an unorganized set of points P, Step 1 constructs an initial surface approximation M0 and parametrizes

the points over this initial domain. This step is performed using the surface reconstruction method of Hoppe

et al., which we briefly summarize now.

Summary of surface reconstruction method of Hoppe et al. Hoppe et al. [11, 12] develop a two-phase

procedure for reconstructing a mesh (Figure 1c) approximating an unknown surface Su (Figure 1a) from a

set of unorganized points P (Figure 9a) sampled on or near Su.

The goal of phase one [11] is to determine the topological type of Su and to obtain a crude estimate of

its geometry, in the form of a dense mesh (Figure 1b). Using P, phase one defines a function f : R3
! R

that estimates the signed geometric distance to Su, and then uses a contouring algorithm to extract a mesh

approximating its zero set, Z(f ) = fq 2 R

3 : f (q) = 0g.
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(a) Unknown surface Su (b) Phase one mesh (c) Phase two mesh

Figure 1: Example of the two-phase surface reconstruction method of Hoppe et al.. (Refer also to Figures 9a

and 9b.)

The goal of phase two [12] is to reduce the number of faces in the mesh and to improve its fit to the data

(Figure 1c). Phase two optimizes over both the connectivity and geometry of the mesh in order to minimize

an energy function that explicitly models the trade-offs of conciseness and accuracy.

Our use of the surface reconstruction method For our purpose, we first run phase one to obtain a

crude mesh (Figure 1b). We then use the initial fitting procedure of phase two to improve the geometry

of this mesh while keeping its connectivity constant, to obtain the mesh M0 (Figure 9b). The optimization

over connectivity performed later in phase two is unnecessary for our use, since Step 2 (described in the

next section) provides a faster algorithm for creating a simpler domain and at the same time constructs a

low-distortion parametrization of P over that domain.

To obtain an initial parametrization of P, we project the points onto the mesh M0. For each point pi, we

store the closest face of M0 and the barycentric coordinates of the projection of pi onto that face.

3.2 Reparametrizing over a simple triangular base complex K
4

From the initial mesh M0, Step 2 constructs a simple base complex K
4

(Figure 9e) and a map �
4

: K
4

! M0

allowing the points P to be reparametrized over K
4

. This step is achieved using the parametrization method

of Eck et al. [5], which we briefly summarize. Next we present a minor modification to the method that

facilitates the construction of K
2

in Step 3.

Summary of parametrization method of Eck et al. Eck et al. describe a method for parametrizing an

arbitrary mesh M0 over a domain complex K
4

. Their method makes use of harmonic maps, which we

describe first.

Eck et al. first introduce a method for mapping a (topological) disk D � M of a mesh M � R

3 to

a convex polygonal region R � R

2. As an example, the mesh region in Figure 2a is parametrized over

the planar polygon in Figure 2b. Their solution, based on the theory of harmonic maps, has the property

of minimizing metric distortion. They find that the metric distortion energy Eharm[h] associated with a
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(a) Original mesh disk D � R

3 (b) Harmonic embedding in R � R

2

Figure 2: An example of a harmonic map. (The vertices indicated by small balls are mapped to the vertices

of the polygon.)

piecewise linear map h : D ! R can be interpreted as the energy of a configuration of springs placed on the

edges of D:

Eharm[h] = 1=2
X

fi;jg2Edges(D)

�i;jkh(i) � h(j)k2
;

where each spring constant �i;j is a simple function of the lengths of nearby edges in the original mesh D.

Thus the (piecewise-linear) harmonic map h on D can be computed by solving a sparse linear least-squares

problem.

Eck et al. next describe a method for partitioning a mesh M0 into well-shaped triangular regions. This

partitioning method is based on generalizing the concepts of Voronoi diagrams and Delaunay triangulations

to surfaces of arbitrary topological type. The algorithm automatically selects a set of site faces in M0 and

partitions M0 into a set of Voronoi tiles, such that each tile comprises those faces closest to a given site

(Figure 9c). The Voronoi tiles are grown incrementally from their site faces using a multi-source shortest

path algorithm. In order for the Voronoi-like partition to be dual to a triangulation, the sites are chosen

to satisfy a set of 4 conditions (see [5]). Next, the method makes use of harmonic maps to construct a

Delaunay-like triangular partition T1; : : : ;Tr (Figure 9d) that is dual to the Voronoi-like partition.

Finally, Eck et al. construct a base complex K
4

of r faces (Figure 9e) using the connectivity of the

Delaunay-like partition, and parametrize M0 over this domain by computing the harmonic map from each

Delaunay triangle Ti to the corresponding face of K
4

. The result is a global, continuous parametrization

�

4

: K
4

! M0 of the initial mesh over a simple base complex.

Modification to the parametrization method In Step 3 described in the next section, we construct from

K
4

a new domain K
2

with quadrilateral faces by matching adjacent pairs of faces in K
4

. To form a complete

matching, the face merging process requires K
4

to have an even number of faces. This requirement is met

by giving the Voronoi partitioning algorithm an additional condition to satisfy: The dual to the Voronoi

partition must have an even number of faces. When this condition is not satisfied, an additional site is added

at the face farthest from any current site, and the Voronoi region growing algorithm restarts.
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Reparametrization After constructing K
4

and �

4

, we map the parametrizations of P obtained in Step 1

through �

�1
4

to obtain parametrizations of P over K
4

. The new parametrization is illustrated in Figure 9e,

where a line segment is drawn between each data point pi and its parametric location on K
4

. Note that

we do not define a geometric embedding of K
4

into R3 but have created one in Figure 9e for illustration

purposes only.

3.3 Reparametrizing over a quadrilateral domain complex K
2

After Step 2, the points P are parametrized over a base complex K
4

made up of an even number of triangular

faces. Since the B-spline construction scheme in Step 4 expects a domain made up of quadrilateral faces,

the goal of Step 3 is to map K
4

onto a quadrilateral domain complex K
2

(Figure 9f).

A simple strategy would be to subdivide each triangular face of K
4

into 3 quadrilateral faces by

introducing vertices at the edge midpoints and the face centroids. Instead, our method is based on merging

triangle faces of K
4

pairwise. This merging strategy is advantageous because it results in a domain K
2

with

one sixth the number of quadrilaterals as would be obtained from subdivision.

We cast face merging as a graph matching problem. We construct the graph G = (VG;EG) that is the

dual to K
4

: each vertex in VG corresponds to a face of K
4

, and each edge in EG corresponds to a pair

of faces sharing an edge in K
4

. Finding a maximum pairing of faces in K
4

then amounts to finding a

maximum cardinality set Em � EG of vertex-disjoint edges—an instance of the MAXIMUM MATCHING

graph problem on G [15], which can be solved efficiently in O(jVGjjEGj) time [30].

We would like to obtain a complete matching: one in which all faces of K
4

are paired. Since we

have constructed K
4

to have an even number of regions, a complete matching is likely to exist. Although

counter-examples may be possible, we have not seen them occur in practice. (It would be interesting to

prove if such counter-examples can or cannot exist.) If G was to lack a complete matching, we would resort

to global subdivision as described above.

The graph G typically has many possible complete matchings. Of those, we would prefer one that

minimizes the distortion of the resulting reparametrization. In order to achieve this, we define a heuristic for

the distortion associated with the pairing of two adjacent faces Fi and Fj of K
4

as follows. We construct the

harmonic map hi;j of the region Ti [ Tj of M0 onto a unit square, and use the resulting harmonic energy term

Eharm[hi;j] as our heuristic measure of distortion. We encode these distortion measures into G by assigning

to each edge e = fi; jg 2 EG the weight w(e) = �Eharm[hi;j]. The face merging problem is now cast as an

instance of the MAX-MIN MATCHING problem—finding a maximum cardinality matching for which the

minimum weight of the edges is maximum [15]. A solution to this combinatorial problem corresponds to

a complete pairing of faces of K
4

for which the maximal distortion of the face pairs is minimized. The

MAX-MIN MATCHING problem can be solved in O(jVGj
3) time [15]. Since our graphs G typically have

on the order of a hundred vertices, computing the matching requires only a few seconds.

Once the matching is computed, the parametrizations of the points P are mapped from K
4

to K
2

using the same harmonic maps constructed for the graph optimization problem. Specifically, for each edge

fi; jg 2 Em of the matching solution, we map the points whose parametrizations lie on faces Fi and Fj of

K
4

through hi;j onto the unit square, and use the resulting coordinates as (bilinear) parametrizations on the

new face Fi;j in K
2

. The parametrizations are illustrated by the line segments in Figure 9f. Again, we have

created an embedding for K
2

in R3 in the figure for illustration purposes only.

There is one final complication. The resulting K
2

may have interior vertices of degree 2, and such

vertices are best avoided for Step 4. When such vertices are present, we merge the two quadrilateral faces
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adjacent to them into larger quadrilateral faces.

3.4 B-spline fitting

3.4.1 General framework

In the most general setting, a B-spline surface S(K
2

;d) is defined as a network of tensor product B-spline

surface patches

sf (u; v) =

nf
X

r=0

mf
X

s=0

d

f
r;s Nr;kf

(u) Ns;lf (v)

over a domain complex K
2

, with local coordinates (u; v) 2 [0; 1]2 on each face f 2 K
2

. Here d
f
r;s 2 R

3

denote the control points, Nr;kf
(u) are the univariate B-spline basis functions of order kf in the u-direction,

defined over the knot sequences Uf = (u0; u1; : : : ; unf +kf
) , and Ns;lf (v) are defined analogously over the knot

vectors Vf in the v-direction. Definitions of the B-spline basis functions and related evaluation algorithms

can be found in textbooks on geometric modeling (e.g. [7, 13]).

Surface reconstruction In surface reconstruction we seek to find the control points d
f
r;s of all patches

sf such that the distance of the data points P to the surface S(K
2

;d) is minimized. More precisely, we

minimize the distance functional

Edist(S) =

N
X

i=1

d2(pi; S) :

Note that the distance of each point pi to the surface S is itself the solution of a minimization problem:

d(pi; S) = min
ti
kpi � s(ti)k

2 = min
fi2K

2

;(ui;vi)2[0;1]2
kpi � sfi(ui; vi)k

2

in which ti = (fi; ui; vi) is the parametrization of the projection of pi onto S.

Iterative methods have been developed to solve this type of nested minimization problem in the context

of B-spline surface fitting [14, 26]. In these methods, each iteration consists of two steps:

1. Fitting step: For fixed parametrizations ti, the optimal control points d are found by solving a linear

least-squares problem.

2. Parameter correction step: For fixed control points d, optimal parametrizations ti are found by

projecting the points onto S.

Usually the fit accuracy is improved considerably after only a few iterations (we typically use 4). (An

alternative solution method to this nonlinear problem is the Levenberg–Marquardt optimization method,

which has faster convergence rate [27]; however, our simple iterative scheme is sufficient for obtaining

reasonable fits.)

Fairness functional One problem with surface fitting is that the resulting surface may have unwanted

“wiggles”. It is therefore common to augment the energy functional with an additional fairness term [3, 6]:

E(d) = Edist(d) + � � Efair(d) ; � 2 R

+
0 : (1)
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The fairness term is often defined to be the thin plate energy functional

Efair(d) =
X

f2K
2

Z 1

0

Z 1

0

 

@

2

@u2
sf (u; v) + 2 �

@

2

@u @v
sf (u; v) +

@

2

@v2
sf (u; v)

!

du dv :

(Greiner [9] also discusses alternative functionals involving higher-order derivatives.) Note that E(d) can still

be minimized with the iterative scheme described previously since Efair(d) is independent of the parameter

values ti and its minimization still gives rise to a linear system.

There remains the problem of finding a reasonable choice for the fairness weight �. Dietz [3] suggests

starting with a relatively large initial weight� and reducing� by a factor of 2 after each iteration of parameter

correction. In our case, the initial parametrizations obtained in Step 3 are quite good, and we have obtained

satisfactory results using simply a small, constant �.

Continuity Obviously, constraints must be established between adjacent B-spline patches so that they join

up seamlessly. To simplify these constraints, most schemes (e.g. [20]) set all patches to have the same knot

vectors (i.e. n = nf = mf and U = Uf = Vf ) and the same order k = kf = lf . Then, simple (G0) continuity is

achieved trivially by sharing control points along the boundaries of adjacent patches. In contrast, tangent

plane (G1) continuity is more difficult since it involves nonlinear constraints on the control points of adjacent

patches. There are two main approaches to satisfying these G1 continuity constraints.

In the first approach [20, 22], the nonlinear G1 constraints are approximated by introducing an additional

penalty term EG1(d) to minimize. Unfortunately, minimizing Edist(d) + Efair(d) + EG1(d) requires more

expensive nonlinear optimization. Moreover, the resulting surface is only approximately tangent-plane

smooth, or �-G1, and the lack of smoothness is often visible in the resulting surfaces (e.g. [20]).

In the second approach, often referred to as surface splines or G-splines [17, 18, 23, 24, 25], the idea

is to construct a network of triangular and/or tensor product Bézier patches from a global control mesh Mx.

The control points of these Bézier patches are computed using local combinations of vertices in Mx, and are

defined in such a way that the Bézier patches automatically meet with G1 continuity. Using this approach,

the surface is exactly G1, and the fitting process again involves solving a simple linear system, in which the

unknowns are the vertex positions of Mx.

We have opted for the second approach, and have adapted a surface spline scheme of Peters [23]. As

described in the next section, we construct over each face of K
2

a single tensor product B-spline patch sf

with k = 4 and n = 11. To overcome the problem of fixed n and k, we present in Section 3.5 a refinement

scheme that adaptively subdivides K
2

to locally introduce additional degrees of freedom.

3.4.2 B-spline fitting using construction of Peters

Review of Peters’ scheme From a closed mesh Mc of arbitrary topological type, the construction scheme

of Peters [23] creates a G1 B-spline surface S. This construction proceeds in two steps, as illustrated in

Figure 3. First, a refined control mesh Mx is created by subdividing Mc using two Doo-Sabin subdivisions [4].

In our application Mc has only quadrilateral faces, and therefore a 4� 4 grid of vertices in Mx is associated

with each face of Mc as shown in Figure 3b. Note that all vertices of Mx have valence 4 (i.e. 4 adjacent

edges) and that Mx consists mainly of 4-sided faces, except for a small number of extraordinary m-sided

faces (m 6= 4). Also note that the extraordinary faces are isolated, in the sense that each vertex of Mx is

adjacent to at most one extraordinary face.
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bi-cubic

bi-quadratic

G1 join

C1 join

(a) (b) (c)

Figure 3: Schematic of the B-spline construction scheme of Peters. (a) one quadrilateral face f of the input

mesh Mc; (b) the 4�4 vertices of the refined control mesh Mx associated with f ; (c) the 4�4 Bézier patches

created from Mx associated with f .

In the second step, a tensor product Bézier patch is constructed centered on each vertex of Mx as shown

in Figure 3c. The Bézier patch is defined to be bicubic if the vertex is adjacent to an extraordinary face,

otherwise it is defined to be biquadratic. The affine combinations for setting the Bézier control points of

these patches as functions of the vertices Vx of Mx are given in the Appendix. Peters [23] proves that the

resulting collection of Bézier patches form a G1 surface, subject to a few linear constraints on Vx near those

extraordinary faces for which m is even and greater than 4 (see Appendix). We denote this G1 surface as

S(Vx).

Over each quadrilateral face of Mc, the collection of 4� 4 Bézier patches (in general 12 biquadratic and

4 bicubic) can be combined into a single tensor product bicubic B-spline patch (with k = 4 and n = 11). To

satisfy the G1 and C1 joins indicated in Figure 3c, the knot sequences in both parameter directions are set to

Uf = Vf = (0; 0; 0; 0; 1
4
;

1
4
;

1
4
;

1
2
;

1
2
;

3
4
;

3
4
;

3
4
; 1; 1; 1; 1) . The B-spline representation requires 15% less storage

than storing each Bézier patch separately.

Modified fitting step To apply Peters’ scheme to the problem of B-spline fitting, we modify the fitting

step in the iterative procedure described in Section 3.4.1.

We use the quadrilateral domain complex K
2

as the input mesh Mc to Peters’ scheme. Since K
2

does not possess a geometric embedding, only the topological structure Kx of the control mesh Mx can be

constructed initially. The vertices Vx of Mx are computed by fitting the B-spline surface S(Vx) to the data

points. Specifically, we compute Vx by minimizing the energy functional E(Vx) = Edist(Vx) +�Efair(Vx) for

fixed parametrizations ti = (fi; ui; vi) of the data points pi.

Since Peters’ construction is affine, every point s(t) on the surface S can be written as an affine

combination of Vx. Treating Vx as a matrix whose rows are (x; y; z) coordinates, we can express this affine

combination as s(t) = yVx where the entries of the row vector y are obtained by appropriately composing

Bernstein polynomials and the formulas given in the Appendix. We can therefore rewrite Edist as

Edist(Vx) =

N
X

i=1

kpi � yiVxk
2

which is quadratic on Vx. The term Efair can similarly be expressed as a quadratic function over Vx by

summing up the thin-plate energies of all Bézier patches and using the formulas given in the Appendix.
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Thus, E(Vx) is a quadratic functional on Vx, and therefore its minimization is a linear least squares

problem. Moreover, the linear system is sparse because of the locality of the surface construction. As

mentioned earlier, some linear constraints on Vx must be satisfied near extraordinary faces for the surface

to be G1. These constraints are introduced into the optimization through the use of Lagrange multipliers,

making the problem only slightly more difficult (see [16] for details).

���� ��

�� �� �� ��

����

��

��

��

��

���� ��

��

��

Figure 4: Example of construction of Mx from a domain K
2

containing a boundary.

Extensions to the basic fitting method We generalize the construction of Mx to allow surface boundaries

in K
2

. For each boundary edge of K
2

, we add an additional layer of vertices to Mx. To each valence m

boundary vertex of K
2

we associate in Mx a (2m�2)-sided face if m 6= 2 and a 4-sided face if m = 2. This

process is illustrated in Figure 4. As a result, the boundaries of S are smooth everywhere except at valence 2

boundary vertices of K
2

where surface corners are introduced.

The two Doo-Sabin subdivisions in the first step of Peters’ construction serve to isolate the extraordinary

faces. With two subdivisions, a 4�4 grid of vertices is introduced on each face of K
2

as shown in Figure 3b.

More generally, a construction with s � s vertices on each face of K
2

still results in a G1 surface for any

s � 2. We have experimented with different values of s in the fitting procedure, but have obtained best

visual results with the original setting of s = 4.

3.5 Adaptive refinement

The surface fitting algorithm described in Section 3.4 minimizes the total squared distances
P

i d(pi; S)2 of

the data points pi to the B-spline surface S. It is often desirable to specify a maximum error tolerance for

the fit. Step 5 attempts to find a surface S such that maxi d(pi; S) < � for a user-specified error tolerance �.

To achieve a given tolerance within our least squares optimization framework, it may be necessary

to introduce new degrees of freedom into the surface representation. One could achieve this by globally

subdividing the domain K
2

(e.g. using template 4 in Figure 5). However, this would introduce degrees of

freedom uniformly over the whole surface, even if data points exceed the error tolerance only in isolated

neighborhoods.

We instead develop an adaptive refinement scheme. The goal of this refinement scheme is to subdivide

any face of K
2

onto which any point pi projects with d(pi; S) > �, while at the same time ensuring that the

resulting subdivided faces still form a valid patch network K
2+.

11



template 1 template 2 template 3 template 4

Figure 5: The four face refinement templates.

Figure 6: Example of closure of E0: on the left E0 initially contains only one edge; on the right its computed

closure contains 5 edges, resulting in the face refinement indicated by the dashed edges.

We specify the refinement of K
2

by selecting a subset E0 � E of edges in K
2

. For each edge in E0, a

new vertex is introduced at its midpoint. (The selection of E0 will be discussed shortly.) We then subdivide

each face of K
2

using one of the 4 face refinement templates shown in Figure 5, depending on which of its

edges are in E0.

Note that constraints exist on valid choices of E0, since the face refinement templates can only be applied

to faces with 0, 2, or 4 refined edges. To satisfy these constraints, any chosen set E0 is augmented with

additional edges so that all faces have an even number of refined edges. Our algorithm for achieving this

closure is as follows. We place all faces of K
2

onto a stack. In each iteration, we remove the face at the

front of the stack. If it has three refined edges, we add the fourth edge to E0 and push the neighboring face

on the stack. If instead it has one refined edge, we add to E0 the next clockwise edge on the face and push

the neighboring face on the stack. The algorithm is guaranteed to terminate, since, in the worst case, E0 will

contain all edges of K
2

(which leads to global refinement). Figure 6 demonstrates a refinement obtained

when a single edge is initially placed in E0.

We now address the problem of selecting the set E0 that determines the refinement. Our algorithm

considers all data points with d(pi; S) > � in order of decreasing d(pi; S). For each of these data points, if

the face onto which it projects is not set to be subdivided (i.e. none of its edges are in E0), then all its edges

are added to E0, and the closure of the resulting E0 is computed.

Having constructed the locally refined domain K
2+, we update the parametrizations of the points P. The

new vertices introduced in K
2+ lie either at the midpoints of edges (coordinates (0; 1

2
), (1; 1

2
), (1

2
; 0), (1

2
; 1)),

or at the centroid of faces (coordinates (1
2
;

1
2
)). Reparametrization on faces created by face refinement

templates 1, 2, and 4 proceeds in the obvious way, since there exists a unique piecewise bilinear map

between the original face and the quadrilateral subfaces. For a face subdivided by template 3, however,

such a bilinear map does not exist on the two trapezoid pieces, so we approximate it by assuming that the

original quadrilateral has the geometry of a square.
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After adaptive refinement, the fitting method of Step 4 is reinvoked. The resulting surface may still

not be within � of all the points, indicating that further refinement is necessary. We repeat the process of

refinement and refitting until the error tolerance � is satisfied. Figures 9j– 9l show the resulting surfaces.

4 Results

Figure 9 shows the reconstruction of a B-spline surface from a set of 4000 points; this synthetic data set

was obtained by randomly sampling an existing surface. Figures 10a–10c, 10d–10f, and 10g–10i show

reconstructions using real data obtained from a laser range scanner (courtesy of Technical Arts Co.).

Figures 10j–10l show the B-spline approximation of a mesh S0 of 69,473 faces (courtesy of Turk and

Levoy). To approximate S0, a set P of 30,000 points is sampled randomly from its surface. Step 1 of the

procedure is skipped, and S0 is used directly as the initial mesh M0.

Table 1: Parameter settings and execution times.

Object #points Tolerance Fairness Execution times (minutes)

N � � Step 1 Step 2 Step 3 Step 4 Step 5

holes3 4,000 0.6% 0.1 1 1 1 12 134

club 16,585 0.7% 0.1 6 1 1 11 599

foot 20,021 0.3% 0.05 7 13 1 12 228

skidoo 37,974 0.7% 0.1 12 2 1 14 132

bunny 30,000 1.5% 0.1 — 16 1 45 200

Table 2: Surface complexities and B-spline fit errors.

Object M0 K
4

Initial S Refined S

#faces #faces #patches fit error #patches fit error

rms max rms max

holes3 2,080 98 49 0.14% 0.75% 178 0.07% 0.59%

club 5,152 72 35 0.22% 1.36% 285 0.06% 0.41%

foot 10,972 62 29 0.20% 1.20% 156 0.03% 0.27%

skidoo 3,661 30 15 0.23% 3.00% 94 0.03% 0.69%

bunny 69,473 162 72 0.43% 4.64% 153 0.19% 1.44%

As Table 1 indicates, the user-specified parameters are the maximum error tolerance � and the fairness

weight �. (To make these values unitless, we uniformly scale the data points P to fit within a unit cube.)

The table also compares the execution times of the 5 successive steps, as obtained on a 105 MHz HP 735

workstation. Table 2 lists for each example the complexities of the initial mesh M0 and the base complex

K
4

. It also shows the fit errors of both the initial B-spline surface (Step 4) and the adaptively refined

B-spline surface (Step 5), giving both rms and maximum errors as percentages of the object diameter.
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5 Summary and Future Work

We have developed a procedure for constructing a G1 tensor product B-spline surface of arbitrary topological

type from a set of 3D points without user assistance. The procedure makes use of a surface spline construction

to obtain G1 continuity; we show that such an approach leads to an efficient B-spline fitting method. We

have introduced an adaptive refinement algorithm. Finally, we have applied our procedure to reconstruct

B-spline surfaces within user-specified maximum error tolerances on a number of real data sets.

There exist a number of areas for future research. The procedure should be extended to allow recon-

struction of piecewise smooth surfaces that contain discontinuities such as creases and corners [10]. To this

end, some user intervention may be desirable in identifying the discontinuities during the construction of

the patch network.

In the context of surface approximation, the current procedure provides error bounds d(pi; S) between a

set of sampled points and the approximating surface; instead a stronger error bound would be the distance

d(S0; S) between the original surface and its approximation.

Some surfaces such as the mesh in Figure 10j contain fine geometric detail that is difficult to approximate

with a smooth surface representation. This detail could easily be stored in the form of a displacement map

from the underlying smooth surface as is done in [29]. The resulting hybrid representation (smooth surface

plus displacement map) could then be edited with conventional modeling systems.
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A Appendix

The purpose of this appendix is to present the formulas expressing the control points of the Bézier patches

of S (Figure 3c) as affine combinations of the control mesh vertices Vx (Figure 3b) in Peters’ surface spline

construction [23]. Recall that a Bézier patch is associated with each vertex of Mx.
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Figure 7: Regular case: neighborhood of vertex C11 2 Vx giving rise to a biquadratic patch.
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Figure 8: Extraordinary case: neighborhood of vertex C1 2 Vx giving rise to a bicubic patch

1. Since Peters’ surface scheme generalizes biquadratic B-splines, in the regular case of a vertex C11

adjacent to four 4-sided faces (Figure 7), a biquadratic Bézier patch is created. The formulas for its

Bézier points are obtained trivially:

b00 = (C00 + C10 + C01 + C11)=4

b10 = (C11 + C10)=2

b01 = (C11 + C01)=2

b11 = C11

(The remaining Bézier points follow by symmetry.)

2. At a vertex C1 near an m-sided extraordinary face (Figure 8), a bicubic Bézier patch is created. The

formulas for its Bézier points are quite difficult and are derived in [23]:

b00 = (B2;1 + B1;1 + C1 + A)=4

b10 = (5B2;1 + B1;1 + 5C1 + A)=12

b20 = (5B2;1 + B1;2 + 5C1 + C2)=12

b30 = (B2;1 + B1;2 + C1 + C2)=4

b11 = (5B2;1 + 5B1;1 + (25 + 4a)C1 + (1 � 4a)A)=36
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b21 = ((5 � 10a)B2;1 + (1 + 2a)B1;2 + (25 + 6a)C1 + (5 + 2a)C2)=36

b31 = h1;1

b22 =

(

�

Pm
i=1(�1)i h3;i if m is odd,

�

2
m

Pm
i=1(�1)i (m � i) h3;i if m is even,

b32 = h2;1

b33 =
1

m

m
X

i=1

Ci

where the following abbreviations are used:

c = cos (2�=m)

a = c=(1 � c)

h1;i = ((1 � 2a)B2;1 + (1 � 2a)B1;2 + (5 + 2a)C1 + (5 + 2a)C2)=12

h2;i =
1

m

m
X

l=1

Cl +
2a

3c
cos (2�l=m) (Ci+l + Ci+l+1)

h3;i = (1 �
2

3
c) h2;i +

2

3
c h1;i

(The remaining Bézier points again follow by symmetry.)

Finally, in the case that the number of sides m of the extraordinary face is even and greater than 4 the

following linear condition must hold for G1 continuity:

m
X

i=1

2
X

j=1

(�1)i+jBi;j = 0
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