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Abstract

This article treats connections on �ber bundles B = P �

G

F that are induced

by a connection 1-form on the associated principal bundle P . Using horizontal

lifts of vector �elds it is shown which combinations of di�erential forms on

the �ber F and on P canonically de�ne di�erential forms on B. Local rep-

resentations for these forms involving the gauge potentials and �elds of the

connection are given and lead to formulas for the exterior derivative. Finally

the case of an abelian structure group, especially G

�

=

S

1

, is examined.
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1 Introduction

Let us start with principal bundles �rst. A connection � on a principal bun-

dle P (M;G) is a homogeneous vector subbundle H(P ) of the tangent bundle T (P )

that is complementary to the naturally given vertical bundle V (P ), i. e., T (P ) =

H(P )�V (P ) and (R

g

)

?

H

p

(P ) = H

R(p;g)

(P ) with the free right action R:P�G! P

of the �nite dimensional structure group G on P and the induced maps R

g

:P ! P

and R

p

:G ! P given by R

g

(p) = R

p

(g) := R(p; g), cf. [5, p. 276], [4, p. 63].

The connection is uniquely de�ned by its connection 1-form !

�

2 A

1

(P; g), where

g = T

e

(G) denotes the Lie algebra of G. Connection 1-forms are pseudotensorial,

resp., equivariant, i. e., R

?

g

!

�

= Ad(g

�1

)

?

!

�

for all g 2 G, and obey !

�

(R

X

) = X

for all fundamental vector �elds R

X

with X 2 g and (R

X

)

p

:= (dR

p

)(X). Thus if

�

L

means the left canonical 1-form on G then (R

p

)

?

!

�

= �

L

for all p 2 P .

Let h; v:D

1

(P )! D

1

(P ) denote the induced projections of vector �elds onto the

C

1

(P )-modules hD

1

(P ), resp., vD

1

(P ) of sections of the bundlesH(P ), resp., V (P ).

Then !

�

is given by !

�

(X )(p) = !

�

(vX )(p) := (dR

p

)

�1

(v

p

X

p

). Reversely, given !

�

one recovers � by v

p

= dR

p

� !

�

p

:T

p

(P )! V

p

(P ) and h

p

= id�v

p

. The projections

of vector �elds canonically de�ne projections of forms h; v:A(P; V ) ! A(P; V ) for

every vector space V . Then the exterior covariant di�erentiation on A(P ) 
 V is

given by d

�

� = (d�)h and 


�

:= d

�

!

�

is the curvature 2-form for �.

�

supported by a grant of the Studienstiftung des deutschen Volkes
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Let �:P ! M denote the global projection onto the base manifold and let

D

�

(P ) := hD

1

(P )

inv

denote the C

1

(M)-module of horizontal invariant vector �elds,

i. e, those vector �elds Y with Y = hY and (R

g

)

?

Y = Y for all g 2 G. The

horizontal lift L:D

1

(M)! hD

1

(P )

inv

, which is uniquely de�ned by d�

p

(LX )

p

= X

p

,

is an isomorphism of C

1

(M)-modules with inverse morphism �

?

. Just as every

connection de�nes canonical lifts of vector �elds on M , the reverse statement is

also true. Every L 2 Hom

C

1

(M)

(D

1

(M);D

1

(P )

inv

) with �

?

� L = id

D

1

(M)

uniquely

de�nes a connection: if L

p

denotes the local inverse of the di�erential d�

p

, then the

horizontal projection is given by h

p

:= L

p

� d�

p

.

The following lemma on induced connections on principal bundles is well known:

Lemma 1.1 Let f :P

0

(M

0

; G)! P (M;G) be a G-equivariant mapping of principal

bundles, i. e., f �R

0

g

= R

g

� f for all g 2 G , then every connection � on P induces

a unique connection �

0

on P

0

, such that f

?

maps horizontal subspaces of �

0

into

horizontal subspaces of �.

Instead of connections on principal bundles where we have the connection 1-

form at hand, we are interested in connections on �ber bundles in general. So let

B(M;F;G) = P �

G

F denote any �ber bundle with �ber F associated with the

principal bundle P . Recall its de�nition: if L:G � F ! F is a left e�ective Lie

group action of the structure group on a manifold F we de�ne a free right Lie group

action

e

R of G on the product manifold P � F as follows:

e

R

g

(p; f) := (R

g

(p); L

g

�1

(f)) for all p 2 P; f 2 F; g 2 G:

Now B = P �

G

F denotes the quotient manifold by this action

e

R. Recall that

for every �ber bundle B(M;F;G), one can construct an associated principal bun-

dle P (M;G) by taking G as �ber, and then B can be obtained from P in the above

way (up to equivalences). In the sequel,

e

�:P � F ! B will denote the canonical

projection and

b

�:B !M will denote the projection of the bundle B such that the

following diagram commutes for every g 2 G:

P � F

P

P � F

P

B

M .

-

-

? ?�

�

�

��

�

�

�

��

H

H

H

H

H

H

H

Hj

H

H

H

H

H

H

H

Hj

?

�

e

�

�

e

�

R

g

e

R

g

pr

P

pr

P

b

�

Suppose U = fU

�

g

�2A

is an open cover ofM for which a bundle atlas for P exists.

The bundle atlas consists of bundle charts (U

�

;  

�

) with local trivializations  

�

=

(�; �

�

):�

�1

(U

�

) ! U

�

� G and local projections �

�

:�

�1

(U

�

) ! G. Then we also

have local projections

b

�

�

:

b

�

�1

(U

�

)! F and

b

� �

e

� = � � pr

P

;

b

�

�

�

e

� = L � (�

�

� pr

P

;pr

F

): (1)
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In addition, (P � F )(B;G) is a principal bundle over B equivalent to the pullback

bundle

b

�

?

P with right action

e

R and cover

b

�

�1

U of B.

Every connection on a principal bundle induces connections on all associated

bundles. In the literature ([4, pp. 87 { 88], [5, p. 290]) we �nd the following de�nition:

De�nition 1.2 Every connection � on a principal bundle P (M;G) induces split-

tings T (B) = H(B) � V (B) on any associated bundle B(M;F;G) = P �

G

F with

H(B) :=

e

�

?

(H(P ) � f0g).

The following lemma is also standard:

Lemma 1.3 Let

b

� be a connection on B(M;F;G) induced by � on the associated

principal bundle P (M;G). Every embedding i:U ! M and every �ber preserving

di�eomorphism of bundles f :B(M;F;G) ! B

0

(M

0

; F

0

; G) induce connections

b

�j

U

on

b

�

�1

(U), resp.,

b

�

f

on B

0

. For every bundle chart (U

�

;

b

 

�

) the induced connec-

tion (

b

�j

U

�

)

b

 

�

on U

�

�F coincides with the connection induced by (�j

U

�

)

 

�

on U

�

�G.

Yet from this approach the projections of the vector �elds and of the forms cannot

easily be read o�. Thus the �rst task of this article is a slightly di�erent approach

to these induced connections in order to get formulas for the projections

b

h and

b

v on

the bundle B. Using these formulas we will then be able to prove certain globality

theorems for di�erential forms: Every form on P or F de�nes a form on P � F by

use of the pullbacks pr

?

P

, resp., pr

?

F

. In which cases do these forms induce forms

on B? For example, in this way every invariant form � on F canonically de�nes a

global vertical form \�v" on B. Locally this form is given by vertical projections of

the pullbacks

b

�

?

�

�.

Of course every form on M de�nes a horizontal form on B via the pullback

b

�

?

.

We shall prove that these forms are the only horizontal forms one can obtain from

forms on P . Also we will prove theorems for combinations of forms on P and on F .

In presenting local representatives for these di�erential forms (Section 4), we will

then be able to give formulas for their exterior derivative. This is quite important

since, e. g., the following diagram for an invariant form � 2 A(F ) 
 V does not

commute in general:

d� (d�)v 6= d(�v).

� �v

-

-

? ?

Finally we will apply our results to bundles with abelian G, especially if g

�

=

R.

2 Projections on P � F and on P �

G

F

For any left or right action S = L;R of a Lie group G on a manifold P , let S: g!

D

1

(P ) denote the Lie algebra (anti) homomorphism de�ned by (S

X

)

p

:= dS

p

(X)

(cf. the notation in the previous section), and let S

0

:C

1

(P; g) ! C

1

(P )S(g) �

3



D

1

(P ) denote the induced C

1

(P )-module homomorphism. (If G acts e�ectively on

P , then S is injective and if G acts freely on P , then S

0

is an isomorphism of free

C

1

(P )-modules, cf. [2, Lemma 2.3].)

The following observation on the natural connection �

nat

on trivial bundles is

quite trivial:

Lemma 2.1 We have natural lifts L

nat

h

;L

nat

v

:D

1

(P ) ! D

1

(P � F ) on the product

manifold P � F with (pr

P

)

?

� L

nat

h

= id

D

1

(P )

and (pr

F

)

?

� L

nat

v

= id

D

1

(F )

, which are

injective homomorphisms of C

1

(P )-modules, resp., C

1

(F )-modules and Lie alge-

bras and obey (

e

R

g

)

?

� L

nat

h

= L

nat

h

� (R

g

)

?

and (

e

R

g

)

?

� L

nat

v

= L

nat

v

� (L

g

�1
)

?

. If

i

f

:P ! P � F and i

p

:F ! P � F de�ned by i

f

(p) = i

p

(f) = (p; f), denote the

natural injections then (L

nat

h

X )

(p;f)

= (di

f

)

p

X

p

and (L

nat

v

Y)

(p;f)

= (di

p

)

f

Y

f

for all

p 2 P , f 2 F , X 2 D

1

(P ) and D

1

(F ).

We also have natural projections of vector �elds h

nat

; v

nat

:D

1

(P�F )! D

1

(P�F )

with D

1

(P � F ) = h

nat

D

1

(P � F ) � v

nat

D

1

(P � F ) as a C

1

(P � F )-module and

h

nat

� L

nat

h

= L

nat

h

, v

nat

� L

nat

h

= 0, resp., h

nat

� L

nat

v

= 0, v

nat

� L

nat

v

= L

nat

v

.

Since pr

P

�

e

R

g

= R

g

� pr

P

and pr

F

�

e

R

g

= L

g

�1
� pr

F

for all g 2 G, we have

h

nat

� (

e

R

g

)

?

= (

�

R

g

)

?

� h

nat

= (

e

R

g

)

?

� h

nat

; h

nat

�

f

R

0

� (pr

P

)

?

= L

nat

h

� R

0

;

v

nat

� (

e

R

g

)

?

= (

�

L

g

�1
)

?

� v

nat

= (

e

R

g

)

?

� v

nat

; v

nat

�

f

R

0

� (pr

F

)

?

= �L

nat

v

� L

0

;

where

�

R and

�

L denote the actions on P � F naturally induced by R and L:

�

R:G � P � F ! G � F;

�

R(g; p; f) = (R(g; p); f);

�

L:G � P � F ! G � F;

�

L(g; p; f) = (p; L(g; f)):

h and v induce projections h

0

and v

0

on h

nat

D

1

(P�F ) such that h

0

�L

nat

h

= L

nat

h

�h,

v

0

�L

nat

h

= L

nat

h

�v. Also a C

1

(P�F )-linear extension of !

�

on h

nat

D

1

(P�F ) exists,

which we denote by �!

�

. Then v

0

=

�

R

0

� �!

�

and

�

R

0

= h

nat

f

R

0

. Note that the splitting

of T (P �F ) into H(P �F ) = H(P )�f0g and V (P �F ) = V (p)�f0g�f0g�T (F )

corresponds to projections h

P�F

:= h

0

� h

nat

and v

P�F

= id

D

1

(P�F )

�h

0

� h

nat

with

h

P�F

� (

e

R

g

)

?

= (

e

R

g

)

?

� h

P�F

; v

P�F

� (

e

R

g

)

?

= (

e

R

g

)

?

� v

P�F

:

Yet these are not the only projections given on P � F . Recall that P � F is a

principal bundle over B equivalent to

b

�

?

P . Now every connection � on P induces

a connection

e

� = pr

?

P

� on P � F since pr

P

is a G-equivariant mapping of principal

bundles according to Lemma 2.1. We have

e

!

e

�

= pr

?

P

!

�

= �!

�

� h

nat

with

f

R

?

g

e

!

e

�

= Ad(g

�1

)

?

e

!

e

�

;

e

!

e

�

�

f

R

0

= id

C

1

(P�F;g)

:

e

� de�nes projections and lifts on (P�F )(B;G), let us denote them by

e

h,

e

v,

e

L. Then

e

v :=

f

R

0

�

e

!

e

�

=

f

R

0

� �!

�

�h

nat

=

f

R

0

�

R

0�1

�v

0

�h

nat

and

e

h = id

D

1

(P�F )

�

f

R

0

�

R

0�1

�v

0

�h

nat

.

Thus

e

h � L

nat

v

= L

nat

v

and

e

v �L

nat

v

= 0. As for any connection on a principal bundle,

we have

e

h � (

e

R

g

)

?

= (

e

R

g

)

?

�

e

h;

e

v � (

e

R

g

)

?

= (

e

R

g

)

?

�

e

v:
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Lemma 2.2 Let � 2 
(P (M;G)), then the various projections on D

1

(P � F ) obey

h

P�F

�

e

v =

e

v � h

P�F

= 0; h

P�F

�

e

h =

e

h � h

P�F

= h

P�F

;

v

P�F

�

e

v =

e

v � v

P�F

=

e

v; v

P�F

�

e

h =

e

h � v

P�F

=

e

h� h

P�F

= v

nat

�

e

h;

h

nat

�

e

v = v

0

� h

nat

;

e

v � h

nat

=

e

v;

e

v � h

0

� h

nat

= 0;

h

nat

�

e

h = h

0

� h

nat

;

e

h � h

nat

= h

nat

�

e

v;

e

h � h

nat

�

e

h = h

nat

�

e

h;

v

nat

�

e

v =

e

v � v

0

� h

nat

;

e

h � v

nat

= v

nat

;

e

v � v

nat

= 0:

By Lemma 2.2, h

nat

, h

P�F

and v

P�F

also act on D

e

�

(P � F ) and

h

nat

j

D

e�

(P�F )

= h

P�F

j

D

e�

(P�F )

= id

D

e�

(P�F )

�v

P�F

j

D

e�

(P�F )

:

But

e

L:D

1

(B) ! D

e

�

(P � F ) is a C

1

(B)-module isomorphism with inverse mor-

phism

e

�

?

. This de�nes the desired projections

b

h,

b

v on D

1

(B)

b

h =

e

�

?

h

P�F

e

L =

e

�

?

h

nat

e

L;

b

v =

e

�

?

v

P�F

e

L =

e

�

?

v

nat

e

L; so D

1

(B) =

b

hD

1

(B)�

b

vD

1

(B):

Finally note that

e

hL

nat

h

L =

e

hL

nat

h

hL =

e

hh

0

h

nat

L

nat

h

L = h

0

h

nat

L

nat

h

L = L

nat

h

L by

Lemma 2.2 and (

e

R

g

)

?

L

nat

h

L = L

nat

h

(R

g

)

?

L = L

nat

h

L, so L

nat

h

L:D

1

(M)! D

e

�

(P � F )

and the horizontal lift

b

L:D

1

(M)! D

1

(B) is well-de�ned by

b

L :=

e

�

?

� L

nat

h

� L; i. e.

e

L �

b

L = L

nat

h

� L:

This is illustrated by the following commutative diagram:

D

e

�

(P � F )

D

�

(P )

D

1

(B)

D

1

(M).

�

�

6 6

L

e

L

L

nat

h

b

L

b

h

b

L =

e

�

?

h

nat

L

nat

h

L =

b

L proves that

b

L maps into

b

hD

1

(B), so

b

h

b

=

b

L

b

� d

b

�

b

. Also

b

h[

b

LX ;

b

LY] =

e

�

?

h

nat

e

h[

e

L

b

LX ;

e

L

b

LY] =

e

�

?

h

0

h

nat

[L

nat

h

LX ;L

nat

h

LY] =

e

�

?

h

0

L

nat

h

[LX ;LY]

=

e

�

?

L

nat

h

h[LX ;LY] =

e

�

?

L

nat

h

L[X ;Y] =

b

L[X ;Y]:

We have thus proved the following proposition:

Proposition 2.3 The horizontal lift

b

L:D

1

(M) !

b

hD

1

(B) is an injective homo-

morphism of C

1

(M)-modules with

b

�

?

�

b

L = id

D

1

(M)

and

b

h[

b

LX ;

b

LY] =

b

L[X ;Y] for

all X , Y 2 D

1

(M).

b

L is uniquely de�ned by

e

L

b

L = L

nat

h

L:D

1

(M)! h

nat

D

e

�

(P �F ).

Now what happens if B = P ? One would expect that

b

h = h and

b

L = L, and

this is indeed true. We have the following commutative diagram:
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P M

P �G

P

-

-

? ?

�

e

� = R � �

PG

pr

P

�

On the left, (P � G)(P;G) is a trivial principal bundle with projection pr

P

and

right action

e

� = id��. (Here and in the sequel, �

g

and �

g

denote right and left

multiplication with g 2 G.) This bundle is the trivialization of the square of P ,

which is the bundle on the top of the diagram. We can identify

e

� and R � �

PG

,

where �

PG

:P � G ! G � P is the natural morphism exchanging P and G. Thus

d

e

�

(p;g)

(P

g

;X

g

) = dR

g

P

p

+ dR

p

X

g

. We will prove

b

L = L, then both connections

� and

b

� on P must coincide according to our statements in Section 1. For every

X 2 D

1

(M) and all p 2 P we have

(

e

�

?

L

nat

h

LX )

p

= d

e

�

(R(g;p);g

�1

)

((LX )

R(g;p)

; 0

g

�1

) = dR

g

�1

(LX )

R(g;p)

= (LX )

p

;

since (R

g

�1
)

?

LX = LX for all g 2 G. Thus

b

L = L.

Projections of forms are de�ned as in the case of principal bundles:

De�nition 2.4 For any connection � 2 
(P (M;G)) and any !

s

2 A

s

(B;V ), s > 0,

where B is an associated bundle B(M;F;G) = P �

G

F and V is a vector space, we

de�ne horizontal and vertical projections !

s

b

h, resp., !

s

b

v 2 A

s

(B;V ) by

!

s

b

h(X

1

; : : : ;X

s

) := !

s

(

b

hX

1

; : : : ;

b

hX

s

); for all X

i

2 D

1

(B);

!

s

b

v(X

1

; : : : ;X

s

) := !

s

(

b

vX

1

; : : : ;

b

vX

s

); for all X

i

2 D

1

(B):

A(B;V )

b

h � A(B;V ) and A(B;V )

b

v � A(B;V ) (with A

0

(B;V )

b

h := A

0

(B;V )

b

v :=

A

0

(B;V ) = C

1

(B;V )) denote the C

1

(B)-submodules of A(B;V ) that contain these

horizontal, resp., vertical V -valued forms.

Obviously A

1

(B;V ) = A

1

(B;V )

b

h � A

1

(B;V )

b

v and

b

h and

b

v commute with ex-

terior products: if ':Z � W ! V is a bilinear mapping and ^

'

denotes the in-

duced exterior product of Z- and W -valued forms, then with � 2 A(B) 
 Z and

� 2 A(B)
W ,

(� ^

'

�)

b

h = �

b

h ^

'

�

b

h; (� ^

'

�)

b

v = �

b

v ^

'

�

b

v:

In the sequel we will write ^

g

for the exterior product induced by [; ]: g� g! g.

In the next section we will need a generalization of the exterior product of two

di�erential forms: the operator � which is linear in its �rst argument and multilinear

in its second argument and produces V -valued forms from Hom(T (W ); V )-valued

and W -valued forms (T (W ) means the tensor algebra of W ), cf. [1]. For s > 0 let

E

j

2 W , j = 1; : : : ; s and let E

1


� � �
E

s

: Hom(

N

s

W;V )! V denote the canonical

evaluation morphism. For any di�erential form �

s

r

2 A

r

(M;Hom(

N

s

W;V )) on

a manifold M de�ne �

E

1

;:::;E

s

r

2 A

r

(M;V ) to be the push-out of �

s

r

under this

morphism: �

E

1

;:::;E

s

r

:= (E

1


 � � � 
 E

s

)

?

�

s

r

, i. e., for all x 2 M and X

i

2 D

1

(M),

i = 1; : : : ; r,

(�

E

1

;:::;E

s

r

)

x

(X

1

x

; : : : ;X

r

x

) := (E

1


 � � � 
 E

s

) � (�

s

r

)

x

(X

1

x

; : : : ;X

r

x

):

6



Now let �

p

=

P

m

i=1

�

i


 E

i

2 A

p

(M) 
W be a W -valued form, then we de�ne a

V -valued form �

s

r

� �

p

in the following way:

�

s

r

� �

p

=

m

X

i

1

;:::;i

s

=1

�

E

i

1

;:::;E

i

s

r

^ �

i

1

^ � � � ^ �

i

s

2 A(M;V ):

Thus if �

s

r

2 A

r

(M) 
 Hom(

N

s

W;V ) then also �

s

r

� �

p

2 A

r+sp

(M) 
 V . Linear

extension de�nes the operator � for � 2 A(M;Hom(T (W ); V )).

Note that � is a generalization of ^

'

for bilinear ':Z �W ! V in the following

sense: ' canonically de�nes '

0

:Z ! Hom(W;V ). For any �

r

2 A

r

(M) 
 Z we

thus have a push-out '

0

?

�

r

2 A

r

(M) 
 Hom(W;V ). Now if �

p

2 A

p

(M) 
W then

�

r

^

'

�

p

= ('

0

?

�

r

) � �

p

.

For a bundle B, one easily checks that the projections

b

h and

b

v commute with �:

for � 2 A(B;Hom(T (W ); V )) and �

p

2 A

p

(B)
W ,

(� � �

p

)

b

h = �

b

h � �

p

b

h; (� � �

p

)

b

v = �

b

v � �

p

b

v:

Also since � behaves well under pullbacks and push-outs, one easily proves that

� maps equivariant forms onto invariant forms (cf. [1, Lemma 7.1]):

Lemma 2.5 Let S:G � P ! P be a Lie group action and L:G ! Gl(W ) be a

left representation. If �

p

2 A

p

(P ) 
W and � 2 A(P;Hom(T (W ); V )) are equiv-

ariant (i. e., S

?

g

�

p

= L(g

� sgn(S)

)

?

�

p

and S

?

g

� = (L(g

sgn(S)

)

?

)

?

� for all g 2 G, where

sgn(S) := +1 for a right action and sgn(S) := �1 for a left action), then � � �

p

is

invariant.

E. g., if � 2 A(P;Hom(T (g); V ))

equiv

and �

p

2 A

p

(P; g)

equiv

, where equivari-

ance is meant with respect to the adjoint action Ad on g, then � � �

p

is invariant.

(We only consider �nite dimensional Lie groups, so A(P; g) = A(P ) 
 g.) Re-

call that the equivariant forms � 2 A(P ) 
 W on a principal bundle P are also

called pseudotensorial forms of type (L;W ), while horizontal equivariant forms (like

the curvature 2-form) are called tensorial forms of type (L;W ). We will denote

their modules by A

P

(P;L; V ) and A

T

(P;L; V ), resp., A

P

(P; g) := A

P

(P;Ad; g) and

A

T

(P; g) := A

T

(P;Ad; g).

3 Generating forms on B from forms on F and P

For the trivial bundleM�F with G = feg we can extend vector �elds and forms on

M and F to the bundle using the natural projections pr

M

and pr

F

, resp., the natural

injections i

f

and i

x

for f 2 F and x 2 M . For arbitrary bundles only one global

projection

b

� is given naturally and we only have \global" (with regard to F ) injec-

tions i

�;x

on every bundle chart. These enable us to de�ne a vertical bundle V (B)

and a global horizontal lift of di�erential forms

b

�

?

:A(M;V ) ! A(B;V ). We have

seen that it requires a connection as an additional structure to de�ne H(B) and

horizontal lifts of vector �elds on M onto the bundle.

Now we will be concerned with the \dual problem" to extend forms on the

�ber to the bundle. Locally we can achieve this using the pullbacks

b

�

?

�

of the local

projections onto the �ber, but normally for � 2 A(F; V ), f

b

�

?

�

� 2 A(�

�1

(U

�

); V )g

�2A
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will not de�ne a global form since in general on the overlaps U

��

:= U

�

\U

�

we will

�nd (

b

�

?

�

�j

b�

�1

(U

��

)

) 6= (

b

�

?

�

�j

b�

�1

(U

��

)

). In order to investigate how a given connection

will de�ne global forms, we can compute the transition functions and evaluate the

projections of �elds and forms locally. Let us postpone this access to the problem

to Section 4. For now, we will again take the detour over P � F in order to derive

global expressions for the extended forms.

Lemma 3.1 Y 2 D

1

(F ) de�nes a vertical vector �eld i

?

Y =

e

�

?

L

nat

v

Y 2 D

1

(B),

such that locally (i

?

Y)

 

�1

�

(x;f)

= (d 

�1

�

)

(x;f)

(0

x

;Y

f

) on �

�1

(U

�

), i� Y is invariant.

Proof. We already saw that

e

�

?

L

nat

v

Y de�nes a section of

e

�

?

T (B). A section of

e

�

?

T (B) is a section of T (B) i� it is invariant under all

e

R

?

g

. But this is the case

i� L

nat

v

Y = (

e

R

g

�1
)

?

L

nat

v

Y = L

nat

v

(L

g

)

?

Y for all g 2 G. Since L

nat

v

is injective

and

b

h

e

�

?

L

nat

v

Y =

e

�

?

h

nat

L

nat

v

Y = 0, this yields our assertion. That (i

?

Y)

 

�1

�

(x;f)

=

(d 

�1

�

)

(x;f)

(0

x

;Y

f

) holds for all x 2 U

�

and f 2 F , now follows from verticality and

(1): d

b

�

�

d

e

�(L

nat

v

)

(p;f)

Y

f

= dL

f

d�

�

dpr

P

(L

nat

v

)

(p;f)

Y

f

+ dL

�

�

(p)

Y

f

= Y

L(�

�

(p);f)

. �

So the situation for M and F is not totally dual but involves L, and it is no

surprise that, given a connection, we can only extend invariant forms � 2 A(F; V )

naturally onto the bundle. To see this, we observe that the only canonical way, how

a di�erential form � 2 A(F; V ) acts on vector �elds Y

i

2 D

1

(B) is via

(pr

?

F

�)(: : : ;

e

LY

i

; : : :) =

e

f 2 C

1

(P � F; V ):

This de�nes a form on B if and only if we �nd f 2 C

1

(B;V ) for any Y

i

2 D

1

(B),

such that

e

f = f �

e

�. We note that the resulting form will be vertical since

(pr

F

)

?

e

L

b

vY

i

= (pr

F

)

?

e

L

e

�

?

v

nat

e

LY

i

= (pr

F

)

?

v

nat

e

LY

i

= (pr

F

)

?

e

LY

i

:

Proposition 3.2 � 2 A(F; V ) de�nes a vertical V -valued form on B(M;F;G) i�

� is invariant under all L

?

g

. For such a � and all Y

i

2 D

1

(B) then there exists

f 2 C

1

(B;V ) with

(pr

?

F

�)(: : : ;

e

LY

i

; : : :) = f �

e

�:

Proof. According to the previous discussion, � de�nes a form on B if and only if

(pr

?

F

�)(: : : ;

e

LY

i

; : : :) 2 C

1

(P � F; V ) is invariant under all

e

R

?

g

, i. e., if and only if

e

R

?

g

[(pr

?

F

�)(: : :;

e

LY

i

;: : :)] = (

e

R

?

g

pr

?

F

�)(: : :; (

e

R

g

�1
)

?

e

LY

i

;: : :) = (pr

?

F

L

?

g

�1

�)(: : :;

e

LY

i

;: : :)

for all g 2 G and Y

i

2 D

1

(B). Obviously this relation holds if � 2 A(F; V )

is invariant. So let us assume, that � is not invariant. Then we �nd g 2 G,

f 2 F and X

i

2 D

1

(F ) such that (L

?

g

�)

f

(: : : ;X

i

f

; : : :) = �

L(g;f)

(: : : ; dL

g

X

i

f

; : : :) 6=

�

f

(: : : ;X

i

f

; : : :). Since only X

i

f

are involved, we may assume that all X

i

are invariant

and thus de�ne

e

�

?

L

nat

v

X

i

2 D

1

(B) by Lemma 3.1. For these vector �elds on B we

compute

e

L

e

�

?

L

nat

v

X

i

=

e

hL

nat

v

X

i

=

e

hv

nat

L

nat

v

X

i

= v

nat

L

nat

v

X

i

= L

nat

v

X

i

and thus

(R

?

g

�1

pr

?

F

�)(: : : ;

e

L

e

�

?

L

nat

v

X

i

; : : :)(p; f) = (L

?

g

�)

f

(: : : ;X

i

f

; : : :) 6= �

f

(: : : ;X

i

f

; : : :) =

(pr

?

F

�)(: : : ;

e

L

e

�

?

L

nat

v

X

i

; : : :)(p; f). So (pr

?

F

�)(: : : ;

e

L

e

�

?

L

nat

v

X

i

; : : :) is not invariant

under all

e

R

?

g

. Verticality was already proved above. �

Similar arguments hold for � 2 A(P; V ) acting on Y

i

2 D

1

(B) via

(pr

?

P

�)(: : : ;

e

LY

i

; : : :) 2 C

1

(P � F; V ):
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The resulting form will be horizontal because (pr

P

)

?

e

L

b

h = (pr

P

)

?

e

L. Moreover, only

�h is of interest: (pr

P

)

?

e

L = (pr

P

)

?

h

nat

e

h

e

L = (pr

P

)

?

h

0

h

nat

e

L = h

0

(pr

P

)

?

e

L, thus

(pr

?

P

�)(: : : ;

e

LY

i

; : : :) = (pr

?

P

�h)(: : : ;

e

LY

i

; : : :):

Proposition 3.3 � 2 A(P; V ) de�nes a horizontal V -valued form on B(M;F;G)

i� �h = �

?

', ' 2 A(M;V ). For such a � and all Y

i

2 D

1

(B) we then have

(pr

?

P

�)(: : : ;

e

LY

i

; : : :) = (

b

�

?

')(: : : ;Y

i

; : : :) �

e

�:

Proof. We already saw that only �h matters and that the resulting form is horizon-

tal. Now �h = �

?

' i� R

?

g

(�h) = �h for all g 2 G, and analogously to the previous

proof we can show that this su�ces to de�ne a form on B. But then

(pr

?

P

�h)(: : : ;

e

LY

i

; : : :) = (

e

�

?

b

�

?

')(: : : ;

e

LY

i

; : : :) = (

b

�

?

')(: : : ;

e

LY

i

; : : :) �

e

�:

On the other hand, if there exists g 2 G with R

?

g

�h 6= �h, we can �nd invari-

ant vector �elds in D

�

(P ), i. e. X

i

2 D

1

(M), such that �h(: : : ;LX

i

; : : :) � R

g

6=

�h(: : : ;LX

i

; : : :). So (pr

?

P

�)(: : : ;

e

L

b

LX

i

; : : :) �

e

R

g

= �h(: : : ;LX

i

; : : :) � pr

P

�

e

R

g

=

�h(: : : ;LX

i

; : : :)�R

g

�pr

P

6= �h(: : : ;LX

i

; : : :)�pr

P

= (pr

?

P

�)(: : : ;

e

L

b

LX

i

; : : :). Thus

(pr

?

P

�)(: : : ;

e

L

b

LX

i

; : : :) does not de�ne f 2 C

1

(B;V ). �

As a simple example that only the horizontal part of � 2 A(P; V ) counts and

needs to be invariant, we compute

(pr

?

P

!

�

)(

e

LY) =

e

!

e

�

(

e

LY) =

f

R

0�1

�

e

v

e

LY = 0: (2)

Now we want to combine forms on F with forms on P . This could be done by

an exterior product of the generated forms on P � F . More generally, we will use

the operator � instead.

Theorem 3.4 If � 2 A(F;Hom(T (g); V ))

equiv

and � 2 A

P

r

(P; g) = A

r

(P; g)

equiv

,

r 2 N

0

, then (pr

?

F

�) � (pr

?

P

�) 2 A(P �F; V ) de�nes a V -valued form on B: for all

vector �elds Y

i

2 D

1

(B) then there exists f 2 C

1

(B;V ) such that

[(pr

?

F

�) � (pr

?

P

�)](: : : ;

e

LY

i

; : : :) = [(pr

?

F

�) � (pr

?

P

�h)](: : : ;

e

LY

i

; : : :) = f �

e

�:

(pr

?

F

�) de�nes the vertical and (pr

?

P

�) de�nes the horizontal part of the form.

Proof. Analogously to the previous proofs, we must show that for any Y 2 D

1

(B),

[(pr

?

F

�)� (pr

?

P

�)](: : : ;

e

LY

i

; : : :) 2 C

1

(P �F; V ) is invariant. Again this means that

(pr

?

F

�) � (pr

?

P

�) 2 A(P � F; V ) is invariant. pr

F

�L

g

�1
=

e

R

g

� pr

F

and pr

P

�R

g

=

e

R

g

� pr

P

yield that pr

?

F

� and pr

?

P

� are G-equivariant. Now Lemma 2.5 applies. �

All of these results are just special cases of the following theorem. If we replace g

by any vector space W with a left representation L

0

, we may prove in total analogy

for pseudotensorial forms of type (L

0

;W ) on P :

Theorem 3.5 Let V;W be vector spaces, L

0

:G�W ! W a left representation and

� 2 A

P

r

(P;L

0

;W ), r 2 N

0

. If � 2 A(F;Hom(T (W ); V ))

equiv

then (pr

?

F

�)�(pr

?

P

�) 2

A(P � F; V ) de�nes a V -valued form on B: for all vector �elds Y

i

2 D

1

(B) then

there exists f 2 C

1

(B;V ) such that

[(pr

?

F

�) � (pr

?

P

�)](: : : ;

e

LY

i

; : : :) = [(pr

?

F

�) � (pr

?

P

�h)](: : : ;

e

LY

i

; : : :) = f �

e

�:

(pr

?

F

�) de�nes the vertical and (pr

?

P

�) de�nes the horizontal part of the form.
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Let us again consider the case B = P . Now Y 2 D

1

(G) in Lemma 3.1 is

invariant i� Y

g

= d�

g

(X) for all g 2 G and X 2 g. But then (i

?

Y)

 

�1

�

(x;g)

=

(d 

�1

�

)

(x;g)

(0

x

; d�

g

(X)) = (R

X

)

 

�1

�

(x;g)

, so the vector �eld generated by Y = L

X

2

D

1

L

(G) is the fundamental vector �eld R

X

. Recall that the connection 1-form !

�

and the left canonical 1-form �

L

2 A

L

1

(G) are connected via (R

p

)

?

!

�

= �

L

for all

p 2 P . According to Proposition 3.2, �

L

de�nes a vertical g-valued 1-form \�

L

v"

on P . Since �

L

v is vertical, we may compute it by evaluating (�

L

v)(R

X

). Now

(pr

?

G

�

L

)(

e

LR

X

) = (pr

?

G

�

L

)(

e

Li

?

L

X

) = (pr

?

G

�

L

)(L

nat

v

L

X

) = �

L

(L

X

) = X. Thus

�

L

v = !

�

. Finally we can recover 


�

2 A

P

2

(P; g) using Theorem 3.4 with � :=

Ad �� 2 C

1

(G;Hom(g; g))

equiv

, where �:G ! G means the inversion on G, since

pr

?

G

(Ad ��) � (pr

?

P




�

) =

e

�

?




�

, cf. (7) and Corollary 4.6 below.

4 Local Evaluation of Connections

In order to compute the exterior derivatives of the generated V -valued forms on B

in Proposition 3.2 and Theorem 3.4 we give local representations for these forms in

this section. For this purpose we need to evaluate the local connections on U

�

� F

that are induced by � due to Lemma 1.3 and thus to compute the local projections

of �elds and forms. Since we will be concerned with �ber bundles in general from

now on, we will distinguish between � and

b

�, h and

b

h, L and

b

L, etc., only where

necessary, but use �:M ! B, etc., for convenience.

We start our local evaluations by computing the change of bundle charts. For

U

��

= U

�

\ U

�

6= ; let T

��

:= ( 

�

j

�

�1

(U

��

)

) � ( 

�

j

�

�1

(U

��

)

)

�1

:U

��

� F ! U

��

� F

denote the maps for the change of bundle charts. If g

��

:U

��

! G are the transition

functions then the maps T

��

are given by

T

��

= (pr

U

��

; L � (g

��

� pr

U

��

;pr

F

)) = L � (g

��

� pr

U

��

; id

U

��

�F

); (3)

where we have identi�ed L with the induced action

�

L on U

��

� F from Lemma 2.1

(P := U

��

). For x 2 U

��

6= ; and f 2 F let (X;F ) 2 T

x

(M) � T

f

(F ). Then (3)

yields (dT

��

)

(x;f)

(X;F ) = (X; dL

g

��

(x)

(F )+ dL

f

dg

��

(X)) and if f

�

and f

�

2 F are

related by f

�

= L(g

��

(x); f

�

), then (T

?

��

!

�

)

(x;f

�

)

(: : : ; (X

�

; F

�

)

i

(x;f

�

)

; : : :) =

!

�

(x;f

�

)

(: : : ; (X

�

; dL

g

��

(x)

(F

�

) + dL

f

�

dg

��

(X

�

)

i

(x;f

�

)

; : : :) for all !

�

2 A(U

��

� F; V ):

In order to treat such expressions in terms of forms we already introduced the

opeator

�

L

in [2] in the following way: for any !

n

2 A

n

(F; V ) (resp., U

�

� F , etc.,

instead of F ), we de�ne L

i

�

!

n

2 A

n�i

(F;Alt

i

(g; V )), i � n, for all X

j

2 D

1

(F ),

E

k

2 g and f 2 F by

[(L

i

�

!

n

)(X

1

; : : : ;X

n�i

)(f)](E

1

; : : : ; E

i

) :=

n!

(n�i)!

!

n

(L

1

; : : : ;L

i

;X

1

; : : : ;X

n�i

)(f) 2 V;

where L

i

:= L

E

i

. Thus L

i

�

!

n

2 A

n�i

(F )
Alt

i

(g; V ) if !

n

2 A

n

(F )
 V . For i > n

we put L

i

�

!

n

= 0. In the case i = 1 we also de�ne for �

s

n

2 A

n

(F;Hom(

N

s

g; V ))

using the symmetrization map Sym:Hom(

N

s

g; V )! Sym

s

(g; V ):

L

_

�

�

s

n

:= Sym

?

(L

�

�

s

n

) 2 A

n�1

(F;Sym

s+1

(g; V )):

10



(Obviously Sym

?

(L

i

�

�

s

n

) = 0 for i > 1.) For any !

n

2 A

n

(F; V ) and � 2 A

1

(F; g),

we de�ne

!

n
�

L

� :=

n

X

i=0

(�1)

i(n�i)

i!

(L

i

�

!

n

) � � 2 A

n

(F; V ):

Then a straightforward calculation yields (cf. [2, Lemma 9.2]) that

(!

�

L

�)

f

(: : : ;X

i

f

; : : :) = !

f

(: : : ;X

i

f

+ (dL

f

)

e

�

f

(X

i

f

); : : :): (4)

Thus we obtain from (3):

Proposition 4.1 If L

0

is a representation of G on V and !

�

n

2 A

n

(U

��

�F; V )

equiv

,

T

?

��

!

�

n

= [(L

0

� g

��

� pr

U

��

) � !

�

n

]

�

�

L

(g

��

� pr

U

��

)

?

�

L

G

:

Corollary 4.2 If � 2 A

n

(F;Hom(T (g); V ))

equiv

then

T

?

��

(pr

?

F

�) = [(Ad �g

��

� pr

U

��

) � (pr

?

F

�)]

�

�

L

(g

��

� pr

U

��

)

?

�

L

G

:

If � 2 A

n

(F; V )

inv

then T

?

��

(pr

?

F

�) = (pr

?

F

�)

�

�

L

(g

��

� pr

U

��

)

?

�

L

G

.

For � 2 A(M;V ) we obviously have T

?

��

((pr

U

��

)

?

�) = (pr

U

��

)

?

�.

In order to treat local projections, recall that the gauge potentials A

�

and the

gauge �elds F

�

of a connection � are given by

A

�

:= �

?

�;e

(!

�

j

�

�1

(U

�

)

) 2 A

1

(U

�

; g); F

�

:= �

?

�;e

(


�

j

�

�1

(U

�

)

) 2 A

2

(U

�

; g); (5)

where �

�;e

:U

�

! �

�1

(U

�

) are the local sections of the principal bundle onto the

neutral element e 2 G, i. e., �

�;e

(x) =  

�

(x; e). The collection of A

�

and F

�

determines !

�

and 


�

completely (recall that � means the inversion on G):

!

�

j

�

�1

(U

�

)

= (Ad �� � �

�

) � (�

?

A

�

) + �

?

�

�

L

; (6)




�

j

�

�1

(U

�

)

= (Ad �� � �

�

) � (�

?

F

�

); (7)

and from � � �

�

� �

�;e

= g

��

one derives on U

��

6= ;:

A

�

j

U

��

= (Ad �g

��

) �A

�

j

U

��

+ g

?

��

�

L

= (Ad �g

��

) � (A

�

j

U

��

� g

?

��

�

L

); (8)

F

�

j

U

��

= (Ad �g

��

) � F

�

j

U

��

: (9)

In general, for a tensorial form ' 2 A

T

(P;L; V ) on a principal bundle P (M;G), we

de�ne analogously to (5) for every bundle chart

P

�

:= �

?

�;e

('j

�

�1

(U

�

)

) 2 A(U

�

; V ): (10)

Then again the collection of P

�

determines ' completely:

'j

�

�1

(U

�

)

= (L � � � �

�

) � (�

?

P

�

); (11)

and on U

��

6= ; the P

�

transform according to

P

�

j

U

��

= (L � g

��

) � P

�

j

U

��

: (12)

11



According to (6), !

�

is locally given by !

�

(x;g)

(X;Y ) = Ad(g

�1

)A

�

x

(X)+d�

g

�1
(Y )

for all x 2 U

�

, g 2 G and (X;Y ) 2 T

x

(U

�

) � T

g

(G). From v = R

0

� !

�

we thus

conclude that the induced local projections of vector �elds on U

�

�G are:

v

�

(x;g)

(X;Y ) = (0; (d�

g

)

e

A

�

x

(X) + Y ); h

�

(x;g)

(X;Y ) = (X;�(d�

g

)

e

A

�

x

(X)):

Finally the horizontal lifts L

�

:D

1

(U

�

)! D

1

(U

�

�G) are given by

L

�

(x;g)

(X) = (X;�(d�

g

)

e

A

�

x

(X)): (13)

In order to compute v

�

for associated bundles, we �rst need the connection on

P � F for our construction in Section 2. By de�nition,

(d

e

R

(p;f)

)

e

(Y ) = ((dR

p

)

e

(Y );�(dL

f

)

e

(Y )) for all p 2 P; f 2 F and Y 2 g;

thus (d

e

R

(x;g;f)

)

�

e

(Y ) = (0; (d�

g

)

e

(Y );�(dL

f

)

e

(Y )) 2 T

x

(U

�

)� T

g

(G)� T

f

(F ):

With !

�

(x;g)

from above,

e

v

�

(x;g;f)

(X;Y;Z) = (d

e

R

(x;g;f)

)

�

e

!

�

(x;g)

(X;Y ) yields

e

v

�

(x;g;f)

(X;Y;Z) = (0; (d�

g

)

e

A

�

x

(X) + Y;�(dL

f

)

e

[Ad(g

�1

)A

�

x

(X) + d�

g

�1
(Y )]);

e

h

�

(x;g;f)

(X;Y;Z) = (X;�(d�

g

)

e

A

�

x

(X);+(dL

f

)

e

[Ad(g

�1

)A

�

x

(X) + d�

g

�1
(Y )] + Z):

A little computation then shows using d

b

�(X;Y;Z) = (X; (dL

f

)

g

Y + (dL

g

)

f

Z)

e

L

�

(x;g;L(g

�1

;f))

(X;Z) = (X;�(d�

g

)

e

A

�

x

(X);+(dL

g

�1
)

f

[(dL

f

)

e

A

�

x

(X) + Z]): (14)

Thus we obtain from

b

v =

e

�v

nat
e

L the following lemma (now omitting \b"):

Lemma 4.3 Every connection � on an associated bundle B = P (M;G)�

G

F , that

is de�ned by a collection of gauge potentials A

�

2 A

1

(U

�

; g), induces the following

projections for all x 2 U

�

, f 2 F and (X;Z) 2 T

x

(U

�

)� T

f

(F ):

v

�

(x;f)

(X;Z) = (0; (dL

f

)

e

A

�

x

(X) + Z); h

�

(x;f)

(X;Z) = (X;�(dL

f

)

e

A

�

x

(X)): (15)

The horizontal lifts L

�

:D

1

(U

�

)! D

1

(U

�

� F ) are thus given by

L

�

(x;f)

(X) = (X;�(dL

f

)

e

A

�

x

(X)):

Observe that for B = P , we indeed recover the original connection. Our result

is no less than surprising since replacing d�

g

by dL

f

is the only canonical way to

generalize a connection on U

�

�G to associated connections on U

�

� F .

Finally we compute the local projections of forms. Lemma 4.3 yields

(!

�

v

�

)

(x;f)

(: : : ; (X

i

; Z

i

); : : :) = !

�

(x;f)

(: : : ; (0; (dL

f

)

e

A

�

x

(X

i

) + Z

i

); : : :)

for all !

�

2 A(U

�

� F; V ) and (X

i

; Z

i

) 2 T

x

(U

�

)� T

f

(F ) and we obtain from (4):

Lemma 4.4 If � 2 A

n

(F; V ) then on every local trivialization U

�

� F :

(pr

?

F

�)v

�

= (pr

?

F

�)

�

�

L

(pr

?

U

�

A

�

):

Thus for all x 2 U

�

, i

?

�;x

[(pr

?

F

�)v

�

] = �: restriction to the �bers reproduces �.
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Now we can evaluate Propositions 3.2, 3.3 and Theorems 3.4 and 3.5 on the

bundle charts. For � 2 A

P

(U

�

�G;L

0

;W ) one derives using (13) and (14) that

((pr

U

�

�G

)

?

�)(: : : ;

e

L

�

(x;g;L(g

�1

;f))

(X

i

; F

i

); : : :) = �

(x;g)

(: : : ;L

�

(x;g)

(X

i

); : : :)

= (�h)

(x;g)

(: : : ;L

�

(x;g)

(X

i

); : : :):

Since we already proved invariance under

e

R

?

g

, we may restrict ourselves to g = e. If

we de�ne P

�

= �

?

�;e

�h 2 A(U

�

;W ) as in (10), then (11) yields

(�h)

(x;g)

(: : : ;L

�

(x;g)

(X

i

); : : :) = P

�

(: : : ;X

i

; : : :):

So the horizontal part (pr

?

P

�) of the form in Theorem 3.5 is locally just (

c

pr

?

U

�

P

�

),

resp., (

b

�

?

P

�

).

Analogously for the vertical part (pr

?

F

�), again (14) and (15) yield that it is

locally given by (

c

pr

?

F

�)v

�

, resp., (

b

�

�

�)v

�

. So our results take the following form

(again omitting \b" for convenience):

Theorem 4.5 Let � be a connection on a principal �ber bundle P (M;G) with asso-

ciated bundle B(M;F;G), V;W any vector spaces and L

0

:G�W ! W a left repre-

sentation. Let v

�

denote the local vertical projections of V -valued forms induced by �

on U

�

�F , resp., �

�1

(U

�

) for all � 2 A. Then for any � 2 A(F;Hom(T (W ); V ))

equiv

and any family fP

�

2 A(U

�

;W )g

�2A

with P

�

j

U

��

= (L

0

�g

��

)�P

�

j

U

��

for all U

��

6= ;,

T

?

��

f[(pr

?

F

�)v

�

] � [(pr

U

�

)

?

P

�

]gj

U

��

�F

= f[(pr

?

F

�)v

�

] � [(pr

U

�

)

?

P

�

]gj

U

��

�F

; resp.,

f[(�

?

�

�)v

�

] � (�

?

P

�

)gj

�

�1

(U

��

)

= f[(�

?

�

�)v

�

] � (�

?

P

�

)gj

�

�1

(U

��

)

:

Thus f[(�

?

�

�)v

�

]� (�

?

P

�

) 2 A(�

�1

(U

�

); V )g

�2A

de�nes a global form \�v �P" on B.

Corollary 4.6 For any G-equivariant � 2 A(F;Hom(T (g); V )) and �; � 2 A

f[(�

?

�

�)v

�

] � (�

?

F

�

)gj

�

�1

(U

��

)

= f[(�

?

�

�)v

�

] � (�

?

F

�

)gj

�

�1

(U

��

)

:

Thus f[(�

?

�

�)v

�

] � (�

?

F

�

)g

�2A

de�nes a global form \�v � F" on B.

Corollary 4.7 If � 2 A(F; V ) is invariant then f(pr

?

F

�)v

�

2 A(U

�

� F; V )g

�2A

,

resp., f(�

?

�

�)v

�

2 A(�

�1

(U

�

); V )g

�2A

de�nes a global form �v 2 A(B;V ). If � is

invariant and locally vertical, then f�

?

�

�g

�2A

is global.

The opposite is not true in general, as the case of a trivial bundle with Lie group

G 6= feg shows, where every invariant � 2 A(F; V ) de�nes a global but not necessar-

ily vertical form �

?

�

� on the bundle (all g

?

��

�

L

G

in Corollary 4.2 vanish). Nevertheless,

the canonically generated form due to Proposition 3.2 is always vertical.

These local representations for the generated forms on B can be used to deter-

mine the exterior derivative d of the forms. Yet the evaluation of d(�v) by Lemma 4.4

is quite annoying. Since this has already been worked out in detail for the general

case d[(�

�

L

�) � �] in [2], we simply quote the result:

Theorem 4.8 Let � be a connection on a principal �ber bundle P (M;G) and let

B(M;F;G) be an associated bundle, V any vector space, �

s

n

2 A

n

(F )
Hom(

N

s

g; V )

be G-equivariant and �

n

2 A

n

(F )
 V be invariant under G. Then

d(�

s

n

v � F) = [(d�

s

n

)v]

s

n+1

� F + [(L

�

�

s

n

)v]

s+1

n�1

� F;

= [(d�

s

n

)v]

s

n+1

� F + [(L

_

�

�

s

n

)v]

s+1

n�1

� F;

d(�

n

v) = (d�

n

)v + [(L

�

�

n

)v]

1

n�1

� F:
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5 Bundles with Abelian Structure Group

As already stated in Lemma 2.1, the left action on the �ber L:G�F ! F naturally

induces a left action on the product manifold

�

L:G�P �F ! P �F , that is trivial

in the factor P . Thus, besides

f

R

0

, we also have a G-equivariant (with respect to

�

L

00

and

�

L

?

) C

1

(P � F )-module homomorphism

e

L

0

:C

1

(P � F; g) ! D

1

(P � F ) with

(

�

L

g

)

?

f

R

0

=

f

R

0

�

L

?

g

�1

and (

e

R

g

)

?

e

L

0

=

e

L

0
e

R

?

g

�1

. In addition, pr

P

�

�

L

g

= pr

P

yields

(

�

L

g

)

?

�

e

v =

e

v � (

�

L

g

)

?

=

e

v (

�

L

g

)

?

�

e

h =

e

h � (

�

L

g

)

?

= (

�

L

g

)

?

�

e

v;

(

�

L

g

)

?

� v

nat

= v

nat

� (

�

L

g

)

?

; (

�

L

g

)

?

� h

nat

= h

nat

� (

�

L

g

)

?

:

pr

P

�

�

L

(p;f)

= p yields h

nat

�

L

0

= 0, thus

�

L

0

:C

1

(P � F; g)! v

nat

D

1

(P � F ).

Now

�

L de�nes an action on the quotient manifold P �

G

F i�

�

L

h

�1
�

e

R

g

�

�

L

h

2

e

R

G

for all g; h 2 G, where

e

R

G

:= f

e

R

g

2 Di�(P � F )g

g2G

. Thus

�

L

G

< N

Di�(P�F )

(

e

R

G

):

�

L

G

needs to be a subgroup of the normalizer of

e

R

G

in Di�(P � F ). Even if G is

abelian and

e

R acts freely, this does not hold automatically, as the example of the

action of Z

4

on R

3

nf\axes"g by

�

2

-rotations around di�erent axes shows.

In our case (

�

L

h

�1
�

e

R

g

�

�

L

h

)(p; f) =

e

R

g

(p; L

gh

�1

g

�1

h

(f)), thus

�

L de�nes an action

b

L:G�B ! B () L

G

0

= fid

F

g;

where G

0

means the commutator subgroup in G. This is equivalent to the require-

ment that G acts e�ectively only through its largest abelian factor group G=G

0

.

Since we require G to act e�ectively itself, this means G is abelian.

According to the structure theorem for abelian Lie groups [3, p. 228], a connected

Lie group G is abelian i� it is isomorphic to g= ker exp, thus i� G is isomorphic to

R

m

� (S

1

)

n

= R

m

� (R

n

=N

n

) where m;n 2 N

0

. Thus for any abelian Lie group

we will write the group operation additively, with neutral element 0, and we will

identify all tangent spaces T

g

(G) with T

0

(G) in a natural way, such that d�

g

=

d�

g

:T

h

(G)! T

h+g

(G) becomes the identity morphism for all g; h 2 G.

In that case,

b

L

g

�

e

� =

e

� �

�

L

g

and

b

� �

b

L

g

=

b

� (and thus

b

� �

b

L

b

=

b

�(b)), because

b

� �

b

L

g

�

e

� =

b

� �

e

� �

�

L

g

= � � pr

P

�

�

L

g

= � � pr

P

=

b

� �

e

�

and

e

� is surjective. Since (

�

L

g

)

?

commutes with

e

h and (for abelian G) commutes

with (

e

R

g

)

?

, it de�nes an action on D

e

�

(P � F ), i. e., (

�

L

g

)

?

e

L =

e

L(

b

L

g

)

?

. This proves

(

b

L

g

)

?

�

b

v =

b

v � (

b

L

g

)

?

; (

b

L

g

)

?

�

b

h =

b

h � (

b

L

g

)

?

;

because (

b

L

g

)

?

b

h = (

b

L

g

)

?

e

�

?

h

nat

e

L =

e

�

?

(

�

L

g

)

?

h

nat

e

L =

e

�

?

h

nat

(

�

L

g

)

?

e

L =

b

h(

b

L

g

)

?

. Finally

(

b

L

g

)

?

b

L =

e

�

?

(

�

L

g

)

?

L

nat

h

L =

b

L and the horizontal lifts

b

L are

b

L-invariant.

b

h

b

L

0

= 0,

because

b

L

0

:C

1

(B; g)!

b

vD

1

(B), since

b

�

?

� d

b

L

b

= 0 and V

b

(B) is the kernel of d

b

�

b

.

It is quite obvious that

b

L coincides with the following locally de�ned action:

Lemma 5.1 For abelian G, we have a left action

b

L of G on the whole bundle:

b

L(g; b) :=  

�1

�

(

b

�(b); L(g;

b

�

�

(b))) for all b 2 B; g 2 G; where

b

�(b) 2 U

�

;

is then well-de�ned and �ber preserving:

b

�(

b

L(g; b)) =

b

�(b).

14



We thus get another diagram that commutes for every g 2 G:

P � F

B

P � F

B

P

M

-

-

? ?�

�

�

��

�

�

�

��

H

H

H

H

H

H

H

Hj

H

H

H

H

H

H

H

Hj

?

b

�

pr

P

b

�

pr

P

b

L

g

�

L

g

e

�

e

�

e

�

Suppose f :B(M;F;G) ! B

0

(M

0

; F

0

; G) is a �ber preserving bundle di�eomor-

phism between two bundles with left actions L, resp., L

0

of the abelian Lie group G

and

b

� is a connection on B induced by � on P (M;G), such that (

b

L

g

)

?

�

b

h =

b

h�(

b

L

g

)

?

for all g 2 G. By Lemma 1.3,

b

� induces a connection �

0

=

b

�

f

on B

0

. For this

new connection, h

0

, v

0

and (

b

L

0

g

)

?

need not commute on D

1

(B

0

). As an example,

take f = id:M � R ! M � R and actions L;L

0

:R� R ! R with L(r; s) = e

r

s

and L

0

(r; s) = r + s. Then h

0

(X

x

;Y

s

) = (X

x

;�sA

x

X

x

) with A 2 A

1

(M) and

(

b

L

0

r

)

?

h

0

(X

x

;Y

s

) = (X

x

;�sA

x

X

x

), while h

0

(

b

L

0

r

)

?

(X

x

;Y

s

) = (X

x

;�rsA

x

X

x

).

Analogously to Lemma 1.1, it is su�cient for commutativity of h

0

, v

0

and

b

L

0

g

that f is G-equivariant. In fact, if B and B

0

are associated bundles over M and

f is G-equivariant and induces the identity on M , then

b

� and � induce the same

connection

b

�

0

on B

0

(M;F

0

; G).

For abelian G, the adjoint action on g is trivial, which makes life easier in most

cases. E. g., (8) and (9) read (we have g

?

��

�

L

= dg

��

):

A

�

j

U

��

= A

�

j

U

��

+ dg

��

= A

�

j

U

��

� dg

��

; F

�

j

U

��

= F

�

j

U

��

; (16)

and then !

�

and 


�

are locally given by | cf. (6) and (7) |

!

�

j

�

�1

(U

�

)

= �

?

A

�

+ d�

�

; 


�

j

�

�1

(U

�

)

= �

?

F

�

: (17)

Thus for abelian G, the collection of F

�

de�nes a global 2-form F 2 A

2

(M; g),

whose pullback is the curvature 2-form 


�

= �

?

F.

Finally let us treat the one-dimensional case, g

�

=

R. So G = D � G

1

with

a discrete abelian subgroup D and G

1

�

=

S

1

or G

1

�

=

R. Recall that if G is con-

nected, nontrivial bundles only exist for G

�

=

S

1

, e. g. for the electromagnetic gauge

group G

em

�

=

U

1

�

=

S

1

.

So suppose g = ER with a basis vector E 2 g, then the antisymmetry of

di�erential forms yields that L

2

�

� = 0 for all � 2 A

n

(F; V ). Thus Lemma 4.4

reads (pr

?

F

�)v

�

= (pr

?

F

�)� (�1)

n

[pr

?

F

(L

�

�)] � (pr

?

U

��

A

�

) = (pr

?

F

�)+

1

E

(pr

?

U

��

A

�

)^

(pr

?

F

{

L

E

�), where {

L

E

is the inner product with L

E

2 D

1

(F ). Analogously, Corol-

lary 4.2 takes the form T

?

��

(pr

?

F

�) = (pr

?

F

�) +

1

E

(pr

?

U

��

dg

��

) ^ (pr

?

F

{

L

E

�) if � 2

A(F; V )

inv

. In that case, since L

�

(L

�

�) = 0, {

L

E

� is vertical and global (it is

invariant because Ad is trivial). Also recall from the homotopy identity for the

Lie derivative, L

X

= d {

X

+ {

X

d, that d{

L

E

�+ {

L

E

d� = L

L

E

� = 0 if � is invariant.

Thus Corollary 4.7 and Theorem 4.8 prove:
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Theorem 5.2 Let � be a connection on P (M;G) with abelian G, g = ER

�

=

R,

B(M;F;G) an associated bundle and V any vector space. For any � 2 A

n

(F; V )

with L

?

g

� = � for all g 2 G de�ne � 2 A

n�1

(F; V ) by � = {

L

E

�, i. e.

�

f

(Y

1

f

; : : : ;Y

n�1

f

) := n � �

f

(dL

f

(E);Y

1

f

; : : : ;Y

n�1

f

) for all f 2 F; Y

i

2 D

1

(F ):

For any U

�

2 U denote �

�

:= �

?

�

�, �

�

:= �

?

�

�. Then on all U

��

6= ;

�

�

= �

�

+

1

E

�

?

dg

��

^ �

�

; �

�

v = �

�

+

1

E

�

?

A

�

^ �

�

= �

�

+

1

E

�

?

A

�

^ �

�

= �

�

v;

�

�

= �

�

v = �

�

= �

�

v:

Thus �v and � de�ne global vertical invariant V -valued forms on B. The same holds

for (d�)v since d� is also invariant, and we have

d(�v) = (d�)v +

1

E

�

?

F ^ �; where (d�

�

)v = d�

�

�

1

E

�

?

A

�

^ d�

�

:

Note that g

�

=

R alone does not imply that G is abelian. G = S

1

o Z

2

with

(r; g) � (r

0

; e) = (r � r

0

; g) for r; r

0

2 S

1

and g 6= e 2 Z

2

, is a simple counterexample,

where Ad((0; g)) = � id

g

, and thus � in Theorem 5.2 would not be invariant and

global for this Lie group G.
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