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Abstract

This article treats connections on fiber bundles B = P x4 F that are induced
by a connection 1-form on the associated principal bundle P. Using horizontal
lifts of vector fields it is shown which combinations of differential forms on
the fiber F' and on P canonically define differential forms on B. Local rep-
resentations for these forms involving the gauge potentials and fields of the
connection are given and lead to formulas for the exterior derivative. Finally
the case of an abelian structure group, especially G = §', is examined.

Math. Subj. Class. 1991: Primary: 53C05, Secondary: 55R10, 58A10

1 Introduction

Let us start with principal bundles first. A connection I' on a principal bun-
dle P(M, ') is a homogeneous vector subbundle H(P) of the tangent bundle T'(P)
that is complementary to the naturally given vertical bundle V(P), i. e., T(P) =
H(P)®V(P)and (R,).H,(P) = HR(%g)(P) with the free right action R: PxG — P
of the finite dimensional structure group GG on P and the induced maps R,: P — P
and R?:G — P given by R,(p) = R’(g) := R(p,g), cf. [5, p. 276], [4, p. 63].
The connection is uniquely defined by its connection 1-form w' € A;(P, g), where
g = T.(G) denotes the LIE algebra of . Connection 1-forms are pseudotensorial,
resp., equivariant, i. e., R;wF = Ad(g71),wt for all ¢ € G, and obey w!'(Ry) = X
for all fundamental vector fields Ry with X € g and (Rx), := (dR?)(X). Thus if
OF means the left canonical 1-form on G then (RF)*w! = O for all p € P.

Let h,v: D'(P) — D*'(P) denote the induced projections of vector fields onto the
C°°(P)-modules hD'(P), resp., vD*'(P) of sections of the bundles H(P), resp., V(P).
Then W' is given by w!'(X)(p) = W' (vX)(p) := (dR?)~(v,X,). Reversely, given wh
one recovers ' by v, = dRP o wg: T,(P) — V,(P) and h, = id —v,. The projections
of vector fields canonically define projections of forms h,v: A(P,V) — A(P, V) for
every vector space V. Then the exterior covariant differentiation on A(P) @ V is
given by d'¢ = (d¢)h and QF := d'w' is the curvature 2-form for T'.
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Let m: P — M denote the global projection onto the base manifold and let
DY(P) := hDY(P)iny denote the C°°( M )-module of horizontal invariant vector fields,
i. e, those vector fields } with Y = hY and (R,),Y = Y for all ¢ € G. The
horizontal lift L: D' (M) — AD'(P)iny, which is uniquely defined by dm, (LX), = X,,,
is an isomorphism of C°°(M)-modules with inverse morphism m,. Just as every
connection defines canonical lifts of vector fields on M, the reverse statement is
also true. Every L € Homges(zy(D' (M), D*(P)iny) with 7, o L = idp1(ps) uniquely
defines a connection: if L, denotes the local inverse of the differential dm,,, then the
horizontal projection is given by h, := L, o dm,.

The following lemma on induced connections on principal bundles is well known:

Lemma 1.1 Let f: P'(M',G) — P(M,G) be a G-equivariant mapping of principal
bundles, i. e., fo R, = Ryo f forall g € G , then every connection I' on P induces
a unique connection I on P’', such that f, maps horizontal subspaces of 1" into
horizontal subspaces of I,

Instead of connections on principal bundles where we have the connection 1-
form at hand, we are interested in connections on fiber bundles in general. So let
B(M,F,¢) = P x¢ F denote any fiber bundle with fiber F' associated with the
principal bundle P. Recall its definition: if L: G x F' — F is a left effective LIE
group action of the structure group on a manifold ' we define a free right LIE group
action R of G on the product manifold P x I as follows:

Ry(p, f) == (Ry(p), L,~1(f)) forall pe P, feF,gecd.

Now B = P x¢ I' denotes the quotient manifold by this action R. Recall that
for every fiber bundle B(M, F,(7), one can construct an associated principal bun-
dle P(M, ) by taking i as fiber, and then B can be obtained from P in the above
way (up to equivalences). In the sequel, 7: P x F' — B will denote the canonical
projection and 7: B — M will denote the projection of the bundle B such that the
following diagram commutes for every ¢ € G-

P xF

P xF i B
P
prp s T
i,
s

P M.
Suppose U = {U, },ea is an open cover of M for which a bundle atlas for P exists.
The bundle atlas consists of bundle charts (U,,,) with local trivializations ¢, =
(7, 74): 7 Y (Us) = U, x G and local projections 7m,: 7 (U,) — G. Then we also

have local projections 7,: 7~ 4(U,) — F and

OF = 7O prp, Toom = Lo(m,oprp, pry). (1)

=)
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In addition, (P x I")(B, ) is a principal bundle over B equivalent to the pullback
bundle 7% P with right action R and cover 7#'4 of B.

Every connection on a principal bundle induces connections on all associated
bundles. In the literature ([4, pp. 87 — 88], [5, p. 290]) we find the following definition:

Definition 1.2 Fuvery connection I' on a principal bundle P(M,G) induces split-
tings T(B) = H(B) & V(B) on any associated bundle B(M, F,G) = P x¢q F with
H(B) :=7m.(H(P) x{0}).

The following lemma is also standard:

Lemma 1.3 Let [ be a connection on B(M, F,() induced by I on the associated
principal bundle P(M,G). Fvery embedding i:U — M and every fiber preserving
diffeomorphism of bundles f: B(M, F,G) — B'(M', F', ) induce connections f|U
on 7 HU), resp., [/ on B'. For every bundle chart (Ua,;za) the induced connec-

~

tion (f|Ua)¢“ on U, x F' coincides with the connection induced by (U], )Y on U, x G.

Yet from this approach the projections of the vector fields and of the forms cannot
easily be read off. Thus the first task of this article is a slightly different approach
to these induced connections in order to get formulas for the projections h and % on
the bundle B. Using these formulas we will then be able to prove certain globality
theorems for differential forms: Every form on P or F' defines a form on P x F' by
use of the pullbacks prp, resp., pri. In which cases do these forms induce forms
on B? For example, in this way every invariant form ¢ on [ canonically defines a
global vertical form “¢v” on B. Locally this form is given by vertical projections of
the pullbacks 7% ¢.

Of course every form on M defines a horizontal form on B via the pullback 7.
We shall prove that these forms are the only horizontal forms one can obtain from
forms on P. Also we will prove theorems for combinations of forms on P and on F'.

In presenting local representatives for these differential forms (Section 4), we will
then be able to give formulas for their exterior derivative. This is quite important
since, e. g., the following diagram for an invariant form ¢ € A(F) @ V does not
commute in general:

.

| (do)o # d(dv).

Finally we will apply our results to bundles with abelian (G, especially if g = R.

2 Projections on P x ' and on P x F

For any left or right action S = L, R of a LIE group G on a manifold P, let S:g —
D'(P) denote the LIE algebra (anti) homomorphism defined by (Sx), := dS?(X)
(cf. the notation in the previous section), and let S": C>(P,g) — C*(P)S(g) C
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D'(P) denote the induced C'>( P)-module homomorphism. (If G acts effectively on
P, then S is injective and if G acts freely on P, then &’ is an isomorphism of free
C*°(P)-modules, cf. [2, Lemma 2.3].)

The following observation on the natural connection I on trivial bundles is
quite trivial:

Lemma 2.1 We have natural lifts Li* L2 DY (P) — DY (P x F) on the product
manifold P x I with (prp). o L}* = idpi(py and (prg). o L5 = idpi(x), which are
injective homomorphisms of C*(P)-modules, resp., C*(F)-modules and LIE alge-
bras and obey (R,), o Li* = L o (R,), and (R,), o L' = L™ o (L,~1),. If
ipP— P xF and i, F' — P x F defined by i¢(p) = 1,(f) = (p, f), denote the
natural injections then (LY*X), 5y = (dig), Xy, and (LI Y) 5y = (dip) Yy for all
peP, feF, X €D P) and D'(F).

We also have natural projections of vector fields h**, v D' (PxF') — D'(PxF)
with DY(P x F') = k" DYP x F) & v"™DY (P x F) as a C*(P x F)-module and
hrat o Lpat — [pat ynat o [Bat — () pegp., fat o Lpat = (), pnab o LAt — [pat,

Since prp o];’g = R, oprp and pry o];’g = L, oprp for all g € G, we have

pnat o (ég)* _ (Rg)* o prat (ég)* o hnat7 Lnat o ﬁ/ o (prp)* _ Lzat o R/,

Unat o (Rg)* — (I/g—l)* o Unat — (Rg)* o Unat7 Unat o /7?:7 o (er)* — _]Lgat o El7
where R and L denote the actions on P x F naturally induced by R and L:

R:GXPXF%GXFa R(gvpvf):(R(gvp)vf)v
L:GxPxF—=GxF,  Ligp,f)=(p,Llg, [)).

h and v induce projections &’ and v’ on A"*D' (P x F') such that h/oL}** = L2 oh,
v olLiat = Lhatoy, Also a C°°(P x F)-linear extension of w' on A"'DY( P x F) exists,
which we denote by @'. Then v’ = R’ o@" and R’ = h**R’. Note that the splitting
of T(Px F)into HPx F)=H(P)x{0}and V(P x F') = V(p)x {0} &{0} x T'(F)
corresponds to projections hpyp := h' o A" and vpyp = idpi(pxry —h' o hrat with

hpxr o (Ry)s = (Ry)s 0 hpyr, vpyr 0 (Ry). = (Ry). 0 vpxp.

Yet these are not the only projections given on P x F'. Recall that P x F'is a
principal bundle over B equivalent to 7*P. Now every connection I' on P induces
a connection I' = prp ' on P x F' since prp is a G-equivariant mapping of principal
r

bundles according to Lemma 2.1. We have &' = pripw! = @ o A" with

Rt =Ad(g).5, T oR = idon(parg -

I defines projections and lifts on (P x F)(B, ), let us denote them by I, s, L. Then
7= R oGk = Rlool oh™ = R'R''ov' o h™ and h = idpi(pxr) _R'R'"Lov' o hnat,
Thus h o L2 = L' and v o L"* = (. As for any connection on a principal bundle,
we have

ho(Ry)=(Ry).0h, Do (Ry). = (Ry)s00.



Lemma 2.2 Let I' € v(P(M,)), then the various projections on D' (P x F) obey

hpxpov = vohpyr = 0, hpxpoh = hohpyr = hpxr,

Vpxp OU = VOUpyp = U, vpxpoh = hovpyp = h—hpyp = vnato%,
"™ o = v oh"™, Do h"™ = 7, voh'oh™ =0,

pnat o 7L - Ko hnat7 7L o phat _ pnat 3, 7L o Bt o 7L — prat o %7
N S U/Ohnat7 %Ovnat _ Unat7 Toopat — 0

By Lemma 2.2, A", hpyr and vpygr also act on DF(P x [) and

nat _ - - ~ _ ~
h |Df1:(P><F) - hPXF|DF(P><F) - ldDF(PxF) UPXF|DF(P><F)'
But E:DI(B) — DF(P x I") is a C'*°(B)-module isomorphism with inverse mor-

phism 7,. This defines the desired projections h, v on D'(B)
h = 7hpypL = 7,h" L, © = Fopypl = 70" L,  so DY(B) = hD'(B)&uD'(B).

Finally note that 2LIL = ALFAL = AR R™LIL = AR LAL = LE*L by

Lemma 2.2 and (R, ) LP*L = L¥*(R,),L = L}*L, so Ly*L: D" (M) — DF(P x )
and the horizontal lift L: D'(M) — D*(B) is well-defined by

[E:Z%*OLI;LMOL, 1. e. ]io]i:]]_dzatoﬂ_d.

This is illustrated by the following commutative diagram:

DI(P x F) L DY(B)
Ly L

L
Dr(P) DY(M).

hL = T R = L proves that L maps into ?LDl(B), so hy = Ly 0 d7y. Also

~

RILXY,LY] = #h"A[LLY,LLY] = 7, A/A" [LI*LY, LI*LY] = 7, AL [LY, LY
= 7 LIh[LY, LY = 7, LI*LIX, Y] = L, ).

We have thus proved the following proposition:

Proposition 2.3 The horizontal lift H:pl(M) — ?LDI(Q)AZ'S an injective homo-
morphism of C*(M)-modules with 7, o L = idpi(as) and h[LX,LY] = ]LLX,)/] for
all X, Y € DY(M). L is uniquely defined by LL = L}**L: D' (M) — h™DY (P x F).

Now what happens if B = P? One would expect that h=handL = L, and
this is indeed true. We have the following commutative diagram:
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On the left, (P x G)(P,G) is a trivial principal bundle with projection prp and
right action p = id xp. (Here and in the sequel, p, and A, denote right and left
multiplication with ¢ € G.) This bundle is the trivialization of the square of P,
which is the bundle on the top of the diagram. We can identify 7 and R o 7pg,
where 7pg: P X G — (G x P is the natural morphism exchanging P and . Thus
A7y (Py, Xy) = dR,P, + dRPX,. We will prove L = L, then both connections
[ and T on P must coincide according to our statements in Section 1. For every

X € DY(M) and all p € P we have
(FLEM LX)y = d7 ((g,0).5-H) (LX) R(g.), 01 ) = d Ry (LX) (g ) = (LX),

since (R,~1)LX = LX for all ¢ € G. Thus L=L.

Projections of forms are defined as in the case of principal bundles:

Definition 2.4 For any connection I' € v(P(M, &) and anyw, € A;(B,V), s > 0,
where B is an associated bundle B(M, F, G)A: P xg F and V s a vector space, we
define horizontal and vertical projections wsh, resp., wsv € As(B, V) by

DX X)) = w,(hXY, L RX?),  forall X' e DY(B),

wo(X! X)) = w (DXL 0, forall X' € D'(B).

@> D‘>

~

A(B,V)h € A(B,V) and A(B,V)o C A(B,V) (with Ay(B,V)h := Ao(B, V) :=
Ao(B, V) = C>(B,V)) denote the C*°(B)-submodules of A(B, V)

horizontal, resp., vertical V -valued forms.

that contain these

Obviously A,(B,V) = A(B, V)?L & Ai(B,V)o and h and © commute with ex-
terior products: if ¢:Z x W — V is a bilinear mapping and A, denotes the in-
duced exterior product of Z- and W-valued forms, then with o € A(B) ® Z and

BeAB) oW
(a Ay, BV =ah A, Bh, (oA, B)0 = ad A, 30,

In the sequel we will write Ay for the exterior product induced by [,]:g x g — g.
In the next section we will need a generalization of the exterior product of two
differential forms: the operator e which is linear in its first argument and multilinear
in its second argument and produces V-valued forms from Hom(7T (W), V)-valued
and W-valued forms (7 (W) means the tensor algebra of W), cf. [1]. For s > 0 let
E,eW,7=1,...,sand let £1®---® Fs: Hom(®* W, V) — V denote the canonical
evaluation morphism. For any differential form y: € A.(M,Hom(®°*W,V)) on
a manifold M define yFr-F« € A.(M,V) to be the push-out of x* under this
morphism: yEvPs = (B}, @ -+ @ B,),x%, i. e, for all z € M and X' € DY(M),
1=1,...,7,

(B (XL A = (B @ @ Fy) o ()e(XL, ... A7),
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Now let ¢, = 37, &' @ E; € A, (M) @ W be a W-valued form, then we define a

V-valued form x; e ¢, in the following way:

s = BB i is
oed,= > X NG A- Ao € AM, V).

11 yeenyis=1

Thus if x2 € A.(M) @ Hom(®Q’ W, V) then also x* e ¢, € A, 4,,(M) @ V. Linear
extension defines the operator e for y € A(M,Hom(T (W), V)).

Note that e is a generalization of A, for bilinear ¢: Z x W — V in the following
sense: ¢ canonically defines ¢": 7 — Hom(W,V). For any o, € A.(M) ® Z we
thus have a push-out ¢’ o, € A, (M) @ Hom(W, V). Now if 8, € A,(M) @ W then
ar Ny Bp = (plar) e By, .

For a bundle B, one easily checks that the projections h and v commute with e:

for x € A(B,Hom(T(W),V)) and ¢, € A,(B) @ W,

(X i pr)ﬁ = X?L i pr?% (X i pr)ﬁ = XV @ ¢,.

Also since e behaves well under pullbacks and push-outs, one easily proves that
e maps equivariant forms onto invariant forms (cf. [1, Lemma 7.1]):

Lemma 2.5 Let S:G x P — P be a LIE group action and L:G — GI(W) be a
left representation. If ¢, € A,(P) @ W and y € A(P,Hom(7T (W),V)) are equiv-
ariant (i. e., Sy¢, = L(g~ (%)) b, and Six = (L(g°8" ), x for all g € G, where
sgn(S) := 41 for a right action and sgn(S) := —1 for a left action), then x ® ¢, is
tnvariant.

E. g, if x € A(P,Hom(T(g),V))equiv and ¢, € A (P, d)equiv, Where equivari-
ance is meant with respect to the adjoint action Ad on g, then y e ¢, is invariant.
(We only consider finite dimensional LIE groups, so A(P,g) = A(P) @ g.) Re-
call that the equivariant forms ¢ € A(P) @ W on a principal bundle P are also
called pseudotensorial forms of type (L, W), while horizontal equivariant forms (like
the curvature 2-form) are called tensorial forms of type (L, W). We will denote
their modules by A" (P, L, V) and AT(P, L,V), resp., A"(P,g) := A" (P, Ad, g) and
AL(P,g) .= AT(P,Ad, g).

3 Generating forms on B from forms on /' and P

For the trivial bundle M x F' with (¢ = {e} we can extend vector fields and forms on
M and F' to the bundle using the natural projections pr,,; and prp, resp., the natural
injections ¢y and i, for f € F' and v € M. For arbitrary bundles only one global
projection 7 is given naturally and we only have “global” (with regard to F') injec-
tions ¢, on every bundle chart. These enable us to define a vertical bundle V(B)
and a global horizontal lift of differential forms 7*: A(M, V) — A(B,V). We have
seen that it requires a connection as an additional structure to define H(B) and
horizontal lifts of vector fields on M onto the bundle.

Now we will be concerned with the “dual problem” to extend forms on the
fiber to the bundle. Locally we can achieve this using the pullbacks 7% of the local
projections onto the fiber, but normally for ¢ € A(F, V), {7%¢ € A7 (U,), V) }aea
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will not define a global form since in general on the overlaps U, := U, N Usz we will
find (750l-1(v,,) 7# (T5¢l-1 1, ). In order to investigate how a given connection
will define global forms, we can compute the transition functions and evaluate the
projections of fields and forms locally. Let us postpone this access to the problem
to Section 4. For now, we will again take the detour over P x F'in order to derive
global expressions for the extended forms.

Lemma 3.1 YV € D'Y(F) defines a vertical vector field i,y = 7, LY € DY(B),
such that locally (i*y)¢;1($7f) = (d¢;1)($7f)(0x,yf) on 7Y (U,), iff Y is invariant.

Proof. We already saw that 7,I."*") defines a section 0~f 7T (B). A section of
7T (B) is a section of T(B) iff it is invariant under all R;. But this is the case

iff LY = (R,-1), LY = L*(L,),Y for all ¢ € G. Since LI is injective
and E%*Lgaty = T ALY = 0, this yields our assertion. That (i*y)wgl(xj) =
(d ") (@) (02, V) holds for all # € U, and f € F, now follows from verticality and
(1): dit dR (L)1) Yr = dL? dmo dprp(Ly*) Vs + dLry) Vs = Vitrat.r)- O

So the situation for M and F' is not totally dual but involves L. and it is no
surprise that, given a connection, we can only extend invariant forms ¢ € A(F,V)
naturally onto the bundle. To see this, we observe that the only canonical way, how

a differential form ¢ € A(F, V) acts on vector fields V' € DY(B) is via
(prp o)., LY'...)=Fec=(P xFV).

This defines a form on B if and only if we find f € C*(B,V) for any V' € D*(B),

such that f = f om. We note that the resulting form will be vertical since
(PI’F)*IE@V = (PI’F)*[E%*UHMEV = (PTF)*Unat[Eyi = (PI’F)*IEV-

Proposition 3.2 ¢ € A(F,V) defines a vertical V-valued form on B(M, F,G) iff
¢ is invariant under all L. For such a ¢ and all V' € DYB) then there cxists
feC=(B,V) wih o

(przpo)(...,LY',...) = for.

Proof. According to the previous discussion, ¢ defines a form on B if and only if
(pry o) (.. LY ) € C(P x F,V) is invariant under all E’;, i. e., if and only if
Ri(prg o) (..., LY. )] = (Rypri @) (.- o (Ry=1)LY* ) = (prie Ly @) (.., LY. )
for all ¢ € G and V' € D'(B). Obviously this relation holds if ¢ € A(F,V)
is invariant. So let us assume, that ¢ is not invariant. Then we find ¢ € G,
f € F and X' € DY(F) such that (Lyo)s(. .. ,X}, ) = bl dLgX}, )
op(..., X%, ...). Since only X} are involved, we may assume that all X" are invariant
and thus define 7,L"X° € D'(B) by Lemma 3.1. For these vector fields on B we
compute E%*Lgati\,’i = %]Lgat?(i = %vnat]LgatXi = pnat[natyt — [natyi and thus
(R pri @) (o LA LX) (p, f) = (Lyo)s(co o Xgy) #F s, X)) =
(pry&)(..., L, Loat yi Jp, ). So (prgo)(..., L, Loat yi .) is not invariant
under all E’; Verticality was already proved above. O
Similar arguments hold for ¢ € A(P, V) acting on V' € D*(B) via

(pr5 @)(...,LY',...) € (P x F, V).
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The resulting form will be horizontal because (prp)*]iﬁ = (prp)*]i. Moreover, only
oh is of interest: (prp)iL = (prp) A" AL = (prp) /A" L = I/(prp).L, thus

(prp $)( . LY. = (prp oh)(... LY, ...).

(
Proposition 3.3 ¢ € A(P,V) defines a horizontal V-valued form on B(M, F,G)
iff oh = 7%p, o € A(M,V). For such a ¢ and all Y' € D*(B) we then have

(prp o) (... LY .. )= FG)(...,V,...) 0.

Proof. We already saw that only ¢h matters and that the resulting form is horizon-
tal. Now ¢h = m* iff R;(oh) = ¢h for all g € G, and analogously to the previous
proof we can show that this suffices to define a form on B. But then

(prpoh)(..., LY, ...) = (T 7)(....,LY",...) = (7"¢)(...,LY",...) o 7.

On the other hand, if there exists ¢ € G with R,¢h # ¢h, we can find invari-
ant vector fields in DY (P), i. e. X* € DY(M), such that ¢h(...,LX,...) 0 R, #
h(...,LX"...). So (pr}qb)(...,i]]:?(i,...) o E’g = ¢h(...,LX',...) 0 prPoE’g =
dh(...,LX',..)oR,oprp # ¢h(...,LX" .. Joprp = (pr5o)(... JLLAY .. .). Thus
(prp &)(..., LLAY, .. .) does not define f € C*(B,V). O

As a simple example that only the horizontal part of ¢ € A(P, V) counts and
needs to be invariant, we compute

(pr " )(LY) = 3 (LY) = R o oLy = 0. (2)

Now we want to combine forms on F' with forms on P. This could be done by
an exterior product of the generated forms on P x F'. More generally, we will use
the operator e instead.

Theorem 3.4 If y € A(F,Hom(7(g),V))equiv and ¢ € AL (P g) = A (P, @)equiv,
r € Ny, then (pri x) e (prp @) € A(P x F,V) defines a V-valued form on B: for all
vector fields V' € DY(B) then there exists f € C(B,V) such that

[(pr- x) @ (prp O)I(- ., LY, .) = [(prix) @ (prp &h)](.. ., LY',..) = fo .
(pry x) defines the vertical and (prp @) defines the horizontal part of the form.

Proof. Analogously to the previous proofs, we must show that for any Y € D'(B),
[(pr3x) e (prp d)(..., LY, .. ) € C(P x F, V) is invariant. Again this means that
(~pr*F X) ® (prp @) € A(P x F,V) is invariant. prpoL,-1 = R, 0o prp and prpoR, =
R, o prp yield that prj. y and prp ¢ are G-equivariant. Now Lemma 2.5 applies. O

All of these results are just special cases of the following theorem. If we replace g
by any vector space W with a left representation L', we may prove in total analogy

for pseudotensorial forms of type (L', W) on P:

Theorem 3.5 Let V,W be vector spaces, L': G x W — W a left representation and
¢ € Af(Pv L' W), r€No. If x € AL, Hom(T (W), V))equiv then (pri x) e (prp ¢) €
A(P x F,V) defines a V-valued form on B: for all vector fields Y' € D' (B) then
there exists f € C*(B,V) such that

[(pr- x) @ (prp O)I(- ., LY, .) = [(prix) @ (prp &h)](.. ., LY',..) = fo .
(pry x) defines the vertical and (prp @) defines the horizontal part of the form.
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Let us again consider the case B = P. Now Y € DY) in Lemma 3.1 is
invariant iff ), = dA,(X) for all ¢ € G and X € g. But then (i*y)¢;1($7g)
(A7) (2,9)(02, dAg (X)) = (RX)wgl(Lg), so the vector field generated by V = Lx €
D} (G) is the fundamental vector field Ry. Recall that the connection 1-form w!
and the left canonical 1-form ©F € AL(G) are connected via (R?)*w! = O for all
p € P. According to Proposition 3.2, ©F defines a vertical g-valued 1-form “@%v”
on P. Since ©lv is vertical, we may compute it by evaluating (0Xv)(Rx). Now
(pr; OF)(LRy) = (pry, O (LiLx) = (pry OL)(Lr*Ly) = ©L(Lx) = X. Thus
0Ly = W' Finally we can recover Q' € AI(P,g) using Theorem 3.4 with y :=
Adon € C*(G,Hom(g, g))equiv, where n: G — (' means the inversion on (7, since
pr(Adon) e (prp Q) = 7O of. (7) and Corollary 4.6 below.

4 Local Evaluation of Connections

In order to compute the exterior derivatives of the generated V-valued forms on B
in Proposition 3.2 and Theorem 3.4 we give local representations for these forms in
this section. For this purpose we need to evaluate the local connections on U, x F
that are induced by I' due to Lemma 1.3 and thus to compute the local projections
of fields and forms. Since we will be concerned with fiber bundles in general from
now on, we will distinguish between 7 and 7, h and ?L, L and ]I:, etc., only where
necessary, but use m: M — B, etc., for convenience.

We start our local evaluations by computing the change of bundle charts. For
Uaﬁ =U, N Uﬁ 7£ 0 let Tﬁa = (¢ﬁ|7r—1(Ua,6)) o] (¢a|7r_1(Ua/3))_1:UOlﬁ x I — Uaﬁ x I
denote the maps for the change of bundle charts. If gs,: U, — G are the transition
functions then the maps Tz, are given by

Tsa = (pry,,, L o (gpa o Pry, . Prp)) = Lo (gpa 0 Py, idu,,<F), (3)

where we have identified L with the induced action L on Usp x F from Lemma 2.1
(P :=U,g). Forx € Uyg £ and f € Flet (X, F) e T,(M)®T¢F). Then (3)
yields (dTp0) (2, ) (X, F) = (X, d Ly, ()(F) + dLY dgso (X)) and if f* and f7 € F are
related by f? = L(gpa(2), f*), then (Tﬁ*awﬁ)($7fa)( L (X F“)z fays - )=

w@ goy (oo (X d Ly, (o (F?) 4+ dL " dgaa(X®)(, sy, - ) for all w” € A(Uag x F, V).

In order to treat such expressions in terms of forms we already introduced the
opeator @ in [2] in the following way: for any w, € A,(F,V) (resp., U, x F, etc.,
instead of I), we define Liw, € A,_;(F,Alt{g,V)), i < n, for all X7 € DY(F),
Ey egand f € F by

[(Laywn ) (XY XN (DN B B = 2w (LY L X AT (f) €V,
where £ := Lg,. Thus Liw, € A,_;(F) @ Alt;(g, V) if w, € A, (F)@ V. Fori >n

we put Liw, = 0. In the case i = 1 we also define for x* € A,(F, Hom(®°g,V))
using the symmetrization map Sym: Hom(®’ g, V) — Sym,(g, V):

L:/sz = Sym*([“X?Sz) € An—l(F7 Syms-l—l(g? V))
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(Obviously Sym,(Lix?) = 0 for : > 1.) For any w, € A,(F,V) and 0 € A,(F,g),

we define (o)
n (1)
w, © 0 := Z L

=0

Then a straightforward calculation yields (cf. [2, Lemma 9.2]) that

0 (Liw,) e 0 € A,(F, V).
(W@ O)4( ., Xiy ) =wpl ., Xb+ (dLD)04(X)),..). (4)
Thus we obtain from (3):
Proposition 4.1 If L' is a representation of G on'V and w® € A, (Uss X F, V) equiv,
Th.w; = [(L' 0 gpa 0 pryy, ) @ W] © (gsa © pryy, ) OG-
Corollary 4.2 If x € A,(F,Hom(7(g),V))equiv then
T3, (pr x) = [(Ad ogga o pry, ) @ (pr7 x)] © (gpa © pryr, )" O6-
If ¢ € Au(F,V)iny then T, (prF ¢) = (5 ¢) © (gpa 0 Prys, )" O
For st € A(M, V) we obviously have T%,((pry, ,)*1) = (pry;, )1

In order to treat local projections, recall that the gauge potentials A® and the
gauge fields F* of a connection I' are given by

A" = 0 (@ o) € Ai(Ung). B o= 07 (Q o) € AulUneg). (5)

e

where o, .:U, — 77 '(U,) are the local sections of the principal bundle onto the
neutral element e € G, i. e., 0,(x) = ¥,(x,e). The collection of A* and F*
determines w' and O completely (recall that 1 means the inversion on G):

Wmiwy = (Adonom,) e (7"A%) + 10", (6)
QF|W_1(UQ) = (Adonom,)e (7 F?), (7)

and from 1o m3 0 04 = gap one derives on U,z # :

Ao, = (Adog.s) e A’lu,, + g5,0" = (Adog.s) e (A%|u,, — g2,0%), (8)
Flo,, = (Adogaﬁ).F%aﬁ. (9)

In general, for a tensorial form ¢ € AT(P, L, V) on a principal bundle P(M, ), we
define analogously to (5) for every bundle chart

P =07 (ple-1wa) € AU, V). (10)
Then again the collection of P* determines ¢ completely:
Pletway = (Lonom,) e (x"P?), (11)
and on U,z # 0 the P? transform according to
P, = (L 0 gas) @ P7lu,. (12)
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According to (6), w! is locally given by w(°“$7g)(X, V) =Ad(g7"A2(X)+dr -1 (Y)
for all # € U,, g € G and (X,Y) € T.(U,) ® T,(G). From v = R’ o w! we thus

conclude that the induced local projections of vector fields on U, x G are:
U(ax,g)(X7 Y) = (07 (dpg)eAg(X) + Y)? h(aac,g)(X7 Y) = (X7 _(dpg)eAg(X))
Finally the horizontal lifts L*: D*(U,) — D*(U, x () are given by
L, ) (X) = (X, =(dpy)AZ(X)). (13)

In order to compute v for associated bundles, we first need the connection on
P x F for our construction in Section 2. By definition,

(ARPN(Y) = ((dR?)e(Y), —(dL))(Y))  forall pe P, feF and Y €g,
thus  (dRESD)I(Y) = (0, (dAg)e(Y), =(dL1)e(Y)) € To(Us) & Ty(G) @ T4(F).
With wf, ) from above, 57, , (X, Y, Z) = (dR@=oD)2wy (XY) yields
g (X Yo Z) = (0, (dpy) AZ(X) + Y, —(dL)[Ad(g™)AZ(X) + dAg-1 (V))),

Fogn(XYoZ) = (X, =(dpy ) AZ(X), H(AL ) [A(g™)AL(X) + dAy (V)] + 2).
A little computation then shows using d7(X,Y, Z) = (X, (dL’),Y + (dL,); 7)

Ll g mrn(X0 2) = (X, =(dpy ) AZ(X), +(dLym ) [(d L)) AZ(X) + Z]). (14)
CC/\”):

Thus we obtain from o = 7v™*L the following lemma (now omitting

Lemma 4.3 FEuvery connection I' on an associated bundle B = P(M,G) x¢ F, that
is defined by a collection of gauge potentials A* € Ay (U,, ), induces the following
projections for all v € U,, f € F and (X,7) € T,(U,) & Ts(F):

U(ax,f)(Xv Z) = (Ov(de)eAg(X)—l_Z)v h(ax,f)(Xv Z) = (Xv_(de)eAg(X)) (15)
The horizontal lifts L*: DY (U,) — D' (U, x F') are thus given by
L{, 5 (X) = (X, —(dLT).AZ(X)).

Observe that for B = P, we indeed recover the original connection. Our result
is no less than surprising since replacing dp, by dL/ is the only canonical way to
generalize a connection on U, x (G to associated connections on U, x F.

Finally we compute the local projections of forms. Lemma 4.3 yields

(@) (s (X2, = Wiz (-5 (0, (ALY A2(XY) + 27),...)
for all w0 € A(U, x F,V) and (X', Z') € To(U,) & Ty(F) and we obtain from (4):
Lemma 4.4 If ¢ € A,(F,V) then on every local trivialization U, x F':
(pri @)v* = (pry &) © (pry;, A”).

Thus for all x € Uy, i, [(prF ¢)v*] = ¢: restriction to the fibers reproduces ¢.
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Now we can evaluate Propositions 3.2, 3.3 and Theorems 3.4 and 3.5 on the

bundle charts. For ¢ € AP (U, x G, L', W) one derives using (13) and (14) that

(00O Bt (X)) = Gt LX)
= (th)(x,g)( .- 7L(ax,g)(X2)7 .- )

Since we already proved invariance under Rj, we may restrict ourselves to g = e. If

we define P* = o} _oh € A(U,, W) as in (10), then (11) yields

(0h)(wg) (- s Ly (X)) = P X7 ).
So the horizontal part (prp ¢) of the form in Theorem 3.5 is locally just (pry;, P<),
resp., (77P%).
Analogously for the vertical part (pr} x), again (14) and (15) yield that it is
locally given by (prpx)v?, resp., (Tox)v®. So our results take the following form
(again omitting “*” for convenience):

Theorem 4.5 Let I' be a connection on a principal fiber bundle P(M,G) with asso-
ciated bundle B(M, F,G), V.W any vector spaces and L': G x W — W a left repre-
sentation. Let v™ denote the local vertical projections of V-valued forms induced by I'
on Uy x F, resp., 771 (U,) for alla € A. Then for any xy € A(F, Hom(T (W), V))equiv
and any family {P* € A(Uy, W)}aea with Py, , = (L’ogaﬁ)oPﬂUaﬁ Jor allU,s # 0,

T Al(pry X)o7 [(PfUﬁ)*Pﬁ]HUaﬁxF = Al(prr x)o"] o [(pro, ) P o, oxrs - resp.,
1500 o (TP my = ()0 o (P Hamsry,

Thus {[(7=x)v] e (7*PY) € A(n~ ( o), V) aea defines a global form “xveP” on B.

Corollary 4.6 For any G-equivariant x € A(F,Hom(7T (g),V)) and o, 3 € A

{6500 o (FF ) o sy = {7200 o (7P} oo
Thus {[(772x)v] @ (T*F*) }aea defines a global form “yve F” on B.

Corollary 4.7 If ¢ € A(F V) is invariant then {(pry ¢)v® € AU, X F,V)}aea,
resp., {(m5o)v* € A(m~HUy,),V)}aea defines a global form ¢v € A(B,V). If ¢ is

invariant and locally vertical, then {7*¢},ea is global.

The opposite is not true in general, as the case of a trivial bundle with LIE group
G # {e} shows, where every invariant ¢ € A(F, V) defines a global but not necessar-
ily vertical form 7%¢ on the bundle (all ggaG)é in Corollary 4.2 vanish). Nevertheless,
the canonically generated form due to Proposition 3.2 is always vertical.

These local representations for the generated forms on B can be used to deter-
mine the exterior derivative d of the forms. Yet the evaluation of d(yv) by Lemma 4.4
is quite annoying. Since this has already been worked out in detail for the general
case d[(x © 0) e ¢] in [2], we simply quote the result:

Theorem 4.8 Let I' be a connection on a principal fiber bundle P(M,G') and let
B(M, F,() be an associated bundle, V' any vector space, x5 € A,(F)@Hom(&’g, V)
be G-equivariant and ¢, € A,(F) @V be invariant under G. Then
diue ) = [(dx)vli o F + [(Laxi)vl o F,
(xSl o F + (LYl o F.
d(¢nv) = (dpn)v + [(Lecn)v],_y @ F.
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5 DBundles with Abelian Structure Group

As already stated in Lemma 2.1, the left action on the fiber L: G X F' — F naturally
induces a left action on the product manifold L: G x P x F' — P x F', that is trivial

in the factor P. Thus, besides 7?’ we also have a G-equivariant (with respect to L”
and L) ) C(P < I) module homomorphlsm L' C=(P x F,g) — DY P x F) with
(Ly)s R = R'L;- and (R )x L= ,C’R*_l In addition, prpol, = prp yields

(o = Dol =5 (Lof = Ro(lu). = ()=
g)x 00"

g ( g
(L o (L) (Lg)oh™ = h™" o (L),

prpoL®f) = p yields A" L' = 0, thus £': C®(P x F,g) — vnatDI(P x F).

Now L defines an action on the quotient manifold P x ¢ F iff Ly-10 R,o L, € RG
for all g,h € GG, where Re = {R € Diff(P x F)}geg Thus Lo < NDIH(PXF)(RG)
Le needs to be a subgroup of the normalizer of RG in Diff(P x F). Even if G is
abelian and R acts freely, this does not hold automatically, as the example of the
action of Z4 on R3\{“axes”} by Z-rotations around different axes shows.

In our case (Lj-1 o R 0 Lh)(p, = Rg(p, Lyp-1,-1,(f)), thus
L defines an action L:G x B—+ B <=  Lg = {idp},

where G means the commutator subgroup in GG. This is equivalent to the require-
ment that G acts effectively only through its largest abelian factor group G/G".
Since we require (¢ to act effectively itself, this means ' is abelian.

According to the structure theorem for abelian LIE groups [3, p. 228], a connected
LIE group G is abelian iff it is isomorphic to g/ kerexp, thus iff G is isomorphic to
R™ x (S')y" = R™ x (R"/N") where m,n € Ny. Thus for any abelian LIE group
we will write the group operation additively, with neutral element 0, and we will
identify all tangent spaces T,(G) with To(G) in a natural way, such that dA, =
dpy: Th(G) — Th_b\g(G) becomes the identity morphism for all g, h € G.

In that case, L,o% =7 o L, and 7 o L =7 (and thus 7 o = 7(b)), because

ol,or=momol,=moprpol,=moprp=7moT

and 7 is surjective. Since (L,), commutes with h and (for abelian ) commutes

with (E’g)*, it defines an action on DY (P x I), i. e., (f/g)*]i = ]i(zg)*. This proves
(Eg)* ov =100 (Zg)*, (Eg)* oh=ho (Zg)*,

because (E )x h = (L )*%*h“at]i = Tl Ly)s poatl, = 7 hnat(L ) L= h(L )*. Finally

(L )x L = 7T*(L ) Lp* L = L and the horizontal lifts L are L-invariant. hL' =

because L': C>(B, g) —>AUD1(B), since 7, o dL® = 0 and Vi(B) is the kernel of d7.
It is quite obvious that L coincides with the following locally defined action:

Lemma 5.1 For abelian GG, we have a left action L of G on the whole bundle:
L(g,b) := 7 (7 (D), L(g, 7a(b))) forall be B.ge G, where 7(b)e U,
is then well-defined and fiber preserving: %(z(g,b)) = 7(b).
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We thus get another diagram that commutes for every g € G

P xF

L, |#

P xF i P

B
7 7 7
L,
7
B M

Suppose f: B(M, F,G) — B'(M', F',G) is a fiber preserving bundle diffeomor-
phism between two bundles with left actions L, resp., L of the abelian LIE group
and T is a connection on B induced by I' on P(M (), such that (L )x oh = ho(L )x
for all ¢ € (. By Lemma 1.3, [ induces a connection I = ['/ on B’. For this
new connection, h’, v’ and (L;)* need not commute on D'(B’). As an example,
take f = id: M x R — M x R and actions L, L":R x R — R with L(r,s) = €"s
and L'(r,s) = r 4+ s. Then W (X, Ys) = (X, —sA,X,) with A € A (M) and
(L’) (X, Ys) = (X, —sA, X)), while h’([/) (Xp, Vs) = ( Xy, —1rsALXyL).

Analogously to Lemma 1.1, it is sufficient for Commutatl\/lty of A/, v' and E;
that f is G-equivariant. In fact, if B and B’ are associated bundles over M and
f is G-equivariant and induces the identity on M, then [' and T induce the same
connection [ on B' (M, F',G).

For abelian G, the adjoint action on g is trivial, which makes life easier in most

cases. E. g., (8) and (9) read (we have gEaG)L = dgga):

A, = Alu, +dgsa = Alug, —dgap, Flu,, = Fllu,, (16)

and then w' and Q' are locally given by — cf. (6) and (7) —
W o1 (o) = TAY 4 dr, O T (17)
Thus for abelian G, the collection of F defines a global 2-form F € Ay(M,g),

whose pullback is the curvature 2-form Q' = 7*F.

Finally let us treat the one-dimensional case, g = R. So G = D x G with
a discrete abelian subgroup D and G; = S! or G1 =~ R. Recall that if G 1s con-
nected, nontrivial bundles only exist for GG = S!, e. g. for the electromagnetic gauge
group Gem = Uy = SL

So suppose g = FR with a basis vector £ € g, then the antisymmetry of
differential forms yields that L2¢ = 0 for all ¢ € A,(F,V). Thus Lemma 4.4
reads (prjy o)v™ = (pry &) — (—1)"[pri(Led)] @ (pr7, , A”) = (pry @) + 5 (pry, , A%) A
(pri1c,¢), where iz, is the inner product with Lz € D'(F). Analogously, Corol-
lary 4.2 takes the form T7_ (pr ¢) = (prF ¢) + %(prf]a/3 dgga) N (priic,¢) if ¢ €
A(F, V)iny. In that case, since L¢(Le¢) = 0, 12,0 is vertical and global (it is
invariant because Ad is trivial). Also recall from the homotopy identity for the
LIE derivative, Ly = dwy +1x d, that dig, ¢+ 1.,dp = Ly, o = 0 if ¢ is invariant.
Thus Corollary 4.7 and Theorem 4.8 prove:
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Theorem 5.2 Let I' be a connection on P(M,G) with abelian G, g = FR = R,
B(M, F,G) an associated bundle and V' any vector space. For any ¢ € A,(F,V)
with Lsp = ¢ for all g € G define v € A,_((F,V) by v =1.,0, i. e

vi(Vh VP =g (AL (E), V)., VPN forall f € F, Y€ DYE).

For any U, € Ul denote ¢ := 7o, v* :=7wiv. Then on all Uys # 0

1 1 1
Qba _ Qbﬁ‘I’Eﬂ-*dgaﬁ/\Vﬁa QbaUZQba—l—Eﬂ'*Aa/\l/a:Qbﬁ‘l‘Eﬂ'*Aﬁ/\Vﬁ:qbﬁU’

O

v = v =1 =

v.

Thus ¢v and v define global vertical invariant V-valued forms on B. The same holds
for (do)v since d¢ is also invariant, and we have

1 1
d(¢pv) = (do)v + EW*F Av, where (d¢™)v =dp” — EW*A“ A dv®.

Note that g = R alone does not imply that G is abelian. G = S x Z, with
(r,g) - (r',e) = (r—r',g) for r,r" € St and g # € € Z,, is a simple counterexample,
where Ad((0,¢)) = —idg, and thus v in Theorem 5.2 would not be invariant and
global for this LIE group G.

References

[1] Gross, C., A generalization of the exterior product of differential forms com-
bining Hom-valued forms, http://www.mathematik.th-darmstadt.de/prepr,
Preprint No. 1774

[2] Gross, C., Operators on Differential Forms for Lie Transformation Groups,
Journal of Lie Theory 6 (1996), 1 — 17, to appear

[3] Hilgert, J. and Neeb, K.-H., Lie-Gruppen und Lie-Algebren, Vieweg, 1991

[4] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 1,
John Wiley & Sons, 1963

[5] Poor, W. A.. Differential Geometric Structures, McGraw-Hill, 1981

16



