
An algebraic view on recursive types

Michael Marz

�

Fachbereich Mathematik

Technische Hochschule Darmstadt, Germany

May 29, 1996

This is a revised version of Preprint-Nr. 1793 from November 1995.

Introduction

Relatively few �-terms can be assigned a type in the simple type hierarchy. As is

well known, more terms can be typed if recursive types are admitted [Gun92]. In

this note a similar extension to simple types is examined.

Our approach is essentially algebraic. We start from the observation that the set

of simple types is a totally free algebra with respect to the binary operation !, i.e. a

free groupoid. More general groupoids arise as factor structures of free groupoids, so

we are lead to discuss free groupoids with a congruence relation. We call these type

systems.

Not every type system behaves well with respect to reduction; the crucial subject

reduction property may fail. We give a necessary and su�cient condition on type

systems, called condition (K), which guarantees subject reduction.

Restricting to �nitely many atomic types and �nitely generated congruences we

can e�ectively present a type system. Our �rst result says that it is decidable whether

a such presented type system is a K-type system, i.e. whether it satis�es condition

(K). Next we show that �nitely presented K-type system can always be presented

in a particular fashion, namely, by specifying a map from atomic types to type

expressions. In other words, the congruence for �nitely presented K-type systems is

always generated by a list of constraints �

1

� �

1

; �

2

� �

2

; : : : ; �

n

� �

n

where �

1

; : : :; �

n

are atomic.

The next question is whether �-terms typeable in a K-type system are strongly

normalizing. This is not always the case. N. Mendler shows in [Men91] that it is

precisely the so called positive type systems for which strong normalization holds. In

Section 2 we show how to read o� positivity from a presentation. In particular, it is

decidable whether a �nitely presented type system is positive.

�

e-mail: marz@mathematik.th-darmstadt.de

1

We also show that principal typing is possible using K-type systems. This entails

that the question whether a given term admits a type in some positive K-type system

is decidable. Since the set of strongly normalizing �-terms is not recursive, it follows

that neither a single nor the union of all positive K-type systems will capture strong

normalization.

This paper is a translated extract of my diploma thesis, see [Mar95]. I would like

to thank Pawe l Urzyczyn for some useful hints, Martin Hofmann, Mathias Kegelmann

and Hermann Puhlmann for their careful proof reading, and especially Achim Jung

for his stimulating supervision.

1 Free groupoids as type systems for the �-

calculus

There are two possible ways of thinking about type systems of the �-calculus. In

Church-style each �-term contains type annotations in �-abstractions which permit

type reconstruction. On the other hand, in Curry-style the types appear as predicates

over the set of untyped terms. We are interested in Curry-style.

In this section we consider a general approach to monomorphic type systems,

i.e. type systems consisting only of atomic types and function types. In the simply

typed �-calculus the set of all types forms a groupoid freely generated by the atomic

types, the groupoid operation being the arrow !. To allow for more terms to be

typed, one approach is to consider type constraints. These are sets of equations of

the form � � � where � must be atomic and � can be any type. From an algebraic

point of view this leads to the study of free groupoids with arbitrary congruences as

type systems. For our purposes it is more suitable to explicitly handle congruences

instead of working with quotient groupoids.

De�nition 1.1 A type system (F;�) consists of a free groupoid F = (F ;!), i.e. an

algebra with one binary operation, and a congruence relation �.

In the following X denotes a countably in�nite set of variables and (F ;�) stands

for a type system.

De�nition 1.2 A basis is a �nite set � of expressions (x : �) with x 2 X and � 2 F

such that for each x 2 X there is at most one � 2 F with (x : �) 2 �. We use �; x : �

as an abbreviation for �[f(x : �)g if x does not occur in �. An expression � ` t : �

is called a judgement if it is derivable with the following rules:

(Var)

� ` x : �

if (x : �) 2 �

� ` s : �!� � ` t : �

(App)

� ` st : �

�; x : � ` t : �

(Abs)

� ` �x:t : �!�

� ` t : �

(Con)

� ` t : �

if � � �

2

Most of the main syntactic properties of the simply typed �-calculus remain true

for type systems as presented here. Notably, we have the following two lemmas which

can be proved by induction:

Lemma 1.3 (Generation Lemma) Let � be a basis such that � ` t : � is a

judgement.

a) If t = x 2 X, then (x : �

1

) 2 � for some �

1

with �

1

� � .

b) If t = t

1

t

2

, then there is a �

1

2 F such that � ` t

1

: �

1

! � and � ` t

2

: �

1

are

judgements.

c) If t = �x:t

1

, then there are �

1

; �

2

2 F such that � � �

2

!�

1

and �; x : �

2

` t

1

: �

1

is a judgement.

Lemma 1.4 (Substitution Lemma) Let � be a basis such that �; x : � ` t : �

and � ` s : � are judgements for �-terms s and t. Then � ` t[s=x] : � is also a

judgement.

The �-reduction is de�ned as usual (see e.g. [Bar92]), we write s

�

--

t if s reduces

to t. Unfortunately, the judgements are not always stable under �-reduction.

De�nition 1.5 Let (F ;�) be a type system. The �

(F ;�)

-calculus has the �-subject

reduction property if, for any judgement � ` s : � and for any reduction s

�

--

t,

the expression � ` t : � is a judgement.

Proposition 1.6 The following are equivalent:

(1) The �

(F ;�)

-calculus has the �-subject reduction property.

(2) The following property holds for every �

1

; �

2

; �

1

; �

2

2 F :

(K) �

1

! �

1

� �

2

! �

2

) �

1

� �

2

and �

1

� �

2

Proof: (2) implies (1): Straightforward using the Generation Lemma and the

Substitution Lemma.

(1) implies (2): First, we show that �

1

! �

1

� �

2

! �

2

implies �

1

� �

2

(for

�

1

; �

2

; �

1

; �

2

2 F). For x; y; z 2 X there is a deduction for y : �

1

; z : �

2

` (�x:y)z : �

2

.

Since we have the �-subject reduction property we get y : �

1

; z : �

2

` y : �

2

. Hence,

�

1

� �

2

follows from the Generation Lemma.

For the second part, we take again �

1

; �

2

; �

1

; �

2

2 F with �

1

! �

1

� �

2

! �

2

.

Choosing � = fu : �

1

! �

1

; v : �

1

! �

1

; y : �

2

g we can derive � ` (�x:u(vx))y : �

2

.

Since we assume the subject reduction property, � ` u(vy) : �

2

is also a judgement.

Because of the Generation Lemma there is a 2 F with � ` u : ! �

2

and � `

vy : . Again we apply the Generation Lemma, hence, we have �

1

! �

1

� �

2

! .

3

As shown in the �rst part this leads to �

1

� , thus �

1

! �

1

� �

2

! �

1

follows.

Because y : �

2

` (�x:x)y : �

1

is a judgement we get y : �

2

` y : �

1

by the subject

reduction property. This leads to �

1

� �

2

. 2

We have shown that (K) is a su�cient and necessary condition for the �-subject

reduction property. The idea of this proof is due to R. Statman, see [Sta94], however,

the proof as presented here is much shorter.

If we add �-reduction to the system we do not get any problems: the calculus is

stable under �-reduction.

Type systems that satisfy (K) are called K-type systems. There are many prop-

erties of the untyped �-calculus that remain true for the �

(F ;�)

-calculus. In case the

calculus has a K-type system, we get the Church-Rosser-Theorem as a consequence

of the subject reduction property. There are no non-trivial �nite K-type systems:

Remark 1.7 The number of congruence classes of a K-type system is 1 or in�nite.

Proof: Let (f�

1

; : : :; �

n

g;!) be a groupoid with n > 1. Since there are n

2

> n

possibilities to combine elements of T with !, there exist i

0

; i

1

; i

2

; j

1

; j

2

2 f1; : : :; ng

such that �

i

0

= �

i

1

! �

i

2

= �

j

1

! �

j

2

with i

1

6= j

1

or i

2

6= j

2

. In this case the free

groupoid F

T

with the corresponding congruence relation is not a K-type system. 2

The type system with the congruence relation F � F induces the untyped �-

calculus. Using the free groupoid F

J

with the smallest congruence relation we get

the simply typed �-calculus with J as the set of atomic types.

For a decidability result for K-type systems we need two lemmas:

Lemma 1.8 Let (F

J

;�) be a type system that is generated by a symmetric relation

�. Then (F

J

;�) is a K-type system i� the following condition is true:

�

1

!�

1

� �

1

� : : : � �

n

� �

2

!�

2

implies �

1

� �

2

and �

1

� �

2

for all �

1

; �

2

; �

1

; �

2

2 F

J

; n 2 N

0

; and �

1

; : : :; �

n

2 J .

Proof: If �

1

! �

1

� �

1

� : : : � �

n

� �

2

! �

2

holds for �

1

; �

2

; �

1

; �

2

2 F

J

and

�

1

; : : :; �

n

2 J and (F

J

;�) is a K-type system then �

1

� �

2

and �

1

� �

2

hold as well.

Let �

1

; �

2

; �

1

; �

2

2 F

J

be types such that �

1

! �

1

� �

2

! �

2

. We have to show

�

1

� �

2

and �

1

� �

2

. As well known from universal algebra we can get from �

1

!�

1

to �

2

!�

2

by replacing occurrences of subtypes � by �

0

in �

1

!�

1

with � � �

0

. Thus,

we get a sequence �

1

! �

1

; '

1

; : : : ; '

n

; �

2

! �

2

. Consider subsequences of

the form '

i

= �

0

1

! �

0

1

; '

i+1

= �

1

; : : : ; '

i+k

= �

k

; '

i+k+1

= �

0

2

! �

0

2

with

�

1

; : : :; �

k

2 J . For k � 1 the condition of the proposition yields �

0

1

� �

0

1

and �

0

2

� �

0

2

.

So we only have to deal with the case k = 0: we must show that �

0

1

! �

0

1

; �

0

2

! �

0

2

implies �

0

1

� �

0

2

and �

0

1

� �

0

2

when �

0

2

! �

0

2

is the result of the replacement of one

occurrence of a subtype � as described above. This is clear if � is a proper subtype

of �

0

1

or �

0

1

. The case � = �

0

1

! �

0

1

follows from the assumption choosing n = 0. 2

4

Lemma 1.9 For any freely generated groupoid F with a �nite binary relation � it

is decidable whether � � � holds for the generated relation � and for �; � 2 F .

Proof: Let S := f� 2 F j 9�

0

2 F : � � �

0

or �

0

� �g [f�; �g and T be the set

of all subtypes of elements of S. The relation �

0

is de�ned as the smallest reexive,

symmetric and transitive extension of � that satis�es

�

1

�

0

�

1

; �

2

�

0

�

2

; �

1

!�

2

; �

1

!�

2

2 T) �

1

!�

2

�

0

�

1

!�

2

for all �

1

; �

2

; �

1

; �

2

2 T . Since T is �nite, so is �

0

. Given � � � , there are

�

0

; �

1

; : : :; �

n+1

2 F with � = �

0

� �

1

� : : : � �

n+1

= � such that �

i+1

can be ob-

tained from �

i

(i = 0; : : :; n) by replacing a subtype � by some �

0

with � � �

0

or �

0

� �.

By induction on the sum of the length of the �

i

one can be prove � = �

0

�

0

�

n+1

= �

which is left to the reader. This completes the proof because �

0

is �nite. 2

Of particular interest are presentations for type systems using a function which

maps atomic types to arbitrary ones. In other words, the generating relation is of the

form f�

i

� �

i

j �

i

2 J ; �

i

2 F

J

g. If a type system (F

J

;�) is �nitely presented, i.e. J

is �nite and there is a �nite relation � generating �, we get the following results as

consequences of the two lemmas:

Theorem 1.10 It is decidable whether a �nitely presented type system is a K-type

system.

Corollary 1.11 Each type system generated by a function is a K-type system.

Proof: Follows from Lemma 1.8 because there are no nontrivial sequences. 2

Because of Proposition 1.6, type systems generated by functions lead to calculi

with the subject reduction property. For �nitely presented K-type systems, even the

converse direction of Corollary 1.11 is true:

Theorem 1.12 Each �nitely presented K-type system is generated by a function.

Proof: We sketch an algorithm that takes a �nite presentation � of (F

J

;�) and

gives a function ' : J ! F

J

such that � is the closure of f(�; '(�)) j � 2 J g. Each

pair �

1

! �

2

� �

1

! �

2

is replaced by �

1

� �

1

and �

2

� �

2

. This is done at the

very beginning of the algorithm and whenever such a pair occurs. Every two pairs

� � � and � � � with len(�) � len(�) are replaced by � � � and � � � , where len(�)

denotes the number of arrows in � . (It does not matter which one to choose in case

of len(�) = len(�).) At the end the resulting relation de�nes the function '.

For proving the termination let l denote the maximal length of types related

by � and m

k

:= j f� 2 F

J

j len(�) = k and 9i = 1; : : :; n with �

i

� � or � � �

i

gj for

k = 2; : : :; l. One has to verify that the weight (m

l

;m

l�1

; : : :;m

2

) 2 N

l�1

decreases

w.r.t. to the lexicographical order during each loop, i.e. while doing one replacement

of the second form followed by several ones of the �rst. Since the lexicographical

order is well founded the algorithm terminates. 2

5

2 Strong normalization of �

(F;�)

-terms

N. Mendler has given a condition characterizing the normalization of a special kind of

K-type systems. In this section we generalize this for arbitrary �nitely presented K-

type systems by using the results of Section 1. Moreover, we give a graph theoretical

characterization for checking this condition. As in Section 1, we consider type systems

(F

J

;�).

De�nition 2.1 Let � 2 F be a type. The sets Pos(�) and Neg(�) are de�ned by

structural recursion: For atomic types � 2 J we set

Pos(�) = f�g;

Neg(�) =

o/

;

and for function types �!� :

Pos(�!�) = f�!�g [Neg(�) [Pos(�);

Neg(�!�) = Pos(�) [Neg(�):

A type � occurs positively in � if � 2 Pos(�) and negatively if � 2 Neg(�). A relation

� is negative if there are �; � 2 F

J

with � � � (where � is the congruence relation

generated by �) such that � occurs negatively in � . Otherwise � is positive.

In [Men91], N. Mendler has shown the normalization property for calculi with

positive type systems:

Proposition 2.2 Let (F

J

;�) be a type system generated by a function ' : J !

F

J

corresponding to a relation � on J � F

J

. Then the �

(F ;�)

-calculus is strongly

normalizing i� � is positive.

Unfortunately, it is not obvious whether an arbitrary relation f�

i

� �

i

j i 2 Ig on

a free groupoid F

J

is positive or not. In order to characterize the positivity of � we

consider the type graph of the induced type system.

De�nition 2.3 Let (F

J

;�) be a type system generated by a relation � as in Propo-

sition 2.2. The generating type graph E

�

J

of (F

J

;�) consists of the set of vertices

J [f� 2 F j 9� 2 J : � � �g and the edges

� �

�1

-

� if � occurs negatively in � ,

� �

1

-

� if � 6= � and � occurs positively in � ,

� �

�

1

-

� if � 6= � and � � � or � � �.

(We write �

�

1

-

� for �

1

-

�

1

-

� .)

6

Lemma 2.4 Let (F

J

;�) be a type system where � is generated by the relation �.

Then the following are equivalent:

(1) The relation � is positive.

(2) The product of the labels of the edges of every circle

�

i

1

x

1

-

�

i

2

�

1

-

�

i

2

x

2

-

: : :

�

1

-

�

i

n

x

n

-

�

i

1

�

1

-

�

i

1

in the generating type graph E

�

J

of (F

J

;�) is positive.

Proof: The proof of (1) implies (2) is clear. For the reverse direction let us assume

that � is negative. We construct a circle in the generating type graph where the

product of the labels is negative. Consider the total type graph G

�

J

of (F

J

;�) which

is de�ned as follows:

� The vertices of G

�

J

are all the types of F

J

.

� The labelled edges �

1

-

� and �

�1

-

� are de�ned as in the generating type

graph.

� �

�

1

-

� is an edge if � 6= � and � can be obtained by replacing a subtype '

of � by some with ' � or � '.

W.l.o.g we assume that no �

i

occurs negatively in �

i

and �

i

=2 J (for �

i

� �

i

). We use

�

k

as an abbreviation for

�

k;1

�

1

-

�

k;2

�

1

-

: : :

�

1

-

�

k;n

k

:

If the relation � is negative, there is a circle

K = �

1;n

1

x

1

-

�

2

x

2

-

: : :

x

m�1

-

�

m

x

m

-

�

1

such that x

1

� : : : � x

m

is negative. We sketch an algorithm that computes a closed

path

�

i

1

y

1

-

�

i

2

�

1

-

�

i

2

y

2

-

: : :

�

1

-

�

i

n

y

n

-

�

i

1

�

1

-

�

i

1

in the generating type graph E

�

J

such that x

1

� : : : � x

m

= y

1

� : : : � y

n

= �1. If there is

a path �

i

�

1

-

�

i

x

-

�

�

1

-

�

0

in K with �

0

=2 J , there are four cases:

� If x = 1 and �

i

occurs positively in �

0

:

replace �

i

�

1

-

�

i

1

-

�

�

1

-

�

0

by �

i

�

1

-

�

i

1

-

�

0

.

� If x = �1 and �

i

occurs negatively in �

0

:

replace �

i

�

1

-

�

i

�1

-

�

�

1

-

�

0

by �

i

�

1

-

�

i

�1

-

�

0

.

7

� If �

0

can be obtained by replacing some �

j

by �

j

in � such that for x = 1 the

type �

i

does not occur positively, for x = �1 it does not occur negatively in �

0

:

replace �

i

�

1

-

�

i

x

-

�

�

1

-

�

0

by �

i

�

1

-

�

i

y

-

�

j

�

1

-

�

j

z

-

�

0

.

If the occurrence of �

j

that has to be replaced is positive then choose y = x

and z = 1, otherwise y = �x and z = �1.

� If �

0

can be obtained by replacing �

i

by �

i

in � such that �

i

is not a subtype of

�

i

: replace �

i

�

1

-

�

i

x

-

�

�

1

-

�

0

by �

i

x

-

�

0

.

If K does not contain any atomic type we have �

k;i

= '

k;i

!

k;i

for all k = 1; : : :;m,

i = 1; : : :; n

k

. In this case, replace every sequence

�

k

x

k

-

'

k+1;1

!

k+1;1

�

1

-

: : :

�

1

-

'

k+1;n

k+1

!

k+1;n

k+1

x

k+1

-

�

k+2

(k = 1; : : :;m) by

� �

k

�x

k

-

'

k+1;1

�

1

-

: : :

�

1

-

'

k+1;n

k+1

�x

k+1

-

�

k+2

, if �

k

is contained in '

k+1;k

,

� �

k

x

k

-

k+1;1

�

1

-

: : :

�

1

-

k+1;n

k+1

x

k+1

-

�

k+2

, if �

k

is contained in

k+1;k

.

Deleting trivial edges �

�

1

-

� and contracting edges �

1

x

-

�

2

y

-

�

3

to �

1

x�y

-

�

3

completes the algorithm. During each loop the number of edges �

�

1

-

�

0

with � �= �

0

and �

0

�= � or the length of types that are related by

�

1

-

increases, hence, the

algorithm terminates. 2

As a consequence of Lemma 2.4 we get:

Corollary 2.5 It is decidable whether a �nite relation being de�ned by a function is

positive.

In the light of Theorem 1.12 and Proposition 2.2, Corollary 2.5 implies:

Theorem 2.6 Let (F

J

;�) be a �nitely presented K-type system. Then it is decidable

whether the �

(F

J

;�)

-calculus is strongly normalizing.

3 Typeability and principal typing with positive

K-type systems

We study the subject of typeability of terms in K-type systems. We call a �-term t

typeable if there is a K-type system such that we can derive a judgement � ` t : � .

In [Urz95], P. Urzyczyn has shown that the �-term 2 2K with 2 := �yx:y(yx) and

K := �xy:x is not typeable in System F. However, using the positive K-type system

(F

J

;�) generated by J := f�

1

; �

2

g and �

1

� �

2

! �

1

, there is a deduction for ` 2 2K :

8

�

1

! �

1

. On the other hand, the �-term �x:xx is easily typeable in System F, but not

with a positive K-type system.

As shown in [Wel94], the typeability problem is undecidable in System F. In the

following we will show that this is not the case for positive K-type systems.

De�nition 3.1 Let (F ;�) and (F

0

;�

0

) be type systems and ' : F ! F

0

a groupoid

homomorphism (i.e. '(� ! �) = '(�) ! '(�)). We call ' : (F ;�) ! (F

0

;�

0

) a

type system homomorphism if � � � implies '(�) �

0

'(�).

Let t be a �-term. A K-type system (F ;�) is called principal K-type system for

t if t is typeable in (F;�) and for every other such type K-type system (F

0

;�

0

) there

is a type system homomorphism ' : (F;�) ! (F

0

;�

0

).

Lemma 3.2 Let t be a �-term and (F ;�) a K-type system such that � ` t : � and

� ` t : � are judgements. If � contains all bounded variables of t then � � � holds.

Proof: By induction on the structure of t. 2

F. Cardone and M. Coppo showed in [CC91] the principal typing property for the

�-calculus with recursive types. Here is the analogous result for K-type systems:

Theorem 3.3 (Principal Typing Theorem) For each �-term t exists a principal

K-type system.

Proof: We assume that no variable in t occurs freely and bounded or bounded

more than once. Given the set fx

i

j i 2 Ig of all variables contained in t we de�ne

J := f�

i

j i 2 Ig and � := f(x

i

: �

i

) j i 2 Ig. For a subterm s of t, the type �

s

is

de�ned by structural recursion:

� If s is a variable with (s : �) 2 �, then �

s

:= �.

� If s is an application s

1

s

2

, take a fresh variable �, de�ne �

s

:= �, and let

�

s

1

� �

s

2

!�.

� If s is an abstraction �x:s

1

with (x : �) 2 �, then �

s

:= �!�

s

1

.

For all subterms s of t, we get judgements � ` s : �

s

in the type system (F

J[L

;�)

where L is the set of all fresh variables � used in the de�nition above and � being

the K-closure of � (i.e. the smallest symmetric, transitive extension of � satisfying

condition (K)).

Let (F

0

;�

0

) be a K-type system with a basis �

0

and a type � 2 F

0

such that �

0

`

0

t : � is a judgement in this type system. Assume �

0

to contain every (free or bound)

variable in t. We de�ne a map '

0

: J ! F

0

by '

0

(�

i

) = �

i

where f(x

i

: �

i

)g 2 �

0

.

This map can be extended to ' : F

J[L

! F

0

in the following way:

'(�) =

8

>

<

>

:

'

0

(�) if � 2 J

� if � = �

s

1

s

2

2 L for � 2 F with �

0

`

0

s

1

s

2

: �

'(�

1

)!'(�

2

) if � = �

1

!�

2

9

Clearly, ' de�nes a groupoid homomorphism. For proving that ' is a type system

homomorphism it is su�cient to prove that � � �

0

implies '(�) �

0

'(�

0

).

Let s be a subterm of t and � ` s : �

s

. It can be shown by induction of the

structure of s that �

0

`

0

s : '(�

s

) is a judgement for s in (F

0

;�

0

).

Now assume � � �

0

for �; �

0

2 F

J[L

. Because of the de�nition of � there is a

subterm s = s

1

s

2

of t and a variable � 2 L such that � = �

s

1

, �

0

= �

s

2

! �, and

�

s

= �. As shown above, �

0

`

0

s

1

: '(�), �

0

`

0

s

2

: '(�

s

2

), and �

0

`

0

s

1

s

2

: '(�)

are judgements. Because of the Generation Lemma 1.3 there is a % 2 F

0

with

�

0

`

0

s

1

: %! '(�) and �

0

`

0

s

2

: %. By Lemma 3.2 we get '(�) �

0

%! '(�) and

'(�

s

2

) �

0

%. This implies '(�) �

0

'(�

s

2

)!'(�) = '(�

s

2

!�) = '(�

0

) which shows

that ' is a type system homomorphism. This completes the proof. 2

Corollary 3.4 It is decidable whether there is a positive K-type system in which a

given �-term t is typeable.

Proof: Suppose the principal K-type system (F;�) for t being negative and let

(F

0

;�

0

) be another K-type system in which t is typeable. Since the relation � is

negative there are types �; � 2 F with � � � such that � occurs negatively in � .

Because of Theorem 3.3 there is a type system homomorphism ' : (F;�) ! (F

0

;�

0

)

with '(�) �

0

'(�). The type '(�) occurs negatively in '(�), thus, the type system

(F

0

;�

0

) is negative as well. Since the generating relation � of � satis�es the K-

property, so does � (this follows from Lemma 1.8 because every pair �

1

� �

2

contains

an atomic type). Moreover, � is �nite, thus we can apply Corollary 2.5 and check

whether the principal K-type system (F ;�) is positive. 2

In this paper we have examined positive type congruences for the �-calculus. As

shown by P. Urzyczyn in [Urz95] these are equivalent to positive recursive types with

respect to typeability, i.e. a �-term is typeable using positive recursive types i� it is

typeable in a positive K-type system. In this light we have given a new proof for the

decidability of typeability with positive recursive types.

References

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer

Science, volume 2, pages 118{309. Clarendon Press, 1992.

[CC91] F. Cardone and M. Coppo. Type inference with recursive types: syntax and

semantics. Information and Computation, 92:48{80, 1991.

[Gun92] C. Gunter. Semantics of Programming Languages. Structures and Tech-

niques. Foundations of Computing. MIT Press, 1992.

10

[Mar95] M. Marz. Monomorphe Typsysteme des �-Kalk�uls, Juni 1995. Diplomar-

beit, 46pp.

[Men91] N. P. Mendler. Inductive types and type constraints in the second-order

lambda-calculus. Annals of Pure and Applied Logic, 51:159{172, 1991.

[Sta94] R. Statman. Recursive types and the subject reduction theorem. Technical

Report 94-164, Carnegie Mellon University, March 1994.

[Urz95] P. Urzyczyn. Positive recursive type assignment. Technical Report 95-

03(203), Instytut Informatyki, Uniwersytet Warszawski, 1995.

[Wel94] J. B. Wells. Typability and type checking in the second order �-calculus are

equivalent and undecidable. In 9th LICS conference, pages 176{185. IEEE

Computer Society Press, 1994.

11

