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Abstract

This article deals with vector valued differential forms on C'*°-manifolds. As
a generalization of the exterior product, we introduce an operator that com-
bines Hom(&Q* (W), Z)-valued forms with Hom(&*(V), W)-valued forms. We
discuss the main properties of this operator such as (multi)linearity, associa-
tivity and its behavior under pullbacks, push-outs, exterior differentiation of
forms, etc. Finally we present applications for Lie groups and fiber bundles.
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1 Introduction

The C*°(M)-module of differential forms on a differentiable manifold M, which we
will denote by A(M) = @©,Z, A,(M), is an associative exterior algebra with respect
to the exterior or wedge product A. The wedge product can also be extended to
vector valued forms, if V,W,Z denote (finite or infite dimensional) vector spaces
and a bilinear mapping m: V x W — Z is given, we may define a bilinear exterior

product Ap: (AM) @ V) x (AM) @ W) = (AM)® Z) by
(0 @0) Ay (BOw) :=(aAB)@m(v,w) forall o,0€ AM), veV,weW.

If V=RorW =R and m is scalar multiplication, we simply use A instead of A,,.
Also if V' is an algebra with multiplication m: V x V' — V. one uses Ay rather than
Am, €. g., for a LIE algebra g the notation Ay implies m(X, Z) := [X,Y]. Ay turns
the C*°(M)-module A(M) @ V into a (non-associative) algebra. Let d denote the
exterior differentiation of forms, and for a vector field X € D'(M), let 1y denote
the interior product with respect to X and Ly denote the LIE differentiation with
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respect to X', which is given by Ly =1y od+dowy. Then for a, € A,(M)®@V and
weAM)a W,

dlay, Appw) = day Ny w+ (=1)Pa, Ay dw,

tv(ap A w) = xvay, Apw+ (=1)Pa, Ay txw,
Ly(ap Appw) = Lya, Ay w+a, Ay Lyw.
Thus with respect to Ay, d and 1y are skew-derivations of degree 1, resp., —1 of

A(M) @V and Ly is a derivation of degree 0 of A(M) @ V.

Further properties of A,,, resp., Ay depend on m. If m: V xV — V is associative,
then Ay is so, too; if o, € A.(M)®@ V and 8, € A;(M) @ V, then o, Ay 35 =
(—1)*B; Av a, if m is commutative, resp., a, Ay 3s = (—=1)*T 3, Ay o, if m is
anticommutative.

For some applications one needs generalizations of these wedge products, e. g.,
to combine a Hom(®*® W, Z)-valued r-form y; with s W-valued p-forms ¢,. We will
examine the main properties of this Z-valued (r + sp)-form x? e ¢,. In fact, for the
sake of generality, we will consider the case where ¢ also is a Hom-valued form, say
ol € Ay(M) @ Hom(®? V,W). In that case the computations require some multi-
linear algebra and the derived expressions become quite voluminous. Nevertheless,
in many applications, where one or more of the integers p, ¢, r, s are zero, we obtain
more familiar results.

For notational convenience, we will recall the basic definitions from differential
geometry on C'*°-manifolds and multilinear algebra according to HELGASON [4] and
KoBavasHI, NuMIzU [5]. Then we introduce the operator e, look for associativity
(Section 3) and examine its behavior under pullbacks and push-outs (Section 4). In
Section 5 we need to define further operators < and » in order to compute d(y:e¢,),
tx(x2e¢,) and Ly(x2ed,). Finally the last two sections are devoted to applications
for LIE groups and fiber bundles.

2 Basic definitions

For any (real) vector space V' let C*°(M, V') denote the C*°( M )-module of all weakly
differentiable maps from M to V, i. e., all maps f: M — V with wo f € C*(M)
for every linear functional w: V' — R. The C'*(M)-module of all vector fields on M
will be denoted by D'(M). Every vector field X € D'(M) differentiably associates
with every # € M an element X, in the tangent space T,,(M). Next D,(M,V) and
A, (M, V) denote the C*°(M)-modules of all C>°(M)-p-linear, resp., all alternating
C°°(M)-p-linear maps a,: D' (M) x - - x DY (M) — C*(M, V). They associate with
every & € M an element ¢, = (¢, ), in Hom(Q? T,.(M), V), resp., in Alt,(T,(M), V),
where Alt,(W, V) means the vector space of all alternating p-linear maps from W?
to V. The alternations A,: D,(M,V) — D,(M, V) are the canonical projections of
Dp(M, V) onto A,(M,V). We put D.(M,V) := @,2,D,(M,V) and A(M,V) :=
= A, (M, V).

The canonical embedding 1: C*(M)@V — C*(M, V), defined by [i( f@wv)](z) :=

flz)v e Viorall feC®(M), € M and v €V, is injective and induces canonical
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embeddings of D.(M) @ V into D.(M, V), resp., of A(M) @ V into A(M, V).

If V= R” with its natural differential structure then C*°(M, V), resp., A(M, V)
exactly contain the differentiable maps from M to V. resp., differential forms on
M with values in V' and the embeddings are bijective. This enables us to identify
A(M) @ V with A(M, V), etc. Of course, we also identify A(M,R) and A(M), etc.
Omitting 1 we write for Y0 € DY(M), f € C*(M),w € A, (M), € M and v € V:

X(fov) = Xfa, (fouv)(x) = flz)v eV,
dw®@v) == do®@v, (W)X ... X" = WX ..., X") @,
(W@ ) (XL .. X)) = (w@u)(X .. AP (2) = w (XL, ... A Qv e V.

Analogously to Alt,(W, V), the vector space of all symmetric p-linear maps from
W? to V will be denoted by Sym, (W, V). For convenience we define Sym*(W, V) :=
@52, Sym (W, V) by Sym! (W, V) := Sym, (W, V) and Sym (W, V) := Alt, (W, V).

If f: M — N is differentiable, we denote the differential of f at © € M by df,.
We have [df.(X;)]g = Xu(go f) for all X, € T,(M), g € C=(N).

For o € D, (N,V),r € N and X; € T,.(M), the pullback f*a € D,(M,V) is
defined by (f*a)e(X1,..., X,) = ap(dfe(X1), .., dfo(X,)). For a € C®(N,V)
we have f*a := «a o f, linear extension defines the pullback on D.(N, V). Obvi-
ously f*(A(N,V)) C A(M,V) and — if we insert D.(M) @ V into D.(M,V) —
A (DN)@V)CD(M)@V and fFLAIN)2 V) CAM)o V.

If f is a diffeomorphism then for X € D'(M) the push-out f.X' € D'(N) is
defined by (fiX') sy = df(X,) for all x € M.

Let T (V) denote the tensor algebra of V. Then every linear map A:V — W de-
fines a pullback A*: Hom(T (W), Z) — Hom(T (V), Z): for K € Hom(®* W, Z) and
X; € V owe have A*K(Xy,...,X,) := K(A(X1),...,A(X,)), so A*(Sym* (W, Z)) C
Sym*(V, Z). Ao: Hom(T(Z),V) — Hom(T (Z), W) is defined by A, K = Ao K, thus
also Ao(Sym*(Z,V)) C Sym*(Z, W).

Finally A defines the push-out A:D.(M,V) — D.(M,W) by Ayw = A o w.
Again AL(AM, V) CAM, W) and A (D.(M)@V) CD.(M)@ W, where we have
A(a®@v)=a®@ A(v) for all « € D(M), v € V.

Pullbacks and push-outs obey (f o ¢)x = fi0gs, (fog)" =g o f*, which one
may prove using the chain rule d(f o g). = dfy() o dg... We have:

Lemma 2.1 If f: M — N s differentiable, A:V — W and G: X — Y linear,
a,fEAN)QV, ve AN)aW,we AN) and K € Hom(T (W), X) then

1. f* and Ay commute: f*(Aa) = A(f ), analogously A*(GoK) = Go(AK);
2. f* and A, commute with d: d(f*a) = f*(da), d(Aa) = Ai(da);

3. [flwAha)=(fw)A(fa), Aw A a)=wA (Aa);
4. o Nmy) = () Am (f), for any bilinear m:V x W — Z;
5. M(a Ay B) = (Aa) Aw (AB), if in addition A o ¢y = dw o (A x A), thus A,

is an algebra homomorphism, if A is one.



Definition 2.2 For any \: € A.(M,Hom(®°’W, 7)), where s € N, r € Ny, and
F; € Hom(@Q*V,W), 7 =1,...,s, we define Y1 € A.(M,Hom(®**V, Z)) by

P = [(F @ - @ F) e
Thus if x5 € A, (M) @ Hom(®* W, Z) then 1T € A, (M) ® Hom(®*V, 7).

Since (F} @ -++ @ F,) € Hom(®* V, Q! W), xFr--Is (X1, ... A7) is well defined.
It is multilinear in F}: for all A\, € Kand all j <

Py AFy 4 F

Note that if ¢ =0 and E; € W, then (E; ®---® Fj) is just the canonical evaluation
morphism and yZv-Fs € A.(M,V) is the push-out of y? under this morphism:

r

BB = (B @ -+ @ By )yxPy i e, forallz € M and X' € DY (M), i =1,...,7r,
(B (XL XD = (B @ @ By o (X)e( XL L&D,
Now we are prepared for the definition of the operator e:

Definition 2.3 Forx; € A,(M,Hom(®* W, 7)) and ¢? € A,(M)@Hom(®*V, W),
poq,r, s —1 €Ny, let &%, € Drys,(M,Hom(®* V., 7)) with

r4sp

(XN TP () =

[XGU(‘Xxlv s 7')(9:)] o [le’(‘)(a:—l_lv s 7‘X;+p) Q- qbl’(‘)(;-l—(s_l)p-l—l? SRR ‘X;—I_Sp)]

for all x € M and define x; @ @1 1= A, ysp(drysy) € Argop(M, Hom(®™V, 7).
Xl e ol = XY and linear extension defines x ® ot € A(M,Hom(T(V),Z)) for all
x € A(M,Hom(T (W), Z)).

In other words, the operator e means the following: for any 2 € M and X* €
DY M), x.(X], ..., X") defines an element in Hom(®® W, 7). Instead of using s vec-
tors in W as input for this map, we may also use s maps in Hom(®? V, W) as input
to obtain an element in Hom(®** V, 7). But again for any x € M and Y € DY(M),
(YL, ..., VP) defines such a map in Hom(®?V,W). Altogether the combination
of x and s factors ¢ defines an element &%, € D, ., (M,Hom(®* V,7)). Using
the alternation A, y,,, we finally obtain a form in A, ;,,(M, Hom(Q* V, 7)).

As was said before, o is a generalization of the wedge product. The following

lemma, whose proof is straightforward, makes this more transparent:

Lemma 2.4 Forp,q,r,s —1 € Ny and ¢ = f: ¢ @ F; € A, (M) @ Hom(®*V, W),

=1

pedt= D UTTTEAGTA AP

11 yeenyts=1

Thus if x; € A.(M)@Hom(Q* W, Z) then also x; 091 € A, sp(M)@Hom(Q V, 7).
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Lemma 2.4 proves that if p is even and ¢ = 0, then only the symmetric part of
X, counts: x’ e gbg = (Sym,x?) e qbg. On the other hand, if p is odd, Lemma 2.4
yields:

Lemma 2.5 For p,q,r,s —1 € No, p odd, and ¢} =377, &' @ F;, we have

Nedh = Y Y

1§21<<25Sm PESs

_ e e i A LA s
> S (=1)" xr ANGTA- NP

1< < <is<m “p€ES,
Thus x; 8¢l = 0 if s>m; if V and W are finite dimensional and s >dim W (dim V)4,
then x; o ¢7 =0 for all $7 € A,(M) @ Hom(®*V,W).

Proof. ¢' A ¢' = 0, because p odd, and dim Hom(®? V, W) = dim W (dimV)?. O

Recall Sym® for ¢ = +. If x € A(M,Sym*(W, 7)) (e. g., if x = x? with s =0, 1),
it is quite natural to ask for a resulting form y e ¢ € A(M,Sym*(V,Z)). We can
achieve this by the push-out (Sym®),(y e ¢Z). Define

(= (=1)" = 41, (2)

then the following lemma holds:

Lemma 2.6 Forp,q,r,s—1€Ny, ¢ =372, ¢' @ F; € A,(M)@Hom(®?V, W) and
X2 € A (M,Sym$ (W, 7)), we have

m

s Fiiosy I i i
(Syqu)*(Xr o Qb;) = Z (Symzq)*(xr ! ) A qb LA A Qb <
iLyeie=1
if (_1)p = §q+1 =—1: = sl Z Sym Fil """ F’) A ¢i1 A A ¢is7
1< <<t <m

if s>1 and ( =—1: = 0.

Proof. The first equation is trivial from Lemmas 2.4 and 2.1.3. Now for s > 1,
qbil/\.../\qbij/\.../\qbik/\ /\qb ( )¢21A AqbikA...AqbijA...Aqbisand

Fiieoy Fi Fi e I Fiiyeusy Fi e Fi I
(SymS, )00 77T ) = T Symg ) (T T ) (3)
Fiiosy Fi ., Fi oy F; . . .
yield (SymS )x(xr 7T A G A AT A AGE A AP =
Fiieoy Fi oy Fi o, F;, . . . .
= 0 (Sym$ ) (T A QA NG A A A NG (4)
Thus evaluating )~ ¢ in (1) proves the rest. O
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3 Associativity

In general, o is not associative. Yet the terms x} o (x] @ ¢7) and (x} e x;) ® ¢7 only
differ (at most) by a sign, as the following proposition states:

Proposition 3.1 Let ) € A,(M,Hom(®" X,Y)), i € A, (M) @ Hom(Q* W, X)
and ¢f € A,(M) @ Hom(®* V, W) for p,q,r,s,t,u € No. Then

ke (yD 0 6) = (— 1) (k2 e \7) 081 € Auturrausy (M, Hom(®" V,Y)). (5)

Proof. Let x} =3>"_, ! @ G and o=, &' @ F;. By Lemma 2.4 we find

Ky ® (Xi ° qu Z Z o(Fiyy @@F; )Gy o(Fiy, @QF; ) A
Jlseendu=1 11,000l u_l
/\le/\ﬁbm "'/\le’l/\“'/\Xj“/\qbilu/\---/\qbisu7
while (li? ° Xr Z Z ..... Gy, )tFill ..... Fiqes FyeFisn A

Jlseensdu=1 11,078 u—l

/\X]1/\---/\X]“/\qbi“/\---/\qbi“/\---/\qb““/\---/\qb““.

NOVV X]l/\qbill /\AQbZSl/\/\X]u/\Qb“u/\/\QbZM —
— (_1)])7’5(1+2+...+(u—1)) le /\ /\X]u /\qbill /\ /\ qbisl /\ /\qbilu /\ /\ qbisu
u(u—l) . . . . . .
= (=) T NTPA - AYTEAGT AN NG A AT A A B

On the other hand (F;,, @---®@ F;, @- -®FM @@ F ) o(G, @ -G, ) =
[Gjo0(Fi, @@ F,_),....,Gj, 0(F,, @@ F;_, )", so both r-expressions are

identical for each set of indices. O
Corollary 3.2 Ifr € A(M,Alt(X,Y")), then for p,q,r or s even:

ke (x; o)) = (rkex;)ed. (6)

Proof. Whenever for a £} in (5) prs =) g odd, r+ sp and sq are even and u > 1,
thus the left side of (5) vanishes by Lemma 2.6. D

In most applications, ¢ will be zero and thus « e (2 e qbg) and (ke ) e gbg are
identical. Nevertheless note that this does not hold for expressions that involve three
operators e: according to Proposition 3.1, [k e (y; e ¢?)] e £ and [(x e x7) @ ¢7] @ &
will differ, in general.

4 Behavior under pullbacks and push-outs

Now we are looking for the behavior of e under the various pullbacks and push-outs
we defined in Section 2. Due to the following lemma, we find that this behavior is
canonical:



Lemma 4.1 Let M, N be C*-manifolds and V,W,Y, Z vector spaces.
1. If f: M — N is differentiable and x € A(N,Hom(T (W), 7)) then

(V) € A(N)@Hom(®'V, W) f*(xed]) = (f*x)e(f*¢]) € A(M, Hom(T(V), Z));

2. If A:W =Y is linear and x € A(M,Hom(T(Y), Z)) then

(Vo) € Ay(M)@Hom(®*V, W) xo[(Ao).0f] = [(A*).x]e¢} € A(M, Hom(T (V), Z)),
(V0, € A, (M) @ W) xo(Ab,)=[(A").x]e0, € AM, Z);

3. If B:Y = Z linear and x € A(M, Hom(T(W),Y)) then

(Vo € Ay (M)2Hom(®V, W) (Bo)«(xe]) = [(Bo).x]e¢) € A(M, Hom(T (V). Z)),

VO, € A, (M) W) Bdxeb,) =[(B)x]eb, c AM,Z).

Analogous results hold for (anti)symmetrized forms in A(M,Sym*(W, 7)), ete. If in
1. we have x € A(N)@Hom(T (W), Z), the result will be in A(M)®@Hom(T (V), 7),

etc.

Proof. 1. follows from Lemmas 2.1 and 2.4; 2. and 3. are easily proved directly
or by Proposition 3.1: let a5 := 1 ® A € Ao(M) @ Alty(W,Y), then [(A,).¢!] =
aj e 3 and [(A*).x] = x  aj; analogously with bj := 1 @ B € Ao(M) @ Alty (Y, Z),
[(Bo)«x] = bs ® X, which is well-defined in this special case. O

5 The operators € and »

Let us check (multi)linearity now. Obviously x e ¢f is A(M)-linear only in y.
Moreover, if x € A(M,Hom(®* W, 7)), then

xe(fap)=/" (xeqy)  forall feC™(M). (7)

In addition, we would like to give an expression for x e (¢ +17). First we observe
that every x2 € A,.(M,Sym$(W, 7)), ¢ = £, naturally defines

Xﬁ/;sn € A.(M,SymS, (W, SymS. (W, Z))) for all s s" € Ny, s’ + 5" =s. (8)

For any such combination of s" and s”, x; (¢4 + +f) will contain terms, where s’
factors of ¢f and s” terms of ¥ serve as input for x;. In order to cover this situation,
we need the following two definitions.

Definition 5.1 For 2" € A.(M, Hom(@sl W’,Hom(@sn W" 7)), s,s" € N,
r € Ny, and any G; € Hom(Q* V. W’), i = 1,...,s', H; € Hom(Q*V,W"), j =
1,...,8", we define:

NG = (G @ @ Gl € A(M, Hom(®" V. Hom(® W, )
xF = (@ - @ Hon) ol ™ € A (M, Hom (@ W', Hom(®*"" V, 7))
If 2" € A(M) @ Hom(®" W', Hom(®" W, Z)) then """ e A(M)®
Hom(®*V, Hom(Q®"" W, Z)), x+ """ e A, (M)@Hom(®" W', Hom(®""1 V, Z)).
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Definition 5.2 For any y**" € A.(M,Hom(®* W’,Hom(®*" W",Z))) and any
¢ € A(M) @ Hom(®"V, W'), where p,q,r,s',s" € Ny, let 7' := Hom(®*" W", Z)
and Y2 =" € A (M, Hom(@sl W' Z")), and define

X A dl =X 01 € Arpyp(M, Hom(®1 V, Hom(®* W, Z))).
Be 1 € A,(M)@Hom(@Q*V, W") and j: ®* W' — [Hom(®* W', Z) — Z] the eval-
uation morphism. Define Xﬁ/””bd)g €A yo,(M, Hom(@sl W', Hom(@an V,Z))) by

', //

e @ 0w ) (¢ e sg) = Dl @ @) e v or all whe W

Thus for v € A.(M,Hom(®*W, 7)), the direction of the triangle indicates
whether the second form is used as input for the first s’ or the last s” factors in
V(X A7) € Hom(®° W, 7).

Analogously to Lemma 2.4, we obtain for the new operators:

Lemma 5.3 Using the notation of the previous definitions, we have

sl = Gy oGy 38" ] o ) . /
e <¢; _ Z erl I ANGN NP qub;:Zgb]@Gj,
J1gee ] i=
s 5 g _ m s Hk17 7Hk o k1 kQ// . q __ S k H
Xp el = Z AYTN - NN f g =S )t @
k17 7k k=1

X4 € Ay (M) @ Hom(@ V, Hom(® W, Z)) and x;*" Wiy € Ay oy (M)
Hom(® W', Hom(®"" V, 2)) if x7" € A.(M) @ Hom(®" W', Hom(®"" W, Z)).

Thus the terms in the sums for (y2* <¢q )0, resp., (" >0 ) 4, contain
exterior products of s’ p/-forms ¢’ in front of 5" p'-forms ¢*, resp., s p’-forms ¥* in
front of 5" p'-forms ¢’. As a consequence, (Y***" < o)l and (x] o5 Vi) 4P,

//////

differ by a factor (—1)P?"**

Lemma 5.4 Let y*#", ol and )y be defined as before. Then

[N

(X2 4ol )l = (=17 (S el ) 48 € Ay gy (M, Hom(®*V, 7))
For 2 € A.(M,SymS(W, Z)) with ¢ = &+ and 2" from (8),

(Syms, O™ ) b ] = S (Syms ) [ w 6) )
Proof. With the previous notation, the first two terms are both equal to

G,l,...,GiS,;H,'S,_l_l,...,His,_l_s,, i i Gy T
Zzl, ’Z/-I-”er /\Qb /\/\qb,/\ql),-p A"'A¢L+L7

< Gzl’ 7Gis/7HiS/+17~~~7His (q-I-l 11 Hz sy
(Symsq)*(xr ) =< (Sym ) (X )

from (3) proves the second equation. O

Histilv"'vGiQ/



With these new operators we can evaluate at least the (anti)symmetrized forms
(Symg, )«[x; @ (¢ + ¥7)] (recall that this means no restriction for ¢ = 0). To this

purpose, we also introduce generalizations (Z)i of the ordinary binomial coefficients:

s s s 0, if s even and k odd, .
(k)+ - (k) (k) = (), else for r € R, 1] s= max{z <5},
Note that (Z)i = (Sjk)i as before.

Proposition 5.5 Forp,q,r,s € Ny, let I, 91 € A, (M) @ Hom(®* V., W) and x; €
A (M, Sym§(W, Z)). Define { as in (2). Then  (Syms,).[x; e (o7 +11)] =

S

—2() (Syms, [0 g = 2= P (3) (Syms, )L 1) 4]

= 3 (5), v, LI ] = D=1 () (S )L ) 4]

k=0

Whenever (Syms, ).[x; ® (¢ +f)] is nonzero according to Lemma 2.6, (Z)Z = (Z)

Proof. The equations are trivial for s = 0 and s = 1, so assume s > 1. Let

¢ = Y, & @ Fyand 7 = Y7 o' @ Fy. Then with i = (Syms, ). (y, "),

(Sym$, )« (X7 @ (& +¢7)) = Z XA ) A A (g 4 ), and

1] yeenyte=1

(Sym$, ). [(xi* " agl)ppd] = Z VA G A A G AP A A

1] yeens zq—l

We proceed by induction on s. Thus (Symj,).(x; e (¢2 + 7)) =

m

= 2 (Symi ) (Symi,_y,)(x; P e (@8 + ) A (6 + )

— Z_:( ) Z X:} ..... is A¢i1A"‘A¢ikA¢ik+lA"'A¢is_lA(¢iS+¢is)
k=0 1] 4eete=1

— Z [(s;l)z T (5= k(s 1) Z ~21 ..... is LA A qbzk A ¢ik+1 Ao A ¢i57
k=0 0] geens zq—l

where we have used (4). Recursion (Z)Z = (Sgl)é + 75~ k(z 1) proves the formulae

for (Z)[ Lemma 5.4 and interchanging ¢ and ¢ finally yield the rest. O
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6 Exterior derivative, interior product and Lie
derivative

Finally we will also derive formulae for the exterior derivative of x; e¢?, as well as for
its interior product and its LIE derivative with respect to a vector ﬁeld X € DY(M).
Let us start with the (anti)symmetrized forms.

Proposition 6.1 Let ¢f € A,(M)®@Hom(@?V, W) and x; € A.(M)®Sym{(W, Z)
for p,q,r,s € Ng. Define (i)é as in (9). Then  d[(SymS,).(x; e ¢%)] =

= (Sym$, ()i e @2l + (=17 (3), (Syms, ) [(x1" " < (do)iyr) » o]
= (Symg, Ll(d)i 0 @2 + (=100 (5) (Syms, ) [0 «6) e (do)h].

Proof. With the notation of the previous proof, Lemmas 2.1 and 2.6 yield

ASyms, ) e d)] = 30 AT AGA A G
T yeen t1s=1
+ Z Z T’-HUJ 1;21 ..... is/\qbil/\"'/\Qbij_l/\dqbij/\qbij-l-l/\“'/\qbis _
7=1 1,..., zq_l
= (Symi ()i e @2+ (=1 X ETNR At A G A A
7=1 41,..., t1s=1

m

= (Symi ) l(d)zp e o+ (17 (), X Wt AdST AGE A NG

L1 geeey ts=1

where we used (2) and (3) in the second step. Lemma 5.4 proves the rest. O

Since we only used the fact that d is a skew-derivation of A(M ), Proposition 6.1
also holds for ¢y instead of d, and for Ly, if one drops (—1)". Tracing the previous
proof we get for the general case:

Corollary 6.2 If x; € A.(M)@Hom(®* W, Z7), ¢ € A,(M)®Hom(@V, W) and
X € DY (M), then

|
—

S

d(x; e ¢y) = (dx)ipedp+ (=1)

(]

(=1)7[O" ™ )77t a(dd)j ] » ¢,

0

(o)) = ()ioge ¢+ (1) 2= [0 aep) T (b)) e o,

7=0

Ly(x:e¢l) = (Lyx): ¢q+2 NI )T 4 (Lyd)l] gl

.
w |
|
-
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7 Lie groups and Lie group actions

Suppose (i is a LIE group with LIE algebra g and adjoint action Ad: G — Gl(g). If A,
and p, denote multiplication with ¢ € G form the left, resp., from the right, then the
canonical left, resp., right invariant 1-forms ©F € AL(G, g), resp., OF € AX(G, g)
are given by

OL(X,) == dA1 (),  OF(A) :=dp,-1(X,) forallg e G, X € DG).

Both are connected via @R Ad(g) o @5. Using e we can get rid of the argument ¢
and may write this 1dent1ty as OF = Ad 6O,

For S = L, R, let ¥°: Alt,(g, V) — Ag(G, V') denote the isomorphisms between
the vector spaces of alternating p-linear maps on g” and of left, resp., right invariant
p-forms on G (where the inverse morphisms are the evaluation at the identity e € 7).
Then © = ¢%(idy) and if 1 € C°°(M) denotes the constant map onto 1 € R (here
M = @) then ¥* is given by

VI(K)=(12K)e0° c A5(G,V)  forall K € Alt(g,V). (10)
Note that for any linear A: V' — W, Lemma 4.1.3 combined with (10) yields
AP (K)=AMJ10 K)e0°] =10 (AK)] 0O = (A K) € A%(G,W).

For any manifold M, C*(M, ) is a group with respect to pointwise multiplica-
tion and inversion. For any differentiable f, g: M — G, the expressions f-g and f~1
are understood within this group. From Lemma 4.1.1 we obtain for the so-called
left and right differential of f € C*(M, G):

708 = (Adof) e ['OF, [0 = (Adof ™) [OR.
Moreover, the generalized product rule d(f - 9). = (dpy()) s@)dfe + (AN f(2)) g()d92
for all x € M yields the following relations:

(f-g)0" = (Adog™)e frO" + g70",

)
(f-9)O" = [OF +(Adof)eg O
(f1yet = —(Adof)e fr0r = —fof
(f—l)*G)R _ _(Adof—l).f*G)R _ —f*G)L.

Now (10) and Lemma 4.1.1 yield for K" € Alt(g, V):

(f-g)"(K) = (1o K)e[(Adog™")e [0 + 470,
(f-g)¢"(K) = (1@ K)e[f0F +(Adof) e g"OT].
(In addition, (f=1)yE(K) = (=1)P f*(K) if K € Alt,(g,V).)

Again for S = L, R and any manifold P let S:G x P — P denote a left, resp.,
right LIE group action. (For notational convenience, we write G on the left, even
for a right action.) Thus if S;(p) := S(g,p) then all S;: P — P are diffeomorphisms
and we will identify S with S: G — Diff(P). We put sgn(S5) = —1 for S = L and
sgn(S) = +1 for S = R. Then the following lemma holds:
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Lemma 7.1 Let S:G x P — P be a LIE group action and L': G — GI(W) be a left
representation. If ¢, € A.(P) @ W and x € A(P,Hom(T (W),V)) are equivariant
in the sense that Sye, = L'(g~ (%)) o, and Six = (L'(g*"ON) %) x for all g € G,
then y ® ¢, is itnvariant.

Proof. Sy(xep,) = (S;x)e(Sip,) =xe [(L’(gsgn(s))*)*Sgcpr] = x ® ¢,, where the
first equality follows from Lemma 4.1.1 and the second from 4.1.2 O

Every representation S: G — GI(V') induces a representation s = dS.: g — gl(V)
of the LIE algebra such that S oexp X = ) for all X € g. As for S, we will
identify s = [,r with the induced bilinear mappings s: g x V. — V. We have the
following relations for all g € G, X € gand v € V:

s(X, S(g,v)) = S(g,s(Ad(g*#") X, v)), S(g,s(X,v)) = s(Ad(g~*¥")X, S(g,v))
and thus obtain:

Proposition 7.2 Let S: G — GI(V) be a representation and s:g x V. — V be the
induced bilinear map. Then for any differentiable f: M — G and formsw € A(M, g)
and p € AM)®V,

(Sof)e(whsd) = [(Adof~*8 ) ew] A, [(Sof)ed], (11)
di(Sof)ed] = (Sof)e(f O A ¢+ do). (12)

Proof. Only (12) still needs to be proved. For S = L, observe that for all g € G,
Lo, = )\j:(g) o L with )\/L(g): GI(V) = GI(V): A — L(g) o A. For any vector field
X € DY(M) and « € M, this yields [d(L o f)]X(x) = dLj) 0 dApo)(f5O). X,
Arsay 0 Lo (f705),X,, and thus [d(L o f)]e¢ = (Lo f) e (f*OL A; ¢). Now (1

follows from Proposition 6.1. Analogous arguments hold for S = R.
As a corollary, we get for any f € C*(M,G) and all w,¢ € A(M,g),

(Adof)e(wAgd) = [(Adof)ew]Aq[(Adef)ed] (13)
d(Adof)ed) = (Adof)e (0% Ao+ do). (14)

In all cases, the operator e leads to a quite compact notation, since we need not
refer to the points ¢ € G nor the vector fields that the forms act on.

O

8 Fiber bundles and connections

Let P(M, () denote a principal bundle with base manifold M = U,c4 Us, pro-
jection m: P — M, fiber G, right action R: P x G — P and local trivializa-
tions ;7 (U,) — U, x G with local projections 7, = prgoth,. Recall that
any connection I' on P defines horizontal and vertical projections of vector fields,
not only on P, but also on every associated fiber bundle B(M, F,G) = P xg F
with fiber I, such that the vertical fields are tangential to the fiber. We thus obtain
projections h, v of differential forms via

Wh(..., X% ) i=w(...,hX", .. ), wol. X ) = w( XL
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for all w € A(B,V). Obviously h and v commute with e, <« and »: e. g. for
X € A(B,Hom(T (W), Z)) and ¢? € A,.(B) @ Hom(Q*V, W),

(xe i)k =xheglh,  (xedljv=xvedlv.
Let d*: A(P) @V — A(P)h @V denote the exterior covariant differentiation on P,
which is defined by d'w := (dw)h. Then we immediately obtain from Corollary 6.2:

Proposition 8.1 For differential forms x; € A.(P) @ Hom(®* W, Z) and ¢! ¢
A,(P) @ Hom(®?V, W),

d'(x; e dp) = (d X)i @ dfh + S (1 Gph) T «(d 9) ] » S3h.

i=0

Let o' € Ai(P,g) and QF = d"w" € Ay(P,g) denote the connection 1-form,
resp., the curvature 2-form of I'. Both are equivariant with respect to R and Ad.

If 0, 0: U, — 77 4(U,) are the local sections given by o, () := ¥ (z,€), then the
gauge potentials A® and the gauge fields F* are given by

A% =07 (wr|7r_1(Ua)) e AUy, 9), F* .= 0';76(QF|W—1(UQ)) € Ay (Usyg). (15)

e

On the other hand, the collection of A% and F* determines w' and Q':
wF|7r_1(Ua) = (Ador ') e (7*A%) + 170, QF|W_1(UQ) = (Ador ") e (7" F*) (16)

(recall that 7 ': U, — G means the pointwise inverse). On all U,5 := U, N Uz # 0,
the transition functions g.g: Uss — G are given by gos = (Talv,,) © (05.|v.;) such
that g, = gﬁ_; Using (15) and (16) we may compute the behavior of the A* and
F< under a change of the local trivialization. In our compact notation we obtain:
A, = (Adogas) @ A%y, + 95,07 = (Adogas) & (A7|y,, — g540"), (17)
Fa|Uaﬁ = (Ad Ogaﬁ) d F5|Uo¢ﬁ (18)
Since the gauge potentials and the gauge fields play an important role in all field
theories in theoretical physics, these formulae prove to be very useful for all com-
putations in those field theories like electromagnetism, YANG-MILLS theories, etc.

Of course these formulae are not new, only the notation is new. Also note that
equations (13) to (16) prove that the so-called field equations

1
F* = dA® + §Aa Ng A” and dF® = —A" Ny F°
are equivalent to the structure equation and BIANCHI’s identity,
1
Q" =do' + §wF Agw' and  d'OQN =dQ" + 0" A Q" =0

Finally, we may also use e for the definition of characteristic classes of a principal
bundle, cf. GREUB, HALPERIN, VANSTONE [1]. Let C € Sym,(g,F) with F =R, C

13



be invariant under Ad*. Then (1 ® C) € C*°(P,Sym,(g,F)) is equivariant and thus
(1@ C)eQl € Ay (P, F) is invariant under R according to Lemma 7.1. Since it is
also horizontal, it is a pullback of a form “C' e F”€ Ay, (M, F). (The notation C e F
reminds to the fact that on U,, this form is given by (1@ C)eF* with 1 € C*°(U,).)
C oI defines a characteristic cohomology class of P. In fact, because 7*od = d" o™,
we obtain from Proposition 8.1 and BIANCHI’S identity that d(C e F) = 0. (Recall
that [C' e F] € H*(M,TF) is invariant of the special choice of connection, cf. [1,
p. 264].)

In all these applications, we have r = 0 in Definition 2.3. Further applications
for LIE transformation groups and fiber bundles that involve r # 0, are given in
[2] and [3]. E. g., the operator e is essential for the local description of vertical
forms on a fiber bundle. Using Lemma 7.1, one can prove ([3]) that for any G-
equivariant form y € A(F,Hom(7 (g), V), the combination of its local vertical pro-
jections (7% y)v™ and the gauge fields defines a global form on the bundle B(M, F, (i),
since on the overlaps,

[(m)v”] o (7" F7) = [(mox)v°] o (7°F?).

Finally, Corollary 6.2 is needed to compute the exterior derivative of this global
form, cf [2].
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