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Abstract

This article deals with vector valued di�erential forms on C

1

-manifolds. As

a generalization of the exterior product, we introduce an operator that com-

bines Hom(

N

s

(W ); Z)-valued forms with Hom(

N

s

(V );W )-valued forms. We

discuss the main properties of this operator such as (multi)linearity, associa-

tivity and its behavior under pullbacks, push-outs, exterior di�erentiation of

forms, etc. Finally we present applications for Lie groups and �ber bundles.
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1 Introduction

The C

1

(M)-module of di�erential forms on a di�erentiable manifold M , which we

will denote by A(M) =

L

1

p=0

A

p

(M), is an associative exterior algebra with respect

to the exterior or wedge product ^. The wedge product can also be extended to

vector valued forms, if V;W;Z denote (�nite or in�te dimensional) vector spaces

and a bilinear mapping m:V �W ! Z is given, we may de�ne a bilinear exterior

product ^

m

: (A(M)
 V )� (A(M) 
W )! (A(M)
 Z) by

(�
 v)^

m

(� 
w) := (� ^ �)
m(v;w) for all �; � 2 A(M); v 2 V;w 2 W:

If V = R or W = R and m is scalar multiplication, we simply use ^ instead of ^

m

.

Also if V is an algebra with multiplication m:V � V ! V , one uses ^

V

rather than

^

m

, e. g., for a Lie algebra g the notation ^

g

implies m(X;Z) := [X;Y ]. ^

V

turns

the C

1

(M)-module A(M) 
 V into a (non-associative) algebra. Let d denote the

exterior di�erentiation of forms, and for a vector �eld X 2 D

1

(M), let {

X

denote

the interior product with respect to X and L

X

denote the Lie di�erentiation with

�
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respect to X , which is given by L

X

= {

X

� d+ d � {

X

. Then for �

p

2 A

p

(M)
V and

! 2 A(M)
W ,

d(�

p

^

m

!) = d�

p

^

m

! + (�1)

p

�

p

^

m

d!;

{

X

(�

p

^

m

!) = {

X

�

p

^

m

! + (�1)

p

�

p

^

m

{

X

!;

L

X

(�

p

^

m

!) = L

X

�

p

^

m

! + �

p

^

m

L

X

!:

Thus with respect to ^

V

, d and {

X

are skew-derivations of degree 1, resp., �1 of

A(M)
 V and L

X

is a derivation of degree 0 of A(M)
 V .

Further properties of ^

m

, resp., ^

V

depend onm. Ifm:V �V ! V is associative,

then ^

V

is so, too; if �

r

2 A

r

(M) 
 V and �

s

2 A

s

(M) 
 V , then �

r

^

V

�

s

=

(�1)

rs

�

s

^

V

�

r

if m is commutative, resp., �

r

^

V

�

s

= (�1)

rs+1

�

s

^

V

�

r

if m is

anticommutative.

For some applications one needs generalizations of these wedge products, e. g.,

to combine a Hom(

N

s

W;Z)-valued r-form �

s

r

with s W -valued p-forms �

p

. We will

examine the main properties of this Z-valued (r + sp)-form �

s

r

� �

p

. In fact, for the

sake of generality, we will consider the case where � also is a Hom-valued form, say

�

q

p

2 A

p

(M) 
 Hom(

N

q

V;W ). In that case the computations require some multi-

linear algebra and the derived expressions become quite voluminous. Nevertheless,

in many applications, where one or more of the integers p; q; r; s are zero, we obtain

more familiar results.

For notational convenience, we will recall the basic de�nitions from di�erential

geometry on C

1

-manifolds and multilinear algebra according to Helgason [4] and

Kobayashi, Numizu [5]. Then we introduce the operator �, look for associativity

(Section 3) and examine its behavior under pullbacks and push-outs (Section 4). In

Section 5 we need to de�ne further operators J and I in order to compute d(�

s

r

��

p

),

{

X

(�

s

r

��

p

) and L

X

(�

s

r

��

p

). Finally the last two sections are devoted to applications

for Lie groups and �ber bundles.

2 Basic de�nitions

For any (real) vector space V let C

1

(M;V ) denote the C

1

(M)-module of all weakly

di�erentiable maps from M to V , i. e., all maps f :M ! V with ! � f 2 C

1

(M)

for every linear functional !:V ! R. The C

1

(M)-module of all vector �elds on M

will be denoted by D

1

(M). Every vector �eld X 2 D

1

(M) di�erentiably associates

with every x 2 M an element X

x

in the tangent space T

x

(M). Next D

p

(M;V ) and

A

p

(M;V ) denote the C

1

(M)-modules of all C

1

(M)-p-linear, resp., all alternating

C

1

(M)-p-linear maps �

p

:D

1

(M)�� � ��D

1

(M)! C

1

(M;V ). They associate with

every x 2M an element �

x

= (�

p

)

x

in Hom(

N

p

T

x

(M); V ), resp., in Alt

p

(T

x

(M); V ),

where Alt

p

(W;V ) means the vector space of all alternating p-linear maps from W

p

to V . The alternations A

p

:D

p

(M;V ) ! D

p

(M;V ) are the canonical projections of

D

p

(M;V ) onto A

p

(M;V ). We put D

�

(M;V ) :=

L

1

p=0

D

p

(M;V ) and A(M;V ) :=

L

1

p=0

A

p

(M;V ).

The canonical embedding �:C

1

(M)
V ! C

1

(M;V ), de�ned by [�(f
v)](x) :=

f(x)v 2 V for all f 2 C

1

(M), x 2M and v 2 V , is injective and induces canonical

2



embeddings of D

�

(M)
 V into D

�

(M;V ), resp., of A(M)
 V into A(M;V ).

If V

�

=

R

n

with its natural di�erential structure then C

1

(M;V ), resp., A(M;V )

exactly contain the di�erentiable maps from M to V , resp., di�erential forms on

M with values in V and the embeddings are bijective. This enables us to identify

A(M)
 V with A(M;V ), etc. Of course, we also identify A(M;R) and A(M), etc.

Omitting � we write for X

(i)

2 D

1

(M), f 2 C

1

(M), ! 2 A

p

(M), x 2 M and v 2 V :

X (f 
 v) := Xf 
 v; (f 
 v)(x) := f(x) v 2 V;

d(! 
 v) := d! 
 v; (! 
 v)(X

1

; : : : ;X

p

) := !(X

1

; : : : ;X

p

)
 v;

(! 
 v)

x

(X

1

x

; : : : ;X

p

x

) := (! 
 v)(X

1

; : : : ;X

p

)(x) = !

x

(X

1

x

; : : : ;X

p

x

)
 v 2 V:

Analogously to Alt

p

(W;V ), the vector space of all symmetric p-linear maps from

W

p

to V will be denoted by Sym

p

(W;V ). For convenience we de�ne Sym

�

(W;V ) :=

L

1

p=0

Sym

�

p

(W;V ) by Sym

+

p

(W;V ) := Sym

p

(W;V ) and Sym

�

p

(W;V ) := Alt

p

(W;V ).

If f :M ! N is di�erentiable, we denote the di�erential of f at x 2 M by df

x

.

We have [df

x

(X

x

)]g = X

x

(g � f) for all X

x

2 T

x

(M), g 2 C

1

(N).

For � 2 D

r

(N;V ); r 2 N and X

i

2 T

x

(M), the pullback f

?

� 2 D

r

(M;V ) is

de�ned by (f

?

�)

x

(X

1

; : : : ;X

r

) = �

f(x)

(df

x

(X

1

); : : : ; df

x

(X

r

)). For � 2 C

1

(N;V )

we have f

?

� := � � f , linear extension de�nes the pullback on D

�

(N;V ). Obvi-

ously f

?

(A(N;V )) � A(M;V ) and | if we insert D

�

(M) 
 V into D

�

(M;V ) |

f

?

(D

�

(N) 
 V ) � D

�

(M) 
 V and f

?

(A(N)
 V ) � A(M)
 V .

If f is a di�eomorphism then for X 2 D

1

(M) the push-out f

?

X 2 D

1

(N) is

de�ned by (f

?

X )

f(x)

= df

x

(X

x

) for all x 2M .

Let T (V ) denote the tensor algebra of V . Then every linear map �:V ! W de-

�nes a pullback �

?

: Hom(T (W ); Z)! Hom(T (V ); Z): for K 2 Hom(

N

p

W;Z) and

X

i

2 V we have �

?

K(X

1

; : : : ;X

p

) := K(�(X

1

); : : : ;�(X

p

)), so �

?

(Sym

�

(W;Z)) �

Sym

�

(V;Z). �

�

: Hom(T (Z); V )! Hom(T (Z);W ) is de�ned by �

�

K = ��K, thus

also �

�

(Sym

�

(Z; V )) � Sym

�

(Z;W ).

Finally � de�nes the push-out �

?

:D

�

(M;V ) ! D

�

(M;W ) by �

?

! = � � !.

Again �

?

(A(M;V )) � A(M;W ) and �

?

(D

�

(M)
V ) � D

�

(M)
W , where we have

�

?

(�
 v) = �
 �(v) for all � 2 D

�

(M), v 2 V .

Pullbacks and push-outs obey (f � g)

?

= f

?

� g

?

; (f � g)

?

= g

?

� f

?

, which one

may prove using the chain rule d(f � g)

x

= df

g(x)

� dg

x

. We have:

Lemma 2.1 If f :M ! N is di�erentiable, �:V ! W and G:X ! Y linear,

�; � 2 A(N) 
 V , 
 2 A(N)
W , ! 2 A(N) and K 2 Hom(T (W );X) then

1. f

?

and �

?

commute: f

?

(�

?

�) = �

?

(f

?

�); analogously �

?

(G

�

K) = G

�

(�

?

K);

2. f

?

and �

?

commute with d: d(f

?

�) = f

?

(d�); d(�

?

�) = �

?

(d�);

3. f

?

(! ^ �) = (f

?

!) ^ (f

?

�); �

?

(! ^ �) = ! ^ (�

?

�);

4. f

?

(� ^

m


) = (f

?

�) ^

m

(f

?


), for any bilinear m:V �W ! Z;

5. �

?

(� ^

V

�) = (�

?

�) ^

W

(�

?

�), if in addition � � �

V

= �

W

� (�� �), thus �

?

is an algebra homomorphism, if � is one.
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De�nition 2.2 For any �

s

r

2 A

r

(M;Hom(

N

s

W;Z)), where s 2 N, r 2 N

0

, and

F

j

2 Hom(

N

q

V;W ), j = 1; : : : ; s, we de�ne �

F

1

;:::;F

s

r

2 A

r

(M;Hom(

N

sq

V;Z)) by

�

F

1

;:::;F

s

r

= [(F

1


 � � � 
 F

s

)

?

]

?

�

s

r

Thus if �

s

r

2 A

r

(M)
Hom(

N

s

W;Z) then �

F

1

;:::;F

s

r

2 A

r

(M)
Hom(

N

sq

V;Z).

Since (F

1


 � � � 
 F

s

) 2 Hom(

N

sq

V;

N

q

W ), �

F

1

;:::;F

s

r

(X

1

; : : : ;X

r

) is well de�ned.

It is multilinear in F

j

: for all �; � 2 K and all j � s

�

F

1

;:::;�F

j

+�F

0

j

;:::;F

s

r

= ��

F

1

;:::;F

j

;:::;F

s

r

+ ��

F

1

;:::;F

0

j

;:::;F

s

r

:

Note that if q = 0 and E

j

2 W , then (E

1


� � �
E

s

) is just the canonical evaluation

morphism and �

E

1

;:::;E

s

r

2 A

r

(M;V ) is the push-out of �

s

r

under this morphism:

�

E

1

;:::;E

s

r

:= (E

1


 � � � 
 E

s

)

?

�

s

r

, i. e., for all x 2M and X

i

2 D

1

(M), i = 1; : : : ; r,

(�

E

1

;:::;E

s

r

)

x

(X

1

x

; : : : ;X

r

x

) := (E

1


 � � � 
 E

s

) � (�

s

r

)

x

(X

1

x

; : : : ;X

r

x

):

Now we are prepared for the de�nition of the operator �:

De�nition 2.3 For �

s

r

2 A

r

(M;Hom(

N

s

W;Z)) and �

q

p

2 A

p

(M)
Hom(

N

q

V;W ),

p; q; r; s� 1 2 N

0

, let d

sq

r+sp

2 D

r+sp

(M;Hom(

N

sq

V;Z)) with

d

sq

r+sp

(X

1

; : : : ;X

r+sp

)(x) :=

[�

x

(X

1

x

; : : : ;X

r

x

)] � [�

x

(X

r+1

x

; : : : ;X

r+p

x

)
 � � � 
 �

x

(X

r+(s�1)p+1

x

; : : : ;X

r+sp

x

)]

for all x 2 M and de�ne �

s

r

� �

q

p

:= A

r+sp

(d

r+sp

) 2 A

r+sp

(M;Hom(

N

sq

V;Z)).

�

0

r

� �

q

p

:= �

0

r

and linear extension de�nes � � �

q

p

2 A(M;Hom(T (V ); Z)) for all

� 2 A(M;Hom(T (W ); Z)).

In other words, the operator � means the following: for any x 2 M and X

i

2

D

1

(M), �

x

(X

1

x

; : : : ;X

r

x

) de�nes an element in Hom(

N

s

W;Z). Instead of using s vec-

tors in W as input for this map, we may also use s maps in Hom(

N

q

V;W ) as input

to obtain an element in Hom(

N

sq

V;Z). But again for any x 2M and Y

i

2 D

1

(M),

�

x

(Y

1

x

; : : : ;Y

p

x

) de�nes such a map in Hom(

N

q

V;W ). Altogether the combination

of � and s factors � de�nes an element d

sq

r+sp

2 D

r+sp

(M;Hom(

N

sq

V;Z)). Using

the alternation A

r+sp

, we �nally obtain a form in A

r+sp

(M;Hom(

N

sq

V;Z)).

As was said before, � is a generalization of the wedge product. The following

lemma, whose proof is straightforward, makes this more transparent:

Lemma 2.4 For p; q; r; s� 1 2 N

0

and �

q

p

=

m

P

i=1

�

i


F

i

2 A

p

(M)
Hom(

N

q

V;W ),

�

s

r

� �

q

p

=

m

X

i

1

;:::;i

s

=1

�

F

i

1

;:::;F

i

s

r

^ �

i

1

^ � � � ^ �

i

s

:

Thus if �

s

r

2 A

r

(M)
Hom(

N

s

W;Z) then also �

s

r

��

q

p

2 A

r+sp

(M)
Hom(

N

sq

V;Z).
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Lemma 2.4 proves that if p is even and q = 0, then only the symmetric part of

�

s

r

counts: �

s

r

� �

0

p

= (Sym

?

�

s

r

) � �

0

p

. On the other hand, if p is odd, Lemma 2.4

yields:

Lemma 2.5 For p; q; r; s� 1 2 N

0

, p odd, and �

q

p

=

P

m

i=1

�

i


 F

i

, we have

�

s

r

� �

q

p

=

X

1�i

1

<���<i

s

�m

X

�2S

s

�

F

i

�(1)

;:::;F

i

�(s)

r

^ �

i

�(1)

^ � � � ^ �

i

�(s)

(1)

=

X

1�i

1

<���<i

s

�m

�

X

�2S

s

(�1)

�

�

F

i

�(1)

;:::;F

i

�(s)

r

�

^ �

i

1

^ � � � ^ �

i

s

:

Thus �

s

r

��

q

p

= 0 if s>m; if V and W are �nite dimensional and s>dimW (dimV )

q

,

then �

s

r

� �

q

p

= 0 for all �

q

p

2 A

p

(M)
Hom(

N

q

V;W ).

Proof. �

i

^ �

i

= 0, because p odd, and dimHom(

N

q

V;W ) = dimW (dimV )

q

. �

Recall Sym

&

for & = �. If � 2 A(M;Sym

&

(W;Z)) (e. g., if � = �

s

r

with s = 0; 1),

it is quite natural to ask for a resulting form � � �

q

p

2 A(M;Sym

&

(V;Z)). We can

achieve this by the push-out (Sym

&

)

?

(� � �

q

p

). De�ne

` := &

q+1

(�1)

p

= �1; (2)

then the following lemma holds:

Lemma 2.6 For p; q; r; s�12N

0

, �

q

p

=

P

m

i=1

�

i


F

i

2 A

p

(M)
Hom(

N

q

V;W ) and

�

s

r

2 A

r

(M;Sym

&

s

(W;Z)), we have

(Sym

&

sq

)

?

(�

s

r

� �

q

p

) =

m

X

i

1

;:::;i

s

=1

(Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

s

r

) ^ �

i

1

^ � � � ^ �

i

s

;

if (�1)

p

= &

q+1

= �1 : = s!

X

1�i

1

<���<i

s

�m

(Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

s

r

) ^ �

i

1

^ � � � ^ �

i

s

;

if s > 1 and ` = �1 : = 0:

Proof. The �rst equation is trivial from Lemmas 2.4 and 2.1.3. Now for s > 1,

�

i

1

^ � � � ^ �

i

j

^ � � � ^ �

i

k

^ � � � ^ �

i

s

= (�1)

p

�

i

1

^ � � � ^ �

i

k

^ � � � ^ �

i

j

^ � � � ^ �

i

s

and

(Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

j

;:::;F

i

k

;:::;F

i

s

r

) = &

q+1

(Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

k

;:::;F

i

j

;:::;F

i

s

r

) (3)

yield (Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

j

;:::;F

i

k

;:::;F

i

s

r

) ^ �

i

1

^ � � � ^ �

i

j

^ � � � ^ �

i

k

^ � � � ^ �

i

s

=

= ` (Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

k

;:::;F

i

j

;:::;F

i

s

r

) ^ �

i

1

^ � � � ^ �

i

k

^ � � � ^ �

i

j

^ � � � ^ �

i

s

: (4)

Thus evaluating

P

�2S

s

in (1) proves the rest. �
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3 Associativity

In general, � is not associative. Yet the terms �

u

t

� (�

s

r

� �

q

p

) and (�

u

t

� �

s

r

) � �

q

p

only

di�er (at most) by a sign, as the following proposition states:

Proposition 3.1 Let �

u

t

2 A

t

(M;Hom(

N

u

X;Y )), �

s

r

2 A

r

(M) 
 Hom(

N

s

W;X)

and �

q

p

2 A

p

(M)
Hom(

N

q

V;W ) for p; q; r; s; t; u 2 N

0

. Then

�

u

t

� (�

s

r

� �

q

p

) = (�1)

prs

u(u�1)

2

(�

u

t

� �

s

r

) � �

q

p

2 A

t+ur+usp

(M;Hom(

N

usq

V ; Y )): (5)

Proof. Let �

s

r

=

P

n

j=1

�

j


G

j

and �

q

p

=

P

m

i=1

�

i


 F

i

. By Lemma 2.4 we �nd

�

u

t

� (�

s

r

� �

q

p

) =

n

X

j

1

;:::;j

u

=1

m

X

i

11

;:::;i

su

=1

�

G

j

1

�(F

i

11


���
F

i

s1

);:::;G

j

u

�(F

i

1u


���
F

i

su

)

t

^

^�

j

1

^ �

i

11

^ � � � ^ �

i

s1

^ � � � ^ �

j

u

^ �

i

1u

^ � � � ^ �

i

su

;

while (�

u

t

� �

s

r

) � �

q

p

=

n

X

j

1

;:::;j

u

=1

m

X

i

11

;:::;i

su

=1

(�

G

j

1

;:::;G

j

u

t

)

F

i

11

;:::;F

i

s1

;:::;F

i

1u

;:::;F

i

su

t

^

^�

j

1

^ � � � ^ �

j

u

^ �

i

11

^ � � � ^ �

i

s1

^ � � � ^ �

i

1u

^ � � � ^ �

i

su

:

Now �

j

1

^ �

i

11

^ � � � ^ �

i

s1

^ � � � ^ �

j

u

^ �

i

1u

^ � � � ^ �

i

su

=

= (�1)

prs(1+2+���+(u�1))

�

j

1

^ � � � ^ �

j

u

^ �

i

11

^ � � � ^ �

i

s1

^ � � � ^ �

i

1u

^ � � � ^ �

i

su

= (�1)

prs

u(u�1)

2

�

j

1

^ � � � ^ �

j

u

^ �

i

11

^ � � � ^ �

i

s1

^ � � � ^ �

i

1u

^ � � � ^ �

i

su

:

On the other hand (F

i

11


 � � � 
F

i

s1


 � � � 
F

i

1u


 � � � 
F

i

su

)

?

� (G

j

1


 � � � 
G

i

u

)

?

=

[G

j

1

� (F

i

11


 � � � 
 F

i

s1

); : : : ; G

j

u

� (F

i

1u


 � � � 
 F

i

su

)]

?

, so both �-expressions are

identical for each set of indices. �

Corollary 3.2 If � 2 A(M;Alt(X;Y )), then for p; q; r or s even:

� � (�

s

r

� �

q

p

) = (� � �

s

r

) � �

q

p

: (6)

Proof. Whenever for a �

u

t

in (5) prs

u(u�1)

2

is odd, r+ sp and sq are even and u > 1,

thus the left side of (5) vanishes by Lemma 2.6. �

In most applications, q will be zero and thus � � (�

s

r

� �

0

p

) and (� � �

s

r

) � �

0

p

are

identical. Nevertheless note that this does not hold for expressions that involve three

operators �: according to Proposition 3.1, [� � (�

s

r

� �

q

p

)] � �

0

t

and [(� � �

s

r

) � �

q

p

] � �

0

t

will di�er, in general.

4 Behavior under pullbacks and push-outs

Now we are looking for the behavior of � under the various pullbacks and push-outs

we de�ned in Section 2. Due to the following lemma, we �nd that this behavior is

canonical:
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Lemma 4.1 Let M;N be C

1

-manifolds and V;W; Y; Z vector spaces.

1. If f :M ! N is di�erentiable and � 2 A(N;Hom(T (W ); Z)) then

(8�

q

p

2 A

p

(N)
Hom(

N

q

V;W )) f

?

(���

q

p

) = (f

?

�)�(f

?

�

q

p

) 2 A(M;Hom(T (V ); Z));

2. If A:W ! Y is linear and � 2 A(M;Hom(T (Y ); Z)) then

(8�

q

p

2A

p

(M)
Hom(

N

q

V;W ))��[(A

�

)

?

�

q

p

] = [(A

?

)

?

�]��

q

p

2 A(M;Hom(T (V ); Z));

(8 �

p

2 A

p

(M)
W ) � � (A

?

�

p

) = [(A

?

)

?

�] � �

p

2 A(M;Z);

3. If B:Y ! Z linear and � 2 A(M;Hom(T (W ); Y )) then

(8�

q

p

2A

p

(M)
Hom(

N

q

V;W )) (B

�

)

?

(���

q

p

) = [(B

�

)

?

�]��

q

p

2A(M;Hom(T (V ); Z));

(8 �

p

2 A

p

(M) 
W ) B

?

(� � �

p

) = [(B

�

)

?

�] � �

p

2 A(M;Z):

Analogous results hold for (anti)symmetrized forms in A(M;Sym

&

(W;Z)), etc. If in

1. we have � 2 A(N)
Hom(T (W ); Z), the result will be in A(M)
Hom(T (V ); Z),

etc.

Proof. 1. follows from Lemmas 2.1 and 2.4; 2. and 3. are easily proved directly

or by Proposition 3.1: let a

1

0

:= 1 
 A 2 A

0

(M) 
 Alt

1

(W;Y ), then [(A

�

)

?

�

q

p

] =

a

1

0

� �

q

p

and [(A

?

)

?

�] = � � a

1

0

; analogously with b

1

0

:= 1 
B 2 A

0

(M) 
Alt

1

(Y;Z),

[(B

�

)

?

�] = b

1

0

� �, which is well-de�ned in this special case. �

5 The operators J and I

Let us check (multi)linearity now. Obviously � � �

q

p

is A(M)-linear only in �.

Moreover, if � 2 A(M;Hom(

N

s

W;Z)), then

� � (f �

q

p

) = f

s

(� � �

q

p

) for all f 2 C

1

(M): (7)

In addition, we would like to give an expression for ��(�

q

p

+ 

q

p

). First we observe

that every �

s

r

2 A

r

(M;Sym

&

s

(W;Z)), & = �, naturally de�nes

�

s

0

;s

00

r

2 A

r

(M;Sym

&

s

0

(W;Sym

&

s

00

(W;Z))) for all s

0

; s

00

2 N

0

; s

0

+ s

00

= s: (8)

For any such combination of s

0

and s

00

, �

s

r

� (�

q

p

+  

q

p

) will contain terms, where s

0

factors of �

q

p

and s

00

terms of  

q

p

serve as input for �

s

r

. In order to cover this situation,

we need the following two de�nitions.

De�nition 5.1 For �

s

0

;s

00

r

2 A

r

(M;Hom(

N

s

0

W

0

;Hom(

N

s

00

W

00

; Z))), s

0

; s

00

2 N,

r 2 N

0

, and any G

i

2 Hom(

N

q

V;W

0

), i = 1; : : : ; s

0

, H

j

2 Hom(

N

q

V;W

00

), j =

1; : : : ; s

00

, we de�ne:

�

G

1

;:::;G

s

0

;s

00

r

:= [(G

1


 � � � 
G

s

0

)

?

]

?

�

s

0

;s

00

r

2 A

r

(M;Hom(

N

s

0

q

V;Hom(

N

s

00

W

00

; Z)))

�

s

0

;H

1

;:::;H

s

00

r

:= [((H

1


 � � � 
H

s

00

)

?

)

�

]

?

�

s

0

;s

00

r

2 A

r

(M;Hom(

N

s

0

W

0

;Hom(

N

s

00

q

V;Z)))

If �

s

0

;s

00

r

2 A

r

(M) 
 Hom(

N

s

0

W

0

;Hom(

N

s

00

W

00

; Z)) then �

G

1

;:::;G

s

0

;s

00

r

2 A

r

(M) 


Hom(

N

sq

V;Hom(

N

s

00

W

00

; Z)), �

s

0

;H

1

;:::;H

s

00

r

2A

r

(M)
Hom(

N

s

0

W

0

;Hom(

N

s

00

q

V;Z)).
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De�nition 5.2 For any �

s

0

;s

00

r

2 A

r

(M;Hom(

N

s

0

W

0

;Hom(

N

s

00

W

00

; Z))) and any

�

q

p

2 A

p

(M) 
Hom(

N

q

V;W

0

), where p; q; r; s

0

; s

00

2 N

0

, let Z

0

:= Hom(

N

s

00

W

00

; Z)

and

e

�

s

0

r

:= �

s

0

;s

00

r

2 A

r

(M;Hom(

N

s

0

W

0

; Z

0

)), and de�ne

�

s

0

;s

00

r

J �

q

p

:=

e

�

s

0

r

� �

q

p

2 A

r+s

0

p

(M;Hom(

N

s

0

q

V;Hom(

N

s

00

W

00

; Z))):

Be  

q

p

2 A

p

(M)
Hom(

N

q

V;W

00

) and |:

N

s

0

W

0

! [Hom(

N

s

0

W

0

; Z)! Z] the eval-

uation morphism. De�ne �

s

0

;s

00

r

I 

q

p

2 A

r+s

00

p

(M;Hom(

N

s

0

W

0

;Hom(

N

s

00

q

V;Z))) by

|(w

1


 � � � 
 w

s

0

)

?

(�

s

0

;s

00

r

I  

q

p

) := [|(w

1


 � � � 
 w

s

0

)

?

�

s

0

;s

00

r

] �  

q

p

for all w

i

2 W

0

:

Thus for � 2 A

r

(M;Hom(

N

s

W;Z)), the direction of the triangle indicates

whether the second form is used as input for the �rst s

0

or the last s

00

factors in

�

x

(X

1

x

; : : : ;X

r

x

) 2 Hom(

N

s

W;Z).

Analogously to Lemma 2.4, we obtain for the new operators:

Lemma 5.3 Using the notation of the previous de�nitions, we have

�

s

0

;s

00

r

J �

q

p

=

m

X

j

1

;:::;j

s

0

=1

�

G

j

1

;:::;G

j

s

0

;s

00

r

^ �

j

1

^ � � � ^ �

j

s

0

if �

q

p

=

m

X

j=1

�

j


G

j

;

�

s

0

;s

00

r

I  

q

p

=

m

X

k

1

;:::;k

s

00

=1

�

s

0

;H

k

1

;:::;H

k

s

00

r

^  

k

1

^ � � � ^  

k

s

00

if  

q

p

=

m

X

k=1

 

k


H

k

:

�

s

0

;s

00

r

J�

q

p

2A

r+s

0

p

(M)
Hom(

N

s

0

q

V;Hom(

N

s

00

W

00

; Z)) and �

s

0

;s

00

r

I 

q

p

2A

r+s

00

p

(M)


Hom(

N

s

0

W

0

;Hom(

N

s

00

q

V;Z)) if �

s

0

;s

00

r

2 A

r

(M)
Hom(

N

s

0

W

0

;Hom(

N

s

00

W

00

; Z)).

Thus the terms in the sums for (�

s

0

;s

00

r

J�

q

p

0

)I 

q

p

00

, resp., (�

s

0

;s

00

r

I 

q

p

00

)J�

q

p

0

contain

exterior products of s

0

p

0

-forms �

j

in front of s

00

p

00

-forms  

k

, resp., s

00

p

00

-forms  

k

in

front of s

0

p

0

-forms �

j

. As a consequence, (�

s

0

;s

00

r

J�

q

p

0

)I 

q

p

00

and (�

s

0

;s

00

r

I 

q

p

00

)J�

q

p

0

di�er by a factor (�1)

p

0

p

00

s

0

s

00

:

Lemma 5.4 Let �

s

0

;s

00

r

, �

q

p

0

and  

q

p

00

be de�ned as before. Then

(�

s

0

;s

00

r

J�

q

p

0

)I 

q

p

00

= (�1)

p

0

p

00

s

0

s

00

(�

s

0

;s

00

r

I 

q

p

00

)J�

q

p

0

2 A

r+s

0

p

0

+s

00

p

00

(M;Hom(

N

sq

V;Z))

For �

s

r

2 A

r

(M;Sym

&

s

(W;Z)) with & = � and �

s

0

;s

00

r

from (8),

(Sym

&

sq

)

?

[(�

s

0

;s

00

r

J �

q

p

0

)I  

q

p

00

] = &

(q+1)s

0

s

00

(Sym

&

sq

)

?

[(�

s

00

;s

0

r

I �

q

p

0

)J  

q

p

00

]:

Proof. With the previous notation, the �rst two terms are both equal to

P

m

i

1

;:::;i

s

0

+s

00

=1

�

G

i

1

;:::;G

i

s

0

;H

i

s

0

+1

;:::;H

i

s

0

+s

00

r

^ �

i

1

^ � � � ^ �

i

s

0

^  

i

s

0

+1

^ � � � ^  

i

s

0

+s

00

;

(Sym

&

sq

)

?

(�

G

i

1

;:::;G

i

s

0

;H

i

s

0

+1

;:::;H

i

s

r

) = &

(q+1)s

0

s

00

(Sym

&

sq

)

?

(�

H

i

s

0

+1

;:::;H

i

s

;G

i

1

;:::;G

i

s

0

r

)

from (3) proves the second equation. �
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With these new operators we can evaluate at least the (anti)symmetrized forms

(Sym

&

sq

)

?

[�

s

r

� (�

q

p

+  

q

p

)] (recall that this means no restriction for q = 0). To this

purpose, we also introduce generalizations

�

s

k

�

�

of the ordinary binomial coe�cients:

 

s

k

!

+

:=

 

s

k

!

;

 

s

k

!

�

:=

8

<

:

0; if s even and k odd;

�

[s=2]

[k=2]

�

; else (for r 2 R, [r] := max

z2Z

fz � rg).

(9)

Note that

�

s

k

�

�

=

�

s

s�k

�

�

as before.

Proposition 5.5 For p; q; r; s 2 N

0

, let �

q

p

;  

q

p

2 A

p

(M)
Hom(

N

q

V;W ) and �

s

r

2

A

r

(M;Sym

&

s

(W;Z)). De�ne ` as in (2). Then (Sym

&

sq

)

?

[�

s

r

� (�

q

p

+  

q

p

)] =

=

s

X

k=0

�

s

k

�

`

(Sym

&

sq

)

?

[(�

k;s�k

r

J�

q

p

)I 

q

p

] =

s

X

k=0

(�1)

pk(s�1)

�

s

k

�

`

(Sym

&

sq

)

?

[(�

k;s�k

r

I 

q

p

)J�

q

p

]

=

s

X

k=0

�

s

k

�

`

(Sym

&

sq

)

?

[(�

k;s�k

r

J 

q

p

)I�

q

p

] =

s

X

k=0

(�1)

pk(s�1)

�

s

k

�

`

(Sym

&

sq

)

?

[(�

k;s�k

r

I�

q

p

)J 

q

p

]:

Whenever (Sym

&

sq

)

?

[�

s

r

� (�

q

p

+  

q

p

)] is nonzero according to Lemma 2.6,

�

s

k

�

`

=

�

s

k

�

.

Proof. The equations are trivial for s = 0 and s = 1, so assume s > 1. Let

�

q

p

=

P

m

i=1

�

i


F

i

and  

q

p

=

P

m

i=1

 

i


F

i

. Then with

e

�

i

1

;:::;i

s

r

:= (Sym

&

sq

)

?

(�

F

i

1

;:::;F

i

s

r

),

(Sym

&

sq

)

?

(�

s

r

� (�

q

p

+  

q

p

)) =

m

X

i

1

;:::;i

s

=1

e

�

i

1

;:::;i

s

r

^ (�

i

1

+  

i

1

) ^ � � � ^ (�

i

s

+  

i

s

); and

(Sym

&

sq

)

?

[(�

k;s�k

r

J�

q

p

)I 

q

p

] =

m

X

i

1

;:::;i

s

=1

e

�

i

1

;:::;i

s

r

^ �

i

1

^ � � � ^ �

i

k

^  

i

k+1

^ � � � ^  

i

s

:

We proceed by induction on s. Thus (Sym

&

sq

)

?

(�

s

r

� (�

q

p

+  

q

p

)) =

=

m

X

i

s

=1

(Sym

&

sq

)

?

(Sym

&

(s�1)q

)

?

(�

s�1;F

i

s

r

� (�

q

p

+  

q

p

)) ^ (�

i

s

+  

i

s

)

=

s�1

X

k=0

�

s�1

k

�

`

m

X

i

1

;:::;i

s

=1

e

�

i

1

;:::;i

s

r

^ �

i

1

^ � � � ^ �

i

k

^  

i

k+1

^ � � � ^  

i

s�1

^ (�

i

s

+  

i

s

)

=

s

X

k=0

[

�

s�1

k

�

`

+ `

s�k

�

s�1

k�1

�

`

]

m

X

i

1

;:::;i

s

=1

e

�

i

1

;:::;i

s

r

^ �

i

1

^ � � � ^ �

i

k

^  

i

k+1

^ � � � ^  

i

s

;

where we have used (4). Recursion

�

s

k

�

`

=

�

s�1

k

�

`

+ `

s�k

�

s�1

k�1

�

`

proves the formulae

for

�

s

k

�

`

. Lemma 5.4 and interchanging �

q

p

and  

q

p

�nally yield the rest. �

9



6 Exterior derivative, interior product and Lie

derivative

Finally we will also derive formulae for the exterior derivative of �

s

r

��

q

p

, as well as for

its interior product and its Lie derivative with respect to a vector �eld X 2 D

1

(M).

Let us start with the (anti)symmetrized forms.

Proposition 6.1 Let �

q

p

2 A

p

(M)
Hom(

N

q

V;W ) and �

s

r

2 A

r

(M)
Sym

&

s

(W;Z)

for p; q; r; s 2 N

0

. De�ne

�

s

1

�

`

as in (9). Then d[(Sym

&

sq

)

?

(�

s

r

� �

q

p

)] =

= (Sym

&

sq

)

?

[(d�)

s

r+1

� �

q

p

] + (�1)

r

�

s

1

�

`

(Sym

&

sq

)

?

[(�

1;s�1

r

J (d�)

q

p+1

)I �

q

p

]

= (Sym

&

sq

)

?

[(d�)

s

r+1

� �

q

p

] + (�1)

r+p(s�1)

�

s

1

�

`

(Sym

&

sq

)

?

[(�

s�1;1

r

J �

q

p

)I (d�)

q

p+1

]:

Proof. With the notation of the previous proof, Lemmas 2.1 and 2.6 yield

d[(Sym

&

sq

)

?

(�

s

r

� �

q

p

)] =

m

X

i

1

;:::;i

s

=1

d

e

�

i

1

;:::;i

s

r

^ �

i

1

^ � � � ^ �

i

s

+

+

s

X

j=1

m

X

i

1

;:::;i

s

=1

(�1)

r+p(j�1)

e

�

i

1

;:::;i

s

r

^ �

i

1

^ � � � ^ �

i

j�1

^ d�

i

j

^ �

i

j+1

^ � � � ^ �

i

s

=

= (Sym

&

sq

)

?

[(d�)

s

r+1

� �

q

p

] + (�1)

r

s

X

j=1

m

X

i

1

;:::;i

s

=1

`

j�1

e

�

i

1

;:::;i

s

r

^ d�

i

1

^ �

i

2

^ � � � ^ �

i

s

= (Sym

&

sq

)

?

[(d�)

s

r+1

� �

q

p

] + (�1)

r

�

s

1

�

`

m

X

i

1

;:::;i

s

=1

e

�

i

1

;:::;i

s

r

^ d�

i

1

^ �

i

2

^ � � � ^ �

i

s

;

where we used (2) and (3) in the second step. Lemma 5.4 proves the rest. �

Since we only used the fact that d is a skew-derivation of A(M), Proposition 6.1

also holds for {

X

instead of d, and for L

X

, if one drops (�1)

r

. Tracing the previous

proof we get for the general case:

Corollary 6.2 If �

s

r

2 A

r

(M)
Hom(

N

s

W;Z), �

q

p

2 A

p

(M)
Hom(

N

q

V;W ) and

X 2 D

1

(M), then

d(�

s

r

� �

q

p

) = (d�)

s

r+1

� �

q

p

+ (�1)

r

s�1

X

j=0

(�1)

jp

[(�

j;s�j

r

J �

q

p

)

1;s�j�1

J (d�)

q

p+1

]I �

q

p

;

{

X

(�

s

r

� �

q

p

) = ({

X

�)

s

r�1

� �

q

p

+ (�1)

r

s�1

X

j=0

(�1)

jp

[(�

j;s�j

r

J �

q

p

)

1;s�j�1

J ({

X

�)

q

p�1

]I �

q

p

;

L

X

(�

s

r

� �

q

p

) = (L

X

�)

s

r

� �

q

p

+

s�1

X

j=0

(�1)

jp

[(�

j;s�j

r

J �

q

p

)

1;s�j�1

J (L

X

�)

q

p

]I �

q

p

:
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7 Lie groups and Lie group actions

Suppose G is a Lie group with Lie algebra g and adjoint action Ad:G! Gl(g). If �

g

and �

g

denote multiplication with g 2 G form the left, resp., from the right, then the

canonical left, resp., right invariant 1-forms �

L

2 A

L

1

(G; g), resp., �

R

2 A

R

1

(G; g)

are given by

�

L

g

(X

g

) := d�

g

�1
(X

g

); �

R

g

(X

g

) := d�

g

�1
(X

g

) for all g 2 G; X 2 D

1

(G):

Both are connected via �

R

g

= Ad(g) ��

L

g

. Using � we can get rid of the argument g

and may write this identity as �

R

= Ad ��

L

.

For S = L;R, let  

S

: Alt

p

(g; V ) ! A

S

p

(G;V ) denote the isomorphisms between

the vector spaces of alternating p-linear maps on g

p

and of left, resp., right invariant

p-forms on G (where the inverse morphisms are the evaluation at the identity e 2 G).

Then �

S

=  

S

(id

g

) and if 1 2 C

1

(M) denotes the constant map onto 1 2 R (here

M = G) then  

S

is given by

 

S

(K) = (1
K) ��

S

2 A

S

(G;V ) for all K 2 Alt(g; V ): (10)

Note that for any linear �:V !W , Lemma 4.1.3 combined with (10) yields

�

?

 

S

(K) = �

?

[(1
K) ��

S

] = [1
 (�

�

K)] ��

S

=  

S

(�

�

K) 2 A

S

(G;W ):

For any manifoldM , C

1

(M;G) is a group with respect to pointwise multiplica-

tion and inversion. For any di�erentiable f; g:M ! G, the expressions f � g and f

�1

are understood within this group. From Lemma 4.1.1 we obtain for the so-called

left and right di�erential of f 2 C

1

(M;G):

f

?

�

R

= (Ad �f) � f

?

�

L

; f

?

�

L

= (Ad �f

�1

) � f

?

�

R

:

Moreover, the generalized product rule d(f � g)

x

= (d�

g(x)

)

f(x)

df

x

+ (d�

f(x)

)

g(x)

dg

x

for all x 2M yields the following relations:

(f � g)

?

�

L

= (Ad �g

�1

) � f

?

�

L

+ g

?

�

L

;

(f � g)

?

�

R

= f

?

�

R

+ (Ad �f) � g

?

�

R

;

(f

�1

)

?

�

L

= �(Ad �f) � f

?

�

L

= �f

?

�

R

;

(f

�1

)

?

�

R

= �(Ad �f

�1

) � f

?

�

R

= �f

?

�

L

:

Now (10) and Lemma 4.1.1 yield for K 2 Alt(g; V ):

(f � g)

?

 

L

(K) = (1
K) � [(Ad �g

�1

) � f

?

�

L

+ g

?

�

L

];

(f � g)

?

 

R

(K) = (1
K) � [f

?

�

R

+ (Ad �f) � g

?

�

R

]:

(In addition, (f

�1

)

?

 

L

(K) = (�1)

p

f

?

 

R

(K) if K 2 Alt

p

(g; V ).)

Again for S = L;R and any manifold P let S:G � P ! P denote a left, resp.,

right Lie group action. (For notational convenience, we write G on the left, even

for a right action.) Thus if S

g

(p) := S(g; p) then all S

g

:P ! P are di�eomorphisms

and we will identify S with S:G ! Di�(P ). We put sgn(S) = �1 for S = L and

sgn(S) = +1 for S = R. Then the following lemma holds:

11



Lemma 7.1 Let S:G�P ! P be a Lie group action and L

0

:G! Gl(W ) be a left

representation. If '

r

2 A

r

(P ) 
W and � 2 A(P;Hom(T (W ); V )) are equivariant

in the sense that S

?

g

'

r

= L

0

(g

� sgn(S)

)

?

'

r

and S

?

g

� = (L

0

(g

sgn(S)

)

?

)

?

� for all g 2 G,

then � � '

r

is invariant.

Proof. S

?

g

(� � '

r

) = (S

?

g

�) � (S

?

g

'

r

) = � � [(L

0

(g

sgn(S)

)

?

)

?

S

?

g

'

r

] = � � '

r

, where the

�rst equality follows from Lemma 4.1.1 and the second from 4.1.2 �

Every representation S:G! Gl(V ) induces a representation s = dS

e

: g! gl(V )

of the Lie algebra such that S � expX = e

s(X)

for all X 2 g. As for S, we will

identify s = l; r with the induced bilinear mappings s: g � V ! V . We have the

following relations for all g 2 G, X 2 g and v 2 V :

s(X;S(g; v)) = S(g; s(Ad(g

sgn(S)

)X; v)); S(g; s(X; v)) = s(Ad(g

� sgn(S)

)X;S(g; v))

and thus obtain:

Proposition 7.2 Let S:G ! Gl(V ) be a representation and s: g � V ! V be the

induced bilinear map. Then for any di�erentiable f :M ! G and forms ! 2 A(M; g)

and � 2 A(M)
 V ,

(S � f) � (! ^

s

�) = [(Ad �f

� sgn(S)

) � !] ^

s

[(S � f) � �]; (11)

d[(S � f) � �] = (S � f) � (f

?

�

S

^

s

�+ d�): (12)

Proof. Only (12) still needs to be proved. For S = L, observe that for all g 2 G,

L � �

g

= �

0

L(g)

� L with �

0

L(g)

: Gl(V ) ! Gl(V ):A 7! L(g) � A. For any vector �eld

X 2 D

1

(M) and x 2 M , this yields [d(L � f)]X (x) = dL

f(x)

� d�

f(x)

(f

?

�

L

)

x

X

x

=

�

0

L(f(x))

� l � (f

?

�

L

)

x

X

x

, and thus [d(L � f)] � � = (L � f) � (f

?

�

L

^

l

�). Now (12)

follows from Proposition 6.1. Analogous arguments hold for S = R. �

As a corollary, we get for any f 2 C

1

(M;G) and all !; � 2 A(M; g),

(Ad �f) � (! ^

g

�) = [(Ad�f) � !] ^

g

[(Ad�f) � �]; (13)

d[(Ad �f) � �) = (Ad �f) � (f

?

�

L

^

g

�+ d�): (14)

In all cases, the operator � leads to a quite compact notation, since we need not

refer to the points g 2 G nor the vector �elds that the forms act on.

8 Fiber bundles and connections

Let P (M;G) denote a principal bundle with base manifold M =

S

�2A

U

�

, pro-

jection �:P ! M , �ber G, right action R:P � G ! P and local trivializa-

tions  

�

:�

�1

(U

�

) ! U

�

� G with local projections �

�

= pr

G

� 

�

. Recall that

any connection � on P de�nes horizontal and vertical projections of vector �elds,

not only on P , but also on every associated �ber bundle B(M;F;G) = P �

G

F

with �ber F , such that the vertical �elds are tangential to the �ber. We thus obtain

projections h; v of di�erential forms via

!h(: : : ;X

i

; : : :) := !(: : : ; hX

i

; : : :); !v(: : : ;X

i

; : : :) := !(: : : ; vX

i

; : : :)
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for all ! 2 A(B;V ). Obviously h and v commute with �, J and I: e. g. for

� 2 A(B;Hom(T (W ); Z)) and �

q

r

2 A

r

(B)
Hom(

N

q

V;W ),

(� � �

q

r

)h = �h � �

q

r

h; (� � �

q

r

)v = �v � �

q

r

v:

Let d

�

:A(P )
 V !A(P )h
 V denote the exterior covariant di�erentiation on P ,

which is de�ned by d

�

! := (d!)h. Then we immediately obtain from Corollary 6.2:

Proposition 8.1 For di�erential forms �

s

r

2 A

r

(P ) 
 Hom(

N

s

W;Z) and �

q

p

2

A

p

(P )
Hom(

N

q

V;W ),

d

�

(�

s

r

� �

q

p

) = (d

�

�)

s

r+1

� �

q

p

h+

s�1

X

j=0

(�1)

r+jp

[(�

j;s�j

r

hJ �

q

p

h)

1;s�j�1

J (d

�

�)

q

p+1

]I �

q

p

h:

Let !

�

2 A

1

(P; g) and 


�

= d

�

!

�

2 A

2

(P; g) denote the connection 1-form,

resp., the curvature 2-form of �. Both are equivariant with respect to R and Ad.

If �

�;e

:U

�

! �

�1

(U

�

) are the local sections given by �

�;e

(x) :=  

�1

�

(x; e), then the

gauge potentials A

�

and the gauge �elds F

�

are given by

A

�

:= �

?

�;e

(!

�

j

�

�1

(U

�

)

) 2 A

1

(U

�

; g); F

�

:= �

?

�;e

(


�

j

�

�1

(U

�

)

) 2 A

2

(U

�

; g): (15)

On the other hand, the collection of A

�

and F

�

determines !

�

and 


�

:

!

�

j

�

�1

(U

�

)

= (Ad ��

�1

�

) � (�

?

A

�

) + �

?

�

�

L

; 


�

j

�

�1

(U

�

)

= (Ad ��

�1

�

) � (�

?

F

�

) (16)

(recall that �

�1

�

:U

�

! G means the pointwise inverse). On all U

��

:= U

�

\ U

�

6= ;,

the transition functions g

��

:U

��

! G are given by g

��

= (�

�

j

U

��

) � (�

�;e

j

U

��

) such

that g

��

= g

�1

��

. Using (15) and (16) we may compute the behavior of the A

�

and

F

�

under a change of the local trivialization. In our compact notation we obtain:

A

�

j

U

��

= (Ad �g

��

) �A

�

j

U

��

+ g

?

��

�

L

= (Ad �g

��

) � (A

�

j

U

��

� g

?

��

�

L

); (17)

F

�

j

U

��

= (Ad �g

��

) � F

�

j

U

��

: (18)

Since the gauge potentials and the gauge �elds play an important role in all �eld

theories in theoretical physics, these formulae prove to be very useful for all com-

putations in those �eld theories like electromagnetism, Yang-Mills theories, etc.

Of course these formulae are not new, only the notation is new. Also note that

equations (13) to (16) prove that the so-called �eld equations

F

�

= dA

�

+

1

2

A

�

^

g

A

�

and dF

�

= �A

�

^

g

F

�

are equivalent to the structure equation and Bianchi's identity,




�

= d!

�

+

1

2

!

�

^

g

!

�

and d

�




�

= d


�

+ !

�

^

g




�

= 0:

Finally, we may also use � for the de�nition of characteristic classes of a principal

bundle, cf. Greub, Halperin, Vanstone [1]. Let C 2 Sym

k

(g;F) with F = R;C
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be invariant under Ad

?

. Then (1
C) 2 C

1

(P;Sym

k

(g;F)) is equivariant and thus

(1 
 C) � 


�

2 A

2k

(P;F) is invariant under R according to Lemma 7.1. Since it is

also horizontal, it is a pullback of a form \C � F"2 A

2k

(M;F). (The notation C � F

reminds to the fact that on U

�

, this form is given by (1
C)�F

�

with 1 2 C

1

(U

�

).)

C �F de�nes a characteristic cohomology class of P . In fact, because �

?

�d = d

�

��

?

,

we obtain from Proposition 8.1 and Bianchi's identity that d(C � F) = 0. (Recall

that [C � F] 2 H

2k

(M;F) is invariant of the special choice of connection, cf. [1,

p. 264].)

In all these applications, we have r = 0 in De�nition 2.3. Further applications

for Lie transformation groups and �ber bundles that involve r 6= 0, are given in

[2] and [3]. E. g., the operator � is essential for the local description of vertical

forms on a �ber bundle. Using Lemma 7.1, one can prove ([3]) that for any G-

equivariant form � 2 A(F;Hom(T (g); V ), the combination of its local vertical pro-

jections (�

?

�

�)v

�

and the gauge �elds de�nes a global form on the bundle B(M;F;G),

since on the overlaps,

[(�

?

�

�)v

�

] � (�

?

F

�

) = [(�

?

�

�)v

�

] � (�

?

F

�

):

Finally, Corollary 6.2 is needed to compute the exterior derivative of this global

form, cf [2].
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