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Abstract

We present a new residual-type a posteriori estimator for a quasi-
static Signorini problem. The theoretical results are derived for two and
three-dimensional domains and the case of non-discrete gap functions is
addressed. We derive global upper and lower bounds with respect to an
error notion which measures the error in the displacements, the velocities
and a suitable approximation of the contact forces. Further, local lower
bounds for the spatial error in each time step are given. The estimator
splits in temporal and spatial contributions which can be used for the
adaptation of the time step as well as the mesh size. In the derivation of
the estimator the local properties of the solution are exploited such that
the spatial estimator has no contributions related to the non-linearities in
the interior of the actual time-dependent contact zone but gives rise to an
appropriate refinement of the free boundary zone.

Key words. Quasi-static contact problem, Signorini problem, viscoelasticity,
residual-type a posteriori error estimator, Galerkin functional, full-contact

1 Introduction

The numerical simulation plays a substantial role in understanding processes
and effects in natural sciences and engineering. Quantities that are not readily
obtained from measurements because experiments are too expensive, too diffi-
cult or even impossible can be approximated numerically. Especially in medicine
the numerical simulation is in great demand, whenever the ethical dimension
has to be considered. We are interested in the simulation of viscoelastic con-
tact problems. Biological tissue as cartilage, bones and tendons are examples
of viscoelastic materials.
In this work we consider a quasi-static contact problem which models the contact
between a linear viscoelastic material and a rigid body. The linear viscoelastic
material obeys the Kelvin-Voigt model. Viscoelasticity means that the material
behavior shows both elastic and viscous features and thus the stress tensor
depends on the displacements as well as the velocities. The resulting quasi-
static contact problem gives rise to a time-dependent variational inequality.
A posteriori error estimators which are equivalent to the error are in great
demand in the numerical simulation to determine regions with less regular or
even singular behavior. These information can be used for mesh adaptation. For
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the simulation of complex processes adaptive mesh generation is important to
improve the quality of the discrete solution for given computational resources.
A popular estimator for linear elliptic problems, which appears attractive in
view of its simplicity, is the standard residual estimator [23, 25]. It is explicitly
computable from the given data and the discrete finite element solution and
constitutes an upper as well as a lower bound of the error at least up to so-
called oscillation terms of higher order. Thus, it is equivalent to the error. For
the prototype of variational inequalities, the obstacle problem, techniques of
standard residual-estimation have been extended in [11, 14, 19, 20, 22] to derive
residual-type a posteriori estimators. Further, for the Signorini contact problem
residual-type a posteriori estimators have been derived in [12,16,27].
For the heat equation as an example of time-dependent problems a residual a
posteriori error estimator has been derived in [24], see also [25] for parabolic
problems. Therein global in space and time upper bounds and global in space
and local in time lower bounds have been proven with respect to the same error
measure. The error in the velocities is measured in the H−1-norm and the error
in the displacements in the H1-norm. An a posteriori error analysis for linear
viscoelastic problems without constraints can be found in [7]. Therein an upper
bound for the H1-norm of the error in the velocities and in the displacements is
derived. The error measure for the global lower bound is different. In each time
step a local lower bound is given for the spatial error. In [8] a normal compliance
viscoelastic contact problem is considered which means that the non-penetration
condition is weakly imposed by a penalty method so that an equality instead
of an inequality is considered. Thus, the derivation of the estimator is similar
to [7]. In [7,8,24] the estimator splits in a temporal and a spatial contribution. A
posteriori error analysis for a time-dependent variational inequality can be found
in [18], where a parabolic obstacle problem is considered. In the error measure
for the upper bound not only the H1-norm of the error in the displacements but
also a dual norm of the error in the velocity and in the contact force is taken.
For the standard estimator contributions a local lower bound for the spatial
error in each time step is given.
In this work we derive a residual-type a posteriori error estimator for the time-
dependent variational inequality of the linear viscoelastic Signorini contact prob-
lem. To the best of our knowledge that is the first residual-type estimator for
this kind of contact problem without a regularization of the non-penetration
condition. We derive a global in space and time upper bound and a global in
space and local in time lower bound with respect to the same error measure.
Further we derive local lower bounds for the spatial error in each time step
with respect to a slightly different measure. The theory is derived for two- and
three-dimensional domains and even non-discrete gap functions are considered.
The works [16,22] on elliptic obstacle and contact problems reveal that sharp a
posteriori error estimators for variational inequalities can be derived by involving
the error in the constraining forces in the error measure. Thus, we consider
an error measure representing the error in the displacements, velocities and
constraining forces.
A key ingredient in the derivation of efficient and reliable residual-type a pos-
teriori estimators for obstacle and contact problems [9, 16, 22] is the Galerkin
functional which replaces the linear residual of elliptic unconstrained problems.
The Galerkin functional as well as the error measure consider the error in the
displacements and velocities as well as the difference between the constraining
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force λ and a suitable discrete approximation λ̃
τ

m which we call quasi-discrete
contact force. The definition of this approximation reflecting the local struc-
ture of the solution is very crucial for the proof of the lower bound as well as
for the localization of the estimator contributions, i.e. to avoid over-refinement.
Therefore we distinguish between areas of the contact boundary where the bod-
ies are partially or fully in contact, so-called semi- and full-contact areas. The
quasi-discrete contact force as well as the definition of full-contact depend on
the evolution in time which is in contrast to [18]. The rate-dependency of full-
contact is new and enables to tackle the proof of lower bound.
The temporal as well as spatial estimators reduce to standard estimator con-
tributions if no contact occurs. The estimator contributions addressing the
non-linearity are related to the contact stresses and the complementarity con-
dition with respect to the solution in two subsequent time steps. Due to the
fact that we exploit the local structure we avoid any spatial estimator contri-
butions related to the non-linearity in the area of full-contact. In consequence,
the estimator perceives that at the boundary which is in full-contact, where
the solution equals the discrete gap function, adaptive mesh refinement cannot
improve the solution. In the case of arbitrary non-discrete gap functions estima-
tor contributions related to the obstacle approximation and constraint violation
occur.
Finally, numerical examples confirm our theoretical results. We present the
convergence rate of the estimator compared to uniform refinement. Further,
the adaptively refined meshes in each time step and the adaptation of the time
step size are shown.

2 The Signorini contact problem with
linear viscoelastic material

We consider the contact of a linear viscoelastic body with a rigid obstacle. Linear
viscoelastic materials are time-dependent. The variable in time is denoted by
t and the time interval of interest is I = [0, T ]. The linear viscoelastic body
is represented by a Lipschitz domain Ω ⊂ Rd where d = 2, 3 is the dimension.
The whole boundary Γ is subdivided into three disjoint parts, the Neumann
boundary ΓN which is an open subset of Γ, the potential contact boundary
ΓC and the Dirichlet boundary ΓD which are both closed subsets of Γ. Each
material particle in the closure Ω̄ is identified with a point x = (x1, . . . , xd)

T .
Throughout this work we denote all quantities which refer to tensors of order
≥ 1 by bold symbols as, e.g., the displacements u which are vector-valued.
Their components are printed in normal type and are indicated by subindices,
e.g., ui. The summation convention is enforced and ei, i = 1, . . . , d, denote the
Cartesian basis vectors of Rd such that, e.g., u = uiei. The derivative in time
is denoted with a dot above, i.e. the velocities are denoted by u̇.
The deformable body consists of linear viscoelastic material obeying the Kelvin-
Voigt model, see e.g. [13, Chapter 6.3], [5, Chapter 5.1]. The linearized strain
tensor is given by

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

For the linear stress-strain relation we need the fourth order viscosity tensor
A = (aijkl) and the fourth order elasticity tensor B = (bijkl). They are both
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linear, bounded, symmetric and positively definite.
The stress tensor σ obeys the following constitutive law

σ := Aε(u̇) + Bε(u).

Let λ and µ be the Lamé constants of linear elasticity, then Bε = λtr(ε)id+2µε.
Further, let η be the shear viscosity, ζ the bulk viscosity, then Aε = λV tr(ε)id+
2ηε with λV := (ζ − 2

3η).
When two solid bodies come into contact they do not penetrate each other.
If the displacements are small like in linear viscoelasticity the non-penetration
condition can be approximated by the so-called linearized non-penetration con-
dition, see e.g. [6] and [15]. The gap function describing the distance between
the viscoelastic body and the rigid body is given by g : ΓC × I → R and the
direction of constraints is denoted by ν. Thus, the linearized non-penetration
condition is uν ≤ g where uν := u · ν. The non-penetration condition evokes
so-called contact stresses which are boundary stresses in direction of the con-
straints at the actual contact boundary. We use the notation σ̂(u) := σ(u)n for
boundary stresses where n is the unit outward normal to the boundary. Hence,
the contact stresses are given by σ̂ν(u) := σ̂(u) · ν. As we neglect frictional
effects the frictional stresses σ̂tan(u) := σ̂(u)− σ̂ν(u) ·ν are assumed to be zero.
The linear viscoelastic body might be subjected to a volume force density f , to
surface forces π and to Dirichlet values uD. The complete problem formulation
is given in Problem 1.

Problem 1. Strong formulation of the viscoelastic Signorini contact problem
Find a displacement field u : Ω× Ī → Rd such that

−divσ(u) = f in Ω× I
σ̂(u) = π on ΓN × I
u = uD on ΓD × I
uν ≤ g on ΓC × I
σ̂ν ≤ 0 on ΓC × I

(uν − g) · σ̂ν(u) = 0 on ΓC × I
σ̂tan(u) = 0 on ΓC × I
u(0) = u0 in Ω

2.1 Weak formulation

In order to obtain the weak formulation in space we define for each time t
the weak solution space H := {v ∈ H1(Ω) | tr|ΓD (v) = uD(t) a.e. on ΓD}
which is a subset of H1(Ω) := (H1(Ω))d where tr is the trace operator. For
convenience in the discrete approximation of the Dirichlet values we assume uD
to be continuous and piecewise linear in space as well as in time. The space
of test functions is given by H0 := {ϕ ∈ H1(Ω) | tr|ΓD (ϕ) = 0 a.e. on ΓD}.
Whenever it is clear from the context that the restriction to the boundary
requires the trace operator we omit the special notation. Under the assumption
g(t) ∈ H 1

2 (ΓC) for each t ∈ I we can define the admissible set K(t) := {v ∈
H | vν ≤ g(t) a.e. on ΓC}. The directions of constraints ν are assumed to be
constant in space and time and are given by a measurable vector field with



5

absolute value |ν(x)| = 1. The L2-norm and its scalar product are denoted by
‖ · ‖ and 〈·, ·〉 without any subindex. The duality pairing between H1 and its
dual H−1 is given by 〈·, ·〉−1,1 and the corresponding norms are ‖·‖1 and ‖·‖−1.

The duality pairing between H
1
2 and its dual H−

1
2 is denoted with 〈·, ·〉− 1

2 ,
1
2

and

the corresponding norms are ‖ ·‖ 1
2

and ‖ ·‖− 1
2
. Later on, we need restrictions to

subdomains which are indicated by a further subindex, e.g., ‖ · ‖1,ω for ω ⊂ Ω.
We assume the force density f(t) and the Neumann data π(t) to be L2- functions

on Ω or ΓN , respectively. We abbreviate
〈
f̃ ,ϕ

〉
−1,1

:= 〈f ,ϕ〉+ 〈π,ϕ〉ΓN .

Problem 2 (Variational inequality). Find u : Ī →H with u(0) = u0 such that
for a.e. t ∈ I, u(t) ∈ K(t) fulfills

〈Aε (u̇(t)) , ε (v)− ε (u(t))〉+ 〈Bε (u(t)) , ε (v)− ε (u(t))〉

≥
〈
f̃(t),v − u(t)

〉
−1,1

, ∀v ∈ K(t).

We define the contact force density in the continuous setting by

〈λ(t),ϕ〉−1,1 := 〈f(t),ϕ〉+ 〈π(t),ϕ〉ΓN − 〈Aε(u̇(t)), ε(ϕ)〉 − 〈Bε(u(t)), ε(ϕ)〉 .

From an optimization point of view λ is the Lagrange multiplier while from a
physical point of view λ has the meaning of a constraining force density on ΓC .
The contact force density is directly related to the contact stresses

〈λ(t),ϕ〉−1,1 = −〈σ̂ν(u(t)), ϕν〉− 1
2 ,

1
2

which follows from the generalized Green’s formula. Due to the variational
inequality the contact force density fulfills the weak sign condition

〈λ,v − u(t)〉−1,1 ≤ 0.

For k ∈ N, 1 ≤ p ≤ ∞ we denote the Bochner spaces by

W k,p(I;H) := {v ∈ Lp(I;H) | ‖v(j)‖Lp(I,H) <∞, ∀j ≤ k}

with

‖v‖Wk,p(I;H) :=

∫
I

∑
0≤j≤k

‖v(j)(t)‖pH dt

 1
p

or

‖v‖Wk,∞(I,H) := max0≤j≤k ess supt∈I‖v(j)‖H.

In this work we assume f ∈ W 1,1(I,L2), π ∈ W 1,1(I,L2(ΓN )) and g ∈
W 1,∞(I,H

1
2 (ΓC)). An existence and uniqueness result can be found in [13, The-

orem 9.3] under the assumption that f ∈ W 1,1(I,L2), π ∈ W 1,1(I,L2(ΓN )),
uD = g = 0. The regularity of the solution is u ∈ W 1,∞(I;H) and thus
λ ∈ L∞(I;H−1). For some cases of time-dependent convex sets K(t), espe-
cially g 6= 0, an existence and uniqueness result can be found in [4, Chapter4.3].
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2.2 Spatially semi-discrete formulation

In the spatially discrete setting we assume the domain Ω to be polygonal and
the grid is a regular simplicial mesh M, taken from a shape-regular family. The
polygonal boundary segments ΓD,ΓC ,ΓN are resolved by the mesh, meaning
that their boundaries ∂ΓC , ∂ΓN , ∂ΓD are either nodes p or edges. The set of
nodes p is given by Nm and we distinguish between the set ND

m of nodes on the
Dirichlet boundary, the set NN

m of nodes at the Neumann boundary, the set NC
m

of nodes at the potential contact boundary and the set of interior nodes NI
m.

For the approximation of H, we use linear finite elements. The space of linear
finite elements which are zero on the Dirichlet boundary is denoted with

Hm,0 := {ϕm ∈ C0(Ω̄) | ∀e ∈M, ϕm|e ∈ P 1(e) and ϕm = 0 on ΓD}

and the space with incorporated Dirichlet values uD is

Hm := {vm ∈ C0(Ω̄) | ∀e ∈M, vm|e ∈ P 1(e) and vm = uD on ΓD}.

The nodal basis functions of the finite element spaces are denoted by φp. Hence,
a discrete vector quantity has the representation

ϕm =
∑
p∈Nm

d∑
i=1

ϕm,i(p)φpei.

As the direction of constraints ν is constant, vm,ν = vm · ν is a linear finite
element function on ΓC . Let gm(t) be a discrete approximation of the gap
function g(t) and Km(t) the discrete admissible set given by

Km(t) := {vm ∈Hm | vm,ν ≤ gm(t) on ΓC}.

We note that Km ⊂ K if g = gm.
The spatially semi-discrete scheme of Problem 2 is given by

Problem 3 (Spatially discrete variational inequality). Find um : Ī →Hm with
um(0) = u0

m such that for a.e. t ∈ I, um(t) ∈ Km(t) fulfills

〈Aε (u̇m(t)) , ε (vm)− ε (um(t))〉+ 〈Bε (um(t)) , ε (vm)− ε (um(t))〉

≥
〈
f̃(t),vm − um(t)

〉
−1,1

∀vm ∈ Km(t).

Similar to the continuous case we refer to [13, Chapter 9.3] for an existence and
uniqueness result and also for a convergence result.

2.3 Fully-discrete formulation

To discretize in time we use the implicit Euler scheme. At each discrete time
tn the solution is denoted by unm, the forces by fn = f(tn), πn = π(tn) and
the gap function by gnm = gm(tn). The admissible set is given by Kn

m = Km(tn).
For each time interval (tn−1, tn] we define the time step size τn := tn − tn−1

and the linearly interpolated solution uτm := tn−t
τn u

n−1
m +

(
1− tn−t

τn

)
unm and it’s

derivative u̇τm := δunm :=
unm−u

n−1
m

τn . Further, we define the linearly interpolated

gap function gτm := tn−t
τn gn−1

m +
(
1− tn−t

τn

)
gnm and the piecewise constant in time

approximations fτ := fn, πτ := πn on (tn−1, tn]. We define
〈
f̃
n
,ϕ
〉
−1,1

:=

〈fn,ϕ〉+ 〈πn,ϕ〉ΓN and f̃
τ
, respectively.
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Problem 4 (Fully-discrete variational inequality). For each n = 1, . . . , N find
unm ∈ Kn

m fulfilling

〈Aε (δunm) , ε (vm)− ε (unm)〉+ 〈Bε (unm) , ε (vm)− ε (unm)〉

≥
〈
f̃
n
,vm − unm

〉
−1,1

, ∀vm ∈ Kn
m

with uτm(0) = u0
m.

The unique solvability of the fully-discrete variational inequality of Problem 4
in each time step follows from the Theorem of Lions and Stampacchia [17]. But
following [13] there exist up to now no a priori error estimates for the fully
discrete solution.
In each time step the discrete contact force density is given by

〈λnm,ϕm〉−1,1 := 〈fn,ϕm〉+〈πn,ϕm〉ΓN−〈Aε(δu
n
m), ε(ϕm)〉−〈Bε(unm), ε(ϕm)〉 .

(1)
Due to the variational inequality the contact force density fulfills the weak sign
condition 〈λnm,vm − unm〉−1,1 ≤ 0.
In order to investigate the contact force corresponding to the discrete setting
further, we need some more notations and definitions. From now on for the
ease of presentation we choose the coordinate system such that e1 = ν. All
boundary stresses in time step n at outer or inner edges are denoted by

σ̂(unm) := (Aε(δunm) + Bε(unm))n.

Thus, at the contact boundary in the direction of constraints we have the contact
stresses σ̂1(unm) = e1 · (Aε(δunm) + Bε(unm))n. Further, we define the jump
terms in the interior over a side s ∈M (edge in 2D, face in 3D) by JI(unm) :=
(σ(unm)|e1

− σ(unm)|e2
) · n where e1, e2 are two elements sharing the side s and

the jump terms at the Neumann boundary JN (unm) := π − σ̂(unm) and at the
contact boundary in tangential direction JCtan(unm) := −σ̂tan(unm).
For the integration by parts we need a grid which is a union of the grids Mn and

Mn−1. This finest common grid denoted by M̃n is assumed to be shape-regular.

The elements of M̃n are denoted by ẽ, the sides by s̃ and the nodes by p̃ ∈ Ñn
m.

There is a uniform with respect to n bound on the ratio of the diameters of

elements e ∈ Mn and ẽ ∈ M̃n. Whenever it is clear from the context we omit
the superscript n for the mesh M and the set of nodes Nm.
Let p be a node belonging to the mesh M. We denote by ωp the union of
all elements e of M having the node p in common. We call the union of all
sides in the interior of ωp, not including the boundary of ωp, by γp,I . For the
intersections between Γ and ∂ωp we distinguish between the three following
types γp,C := ΓC ∩ ∂ωp, γp,N := ΓN ∩ ∂ωp and γp,D := ΓD ∩ ∂ωp. In the same

way, we define for all nodes p̃ ∈ Ñm, ωp̃ as the union of all elements ẽ of M̃
having the node p̃ in common. The intersection between all interior sides and
ωp̃ is denoted by γp̃,I , and respectively γp̃,C , γp̃,N , γp̃,D. Further, we need the

union of all elements ẽ of M̃ belonging to ωp, the patch in M. This area is
denoted by

ω̃p :=
⋃

ẽ⊂ωp

ẽ.
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Accordingly, the union of all sides s̃ ∈ M̃ in ω̃p is given by γ̃p,I and

γ̃p,C :=
⋃

s̃⊂γp,C

s̃, γ̃p,N :=
⋃

s̃⊂γp,N

s̃, γ̃p,D :=
⋃

s̃⊂γp,D

s̃.

Using integration by parts and the introduced notation we reformulate the dis-
crete contact force

〈λnm,ϕm〉−1,1 =

d∑
i=1

 ∑
p∈NI

m

∫
γ̃p,I

JI(unm)ϕm,i(p)φpei +
∑
p∈Nm

∫
ω̃p

fnϕm,i(p)φpei

+
∑
p∈NN̄

m

∫
γ̃p,N

JN (unm)ϕm,i(p)φpei −
∑
p∈NC

m

∫
γ̃p,C

σ̂(unm)ϕm,i(p)φpei


Note that for the integration by parts the mesh M̃ has to be considered while
we take the partition of unity with respect to the set of nodes Nm of the mesh
M.

Further, we define snp :=
〈λnm,1,φp〉−1,1∫

γp,C
φp

which is the nodal value of the discrete

contact force density obtained by lumping the boundary mass matrix. From the
variational inequality the sign condition snp ≥ 0 follows. If p ∈ NC

m and i 6= 1 or

p ∈ Nm\NC
m we have 〈λnm, φpei〉−1,1 = 0.

2.4 Quasi-discrete contact force density

By definition the discrete contact force (1) is only a functional on the discrete
space Hm,0. Thus, in order to measure the error in the solution as well as
in the contact forces we need an extension of the discrete contact force (1) to
a functional on H0. This extension is called quasi-discrete contact force and
denoted by λ̃

τ

m. It is crucial that the quasi-discrete contact force reflects the
properties of the continuous contact force λ.
We assume that the quasi-discrete contact force is piecewise constant on each
interval (tn−1, tn], i.e.〈

λ̃
τ

m,ϕ
〉
−1,1

=
〈
λ̃
n

m,ϕ
〉
−1,1

on (tn−1, tn].

In the spirit of the works [9, 16, 18] we use the partition of unity in each time
step n 〈

λ̃
n

m,ϕ
〉
−1,1

:=
∑
p∈Nm

〈
λ̃
n

m,p, ϕ1φp

〉
−1,1

which enables to handle the contributions differently depending on the contact
status of the nodes. We will distinguish between so-called full-contact nodes
p ∈ NfC

m and semi-contact nodes p ∈ NsC
m .

Definition 1 (Full-contact nodes). At full-contact nodes the discrete solution
fulfills the following conditions

• unm,1 = gnm on γ̃p,C

• un−1
m,1 = gn−1

m on γ̃p,C
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• σ̂1(unm) ≤ 0 on γ̃p,C .

At full-contact nodes the solution is in contact in the whole contact boundary
patch γ̃p,C in both time steps n and n − 1 and the contact boundary stresses,
which depend also on the solutions in both time steps, fulfill the sign condition
as in the continuous case. At semi-contact nodes the solution is in contact, i.e.
unm,1(p) = gnm(p) in the current time step n but does not fulfill the conditions
of full-contact. Compared to the works for static contact problems [16, 27] the
definition of full-contact is space- and time-dependent.
In each time step n we define the quasi-discrete contact force as follows〈
λ̃
n

m,ϕ
〉
−1,1

:=
∑
p∈NsC

m

snp cp(ϕ1)

∫
γ̃p,C

φp

+
∑
p∈NfC

m

(
snp cp(ϕ1)

∫
γ̃p,C

φp −
∫
γ̃p,C

σ̂1(unm)(ϕ1 − cp(ϕ1))φp

)
(2)

where cp(ϕ1) are weighted mean values. It will turn out that in order to prove
reliability and efficiency we need specific choices of cp(ϕ1) depending on the

contact status of the nodes. For semi-contact nodes we use cp(ϕ1) =

∫
bp
ϕ1φp∫
bp
φp

with bp ( γp̃,C . bp can be chosen as the boundary patch around p̃ = p with

respect to a uniform refinement of M̃n. Thus, due to the fact that there is a

uniform bound on the relation between elements of M̃n and Mn the relation
between bp and γp,C is also bounded. For full-contact nodes we take cp(ϕ1) =∫

s̄
ϕ1φp∫
s̄
φp

where s̄ ⊂ γ̃p,C fulfills

∫
s̄

∫ tn
tn−1 ϕ1φp∫
s̄
φp

≥
∫
s̃

∫ tn
tn−1 ϕ1φp∫
s
φp

∀s̃ ⊂ γ̃p,C . (3)

We note that (3) is time-dependent as well as the definition of full-contact.
However, we omit the subindex n, whenever it is clear from the context, i.e.
cp(ϕ) = cnp (ϕ).

3 A posteriori error estimator

The aim of this section is to introduce the error estimator and to state the
main theorems of efficiency and reliability. Therefore we introduce the Galerkin
functional, global and local error measures and the relation between each other.
The proofs of the theorems will be given in Sections 4 and 5.

3.1 Galerkin functional and error measure

A main step in the derivation of residual-type a posteriori estimators for linear
problems without constraints is to establish a relation between the error measure
and a linear residual, see e.g. [25] for linear elliptic and parabolic problems
and [7] for linear viscoelastic problems. For contact and obstacle problems a
so-called Galerkin functional replaces the linear residual, see e.g. [16, 18,22].
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For the linear viscoelastic contact problem (Problem 2) the Galerkin functional
is given by

〈G,ϕ〉−1,1 := 〈Aε(u̇− u̇τm), ε(ϕ)〉+ 〈Bε(u− uτm), ε(ϕ)〉+
〈
λ− λ̃

τ

m,ϕ
〉
−1,1

=
〈
f̃ − f̃

τ
,ϕ
〉
−1,1

+ 〈fτ ,ϕ〉+ 〈πτ ,ϕ〉ΓN

− 〈Aε(u̇τm), ε(ϕ)〉 − 〈Bε(uτm), ε(ϕ)〉 −
〈
λ̃
τ

m,ϕ
〉
−1,1

. (4)

On each time interval (tn−1, tn] we have the temporal Galerkin functional

〈Gnτ ,ϕ〉−1,1 := 〈Bε(unm − uτm), ε(ϕ)〉 (5)

and the spatial Galerkin functional

〈Gnm,ϕ〉−1,1 := 〈fn,ϕ〉+〈πn,ϕ〉ΓN−〈Aε(δu
n
m) + Bε(unm), ε(ϕ)〉−

〈
λ̃
n

m,ϕ
〉
−1,1

,

which is piecewise constant on each time interval, such that on (tn−1, tn] we
have

〈G,ϕ〉−1,1 = 〈Gnm,ϕ〉−1,1 + 〈Gnτ ,ϕ〉−1,1 +
〈
f̃ − f̃

n
,ϕ
〉
−1,1

. (6)

Let ‖ ·‖L2
B

be the norm induced by the s.p.d. bilinear form 〈B(·), (·)〉 and ‖ ·‖L2
A

the norm induced by the s.p.d. bilinear form 〈A(·), (·)〉.
In this work we will derive an a posteriori error estimator which constitutes
global upper and lower bounds with respect to the following global error mea-
sure on the time interval I

ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, I) :=∫
I

supϕ∈H0

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ− λ̃

τ

m,ϕ
〉
−1,1

‖∇ϕ‖




2

+‖ε(u− uτm)‖2L2(I,L2
B) + ‖ε(u− uτm)(T )‖2L2

A

) 1
2

which considers the error in the displacements, the velocities as well as in the
contact force density and thus is related to the Galerkin functional (4).
Further, we derive local lower bounds for the spatial error in each time step n
with respect to the following error measure

ErrMeasL(unm, u̇
τ
m, λ̃

n

m) :=
supϕ∈H0(ωp)

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ− λ̃

n

m,ϕ
〉
−1,1

‖∇ϕ‖




2

+ ‖ε(u− unm)‖2L2
B(ωp)


1
2

.

Remark 1 (Relation between local and global error measure). Integrating(
ErrMeasL(unm, u̇

τ
m, λ̃

n

m)
)2

over the time intervall [tn−1, tn] and comparing with(
ErrMeasG(uτm, u̇

τ
m, λ̃

τ

m, [t
n−1, tn])

)2

where Ω is replaced by ωp the two error
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measures differ in
∫ tn
tn−1 ‖ε(u − uτm)‖2

L2
B(ωp)

and
∫ tn
tn−1 ‖ε(u − unm)‖2

L2
B(ωp)

. The

difference can be bounded by
∫ tn
tn−1 ‖ε(u−unm)‖2

L2
B(ωp)

−
∫ tn
tn−1 ‖ε(u−uτm)‖2

L2
B(ωp)

≤∫ tn
tn−1 ‖ε(uτm−unm)‖2

L2
B(ωp)

. Using the box rule for the integration shows that the

difference is of order τ2.

The dual norm of the Galerkin functional G is bounded from above by

‖G‖−1 ≤ sup
ϕ∈H0

〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ− λ̃

τ

m,ϕ
〉
−1,1

‖∇ϕ‖
+ ‖ε(u− uτm)‖L2

B

and respectively, after integration in time by the global error measure (3.1)

‖G‖L2([0,T ],H−1]) ≤ ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, I). (7)

The dual norm of the spatial Galerkin functional Gnm in each time step is
bounded from above by

‖Gnm‖−1 ≤ ErrMeasL(unm, u̇
τ
m, λ̃

n

m). (8)

Lemma 1 (Abstract upper bound).(
ErrMeasG(uτm, u̇

τ
m, λ̃

τ

m, [0, T ])
)2

.

(
1 +

2

CB

)
‖G‖2L2([0,T ];H−1) + 2‖ε(u− uτm)(0)‖2L2

A
− 4

∫ T

0

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

(9)

Proof.

1

2

d

dt
‖ε(u− uτm)‖2L2

A
+ ‖ε(u− uτm)‖2L2

B

= 〈A∂tε(u− uτm), ε(u− uτm)〉+ 〈Bε(u− uτm), ε(u− uτm)〉

= 〈G,u− uτm〉−1,1 −
〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

Now we apply Cauchy-Schwarz, the ellipticity of B, the scaled Young’s inequality
with ε = 1

2CB
where CB is the ellipticity constant

1

2

d

dt
‖ε(u− uτm)‖2L2

A
+ ‖ε(u− uτm)‖2L2

B
.

1

2CB
‖G‖2−1 +

CB
2
‖ε(u− uτm)‖2L2 −

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

.
1

2CB
‖G‖2−1 +

1

2
‖ε(u− uτm)‖2L2

B
−
〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

.

Integration in time from 0 to T leads to

‖ε(u− uτm)(T )‖2L2
A
− ‖ε(u− uτm)(0)‖2L2

A
+ ‖ε(u− uτm)‖2L2([0,T ];L2

B)

.
1

CB
‖G‖2L2([0,T ];H−1) − 2

∫ T

0

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

and rearranging
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‖ε(u− uτm)(T )‖2L2
A

+ ‖ε(u− uτm)‖2L2([0,T ];L2
B)

.
1

CB
‖G‖2L2([0,T ];H−1) − 2

∫ T

0

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

+ ‖ε(u− uτm)(0)‖2L2
A
.

(10)

Furthermore, for the remaining part of the error measure, we get

sup
ϕ∈H0

〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ− λ̃

τ

m,ϕ
〉
−1,1

‖∇ϕ‖
. sup
ϕ∈H0

〈G,ϕ〉−1,1

‖∇ϕ‖
+ sup
ϕ∈H0

〈Bε(u− uτm), ε(ϕ)〉
‖∇ϕ‖

≤ ‖G‖−1 + ‖ε(u− uτm)‖L2
B
.

Integrating in time and exploiting (10) we get

∫ T

0

 sup
ϕ∈H0

〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ− λ̃

τ

m,ϕ
〉
−1,1

‖∇ϕ‖


2

. (1 +
1

CB
)‖G‖2L2([0,T ];H−1) + ‖ε(u− uτm)(0)‖2L2

A
− 2

∫ T

0

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

(11)

Putting together (10) and (11) we get the result.

3.2 Error estimator and main results

We define the estimator

η :=

(∑
n

(ηn)
2

) 1
2

:=

(∑
n

(ηnτ )2 + τn(ηnm)2

) 1
2

which consists of the temporal and spatial estimators if g = gτm. The temporal
estimator is given by

ηnτ :=

√
τn

3
‖ε(unm − un−1

m )‖L2
B

and the spatial estimator by

ηnm :=

√√√√ 7∑
k=1

(ηnk )2

with the different contributions
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ηn1 :=

( ∑
p∈Nm

(ηn1,p)
2

) 1
2

, ηn1,p := hp‖fn‖ω̃p

ηn2 :=

( ∑
p∈Nm

(ηn2,p)
2

) 1
2

, ηn2,p := h
1
2
p ‖JI(unm)‖γ̃p,I

ηn3 :=

( ∑
p∈NN̄

m

(ηn3,p)
2

) 1
2

, ηn3,p := h
1
2
p

∥∥∥JN (unm)
∥∥∥
γ̃p,N

ηn4 :=

( ∑
p∈NC

m

(ηn4,p)
2

) 1
2

, ηn4,p := h
1
2
p ‖JCtan(unm)‖γ̃p,C

ηn5 :=

( ∑
p∈NC

m\NfC
m

(ηn5,p)
2

) 1
2

, ηn5,p := h
1
2
p ‖σ̂1(unm)‖γ̃p,C

ηn6 :=

( ∑
p∈NsC

m

(ηn6,p)
2

) 1
2

, ηn6,p :=
(
snp

1
2

∫
bp

(gnm − unm,1)φp

) 1
2

ηn7 :=

( ∑
p∈NsC

m

(ηn7,p)
2

) 1
2

, ηn7,p :=
(
snp

1
2

∫
bp

(gn−1
m − un−1

m,1 )φp

) 1
2

where hp is the diameter of ω̃p.
If g 6= gτm is not piecewise linear in space and time we get the additional estimator

ηg :=

(
4∑
k=1

(∑
n

(
ηng,k

)2)
+ (ηg,5)

2

) 1
2

which refers to the obstacle approximation and constraint violation. It consists
of the following contributions

ηng,1 :=

 ∑
p∈NsC

m

snp

∫ tn

tn−1

∫
bp

(g − gτm)+φp∫
bp
φp

∫
γ̃Cp

φp

 1
2

ηng,2 :=

 ∑
p∈NfC

m

snp

∫ tn

tn−1

∑
s̃⊂γ̃p,C

∫
s̃
|g − gτm|φp∫

s̃
φp

∫
γ̃p,C

φp

 1
2

ηng,3 :=

(∫ tn

tn−1

‖
(
uτm,1 − g

)+ ‖21
2 ,ΓC

) 1
2

ηng,4 :=

(∫ tn

tn−1

‖∂t (uτm − g)
+ ‖21

2 ,ΓC

) 1
2

ηg,5 :=
(
‖ (uτm(0)− g(0))

+ ‖21
2 ,ΓC

+ ‖ (uτm(T )− g(T ))
+ ‖21

2 ,ΓC

) 1
2

.

Theorem 1 (Upper bound). The estimator η provides the following upper
bound of the error measure

ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, [0, T ])

. η + ηg + ‖ε(u− uτm)(0)‖L2
A

+ ‖f̃ − f̃
τ
‖L2([0,T ];H−1)
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In order to formulate the lower bounds we need some further definitions. Let
f̄
n

be defined by the piecewise constant approximations of the components fni
and π̄n, respectively. We define oscp(f

n) := ‖fn−f̄n‖ω̃p and oscp(π
n) := ‖πn−

π̄n‖γ̃p,N . Further, we abbreviate Π(gτm, u
n−1
m,1 , u

n
m,1) := ∇

(
χns̃ −

1
2

(
un−1
m,1 + unm,1

))
on ∪q̃∈s̃ωq̃ where χns̃ is a suitable extension of 1

2

(
gn−1
m + gnm

)
to a finite element

function. We denote the jumps over interelement sides by [·].

Assumption 1 (Geometric assumptions for lower bounds). In order to prove
the lower bounds we assume that each boundary element with a side s on ΓC
has at least one interior node and each node p ∈ NsC

m belongs to at least one
element which has no boundary edge.

Theorem 2 (Global lower bound). Under the Assumption 1 and g = gτm the
estimator ηn on each time interval [tn−1, tn] fulfills the global lower bound

ηn . ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, [t
n−1, tn]) + ‖f̃ − f̃

τ
‖L2([tn−1,tn],H−1)

+
√
τn

 ∑
p∈Nm

osc2
p(f

n) +
∑
p∈NN̄

m

osc2
p(π

n)

+
∑

p∈NsC
m

∑
s̃∩bp 6=∅

hp‖[Π(gτm, u
n−1
m,1 , u

n
m,1)]‖2∪q̃∈s̃ωq̃

 1
2

Theorem 3 (Local lower bound). Under the Assumption 1 and g = gτm the
local spatial estimators fulfill the local lower bound

ηnk,p . ErrMeasL(unm, u̇
τ
m, λ̃

n

m) + oscp(f
n) + oscp(π

n)

for k = 1, . . . , 5 and

ηnk,p . ErrMeasL(unm, u̇
τ
m, λ̃

n

m)

+ oscp(f
n) + oscp(π

n) +
∑

s̃∩bp 6=∅

h
1
2
p ‖[Π(gτm, u

n−1
m,1 , u

n
m,1)]‖∪q̃∈s̃ωq̃

for k = 6, 7.

Remark 2. The definition of full-contact depending on the solutions in time
steps n and n−1 enables to show lower bounds of η6, η7. In contrast, the defini-
tion of full-contact in [18] depends only on the solution in time step n. Therein
the estimators comparable with η6, η7 have contributions from full-contact nodes.
Thus, σ̂1(unm) on γp,C for p ∈ NfC

m is part of η6, η7 as it occurs in sp but is not
part of the Galerkin functional.

Remark 3. Although the additional term h
1
2
p ‖[Π(gτm, u

n−1
m,1 , u

n
m,1)]‖∪q̃∈s̃ωq̃ , which

occurs only for p ∈ NsC
m , on the right hand side of the global and local lower

bounds does not depend only on the data, Theorems 2 and 3 show that the decay
of η6, η7 is of the same order as the other estimator contributions. Further, in
our numerical results, we have observed that η6, η7 are very small compared to
the other estimator contributions.
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4 Reliability of the error estimator

In this section we give the proof of Theorem 1. Our starting point is the estimate
of Lemma 1. Thus, in Section 4.1 we give an upper bound for the dual norm of
the Galerkin functional ‖G‖L2(0,T ;H−1) and in Section 4.2 we derive the upper

bound for −
∫ T

0

〈
λ− λ̃

τ

m,u− uτm
〉
−1,1

.

4.1 Upper bound of the Galerkin functional

In the following we apply integration by parts to the Galerkin functional (4) on
(tn−1, tn], use the partition of unity and 〈λnm, φpei〉−1,1 = 0 for all p ∈ NC

m and

i 6= 1 or p ∈ Nm\NC
m. Further, we exploit the definition of the quasi-discrete

contact force (2). We set cp(ϕi) = 0 for Dirichlet nodes and cp(ϕi) :=

∫
ω̃p
ϕiφp∫

ω̃p
φp

for all nodes p ∈ NI
m∪NN

m . For this mean value and the definitions of cp(ϕi) for
full- and semi-contact nodes defined in Section 2.4 the L2-approximation prop-
erties hold, see [25] and [21]. Besides the L2-approximation property, Hölders
inequality is applied.

〈G,ϕ〉−1,1 =
〈
f̃ − f̃

n
,ϕ
〉
−1,1

+ 〈Bε(unm − uτm), ε(ϕ)〉

+ 〈fn,ϕ〉+ 〈πn,ϕ〉ΓN − 〈Aε(δu
n
m) + Bε(unm), ε(ϕ)〉 −

〈
λ̃
n

m,ϕ
〉
−1,1

=
〈
f̃ − f̃

n
,ϕ
〉
−1,1

+ 〈Bε(unm − uτm), ε(ϕ)〉

+

d∑
i=1

∑
p∈Nm

(
〈fni , ϕiφp〉ω̃p +

∫
γ̃p,I

JIi (unm)ϕiφp

+

∫
γ̃p,N

JNi (unm)ϕiφp −
∫
γ̃p,C

σ̂i(u
n
m)ϕiφp

)
−
〈
λ̃
n

m,ϕ
〉
−1,1

=
〈
f̃ − f̃

n
,ϕ
〉
−1,1

+ 〈Bε(unm − uτm), ε(ϕ)〉+

d∑
i=1

∑
p∈Nm

(
〈fni , (ϕi − cp(ϕi))φp〉ω̃p

+

∫
γ̃p,I

JIi (unm)(ϕi − cp(ϕi))φp +

∫
γ̃p,N

JNi (unm)(ϕi − cp(ϕi))φp

)

−
d∑
i=2

∑
p∈NC

m

∫
γ̃p,C

σ̂i(u
n
m)(ϕi − cp(ϕi))φp −

∑
p∈Nm\NfC

m

∫
γ̃p,C

σ̂1(unm)(ϕ1 − cp(ϕ1))φp

. ‖f̃ − f̃
n
‖−1‖∇ϕ‖+ ‖ε(unm − uτm)‖L2

B
‖∇ϕ‖+

∑
p∈Nm

(
hp‖fn‖ω̃p‖∇ϕ‖ω̃p

+h
1
2
p ‖JI(unm)‖γ̃p,I‖∇ϕ‖ω̃p + h

1
2
p ‖JN (unm)‖γ̃p,N ‖∇ϕ‖ω̃p

+h
1
2
p ‖JCtan(unm)‖γ̃p,C‖∇ϕ‖ω̃p

)
+

∑
p∈Nm\NfC

m

h
1
2
p ‖σ̂1(unm)‖γ̃p,C‖∇ϕ1‖ω̃p
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Thus, we get on each (tn−1, tn]

‖G‖−1 . ‖ε(unm − uτm)‖L2
B

+

(
5∑
k=1

(ηnk )2

) 1
2

+ ‖f̃ − f̃
n
‖−1. (12)

Taking the square of (12) and integrating in time, we get

‖G‖2L2([0,T ],H−1) .
∑
n

∫ tn

tn−1

〈Bε(unm − uτm), ε(unm − uτm)〉

+
∑
n

τn
5∑
k=1

(ηnk )2 + ‖f̃ − f̃
τ
‖2L2([0,T ];H−1).

(13)

Next, exploiting the two relations

unm − uτm =

(
tn − t
τn

)(
unm − un−1

m

)
∫ tn

tn−1

(
tn − t
τn

)α
dt =

τn

α+ 1

with α > 0 we can reformulate the first sum in (13) and thus derive the estimator
in time∑

n

∫ tn

tn−1

〈Bε(unm − uτm), ε(unm − uτm)〉 =
∑
n

τn

3
‖ε(unm − un−1

m )‖2L2
B

(14)

such that we end up with the following upper bound of ‖G‖L2([0,T ],H−1)

‖G‖2L2([0,T ],H−1) .
∑
n

(ηnτ )
2

+
∑
n

τn (ηnm)
2

+ ‖f̃ − f̃
n
‖2L2([0,T ];H−1). (15)

4.2 Upper bound of −
∫ T
0

〈
λ− λ̃τm,u− uτm

〉
−1,1

As g ∈W 1,∞([0, T ], H
1
2 (ΓC)) there exists ρτ1 := min{uτm,1, g} ∈W 1,∞([0, T ], H

1
2 (ΓC))

and an extension ρτ1 ∈W 1,∞([0, T ], H1(Ω)) which follows from e.g. [28, Chapter
8] and [1, Chapter 1]. Further we set ρτi = uτm,i for i 6= 1.

We recall that 〈λi, ϕi〉−1,1 = 0,
〈
λ̃m,i, ϕi

〉
−1,1

= 0 for i 6= 1. Further, as ρτ ∈ K
we get

−
∫ T

0

〈
λ1 − λ̃τm,1, u1 − uτm,1

〉
−1,1

=

∫ T

0

〈
λ1, u

τ
m,1 − u1

〉
−1,1

+
〈
λ̃τm,1, u1 − uτm,1

〉
−1,1

≤
∫ T

0

〈
λ1, u

τ
m,1 − ρτ1

〉
−1,1

+
〈
λ̃τm,1, u1 − uτm,1

〉
−1,1

=

∫ T

0

〈
λ1 − λ̃τm,1, uτm,1 − ρτ1

〉
−1,1

+
〈
λ̃τm,1, u1 − uτm,1

〉
−1,1

+
〈
λ̃τm,1, u

τ
m,1 − ρτ1

〉
−1,1

(16)
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In order to derive a computable upper bound of the last two terms in (16)
we have to distinguish between full- and semi-contact nodes according to the
definition of the quasi-discrete contact force (2). We recall that the sets of nodes

NsC
m ,NfC

m always refer to the mesh of the current time step n although we omit
the index n. We recall that for semi-contact nodes the definition is linear. We
make use of (uτm,1 − ρτ1) = (uτm,1 − g)+ and of (g − ρτ1) = (g − uτm,1)+ on ΓC
which follows from the definition of ρτ1 and obtain

∫ T

0

〈
λ̃τm,1, u1 − uτm,1

〉
−1,1

+

∫ T

0

〈
λ̃τm,1, u

τ
m,1 − ρτ1

〉
−1,1

=
∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

〈
λ̃τm,1, (u1 − ρτ1)φp

〉
−1,1

+
∑

p∈NfC
m

〈
λ̃τm,1,

(
u1 − uτm,1

)
φp

〉
−1,1

+
∑

p∈NfC
m

〈
λ̃τm,1,

(
uτm,1 − ρτ1

)
φp

〉
−1,1


≤
∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

snp c
n
p (g − ρτ1)

∫
γ̃p,C

φp +
∑

p∈NfC
m

snp c
n
p (g − uτm,1)

∫
γ̃p,C

φp

+
∑

p∈NfC
m

snp c
n
p ((uτm,1 − g)+)

∫
γ̃p,C

φp −
∑

p∈NfC
m

(∫
γ̃p,C

σ̂1(unm)
(
uτm,1 − ρτ1 − cnp (uτm,1 − ρτ1)

)
φp

)

−
∑

p∈NfC
m

(∫
γ̃p,C

σ̂1(unm)
(
uτ1 − uτm,1 − cnp (uτ1 − uτm,1)

)
φp

)
≤
∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

snp c
n
p ((g − uτm,1)+)

∫
γ̃p,C

φp +
∑

p∈NfC
m

snp c
n
p (g − uτm,1)

∫
γ̃p,C

φp

+
∑

p∈NfC
m

snp c
n
p ((uτm,1 − g)+)

∫
γ̃p,C

φp

 .

In the last line we exploited that

−
∑

p∈NfC
m

 ∑
s̃⊂γ̃p,C

σ̂1(unm)|s̃
∫ tn

tn−1

∫
s̃

(
ϕ− cnp (ϕ)

)
φp

 ≤ 0,

which follows from −σ̂1(unm)|s̃ ≥ 0 and

∫ tn

tn−1

∫
s̃

ϕφp −
∫ tn

tn−1

∫
s

φp

∫
s̄
ϕφp∫
s̄
φp

φp ≤ 0

due to the properties of full-contact and (3). First, we consider the contributions
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for semi-contact nodes exploiting

∫
γ̃p,C

φp∫
bp
φp
≤ C

∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

snp c
n
p ((g − uτm,1)+)

∫
γ̃p,C

φp


≤
∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

snp c
n
p ((g − gτm)+)

∫
γ̃p,C

φp

+
∑
n

∫ tn

tn−1

 ∑
p∈NsC

m

snp c
n
p (gτm − uτm,1)

∫
γ̃p,C

φp


.
∑
n

(ηng,1)2 +
∑

p∈NsC
m

∫ tn

tn−1

∫
bp

(gτm − uτm,1)φp


=
∑
n

(ηng,1)2 +
∑

p∈NsC
m

snp

(
τn

2

∫
bp

(gnm − unm,1)φp +
τn

2

∫
bp

(gn−1
m − un−1

m,1 )φp

)
=
∑
n

(
(ηng,1)2 + τn(ηn6 )2 + τn(ηn7 )2

)
. (17)

Second, we consider the contributions for full-contact nodes where uτm,1 = gm

∑
n

∫ tn

tn−1

∑
p∈NfC

m

snp c
n
p (g − uτm,1)

∫
γ̃p,C

φp +
∑

p∈NfC
m

snp c
n
p ((uτm,1 − g)+)

∫
γ̃p,C

φp

≤
∑
n

∫ tn

tn−1

∑
p∈NfC

m

snp
∑

s̃⊂γp,C

∫
s̃

((g − gτm)+ + (gτm − g)+)φp∫
s̃
φp

∫
γ̃p,C

φp

=
∑
n

(ηng,2)2. (18)

In remains to bound the first term in (16). To cope with our error measure we



19

add and substract 〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉.

∫ T

0

〈
λ1 − λ̃τm,1, uτm,1 − ρτ1

〉
−1,1

=

∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉+
〈
λ1 − λ̃τm,1, uτm,1 − ρτ1

〉
−1,1

−
∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉

≤
∫ T

0

supϕ∈H0

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ1 − λ̃τm,1, ϕ1

〉
−1,1

‖∇ϕ‖

 ‖uτm − ρτ‖1
−
∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉

.
1

2

∫ T

0

supϕ∈H0

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ1 − λ̃τm,1, ϕ1

〉
−1,1

‖∇ϕ‖




2

+
1

2

∫ T

0

‖(uτm,1 − g)+‖21
2 ,ΓC

−
∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉

≤ 1

2

∫ T

0

supϕ∈H0

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ1 − λ̃τm,1, ϕ1

〉
−1,1

‖∇ϕ‖




2

+
1

2

∑
n

(ηng,3)2 −
∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉 (19)

As the first term in (19) is part of the error measure, the second one is an
estimator contribution, it remains to bound the last one. Therefore we use
integration by parts in time.

−
∫ T

0

〈Aε(u̇− u̇τm), ε(uτm − ρτ )〉

= −〈Aε(u− uτm), ε(uτm − ρτ )〉 |T0 +

∫ T

0

〈Aε(u− uτm), ε(u̇τm − ρ̇τ )〉

.
1

2
‖ε(u− uτm)(T )‖2L2

A
+

1

2
‖(uτm,1 − g)+(T )‖21

2 ,ΓC
+

1

2
‖ε(u− uτm)(0)‖2L2

A

+
1

2
‖(uτm,1 − g)+(0)‖21

2 ,ΓC
+

1

2

∫ T

0

‖ε(u− uτm)‖2L2
A

+
1

2

∫ T

0

‖∂t
(
(uτm,1 − g)+

)
‖21

2 ,ΓC

.
1

2
‖ε(u− uτm)(T )‖2L2

A
+

1

2
‖ε(u− uτm)(0)‖2L2

A

+ (ηg,5)2 +
1

2
‖ε(u− uτm)‖2L2([0,T ];L2

B) +
∑
n

(ηng,4)2 (20)
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Putting together (17), (18), (19) and (20) we get

−
∫ T

0

〈
λ1 − λ̃τm,1, u1 − uτm,1

〉
−1,1

.
1

2
‖ε(u− uτm)(T )‖2L2

A
+

1

2
‖ε(u− uτm)(0)‖2L2

A
+

1

2
‖ε(u− uτm)‖2L2([0,T ];L2

B)

+
1

2

∫ T

0

supϕ∈H0

 〈Aε(u̇− u̇τm), ε(ϕ)〉+
〈
λ1 − λ̃τm,1, ϕ1

〉
−1,1

‖∇ϕ‖




2

+
∑
n

(
τn(ηn6 )2 + τn(ηn7 )2

)
+
∑
n

(
(ηng,1)2 + (ηng,2)2 + (ηng,3)2 + (ηng,4)2

)
+ (ηg,5)2

Combining this result with Lemma 1 and estimate (15) we have proven Theorem
1.

Remark 4 (Upper bound for discrete gap function). Under the assumption that
the gap function is discrete g = gτm and thus we can define ρτ1 := min{uτm,1, g} =
uτm,1 on Ω all estimator contributions ηng,k vanish.

5 Lower bound of the error estimator

In this section we give the proof of Theorems 2 and 3, i.e. the lower bound in
terms of the contributions ηnk for k = 1, ..., 7. We note that no lower bounds are
given for the data-dependent estimator contribution ηg.

From (7) we know that ‖G‖2L2([tn−1,tn],H−1) is bounded by the error measure

ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, I) and from (8) that ‖Gnm‖−1 is bounded by the local

error measure ErrMeasL(unm, u̇
τ
m, λ̃

n

m). Thus, in order to derive a lower bound
we show that the estimator contributions are bounded by the dual norm of the
Galerkin functional.

We start with a bound of the estimator in time ηnτ by the dual norm of Gnτ .
Next, we give local bounds of the standard estimator contributions in space
ηnk for k = 1, ..., 4 by the dual norm of Gnm. Then, we consider the estimator
contributions related to the contact boundary ηnk for k = 5, .., 7. Finally, we
bound the sum of the norms ‖Gnτ ‖2L2([tn−1,tn],H−1), ‖G

n
m‖2L2([tn−1,tn],H−1) by the

norm of the sum ‖G‖2L2([tn−1,tn],H−1) plus data oscillation following [25, Lemma

6.3] (or [25, Lemma 3.53], respectively).

5.1 Bound of the estimator in time

In this section we give a bound of the estimator in time ηnτ by ‖Gnτ ‖2L2([tn−1,tn],H−1)
which is global in space but local in time. The upper bound for the estimator
in time ηnτ follows from (14), the definition of the temporal Galerkin functional
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5) and Hölder’s inequality

τn

3
‖ε(unm − un−1

m )‖2L2
B

=

∫ tn

tn−1

〈Bε(unm − uτm), ε(unm − uτm)〉

=

∫ tn

tn−1

〈Gnτ ,unm − uτm〉−1,1

.

(∫ tn

tn−1

‖Gnτ ‖2−1

) 1
2 (

τn

3

) 1
2

‖ε(unm − un−1
m )‖L2

B

and therewith we get

ηnτ .

(∫ tn

tn−1

‖Gnτ ‖2−1

) 1
2

= ‖Gnτ ‖L2([tn−1,tn],H−1). (21)

5.2 Local bound in space of ηn1 , . . . , η
n
4

To prove that ηnk , k = 1, . . . , 4 are bounded from above by ‖Gnm‖−1,ωp and
respectively by the local error measure (plus data oscillation) we proceed as
in [26]. The properties of the element bubble functions Ψẽ and side bubble
functions Ψs̃, see e.g. [25] are used. Due to the definition of the quasi-discrete
contact force density, especially of the mean values cp(ϕ1) for all p ∈ NC

m, it
follows that cp(Ψe) = 0 and cp(Ψs) = 0 for interior and Neumann boundary
sides. Thus, it is obvious that the proof follows as in the case of a linear elliptic
problem where Gm replaces the linear residual and we get

4∑
k=1

ηnk,p . ‖G
n
m‖−1,ω̃p + oscp(f

n) + oscp(π
n). (22)

Together with (8) we have a local bound

4∑
k=1

ηnk,p . ErrMeasL(unm, u̇
τ
m, λ̃

n

m) + oscp(f
n) + oscp(π

n). (23)

5.3 Local bound in space of ηn5

In order to give a bound of ηn5 by means of the dual norm of the spatial Galerkin
functional ‖Gnm‖−1,ωp , the bubble functions have to be adapted appropriately in

the spirit of [16, Section 5.1]. Let p̄ ∈ NC
m\N

fC
m be an arbitrary but fixed node

and s̃ be a side of M̃ with s̃ ∩ bp̄ 6= ∅. Taking for example the bubble function
Ψs̃ we get ∑

p∈Nm\NfC
m

∫
s̃

σ̂1(unm)Ψs̃φp

= −〈Gnm,Ψs̃e1〉−1,1 +
∑
p∈Nm

〈fn1 ,Ψs̃φp〉ωs̃

−
∑
p∈NC

m

snp cp(Ψs̃)

∫
γ̃p,C

φp +
∑

p∈NfC

σ̂1(unm)cp(Ψs̃)φp, (24)
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i.e. the direct relation between the Galerkin functional and σ̂1(unm) is disturbed
by additional contributions with the factor cp(Ψs̃). Thus, we will replace Ψs̃ by
a suitable function θs̃ such that cp(θs̃) = 0 for all semi- and full-contact nodes.
Let s be a side of M with s̃ ⊆ s and denote by pi the nodes of s which are in

Nm\NfC
m . We note that p = p̃ as the node belongs to M as well as to M̃ and bp

is the boundary patch around p with respect to a uniform refinement of γp̃,C .
Further, for the function θs̃ we make the ansatz that it is a linear combination
of all bubble functions with respect to the refined mesh. The coefficients of the
linear combination are determined such that

1.
∫
s̃

1 =
∑
pi∈Nm\NfC

m

∫
s̃
θs̃φpi

2.
∫
s̃∩bpi

θs̃φpi = 0 for all semi-contact nodes

3.
∫
s̃
θs̃φpi = 0 for all full-contact nodes with s̄ = s̃

If s̃ = s the construction of θs̃ is the same as in [16, Section 5.1]. As p̄ is not
a full-contact node the third condition will not be required for all pi and thus,
there is at least one contribution in the right hand side of the first condition.
At this point the special choice of cp(ϕ) as mean value on bp with bp ∩ s̃ 6= s̃ for
semi-contact nodes becomes clear because if bp ∩ s̃ = s̃ the first condition would
contradict the second condition.
If s̃ ( s we have s̃ ∩ bpi = ∅ for some or even all pi. In the case s̃ ∩ bpi = ∅ the
second condition is fulfilled trivially.
As we assumed that the elements are simplices, σ̂1(unm) is constant on s̃ and
thus with the last conditions, cp(θs̃) = cp(σ̂1(unm)θs̃) = 0. Together with the
first condition and (24) we get

‖σ̂1(unm)‖2s̃ =
∑

p∈Nm\NfC
m

∫
s̃

σ̂1(unm)σ̂1(unm)θs̃φp

. ‖Gnm‖−1,ω̃ph
− 1

2
p ‖σ̂1(unm)‖s̃ + h

1
2
p ‖fn1 ‖ω̃p‖σ̂1(unm)‖s̃. (25)

Here, we used the properties of the bubble functions on the subgrid of M̃n

which constitute by linear combination θs̃. Dividing by h
− 1

2
p ‖σ̂1(unm)‖s̃, using

the triangle inequality and exploiting the results (23) and (8) we get

ηn5,p . ErrMeasL(unm, u̇
τ
m, λ̃

n

m) + oscp(f
n) + oscp(π

n). (26)

5.4 Local bound in space of η6, η7

Summing up the two error estimator contributions we get

(ηn6,p)
2 + (ηn7,p)

2 = snp

∫
bp

1

2
(gnm − unm,1)φp +

1

2
(gnm − un−1

m,1 )φp

= snp

∫
bp

(χnp̃ − wnm,1)φp

where we set χnp̃ := 1
2 (gnm + gn−1

m ) and wnm,1 := 1
2 (unm,1 + un−1

m,1 ). If snp = 0 or

(χnp̃ − wnm,1) = 0 on bp we have snp
∫
bp

(χnp̃ − wnm,1)φp = 0. Therefore, we assume
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snp > 0 and (χnp̃ −wnm,1)(q) > 0 for at least one node, i.e. (gnm − unm,1)(q) > 0 for

one node q ∈ Nn
m or (gn−1

m − un−1
m )(q) > 0 for one node q ∈ Nn−1

m . We note

that p belongs to M as well as to M̃.
In the case that (χnp̃ − wnm,1)(p) = 0 we can derive an upper bound as in [16,
Section 5.2]. But as snp > 0 implies (gnm − unm,1)(p) = 0 but not necessarily

(gn−1
m − un−1

m,1 )(p) = 0, we have to consider the case that (χnp̃ − wnm,1)(p) > 0,
too. In order to derive an upper bound of∫

bp

(χnp̃ − wnm,1)φp =
∑

s̃⊂γp̃,C

∫
s̃∩bp

(χns̃ − wnm,1)φp

we consider the integral over each side independently where χns̃ = χnp̃ |s̃. For
each side s̃ ∩ bp 6= ∅ belonging to an element ẽ, we choose a node q∗ fulfilling
(χns̃ −wnm,1)(q∗) > (χns̃ −wnm,1)(q) for all q on s̃. Further, we define τ ∗ the unit
vector pointing from a node q of s̃ to q∗ such that

∇|ẽ(χns̃ − wnm,1) · τ ∗ > 0.

First, we consider the two-dimensional case. Due to the Assumption 1 we can
choose a neighbouring node z1 in the interior belonging to another element ê.
We define an extension of χns̃ to a finite element function χ̄ns̃ in the interior of
the domain with χ̄ns̃ (z1) := wnm,1(z1) such that

(χ̄ns̃ − wnm,1)(q∗) = (χ̄ns̃ − wnm,1)(z1)︸ ︷︷ ︸
=0

+(q∗ − z1)∇|ê(χ̄ns̃ − wnm,1)

. hp∇|ê(χ̄ns̃ − wnm,1) · τ1︸ ︷︷ ︸
>0

(27)

where τ1 is the unit vector pointing from z1 to q∗. Further, we can choose
another neighbouring node z2 in the interior belonging to the element ẽ and
define the discrete extension χ̄ns̃ such that (χ̄ns̃ − wnm,1)(z2) = (χ̄ns̃ − wnm,1)(q∗).
Thus,

±τ 2∇|ẽ(χ̄ns̃ − wnm,1) = 0 (28)

holds for τ 2 pointing from z2 to q∗. The line given by q∗ and the vector τ 2

divides the plane into half-planes with τ ∗ and −τ 1 on one side and τ 1 on the
other side. Therefore,

−τ 1 = ατ 2 + βτ ∗ (29)

with β > 0 and α arbitrary, see Figure 1. Combining (27, 28, 29) we get

∇|ẽ(χ̄ns̃ − wnm,1)(−τ 1) ≥ 0, (30)

such that

(χ̄ns̃ − wnm,1)(q∗) . hp
(
∇|ê(χ̄ns̃ − wnm,1)−∇|ẽ(χ̄ns̃ − wnm,1)

)
· τ1. (31)

In the three-dimensional case we can proceed almost in the same way. The
interior node of ẽ will be denoted by z3 and we define a discrete extension of
χns̃ to χ̄ns̃ to the interior of the domain by (χ̄ns̃ − wnm,1)(z3) = (χ̄ns̃ − wnm,1)(q∗).
With τ 3 being the vector pointing from z3 to q∗ we have

±τ 3∇|ẽ(χ̄ns̃ − wnm,1) = 0. (32)
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z1•

z2•

•
q∗

•
q

ẽ

ê

τ1

−τ1

±τ2

τ∗

Figure 1: Construction of the linear combination of τ 1

The cut of the plane defined by τ ∗ and τ 3 with an interior side ŝ of another
element ê defines τ 1. Let z1 and z2 be the two interior nodes of the interior
side ŝ then we define χ̄ns̃ (z1) = wnm,1(z1) and χ̄ns̃ (z2) = wnm,1(z2) such that

(χ̄ns̃ − wnm,1)(q∗) . hp∇|ê(χ̄ns̃ − wnm,1) · τ1

as for the two-dimensional case (27). Together with (32) we can draw the same
conclusion as in (29, 30, 31)

(χ̄ns̃ − wnm,1)(q∗) . hp
(
∇|ê(χ̄ns̃ − wnm,1)−∇|ẽ(χ̄ns̃ − wnm,1)

)
· τ1. (33)

Let e0 = ê, em = ẽ and ei i = 1, . . . ,m − 1 the elements between. Common
sides are denoted by si := ei−1 ∩ ei and the interelement jumps of gradients by
[∇vm]Isi := (∇|eivm − ∇|ei−1

vm). Thus, for each side s̃ the right hand side of
(31, 33) can be bounded by the jumps

hp| ∇|ê(χ̄ns̃ − wnm,1)−∇|ẽ(χ̄ns̃ − wnm,1) | .
m∑
i=1

hp[∇(χ̄ns̃ − wnm,1)]Isi

. h
−d+2

2
p

(
h

1
2
p ‖[∇(χ̄ns̃ − wnm,1)]I‖∪q̃∈s̃ωq̃

)
and thus∫

bp

(
χ̄np̃ − wnm,1

)
φp .

∑
s̃∩bp 6=∅

h
d
2
p

(
h

1
2
p ‖[∇(χ̄ns̃ − wnm,1)]I‖∪q̃∈s̃ωq̃

)
. (34)

Due to the definition of snp

snp =

〈
λnm,1, φp

〉
−1,1∫

γp,C
φp

=

∫
γ̃p,I

JI1 (unm)φp +
∫
ω̃p
fn1 φp +

∫
γ̃p,N

JN1 (unm)φp −
∫
γ̃p,C

σ̂1(unm)φp∫
γ̃p,C

φp
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and the fact that η6 and η7 have no contributions from the area of full-contact
nodes we get a bound

snp .

(
5∑
k=1

(ηnk,p)

)
h
− d2
p (35)

by estimator contributions for which we already derived an upper bound in
Sections 5.2 and 5.3. We note that in the case that p would be a full-contact

node defined as in [18] h
1
2
p ‖σ̂1(unm,1)‖γ̃p,C would occur in the upper bound of snp

but is not related to the Galerkin functional and other estimator contributions,
respectively, see Remark 2. Combining (34) with (35) we arrive at

snp

∫
bp

(
χnp̃ − wnm,1

)
φp .

(
5∑
k=1

(ηnk,p)
2

)
+

 ∑
s̃∩bp 6=∅

hp‖[∇(χ̄ns̃ − wnm,1)]I‖2∪q̃∈s̃ωq̃

 .

(36)
Together with (23, 26) we get

((
ηn6,p

)2
+
(
ηn7,p

)2) 1
2

. ErrMeasL(unm, u̇
τ
m, λ̃

n

m) + oscp(f
n) + oscp(π

n)

+
∑

s̃∩bp 6=∅

h
1
2
p ‖[∇(χ̄ns̃ − wnm,1)]I‖∪q̃∈s̃ωq̃ .

(37)

We conclude that Theorem 3 follows from (23, 26, 37).

5.5 Global lower bound

Finally, we aim to bound the estimator globally by the error measure (3.1).
From the local estimates (22), (25) and (36) we get directly

7∑
k=1

(ηnk )2 . ‖Gnm‖2−1,Ω +
∑
p

(
osc2

p(f
n) + osc2

p(π
n)
)

+
∑

p∈NsC
m

∑
s̃∩bp 6=∅

(
hp‖[∇(χ̄ns̃ − wnm,1)]I‖2∪q̃∈s̃ωq̃

)

where we used that the local lower bounds imply a global bound (see e.g. [18,
Remark 3.8]) . Integrating in time and exploiting (21) we get

(ηnτ )2 +

7∑
k=1

τn(ηnk )2

. ‖Gnτ ‖2L2([tn−1,tn],H−1) + ‖Gnm‖2L2([tn−1,tn],H−1)

+ τn
∑
p

(
osc2

p(f
n) + osc2

p(π
n)
)

+ τn
∑

p∈NsC
m

∑
s̃∩bp 6=∅

(
hp‖[∇(χ̄ns̃ − wnm,1)]I‖2∪q̃∈s̃ωq̃

)
.

(38)

As the dual norm of the Galerkin functional is bounded by the error measure
(7), we make use of the following result
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Lemma 2. There exists a constant β such that the inequality

β
{
‖Gnτ ‖2L2([tn−1,tn],H−1) + ‖Gnm‖2L2([tn−1,tn],H−1)

} 1
2 ≤ ‖Gnτ +Gnm‖L2([tn−1,tn],H−1)

holds.

which follows from [25, Lemma 6.3] (or [25, Lemma 3.53], respectively). Com-
bining (38),(7),(6) and Lemma 2 leads to the result of Theorem 2

ηn . ErrMeasG(uτm, u̇
τ
m, λ̃

τ

m, [t
n−1, tn]) + ‖f̃ − f̃

τ
‖L2([tn−1,tn],H−1)

+
√
τn

 ∑
p∈Nm

osc2
p(f

n) +
∑
p∈NN

m

osc2
p(π

n) +
∑

p∈NsC
m

∑
s̃∩bp 6=∅

(
hp‖[∇(χ̄ns̃ − wnm,1)]I‖2∪q̃∈s̃ωq̃

) 1
2

.

6 Numerical results

The implementation has been carried out in MATLAB. As basis for the imple-
mentation of the adaptive mesh generation we have used [10, Chapter 5] as well
as [2]. As solver for the variational inequalities we implemented a primal-dual-
active set method similar to [3, Chapter 5.3.1].
We use newest vertex bisection as refinement strategy and the maximum strat-
egy as marking strategy. We denote by Mk+1 the refined or coarsened mesh
succeeding Mk. In each time step n the starting mesh Mn

0 is the final mesh
Mn−1 of time step n− 1.
First, we conduct some coarsening steps if the interpolation error obtained by
replacing un−1

mk
with I(un−1

mk+1
) in the residual is a small percentage of the es-

timator of the foregoing time step. Next, we start the refinement process in
the new time step n based on the spatial estimator ηnm. The refinement process
stops if a given maximal number of elements has been passed over in the forego-
ing iteration step or if the estimator ηnm is very small. Finally, we compute the
temporal estimator. If the temporal estimator is larger or significantly smaller
than the spatial estimator we reduce or increase the time step size, restore the
mesh from the foregoing time step and start the adaptive mesh refinement in
time step n, newly. Otherwise, we accept the mesh and the time step size and
continue with time step n+ 1.

6.1 Contact with a wedge

We simulate the deformation of a linear viscoelastic unit square which is moved
via time-dependent Dirichlet boundary conditions uD,1 = (0.1 − t) at x = 0
towards the obstacle g(y) = −0.2 + 0.5 · |y − 0.5| which describes a wedge with
a semi-angle α ≈ 63. We consider two examples with different sets of material
parameters. In the first example we choose the Young’s modulus E = 2 · 105,
the Poisson ratio ν = 0.25, the shear viscosity η = 5 ·10−2 and the bulk viscosity
ζ = 5 · 10−2. In the second example we choose E = 500, ν = 0.3 and η = 30,
ζ = 30. The maximal number of elements which has to be passed before the
refinement process stops is set to 5000 elements. In both cases the time step is
τ = 0.03 and is not changed.
For the first example we show the deformed configuration and the adaptively
refined meshes in the area [0.2, 1.0] × [0.1, 0.9] at times t = 0.03, t = 0.12
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and t = 0.27 in Figure 2. At time t = 0.03 and t = 0.12 it is obvious that
the adaptive refinement is strong where the tip of the wedge indents and at
the free boundary whereas not the whole contact zone is highly refined. We
note that the body detaches at time t = 0.3. Thus, at time t = 0.27 the
area of contact coincides with the area where the tip of the wedge indents and
thus this effect cannot be seen. In Figure 3 we plot the estimator against the
number of nodes with logarithmic scales to show the experimental order of
convergence at times t = 0.03, t = 0.12 and t = 0.27. At the first time step we
compare also with uniform refinement. At the following time steps there are less
adaptive refinement steps as we do not start again from the coarsest mesh. The
experimental order of convergence is ≈ 0.5 in the case of adaptive refinement
and in contrast ≈ 0.3 in the case of uniform refinement.
For the first example we list in Table 1 and Table 2 the estimator contribution

referring to the complementarity residual

√
τn
((
ηnmk,6

)2
+
(
ηnmk,7

)2)
and the

sum of the spatial estimator contributions
√
τnηnmk in time steps n = 1 and

n = 6. As stated in Remark 3 the complementarity residual is much smaller
than the spatial estimator. The difference is about 104.

Table 1: Comparison of spatial estimator and complementarity residual in time
step n = 1

k

√
τ1
((
η1
mk,6

)2
+
(
η1
mk,7

)2) √
τ1η1

mk

k = 1 5.1297 1.9124 · 104

k = 2 1.0733 0.9896 · 104

k = 3 0.4801 0.7496 · 104

k = 4 0.4588 0.6334 · 104

k = 5 0.3919 0.4896 · 104

k = 6 0.3782 0.3649 · 104

k = 7 0.1355 0.3113 · 104

k = 8 0.0509 0.2226 · 104

k = 9 0.0423 0.1758 · 104

k = 10 0.0429 0.1270 · 104

k = 11 0.0177 0.0987 · 104

Table 2: Comparison of spatial estimator and complementarity residual in time
step n = 6

k

√
τ6
((
η6
mk,6

)2
+
(
η6
mk,7

)2) √
τ6η6

mk

k = 1 0.0109 546.4735
k = 2 0.0027 490.6460
k = 3 0.0016 295.4914

Due to the different material parameters in the second example the deformation
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(a) deformation t = 0.03
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(c) deformation t = 0.12
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(e) deformation t = 0.27
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Figure 2: Indentation by a wedge (first example): Deformation and adaptively
refined mesh
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Figure 3: Indentation by a wedge (first example): Convergence of estimator
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(a) E = 2 · 105, ν = 0.25, η = ζ = 5 · 10−2 (b) E = 500, ν = 0.3, η = ζ = 30

Figure 4: Comparison of deformation for different material parameters at de-
tachment time t = 0.03

which depends on the elastic as well as viscous stress develops differently in time.
In the second example there is still a significant deformation at detachment time
t = 0.3, see Figure 4. In Figure 5 we show for the second example the adaptively
refined meshes and we plot the estimator against the number of nodes at times
t = 0.03, t = 0.15 and t = 0.27. In order to visualize the experimental order of
convergence we use logarithmic scales. At the first time step we compare also
with uniform refinement. The experimental order of convergence varies between
≈ 0.45 and ≈ 0.49 for adaptive refinement and is ≈ 0.33 for uniform refinement.

6.2 Contact with a parable

In the third example we simulate the deformation of a linear viscoelastic unit
square which may come into contact with a parable depending on a time-
dependent force term f . The obstacle is described by g(y) = (y − 0.5)2 at
the right hand side x = 1 and the Dirichlet values by uD,1 = 0 at the left hand
side x = 0. The right hand side is given by

f1 = (sin(10tπ))(−2(λ+ 2µ)(y − y2)− 2µ(x− x2))

+ 10π(cos(10tπ))(−2(λV + 2η)(y − y2)− 2η(x− x2))

and

f2 = (sin(10tπ))(µ(1− 2y)(1− 2x) + λ(1− 2x)(1− 2y))

+ 10π(cos(10tπ))(η(1− 2y)(1− 2x) + λV (1− 2x)(1− 2y)).

In the case no contact occurs the right hand side corresponds to the solution
u1 = sin(10tπ)x(1 − x)y(1 − y), u2 = 0. The material parameters are chosen
as in the first example. In Figure 6 we visualize the solution um,1 at different
times. We start with a time step size τ = 0.05 but due to the time-dependent
right hand side the time step size will be adapted and thus varies between 0.05
and 7.8125 · 10−4. The maximal number of elements which has to be passed
before the refinement process stops in each time step is set to 5000 elements.
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Figure 5: Indentation by a wedge (second example): Adaptively refined mesh
and experimental order of convergence
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In this case
(∑

n τ
n (ηnm)

2
) 1

2

= 1.8123 · 103. Reducing the maximal number of

elements which has to be passed before the refinement process stops to 2000

or 500 increases the spatial estimator to
(∑

n τ
n (ηnm)

2
) 1

2

= 3.2498 · 103 or(∑
n τ

n (ηnm)
2
) 1

2

= 6.1488 · 103, respectively.
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