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Abstract

In this paper, we propose and analyse a new adaptive multilevel stochas-
tic collocation method for randomized elliptic PDEs. A hierarchical sequence
of adaptive mesh refinements for the spatial approximation is combined with
adaptive anisotropic sparse Smolyak grids in the stochastic space in such a way
as to minimize computational cost. We provide a rigorous analysis for the con-
vergence and computational complexity of the adaptive multilevel algorithm.
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1 Introduction

Multilevel methods have made their way into Monte Carlo and stochastic colloca-
tion methods [2, 11]. They were originally proposed by Giles [6]. Recently, also
combinations with spatial adaptivity have been investigated [1, 4, 10]. Here, we
formulate first ideas to include rigorous error control in both the solution of the
physical PDE and the stochastic collocation method. We will follow the paper by
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Teckentrup, Jantsch, Webster, and Gunzburger [11] and concentrate on el-
liptic partial differential equations with random input data in the standard setting:
Find u(x, y) : D × Γ→ R such that almost surely

A(x, y)u(x, y) = f(x, y), (x, y) ∈ D × Γ, (1)

u(x, y) = g(x, y), (x, y) ∈ ∂D × Γ, (2)

where Γ = Πn=1,...,NΓn with bounded Γn (boundedness assumption) is a stochastic
parameter space of finite dimension N (finite noise assumption) and D ⊂ Rd, d =
1, 2, 3, is the deterministic (physical) space. The random variables y1, . . . , yn have
a joint probability density function ρ(y) = Πn=1,...,N ρ̂n ∈ L∞(Γ), ρ̂n : [−1, 1] → R.
We assume that problem (1)-(2) admits a unique solution u(x, y) ∈ L2

ρ(Γ;H1(D))
in the weighted Bochner space

L2
ρ(Γ;H1(D)) = {v : Γ→ H1(D) measurable:

∫
Γ
‖v(y, ·)‖2H1(D)ρ(y)dy <∞} (3)

with corresponding norm

‖v‖2L2
ρ(Γ;H1(D)) =

∫
Γ
‖v(y, ·)‖2H1(D)ρ(y)dy . (4)

The standard, single-level stochastic collocation method uses a set of sampling points
{ym}m=1,...,M in Γ and finite-dimensional spatial approximations uh(y) ∈ Vh ⊂
H1(D) to construct an interpolant

u
(SL)
M,h (x, y) = I[uh](x, y) =

M∑
m=1

um(x)φm(y), (5)

in the polynomial space PM = span{φm}m=1,...,M ⊂ L2
ρ(Γ) with basis functions

{φm}m=1,...,M . The coefficients um(x) are determined by the interpolating condition
I[uh](x, ym) = uh(x, ym) for m = 1, . . . ,M . The quality of the interpolation process
depends on the accuracy of the spatial approximations uh(y) and the number of
collocation points M , which in practice can quickly grow with increasing stochastic
dimension N . Multilevel methods aim at reducing the overall computational cost
through exploiting hierarchies of different resolutions in both spatial and stochastic
approximations. Examples are uniform mesh refinement and and generalized sparse
grids as used in [11]. In what follows, we will combine an adaptive mesh refine-
ment for the approximation of the spatial approximations uh(y) with an adaptive
(anisotropic) sparse Smolyak grid in order to improve the multilevel method and to
reach a user-prescribed tolerance for the accuracy of the multilevel interpolant.
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2 Adaptive Spatial Approximation

Let {TolXk}k=0,...,K be a decreasing sequence of tolerances with

1 ≥ TolX0 > TolX1 > · · · > TolXk > · · · > TolXK > 0. (6)

Then, for each fixed y ∈ Γ, we adaptively compute approximate spatial solutions
uk(y) ∈ Vk(y) on nested subspaces

V0(y) ⊂ V1(y) ⊂ · · · ⊂ VK(y) ⊂ H1(D) (7)

with the pointwise error estimates

‖u(·, y)− uk(y)‖H1(D) ≤ Cx · TolXk, k = 0, . . . ,K. (8)

We assume that the positive constant Cx does not depend on k and y. Supposing
measurability of the discrete spaces Vk(y), we directly get

‖u− uk‖L2
ρ(Γ,H1(D)) ≤ Cx · TolXk, k = 0, . . . ,K. (9)

Adaptive algorithms as proposed in [3, 7] converge for fixed y ∈ Γ and TolXk → 0.
The constant Cx depends on the quality of the a posteriori error estimator. Values
close to one can be obtained by hierarchical error estimators and gradient recovery
techniques in the asymptotic regime.

3 Adaptive Stochastic Interpolation

Let us assume u ∈ C0(Γ;H1(D)) and denote by {IMk
}k=0,1,... a sequence of inter-

polation operators
IMk

: C0(Γ)→ L2
ρ(Γ) (10)

with Mk points from the N -dimensional space Γ = Πn=1,...,NΓn. We construct each
of these operators by a hierarchical sequence of one-dimensional Lagrange interpo-
lation operators with the anisotropic Smolyak algorithm, which was introduced by
Gerstner and Griebel [5]. The method is dimension-adaptive, using the individ-
ual surplus spaces in the multi-dimensional hierarchy as natural error indicators.

Let {TolYk}k=0,...,K be a second sequence of tolerances. Under suitable regularity
assumptions for the uncertain data (see e.g. [11, Lemma 5.7]), we can assume that
there exists numbers Mk, k = 0, 1, . . . ,K, and a positive constant Cs not depending
on k such that

‖(uk − uk−1)−IMK−k [uk − uk−1]‖L2
ρ(Γ;H1(D)) ≤ Cs · TolYK−k, k = 0, . . . ,K, (11)

where, for simplicity, we set u−1 = 0. Since ‖uk − uk−1‖L2
ρ(Γ;H1(D)) ≤ C · TolXk−1

and therefore decreasing as k → ∞, we can expect that less accurate interpolation
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operators, i.e. smaller numbers MK−k, are needed for higher k to achieve a required
accuracy. Indeed this is the main motivation to set up a multilevel interpolation
approximation. Suitable values for the tolerances TolYk will be given in the next
Section.

4 Adaptive Multilevel Method

Given the sequences {uk} and {IMk
}, we define the multilevel interpolation approx-

imation in the usual way through

u
(ML)
K =

K∑
k=0

IMK−k [uk − uk−1] =
K∑
k=0

(
u

(SL)
MK−k,k

− u(SL)
MK−k,k−1

)
. (12)

Observe that the most accurate interpolation operator IMK
is used on the coarsest

spatial approximation u0 whereas the least accurate interpolation operator IM0 is
applied to the difference of the finest spatial approximations uK−uK−1. From (12),
the close relations of the single index k for the spatial and stochastic approximations
are clearly visible.

Convergence analysis

To show the convergence of the multilevel approximation u
(ML)
K to the true solution

u, we split the error into the sum of a spatial discretization error and a stochastic
interpolation error. This yields with the triangle inequality

‖u− u(ML)
K ‖L2

ρ(Γ;H1(D)) ≤ ‖u− uK‖L2
ρ(Γ;H1(D)) + ‖uK − u(ML)

K ‖L2
ρ(Γ;H1(D)). (13)

Due to (9) the spatial discretization error is bounded by Cx ·TolXK . The aim is now
to choose the tolerances TolYk in an appropriate way to reach the same accuracy.
From (11), we estimate the stochastic interpolation error as follows:

‖uK − u(ML)
K ‖L2

ρ(Γ;H1(D)) =

∥∥∥∥∥
K∑
k=0

(uk − uk−1)− IMK−k [uk − uk−1]

∥∥∥∥∥
L2
ρ(Γ;H1(D))

≤
K∑
k=0

∥∥(uk − uk−1)− IMK−k [uk − uk−1]
∥∥
L2
ρ(Γ;H1(D))

≤
K∑
k=0

Cs · TolYK−k.

(14)
To obtain an accuracy of the same size as for the spatial discretization error, we
simply require TolYk ≤ Cx · TolXK/((K + 1)Cs) for k = 0, . . . ,K. It follows

‖u− u(ML)
K ‖L2

ρ(Γ;H1(D)) ≤ 2Cx · TolXK , (15)

and thus convergence of the adaptive multilevel method for TolXK → 0. The values
for TolYk can be optimized by minimizing the computational costs while keeping
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the desired accuracy. This is considered next.

Cost analysis

We will analyse the computational costs, C
(ML)
ε , of the multilevel stochastic col-

location estimator u
(ML)
K , required to achieve an accuracy ε. In order to quantify

the contributions from the spatial discretization and the stochastic collocation, we
make two assumptions to link the costs with the accuracies in (9) and (11). Let Ak
denote the cost for solving the deterministic PDE for one sample point from Γ with
accuracy TolXk. Then, we assume

(A1) Ak ≤ Cc · TolX−sk ,

(A2) Cs · TolYK−k = CI(N)M−µK−k TolXk−1

for all k = 0, . . . ,K, and the special case ‖u0‖H1(D) ≤ TolX−1 := const. Here,
CI(N) > 0, Cc > 0 does not depend on k, and s, µ > 0 are two real numbers.
Assumption (A1) usually holds for adaptive spatial discretization methods with
s = d, when they are coupled with optimal linear solvers such as multigrid. The
factors on the right-hand side in (A2) reflect best the convergence of the sparse
grid approximations in (11) with respect to the total number MK−k of collocation
points, see [8, 9] or [11, Theorem 5.4]. To estimate the difference uk−uk−1, we have
used the fact that ‖uk − uk−1‖H1(D) ≤ C · TolXk−1 with a constant C > 0 close to
one. It follows from ‖u− uk−1‖H1(D) ≈ ‖uk − uk−1‖H1(D), which is the basis for the
very good performance of hierarchical error estimators. We absorb C in CI . The
factor µ strongly depends on the dimension N . Several examples, including also the
anisotropic classical Smolyak, are given in [11, Table 5.2].

The total computational cost of the approximation u
(ML)
K can be defined as

C(ML) =
K∑
k=0

MK−k (Ak +Ak−1). (16)

In a first step, we will consider a general sequence {TolXk} without defining a decay

rate a priori. We have the following result for the ε-cost C
(ML)
ε and the optimal choice

of the tolerances TolYk in (11).

Theorem 4.1. Let a decreasing sequence of spatial tolerances {TolXk}k=0,1,...,K in
(6) with unfixed K are given. Suppose assumptions (A1) and (A2) hold. Then,
for any epsilon, there exist an integer K(ε) and a sequence of tolerances in (11),
{TolYk}k=0,...,K , such that

‖u− u(ML)
K ‖L2

ρ(Γ;H1(D)) ≤ ε (17)

and

C(ML)
ε ≤ C ·GK(µ)

µ+1
µ ε

− 1
µ + Cc

K∑
k=0

(
TolX−sk + TolX−sk−1

)
(18)
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with C = Cc (2CI)
1
µ and

GK(µ) =

K∑
k=0

(
TolX−sk + TolX−sk−1

) µ
µ+1 (TolXk−1)

1
µ+1 . (19)

The optimal tolerances TolYk are given through

TolYK−k = (2CsGK(µ))−1
(
TolX−sk + TolX−sk−1

) µ
µ+1 (TolXk−1)

1
µ+1 ε. (20)

Proof: As in the convergence analysis, we split the error and make sure that both
the spatial discretization error and stochastic interpolation error are bounded by
ε/2. First, we choose an appropriate K ≥ 0 and TolXK such that TolXK < ε/2.
This is, of course, always possible and fixes the number K. Next we determine the
set {Mk}k=0,...,K so that the computational cost in (16) are minimized subject to
the requirement that the stochastic interpolation error is bounded by ε/2. Using
assumptions (A1) and (A2), this reads

min
M0,...,MK

K∑
k=0

Cc ·MK−k
(
TolX−sk + TolX−sk−1

)
s.t.

K∑
k=0

CI ·M−µK−k TolXk−1 =
ε

2
.

(21)

Applying the Lagrange multiplier method with all Mk treated as continuous vari-
ables, gives the optimal choice for the number of samples

MK−k = (2CI GK(µ))
1
µF
− 1
µ+1

k ε
− 1
µ (22)

with

Fk =
(
TolX−sk + TolX−sk−1

)
(TolXk−1)−1, k = 0, . . . ,K, (23)

GK =

K∑
k=0

F
µ
µ+1

k TolXk−1. (24)

To make sure that MK−k is an integer, we round up to next integer. The complexity
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of the multilevel approximation can now be estimated:

C(ML)
ε ≤

K∑
k=0

Cc · (MK−k + 1)
(
TolX−sk + TolX−sk−1

)
=

K∑
k=0

Cc ·
(

(2CI GK(µ))
1
µF
− 1
µ+1

k ε
− 1
µ + 1

)(
TolX−sk + TolX−sk−1

)
≤ C ·GK(µ)

1
µ ε
− 1
µ

K∑
k=0

F
µ
µ+1

k TolXk−1 + Cc

K∑
k=0

(
TolX−sk + TolX−sk−1

)
= C ·GK(µ)

µ+1
µ ε
− 1
µ + Cc

K∑
k=0

(
TolX−sk + TolX−sk−1

)
with C = Cc (2CI)

1
µ .

The optimal tolerances TolYk can be directly determined from assumption (A2).
We get with the above defined Mk

TolYK−k = (2CsGK(µ))−1 F
µ
µ+1

k TolXk−1 ε. (25)

Note that with these values
∑

k=0,...,K Cs · TolYk = ε/2, which gives the desired
accuracy in (14). �

Observe that the function GK(µ) and the sum over powers of all spatial toler-
ances still depend on ε, because K is a function of ε. In this way, the rate (−1/µ)
is influenced by the choice of the tolerances TolXk, which could be also an is-
sue for further optimization. A typical design is a geometric sequence TolXk =
qk TolX0, k = 1, 2, . . . , with a positive reduction factor q < 1. This will be treated
next. In the following, we use the relation a . b⇔ a < Cb with a generic constant
C that does not depend on the dimension N and the number of samples Mk, and
a h b⇔ (a . b and b . a).

Theorem 4.2. Let the sequence of spatial tolerances {TolXk}k=0,1,...,K in (6) are
defined by TolXk = qk TolX0 with a reduction factor q < 1. Suppose assumptions
(A1) and (A2) hold. Then, for any ε < 1, there exists an integer K(ε) such that

‖u− u(ML)
K ‖L2

ρ(Γ;H1(D)) ≤ ε (26)

and

C(ML)
ε .


ε
− 1
µ if sµ < 1

ε
− 1
µ | log ε|1+ 1

µ if sµ = 1

ε−s if sµ > 1.

(27)
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Proof: We start with identifying the number K. From the accuracy requirement
TolXK = qK TolX0 < ε/2 we deduce

K =

⌈
logq

(
ε

2TolX0

)⌉
. (28)

This gives K ≤ logq(ε/(2TolX0)) + 1 and the estimate

Cc

K∑
k=0

(
TolX−sk + TolX−sk−1

)
.

K∑
k=0

q−ks .
q−sK

1− qs
. ε−s. (29)

To estimate the term GK(µ) in (18), we first state that

GK(µ) .
K∑
k=0

qk(1−sµ)/(µ+1). (30)

The behaviour of this geometric sum depends on the sign of 1−sµ. When 1−sµ > 0,
the sum converges to a limit independent of K. Since in this case ε−s < ε−1/µ for

ε < 1, we end up with C
(ML)
ε . ε−1/µ. When 1− sµ = 0, we have GK(µ) . K + 1,

which gives together with K as defined in (28) the additional logarithmic term, i.e.,

C
(ML)
ε . ε−1/µ| log ε|1+1/µ. Eventually, when 1− sµ < 0, we estimate

GK(µ) . q
K(1−sµ)
µ+1

K∑
k=0

(
q
− 1−sµ
µ+1

)K−k
. q

K(1−sµ)
µ+1 . ε

1−sµ
µ+1 (31)

and find
C(ML)
ε . ε−

1
µ ε

1−sµ
µ+1
·µ+1
µ + ε−s h ε−s. (32)

This completes the proof. �
For a comparison with the standard single-level stochastic collocation method,

we set K = 0 and use the estimate

‖u− u(SL)
0 ‖L2

ρ(Γ;H1(D)) ≤ Cx · TolX0 + CI ‖u0‖H1(D)M
−µ
0 . (33)

Balancing both contributions with ε/2, requests TolX0 h ε and M0 h ε−1/µ. The
computational ε-cost is then bounded by

C(SL)
ε hM0 · TolX−s0 h ε

−s− 1
µ . (34)

In terms of savings, we find a reduction factor Θ := C
(ML)
ε /C

(SL)
ε h εs for the case

sµ < 1, which also holds, up to a log factor, for sµ = 1. When sµ > 1, we have
Θ h ε1/µ. The advantage of the multilevel method is obvious.
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5 A few remarks

We would like to give a few remarks.

Remark 5.1. The proposed method has a self-adaptive nature. Once the tolerances

{TolXk}k=0,...,K and {TolYk}k=0,...,K are set, the algorithm delivers a solution u
(ML)
K

with an accuracy close to ε, provided that the constants Cx and Cs, which describe the
reliability of the estimation for the adaptive spatial discretization and the adaptive
Smolyak algorithm, are close to one. While the spatial tolerances TolXk can be freely
chosen, the optimal choice of the tolerances TolYk in (20) requests the knowledge
of the parameters s and µ. They have to be determined in advance through an
appropriate number of samples. Usually, it holds s = d. Note that the adaptive
anisotropic Smolyak algorithm will automatically detect the importance of various
directions in the parameter space Γ ⊂ RN .

Remark 5.2. A crucial point already mentioned in [11] is that the optimal rounded
values for the number of samples, Mk, will not be used by the algorithm, because
they do not necessarily correspond to an adaptive sparse grid level. However, for
each level k, the tolerance TolYk will be ensured with a perturbed number M̃k ≥Mk,
resulting in a slight inefficiency of the sparse grid approximation. Note that, in
practice, the same behaviour is observed for adaptive spatial discretizations. In any
case, there is no restart necessary as used in [11, Section 6.3].
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