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ABSTRACT. In this paper the Surface Quasi-Geostrophic Equations (QGE) with fractional dissipa-
tion in R2 are considered. Our aim is to study the long-time behavior of QGE in the subcritical
case. To this end we investigate the global well-posedness and global attractor for QGE in H*(R?)
via commutator estimates for nonlinear terms, a new iterative technique for estimates of higer order
derivatives and with the help of a nonlocal damping term. Besides, by using the fractional Lieb-
Thirring inequality, estimates of the finite Hausdorff and fractal dimensions of the global attractor
are found.
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We consider the asymptotic behavior of solutions of the following 2D (surface) quasi-geostrophic

equations (QGE) with fractional dissipation in R?:
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where F'(z, 6) is a given function and x > 0 is the viscosity. The nonlocal operator (—A)*,1/2 < a < 1,
is defined through the Fourier transform

(=A)g(€) = lE[**5(&), (1.2)
where g is the Fourier transform of g (see Sect. 2 below). For notational convenience, we write
A = (—=A)Y2 In (1.1) @ = §(x,t) represents the potential temperature. The velocity u = (u,us) is
incompressible and determined from 6 by a stream function v via the relations

oY 0 1
u = (uy,us) = (—%,%) and  (—=A)Ty = —0. (1.3)
The equality relating u to 6 in (1.3) can be rewritten in terms of Riesz transforms
w = (ur,us) = (Op, A"10, —0,, A710) = R0, (1.4)
where R+ = (—R2,R1) and R;,j = 1,2 denote the Riesz transforms defined by
Ri1(@) =~ (e).

There is an extensive literature on the 2D quasi-geostrophic equations (1.1), (1.3), since the system
is regarded as an important model in geophysical fluid dynamics, especially for atmospheric and
oceanic fluid flow in case of small Rossby and Ekman numbers (see [36]). Actually, the global well-
posedness and the large time behavior for the system (1.1), (1.3) without external force (i.e. f = 0)
and damping have been intensively investigated due to both their mathematical importance and their
potential for applications in meteorology and oceanography (see [7, 12, 14, 16, 17, 18, 26, 46, 47] and
references therein). For example, Berselli considered the long time behavior of solutions of the 2D
QGE with periodic boundary condition in [6]. Existence and uniqueness of solutions were proved
by Constantin-Wu [15] and Wu [45]. After that, by developing a generalized maximum principle, Ju
proved the existence of the H*—global attractor for the 2D QGE with periodic boundary condition in
[25].

The interesting problem involving the long-time behavior a of dynamical system can be described
naturally in terms of attractors of the corresponding semigroup (see [2, 24, 41] and references therein).
In bounded domains, people are interested in finding the existence of the attractor for a large class
of equations such as reaction-diffusion equations, nonlinear wave equations, two-dimensional QGE
and Navier-Stokes systems, etc. Besides, under some natural assumptions it has been proven that
for all equations mentioned above, the attractor has a finite Hausdorff and fractal dimension (see
[2, 24, 41, 43)).

In recent years, more and more articles refer to the case of unbounded spatial domains or the
whole space. It is known that the behavior of solutions for the above equations becomes much more
complicated, mainly because compact embeddings and the Poincaré inequality do not hold; actually,
these tools are very important to assure the existence of bounded absorbing sets when one focuses
on bounded domains with smooth boundary or a spatial domain with periodic boundary condition.
The above mentioned evolution equations of mathematical physics on unbounded domains are usually
treated under some additional assumptions on the external force such that the equations have the
property of damping (see [39, 42]). We would like to mention that Abergel [1], Marin-Rubio, Real
[34] and Rosa [38] studied the 2D Navier-Stokes equations on a strip in R? and arbitrary domains of
R? satisfying the Poincaré inequality, respectively. Efendiev-Zelik [20] considered nonlinear reaction-
diffusion systems (with damping) in unbounded domains and obtained the attractors for the system
in weighted Sobolev spaces. The global attractor for the 2D QGE in R? with damping has proved by
Wang-Tang [44] in the framework of L. However, the estimate of Hausdorff and fractal dimensions of
the global attractor in L? is unsolved. We mention that in [20] as well as in [44] the system contains
the globally acting damping term Au (with A > 0) on the left-hand side of the equation; this term is
implicitly contained in the bounded domain case due to the Poincaré inequality.
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The main purpose of this paper is to study the existence of the H*-global attractor for the QGE in
R? and find estimates of Hausdorff and fractal dimensions of the attractor. For simplicity, we consider
the external force F(z,v) in the following form:

Flz,v) = g1(2) f1(v) + fa(v) + g2(2), (1.5)

where f1(0), g1(x) and go(x) are given functions, and f(v) is a nonlocally acting functional given by
f2(v) = pxv with p = p(z) € L}(R?); (1.6)

here the x—product denotes convolution on R?. Assuming that p(¢) is negative and converges to 0
as |£| — oo (or even has compact support in R?) the term f, yields in Fourier space the damping
term —p0 instead of A0 on the left-hand side of the equation. Since p(§) — 0 as || — oo, the term
f2 defines a much weaker damping than the classical term Av as in [44]. Concerning g1 (z)f1(v) we
assume the dissipativity condition g;(z)fi(v)v < 0 on R? x R.

There are new challenges to consider the asymptotic behavior for (1.1), (1.3) and (1.5), (1.6),
particularly, concerning the existence of global attractors and the finite dimensionality of the attractor.
The most difficult issue is the absence of standard compact Sobolev embeddings as mentioned before.
To overcome this difficulty we use a suitable cut-off function to decompose the whole space R? into a
bounded ball and its complement; then the asymptotic compactness of the semigroup follows from the
compact Sobolev embedding on the ball and estimates in its complement. However, when proving the
same kind of estimates both in H*® and LP, the dissipative term (—A)%, 1/2 < o < 1, and the nonlinear
term u - V6 give much more trouble than for reaction-diffusion systems. Moreover, the existence of an
absorbing set in H®(R?) cannot be obtained immediately by the uniform Gronwall lemma, since we
study the global attractor in a higher order Sobolev space H*(R?), s > 2(a—1), whereas the dissipative
term (—A)%, 1/2 < a < 1, only supplies H® regularity. It is necessary to obtain the absorbing set
by an iterative technique (boot-strapping argument) and commutator estimates involving the term
u - V.

Besides, it is notable that the absence of a damping term A0 and the explicit dependence of the
external force f; = f1(f) on the temperature lead to new difficulties, especially, to get estimates
of ||A%f1(6)]|r2. In this situation, for instance, we are faced with the problem of proving existence
and uniqueness of solutions and uniform bounded estimates of them, see Sect. 4 and the Appendix
(Sect. 8) for detailed proofs. For the analysis of f1(f) we use Littlewood-Paley theory to get new
estimates for ||A®f1(6)]/Lz2, see Sect. 3. Finally, we also would like to estimate the Hausdorff and
fractal dimensions of the global attractor of the fractional dissipative QGE. Thanks to the fractional
Lieb-Thirring inequality obtained in [32], our idea is feasible if we can prove that the semigroup is
uniformly differentiable on the attractor by controlling the nonlinear term.

This article is organized as follows. In Sect. 2, we present some notation and recall the theory of
global attractors for infinite dimensional dissipative dynamical systems and several preliminary results
which will be used frequently. In Theorems 2.6 and 2.7 we state the global well-posedness of the 2D
QGE and the main result of this paper, respectively. To get the main result, we introduce some
Littlewood-Paley theory and prove a crucial estimate for the external force f;(#) which is necessary
to get global existence and uniform estimates for solutions of (1.1), (1.3) in Sect. 3. In Sect. 4 and
Sect. 5, we present a priori estimates which will yield existence of absorbing sets in H*(R?) and
prove smallness of the H*(R?)-norm on the complement of a bounded ball. In Sect. 6, we first prove
the asymptotic compactness of the solution semigroup and then, by combining results from previous
sections, deduce the existence of the global attractor. We conclude the proof of Theorem 2.7 by
proving the finite dimensionality of the attractor in Sect. 7. Last but not least, global existence and
uniqueness of solutions for (1.1), (1.3) are proved in Sect. 8.
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2. PRELIMINARIES AND MAIN RESULTS

2.1. Notation and function spaces. We first recall some notation and basic results from harmonic
analysis. For any p € [1,00], LP(R%) = LP? denotes the space of the pth-power integrable functions on
R and || - ||z» denotes the norm of LP. For the duality product (or scalar product) of LP with L?',
p = p%l, we simply write (-,-). Let S(R?) = S be the Schwartz class of rapidly decreasing smooth

functions. For f € S(R?), the Fourier transform of f is defined by

~

FIO=F©O= [ fa) s an 2.1)

the inverse Fourier transform is denoted by F~'. Given s € R and 1 < p < oo, the inhomogeneous
Bessel potential space H*P(RY) is the set of all u € S'(R%) = &', the set of tempered distributions,
such that

lull s := IF ML+ 1€17)*/2@ | o < oo.
H*®P is a Banach space for s € R, 1 < p < oo, and even reflexive for 1 < p < co. For s € R, the
homogeneous Sobolev space H*P?(R%) is defined as the space of all tempered distributions modulo
polynomials u in &' (R9)/P such that
ull gron == IF P D) 20 < 003
here P denotes the set of polynomials on R?. In what follows, we write H%P = Hs’p(Rd),Hs’p =
H*P(R?) and H® = H*? H*® = H*? for brevity.

2.2. Preliminary results. We first recall the basic concepts and results about global attractors and
asymptotic compactness of a semigroup. See [24, 28, 37, 41] for some basic properties.

Definition 2.1. Let M be a complete metric space. A one-parameter family {S(¢)};>0 of maps
S(t): M — M,t >0, is called a C°- or continuous semigroup if it satisfies:
(1) S(0) is the identity map on M,
(2) S(t+s)=5(t)S(s) for all t,s > 0,
(3) for each x € M the function S(t)z is continuous in ¢ > 0.
Let {S(¢)}+>0 be a C%-semigroup in a complete metric space M. A subset By of M is called an
absorbing set in M if, for any bounded subset B of M, there exists some ¢; > 0 such that S(¢)B C By,

for all ¢ > ¢1. A subset A of M is called a global attractor for the semigroup if A enjoys the following
properties:

(1) A is an invariant compact set, i.e., S(t)A = A for any ¢t > 0,
(2) A attracts all bounded sets of M. In other words, for any bounded subset B of M,

d(S(t)B, A) — 0 as t — oo,

where d(B, A) = sup,cp infyca d(z,y) is the semidistance of two sets B and A.
A C%semigroup {S(t)};>0 is said to be asymptotically compact in M if

{S(tn)un}oeq has a convergent subsequence in M
for any bounded sequence {u,}>2; in M and any sequence {¢,}>2 ; in (0, 00) such that ¢, — oo.

Proposition 2.2. Assume that M is a complete metric space and let {S(t)}i>0 be a C°-semigroup
on M. If {S(t)}+>0 has a bounded absorbing set and is asymptotically compact in M, then {S(t)}i>0
possesses a global attractor.

Next, we review the Uniform Gronwall Lemma and some commutator and product estimates, which
are used frequently in this article.
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Lemma 2.3 (Uniform Gronwall Lemma). Let g, h and y be non-negative locally integrable functions
on Jtg, +oo| such that

WO < gy +r), v 1o,

and
t+r t+r t+r
/ g(s)ds < ay, / h(s)ds < aq, / y(s)ds < as, YVt > to,
t t t

where v > 0 and a1, a9, a3 are non-negative constants. Then
a
y(t+r) < (—3+a2) e, Vit >tg.
r

Lemma 2.4 (Commutator and product estimates, [27]). Suppose that s > 0 and p €]1,4o00[. If
f,g € S(RY), then

[A*(fg) = fN°gll L < CUIVFll Loy 19l gro=1ima + W F 1l grouws 191 1oa)
and

IA°(f e < CULF N por 190 rome + 1 groms 191 £os) (2.2)
with p1, p2, p3,psa €1, +00] such that

1 1 1 1 1
—=—4 +

p P P2 Ps pa

We note that (2.2) even holds when p = 1 and p1,pa,p3,pa €)1, +00], see [23]. The limit case
p = o0 in (2.2) is found in [8].
Lemma 2.5 (Positivity Lemma, [17, 18, 25]). Let 0 < a < 1 and 0 € L4(R?), A>**0 € L4(R?) where
q > 2. Then

2
/ 10]9720A%%0 dz > f/ (A“]6]1%/2)* dz > 0.
R2 q JRr2

Finally, we note that by (1.4) and the theory of singular integrals we have that for any p €]1, 00|

there exists a constant ¢(p) such that (see [40])

lullze < c(P)[|0]]r- (2.3)
The L?-inner product on R2, Jgz [ g dz, will also be denoted by (f, g).

2.3. Main results. We now state the result about the existence of global strong solutions of 2D
quasi-geostrophic equations (1.1).

Theorem 2.6. Let a €]3,1], k > 0 and 60° € H*(R?) with s > 2(1 — ). Suppose further that
p€L'(R?), g1 € H*(R*)NL®(R?), go€ H*R?) N L*R?) N LP(R?)

for some qo > ﬁ, f1 € C°(R) satisfying

f1(0) = f1(0) =0, |fi(x)| < K1, |f{(z)] < Ky for any x € R and for some K, Ks > 0.
Then for any T > 0, there is unique solution 0 of (1.1), (1.3) and (1.5), (1.6) such that

0 € C([0,T); H*(R?)) N L*(0, T; H*T*(R?)).
By Theorem 2.6 the proof of which is given in the Appendix (Sect. 8) we define the nonlinear
operator semigroup {S(t)}:>0 in H® as
S(t) : H¥(R?) — H*(R?), 6° S()6° = 0(t),

which is generated by the solution of (1.1) with initial data §° € H*(R?). Our main results on the
attractor and its dimensions read as follows:
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Theorem 2.7. Let the conditions in Theorem 2.6 hold. Assume further that
(1) g1(x) > 0 for almost all x € R* and fi(v)v <0,
(2) (&) <0, p(0) <O0.
Then the semigroup S(t),~, generated by the system (1.1), (1.3) and (1.5), (1.6) has a global attractor
A in H*(R2) which attracts any bounded subset in H*(R?).
Moreover, if either Ki||g1||p~ is sufficiently small or f{ <0, then the global attractor A has finite
Hausdorff and fractal dimensions.

Remark 2.8. (1) If go = 0 in Theorem 2.6, then all solutions 6 tend to 0 in L?(R?) as t — oo so
that A = (), see the exponential estimate (4.9). To avoid this trivial case, we have in mind a function
g2 # 0. The crucial consequence of condition (1) in Theorem 2.7 is the fact that gi(x)f1(6)8 < 0
everywhere. Of course, this condition can be reformulated as ¢;(z) < 0 and fi(v)v > 0. As can be
seen from the proofs of Proposition 4.1 and Proposition 5.1 condition (2) on p can be weakened to
the assumption that p(§) < k|€]?® — B on R? with any 8 > 0.

(2) To prove the finite dimensionality of the attractor A a condition on f{ is needed, see the proof
of (7.27) below. Actually, it suffices to guarantee that &y — f1g1 is uniformly bounded from below by
a positive constant where &y > 0 depends on s and p.

(3) It is common to add a damping term when considering the long-time behavior of evolutionary
equations in unbounded domains or the whole space, since the damping term can lead to solutions
of the homogeneous equation of (1.1) with exponential decay; this property replaces the role of the
Poincaré inequality as in the case of bounded domains (see [11, 20]). Condition (1.6) together with the
asumption (2) in Theorem 2.7 plays the role of the damping term which guarantees some decay of the
solution 6, but it is much weaker since we restrict the damping property of the external force to a non-
localized term of convolution type which in Fourier space acts a multiplication by a decaying function,
maybe even of compact support. Nevertheless, by Fourier analysis, we get a similar exponential decay
property of the homogeneous solution. A typical example is given by p such that p(§) = e~/ for
small € > 0; it leads to a damping (in Fourier space) concentrated in the ball of radius e. However,
our approach yields a new challenge to get uniformly bounded estimates of 6 in H*®(R?).

(4) Obviously, the result of Theorem 2.7 is also formally true without the condition (1.6) when we
consider the fractional dissipative 2D QGE on some arbitrary open domain 2 such that the Poincaré
inequality holds:

1 .
91 < 1A%l ¥o € Ho(9),

for some absolute constant A; > 0.

(5) In [25] the author considered the asymptotic behavior for the quasi-geostrophic equations in the
case of a spatial domain with periodic boundary condition. Here we generalize this result to the case
of unbounded domains (the whole space) by proving the asymptotic compactness of the semigroup
instead of its compactness. In [25, Sect. 6], the author remarked that one can obtain that the global
attractor of the 2D QGE with o = 1 has finite dimensions. As far as we know, there is no reference to
estimates of Hausdorff and fractal dimensions for the 2D QGE on unbounded domains. In this paper
we prove that the finiteness of the dimensions of the global attractor in H*® for all o € (%, 1] can be
achieved via the (fractional) Lieb-Thirring inequality, see Sect. 7.

3. KEY INEQUALITIES IN BESOV SPACES

To prove global existence and asymptotic behavior of solutions of QGE, we need estimates of A®f(#)
of the external force f(#) in terms of . For convenience, we introduce the Littlewood-Paley theory,
see, e.g., [3, 10]. Choose functions x,¢ € S(R?) supported in B = {¢£ € R? : |¢] < 4/3} and
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¢ ={¢cR:3/4 < €] < 8/3}, respectively, such that
dow279) =1 VEeRN0}, x()+) w279 =1 VEeR"
jez >0

Let ¢ = F~ ¢ and x = F~'x. The nonhomogeneous dyadic blocks A; and the low-frequency cut-off
operators S; are defined by

Aju=0if <=2 Aule) = x(D)uta) = | W)ute 1)y
Ajula) = o D)u(e) =2 [ p@yute—y)dy Vi >0,
where u € §’. The homogeneous dyadic blocks Aj are defined for all j € Z by
Ajula) = p(27 Dula) =2 | p(2y)ule —y)dy.

Given s € R and p,q € [1,00], the inhomogenecous Besov space B;(I(Rd) is the set of tempered
distributions u such that

lull gy, = (2js||Aju||Lp)MZ) < o0.

To define homogeneous Besov spaces, we first denote by S the set of tempered distributions u such
that the low frequency condition

Jim {[¢(AD)ul| o =0 for any ¢ € D(R?)
—00

is satisfied, see [3, Definition 1.26]. Let s € R, p,q € [1,00]. The homogeneous Besov space Bf,’q(Rd)
is the set of tempered distributions u € S;, such that

lull s, = (271 Agull20) o gy < 0.

We point out that B  (RY) = B;(I(Rd) N LP(R?) and ||ul

5y, ~
we recall the explicit definition of the fractional Laplacian (—A)® when s € (0,1),

s+ llullzr when s > 0. Next,
pP,q

(=A)°u(x) =C(d,s) P.V. y m dy, (3.1)

where u € S, see [19, Sect. 3]; here P.V. means the limit “in the principle value sense”, and C(d, s) > 0
is a constant depending on d and s.

Proposition 3.1. (1) Suppose that f € C1(R) satisfies f(0) = 0 and ||f'||r~ < K < oo. Then for
any u € B3 | (RY),p € [1,00], we have for any 0 < s <1

A% (f o u) o < Cfful

Bs (3:2)

where C = C(K,d, s) is a positive constant.
(2) Let f € C3(R), f'(0) = 0 and ||f"||r~ < K < oco. Then, with p € [1,00], for any u,v €
Lrr(RY N HP2(RY) N B2 1 (RY) N LP+(RY) and any 0 < s < 1 we have

p3,1

[A*(fou—fov)|r <C ( sup_|[|wl| o, = vllgrepe + sup_Jlwllg, llu— v||LP4>7 (3-3)

wE [u,v) wE [u,v]

where C' = C(K,d, s) is a positive constant, [u,v] denotes the closed line segment {u+o(v —u): 0 €

[07 1]} and P1,P2,P3, P4 6]]—700] Satisfy % = p% + p% = p% p%;'
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Proof. By (3.1) and the assumption on f, we have

A (f o u) (2)] < KC(d,5) /

Rd

lu(z +y) — u(z)|
dy,
|y‘d+s

and Minkowski’s inequality implies that
s 1
I4° (o)l < KOW.s) [ il +3) = o (3.4)

By [3, Theorem 2.36] the latter term is equivalent to ||u|| ;3. K

We note that if we ignore the restriction u € S§; the homogeneous space Besov B;l is a space
of functions modulo constants (see [3, p. 120]; in this case, [5, Theorem 6.3.1] proves the same
equivalence. Thus, the inequality (3.2) is established.

As to (3.3), we get the desired result by writing fou — fov = fol f'(v+o(u—v))(u—v)do, and
combine Lemma 2.4 and (3.2). Moreover, we use the embedding B;g,l < H*Ps, O

By the relationship of homogeneous and inhomogeneous Besov spaces, it is easy to get the following
corollary.

Corollary 3.2. Suppose that f € C'(R) satisfies f(0) = 0 and ||f'||Lo < K < oo. Then for any
ue B | (RY) and 0 < s <1, we have

1] o ullers < Clluf

B, (3.5)
where C' = C(K,d, s) is a positive constant.
For composition estimates of f owu and any positive s, we refer to the following proposition.

Proposition 3.3 (Theorem 2.87 and Corollary 2.91 in [3]). Let f € C*°(R) vanish at 0, let s > 0,
and p,r € [1,00]. If u belongs to B, N L>, then so does fowu and

Ifoullpy, < C (s, f', llullL=) llull g, - (3.6)
If furthermore f'(0) = 0, then for u,v € B, .N L the function fou— fowv belongs to B, ,NL> and

[fou—foul

By, sup_|[wllre +[lu — v~ sup ||

5y, <C [ llu—dl 5, |
weE[u,v] weE[u,v]

where C depends on ", ||u||pe and ||v|| L.

4. UNIFORM BOUNDED ESTIMATES

In the following, we denote by C' a positive constant, which is independent of time ¢ and of the initial
data #°. The constant C' may vary from line to line. We begin with uniform estimates of the solutions
in L? and L%. Here and in the following we choose qo related to s > 2(1 — «) such that

2
20 —-1>—>1-s. (4.1)
do

Proposition 4.1 (Existence of an absorbing ball in L? and L%). Let the conditions of Theorem 2.7
hold. Then there exist C and for any bounded ball B C L?*(R?) N L% (R?) there exists Ty = Ty(B) > 0
such that for all initial values 0° € B and t > Ty the solution 6(t) = S(t)0satisfies

10(8)]11 < €, (4.2)

t+1
/ 1A6(r)|2. dr < C. (4.3)
t
[6(t)]I L0 < C. (4.4)
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Proof. We first note that §° € H*(R?), s > 2(1 — «), with the above choice of qg, see (4.1), implies
0° € L?(R?) N L%(R?) for some gy > Multiplying (1.1); with |0]P=26 with 2 < p < go and
integrating over R?, we obtain

1
Cl||<9H /@/ A2“9\9|p_29dx=—/ u-V9|9|p_29dx+/ Fz,0)0]P~20dz.  (45)
R2 R2 R2

2oc1

Due to the incompressibility of u and an integration by parts, the first term on the right hand side of
(4.5) vanishes. From (1.5) and (4.5) with p = 2 and the assumption on fi, g1, f2 in Theorem 2.7, we
have

531013+ KA1 < [ (9004 ga(@)6) d (16)
R2

Using Plancherel’s Theorem, it follows that

53 s+ [ jgbac < [ (OB +aa(€)9) de

- / AENBE)I A + / PEIA(E)? de + / Ga(6)0
[¢|<o €]|>0 R2
<l [P+ [ m(©dac. (17)

[§l<o

where o > 0 is chosen such that p, = max{p(¢) : £ € R?,|¢] < o} < 0. Besides, it is obvious that

201912 q 2 0(¢) d¢.
ﬁ/RQm B2 de > ko /mza'@' ¢

Combining the above inequalities we get, with o = min{xo>“, |p,|} > 0,

v [eacwo [ @Pacs [ m@hac< sk [ m@Pacs " [ orac s

Absorbing the last term from the right-hand side, multiplying by e®°! and integrating on (0,t), we
find that

r 1
16172 < e 0"||6°)132 + ?ngl\% (for ¢ > 0) (4.9)
0
2 *
—2||gg||L2 for t > t7, (4.10)
Ko
2 012
where t > t] := Hio In (Kﬁgf”gf ) By this result, the assumption on p and (4.6), we have
1d o .
L1003 + RIAOI3 < lgall 2 10]2 < Colga, o) Tor any > 15 (a.11)

Integrating (4.11) over [t,t+ 1], t > ¢}, and using (4.9), we have
t+1 1
k[ 1A% dr < gl + Co (412)
t 0

It remains to prove (4.4). Since gi(z)f1(0)0 < 0 and | [ g2|0]% 20 dz| < ||golze0 [|0]|%% ", we
deduce from (4. ) and Lemma 2.5 that

265\ i 90 -1
||9||qu + qfOHA 1012 1122 < llpllza 1010 + llg2ll oo 1011 Feo (4.13)
and consequently that

d
e l0llzeo < llpllzallEllzeo + llg2llzeo- (4.14)
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If « = 1, then H® = H' < L% and we get by (4.9), (4.12) that for any t > ¢}

t+1 t+1 t+1
[y < [ ol dy+ [ Aty <c. (1.15
t t t

Combining (4.14)-(4.15) and the fact that g, € L% (R?), the uniform Gronwall lemma implies that
[0)|lLe0 <C, YViE>17 41,

and we finish the proof of the case & = 1 by choosing 77 = ¢7 + 1.
Ifl1/2<a<1landg; := (1727&)“ 1 € N, there exists i such that ¢;, < go < ¢;,+1. By the conditions

on 0% and g, the inequalities (4.13) and (4.14) hold true for gy replaced by g;,i = 1,...,ig. Since
2
H* — L= by (4.15), one has for i = 1 and any ¢ > ¢}

t+1 t+1 t+1
/ 10]]ex dy < / 0]l = dy + / 1A0] = dy < C. (4.16)
t t t

Thus by (4.16) and (4.13), (4.14) with ¢1, we get with the Uniform Gronwall Lemma
t+1 .
@z + [ 1A% [Badr <€ Vez g+,
t
which together with the embedding estimate ||0||fe < c||A* |9(7’)|%1 ||1L/2q1 implies that

t+1
/ 10]|pe= dy < C, Vit >1t7 + 1.
t
By iteration, we find that
t+1 o,
0z + [ IA10G)IE IBady <€, Vet +io,
t
and in a final step with gy instead of ¢; 41,
t+1
/ 0]l Lo dy < C, ¥Vt >t} +io.
t

Finally, by using (4.14), one gets that [|0(t)||Lw0 < C for all t > ¢} + i + 1, finishing the proof in the
case o < 1 by choosing T} =t} +ip + 1. O

Remark 4.2. Two further results can immediately be obtained from (4.9), (4.12) in Proposition 4.1.
The estimates (4.17) and (4.18) below are equivalent up to a change of constants C,C), and T}.

(1) By (4.16) we have
t+1
[ leiear<e. vizm, (4.17)
t

(2) Using (4.17) for (t1,t1+1),..., (t1 + n,t; +n+ 1) with arbitrary n € N an easy argument by
finite geometric sums implies that

t
/ e O} dr < Cpy V>t +1>Ty+1and V> 0, (4.18)

t1

On the other hand, exploiting (4.18) for t = t; + 1 and all t; > Ty, we get (4.17).

Proposition 4.3 (Existence of an absorbing ball in H®). If the conditions of Theorem 2.7 hold, then
for each bounded ball B C H*(R?) there exists a Ty = To(B) such that for all ° € B

10 <C, V>, (4.19)

t+1
/ |ASTO(T)||2, dr < C, Vt>Ty. (4.20)
t
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Proof. Taking the inner product of (1.1); with A?¢ in L?, we find that

1 d S ST S S
ia|\A 022 + K||ATTY9)|2, = —/ (u-VO) A2 9d:c+/ F(x,0)A**0 dx. (4.21)
R2 R2
Case 1. 2(1 — ) < s < 1+ 259 with some 0 < 27y < min{s,Qa - 1,2(a - q%)}

It is easy to see from (4.1) that s +a —ny > 1. Concerning the integral containing the term foA%%6
we note that [(p* 0)A?0dx = [(p x A°0)A*0dz. Consequently, Holder’s and Young’s inequalities
imply that

|(F(z,0),A*0)] (4.22)
1 S— S S S— K STx
<3 (A2 (£1(0)g1) 122 + [I1A*F2™00)172) + lpllpa [A%0]1 22 + (ClIA ™ galZ2 + gllA F9)72).

By Lemma 2.4, Proposition 3.1, the condition of f1, g1 and s, qp, and then Young’s inequality, we have

14572 (1 (090) 172 < CLAGDI 91—y g + IAON oy 2Nl
< c(ueuj L+ le) B) lgn 3
< CY01 v 1 -
< Ol + 51013 (4.23)
1A% 2700]132 < ClIOIG + GO0 (4.24)

. rS—200, 75— = - Hs—
where we employed the embeddings H® < H*® ?"T=2r <3 [a=m, then H¥to~m0 «y B 2M0 L
1—a+ng’?

and interpolation arguments. Similar to the estimates of [45, pp. 1165-1166], using the exponent
Bi=3+ q% < a, (2.3) applied also to A*t!1=Fu, and (4.4), we obtain for t > T} that

—(u- VO, A%0) < AP () | 2| AT0) 1
<C (||U|qu||/\8+1ﬁ9|| a0+ ([0 Lo |ATH P m) IA=+76)| 2
Li0—2 Lda0—2
< Cl1ONLao 1] o-pracy+ ) A7) 22
K STx
< OOl + 1A 0]z (4.25)
Summarizing (4.21)-(4.25), we arrive at the estimate
d
SN0l + RATT20)7 < CllOIE. + CIA " gsl[72, ¥ ¢ > Th. (4.26)

If s < a, then H* — H?, and (4.17), (4.26) and the uniform Gronwall lemma lead to (4.19) and
(4.20).

If s > «, the above proof of (4.21)—(4.25) with a sufficiently small 79 > 0 yields a similar estimate
for s = a, i.e.,

d [0 [e3
i 1A70N%z + wlIA%0 2 < ClIONFre + Cllgal72, V> Th. (4.27)

Then by (4.2), (4.17), (4.27), and the uniform Gronwall lemma, we have for s(*) = o
10| oy <C, ViE>T1+1, (4.28)

t+1
/ 101l dT < C, YTy 41, (4.29)
t
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Next we iterate with s("*1 = s(®) 4 o, n > 1, n =1,...,n, such that s(™) < s < s+ From
(4.27) with « replaced by 2a (but A2* by A3%) and (4.28), (4.29) we get for ¢ > Ty + 2

10t),00 <C, W E>Ti+2,

t+1
/ 10]] ;o2 4 d7 <O, VE> T +2.
t

Therefore, by the uniform Gronwall lemma and a bootstrapping argument, there exists 15 > 77 > 0
such that the result of this proposition holds for 0 < s < 1 + 27;.
Case 2. s > 1+ 2nq.

In view of Case 1 the estimates (4.19), (4.20) hold for 1 < s < 1 + 219. Moreover, by Sobolev’s
embedding, we obtain the uniform estimate

6t~ < C ¥t =T, (4.30)
for some T > T;. By (3.6) with B, = H®, (4.30) and the product estimate (2.2), the inequality
(4.23) for the external force f1(6) is replaced by

|(F1(0)g1, A*0)| < [[A° (f1(0)g1) [l L2 ]| A°| 2
< C(IA* L @) lgrll e + 12 (O] e [14%g1]112) [4°6] 1
< Cligillu-l16%. t>T. (4.31)

Thus, we obtain an inequality similar to (4.26). Now we choose 1 + 19 + a < sM <14 No + 2a and
s(nt) = 5(W) 4 o n > 1. By using the same method as above, we get the desired result by choosing
Ty > Ts. O

Remark 4.4. Using the elementary argument used in Remark 4.2 the estimate (4.20) implies that

t
/ e PE=N0] 0 dr <Oy V>t > Ty and YV > 0. (4.32)

t1

5. UNIFORM SMALLNESS ESTIMATES

We begin with this section by choosing a cut-off function x : RT™ — [0, 1] such that
x(r)=0 for 0<r<1 and x(r)=1 for r>2
and define y; = x (%) , k> 0. It is easy to see that suppyxs C {z € R? : |z| > k}; moreover, for any
multi-index v € N2, |y| > 0, we get that
|DYx(x)| < CE~P for x| € [k, 2K], Dx(x) =0 for |z| € [k,2kK]°.
Clearly, we have
Ixellgo <Ok for ¢ >1 and  |xkllges < CE™@2D for og>21<g<oo. (5.1)

By using the cut-off functions y, we first prove that the L2~ and H*-norm of solutions are arbitrary
small uniformly on the exterior domains R?\Qy,, where Q) = {z € R? : |z| < k} for k > 0. As in Sect.
4 let B C H*® denote a bounded ball of initial values §° of (1.1).

Proposition 5.1. Let the conditions of Theorem 2.7 hold. Then, for any € > 0, there exist Ty =
Ts3(e, B) > 0 and K1 = Ky(g, B) > 0 such that any solution § = S(-)8°, 0° € B, of (1.1) satisfies

/ a0t *de <e, Vt>Ts and k> K, (5.2)
R2

t4+1
/ / X2IAYO) dzdr <e, Vt>Ts and k> K. (5.3)
t R2
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Proof. Multiplying (1.1); with x26 and integrating over R?, we obtain

1d
R2 R2 R2
Since
A2a0 20d$: A%Q - AY 29 dx
( Xk Xk
R2 R2

= / XeAYO - A% (xx0) doe — /AO‘F) e, A% (xx9) do
R2

= / |A°‘(X;€t9)|2 do + /[Xk,Aa]O A% (xif) da — /AO‘Q e, A% (xx9) day
RQ

(5.4) implies that

1
,i/ |Xk9\2dx+n/ |A°‘(Xk9)\2dx:—/ (u~ve)xi9dx+/ Pz, 0)x20 dz—
2 dt Jre R2 R2 R2

— m/[Xk, A0 - A% (xx0) dz + H/Aae [xx, A% (xx0) de. (5.5)

Let us consider each term on the right hand side of (5.5) as follows. Since V-u = 0, using integration
by parts and Holder’s inequality, we have

/ (u-V0)x360 dx
R2

= ’—/ (u~VXk)Xk|9\2dx
Rz

C
< Zlullzo 1012 2
Lao—1
C
< 216010 1613 (5.6)

2
where we used (2.3) and the embedding H* — L%"T. For the second term, we see that

/ F(:c,ﬂ)xiﬂd:cé/ ((p* O)Xi0 + ga()xi0) da
R2 R2
[xk,p*]9‘xk9dx+/

:/ p*(Xk9)'Xk9dI+/
R? BS R
= J1+ Jo + J3. (57)

QQ(I)XiQdI

The integral J; is used together with the second term on the left-hand side of (5.5) as in (4.7)-(4.8)
to yield a positive left-hand side integral of |xz0|?, see (5.13) below. In the second integrand .J; let us
analyze the commutator term [xg, p * |0(x) in the pointwise sense. We get for |z| > k

ks p#1600) = [ ol = 9) (un(o) ~ xal) o)

_ / p(z —y) (xk (@) — xx(v)) 0(y) dy,
BR(I)UB%(:L')

where the radius of the ball B(z) will be chosen suitably. For y € Br(z) we have |y, (2)—xk(y)| < <&

using an estimate of V. Hence

/B P D)0 ) 00 dy

<5 [ Iota =l o) av.
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Moreover, for y € Bf(x) we use the estimate

< 2(|plxr/2) * 0](x).

/ ol — ) (xr(@) — xx(9)) 0() dy
Bg(z)

Given any € > 0, we find R such that ||p xg/2(1 < €. Thus, we have

cR
72 < (20lolrse) * 0102 + ol 61122 ) et
CR
< (24 == llollsa ) 613 (5.8)
Finally, the term J5 will be considered (5.12).

For the third term on the right hand side of (5.5) we apply Lemma 2.4 to [xx, A%*] = [xx — 1, A?]
and (5.1) to get

[Dxes A0l 22 < C (IVxkllzallOll ga-1a + Xkl ra.all0] )
< C(IVxullLallOll ga-r/2 + lIxwll ga.all0f ge)
<C (k‘1/2 +k—<a—1/2>) 161 7 (5.9)

so that

H/[X’“’Aaw - A%(x0) da

< OA* (k) |2 1 D, A0 2
— (44— K [e3%
< Ck™ V)03 + 2 1A% Oa)IIZz - (5.10)

Concerning the forth term on the right hand side of (5.5) we use the decomposition [xx, A%*](xr0) =
Xk, A0 — Xk, A% ((1— x)0) and estimate the term arising from [xx, A%]0-A%6 as in (5.10) to get the
same bound (even without the term % ||A%(x40)||72). For the remaining term with [xz, A*]((1— xx)0)
Lemma 2.4 and (5.1) imply that

D¢k, A%J((1 = xw)O) 2 < C (VxR L (T = X0)Ol frara + [l gres (1 = x)l 24)

< Ul (1= 00Ol + 61 2 1] v

a0

+ CllIxkll groallOll e
<C (k*l/ﬁ +k*(0‘*1/2)> 10| g7, (5.11)

where we used the embedding H*~1/2 < H* 14 the estimate |1 — xz|/s < ck'/® and gy > 1/0v.
By (5.5)-(5.11), we get with 8y = min (1, — 3, §) that

d
5 [ dlde s [ 1800 da
R2 R2
C _
< S0l 10 + CH 0

CR
+ [or s st (1e+ ol ) 101+ [ salendoa
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Applying Plancherel’s Theorem we obtain

d o D2 2a
3 L e as e [ e

——2
< Cr o1+ o)1 + [0 [d] ag

# (14 Gl ) 101+ ¢ ([ husnta |dx) (/. xkeﬁds) ENERT)

By the method as in (4.7)—(4.8), we find after using Young’s inequality that

d [ — ko [ |—?
[ orae+ 2 [ [l ae

2
l|dg

_ CR
< O+ ol + (16 + Sl ) W1 + Clhogele G13)
Then an integration of (5.13) with the weight et**, (4.2) and (4.4) yield for T} +1 <t <t
[ RdoRas e [ pompansc [ e lhaglisar
CR
+ Ok bo / e t=7)19]|%,. dr + (eC + k||p||L1) : (5.14)
t1

Let us estimate each term on the right hand side of (5.14). By (4.2), we have
e**@o(t*tl)/ Ix0(t1)]* do < i (5.15)
R2

for t > T3(e, B) > t; = Ty. Secondly, since g» € L?(R?), we deduce that

t
C/ e gaFadr <C [ o) de < = (5.16)
t |z >k 4
for k > k1 (e, B). Finally, by (4.18) again, one has
t
C—fo / e ol dr < (5.17)
t1

for k > ka(e, B). For the last term, we can choose € < £/(8C) (with a corresponding R, as above).
Then, we find k3(e, B) such that < |p|| 1 < € for k > k3. Defining K1 = K (¢, B) = max{ki, k2, k3},
by (5.14)—(5.17), we get (5.2).

Combining the inequalities (5.12)—(5.17) and (5.2), we have

t4+1
/ IA“(xx0)]> dzdr <e, Vt>Ty and k> K.
t R2
To complete the proof note that A*(xx0) = xxA%0 + [A®, xx]0. Hence (5.9) yields the estimate
(0% « 2 —
1A CoOIZe < 2 (A6) [ + O~ 1181
Redefining € and K; (5.2) and (5.3) are proved. O

Remark 5.2. For any ¢ > 0 there exist T3 = T3(¢, B) > 0 and K; = K;(¢, B) > 0 such that

t
/ e—u(t—T)/ A0 dedr <e, V>t +1>Th k> K and V> 0. (5.18)
RQ

ty

For the proof we exploit (5.3) and the elementary argument as in Remark 4.2.
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Proposition 5.3. Let the conditions of Theorem 2.7 hold. Then, for every 0 < s < a and any € > 0,
there exist Ty = Ty(e, B) > 0 and Ky = Ka(e, B) > 0 such that any solution = S(-)0°, 6° € B, of
(1.1) satisfies

t+1
/ / e A0 dzdr <e, Vi>Ty and k> Ko, (5.19)
t R2
t

/ ei#(H)/ X N0 dedr <e, Yt>t,+1>Ty k> Ky and for p> 0. (5.20)
t1 R2

Proof. For s < «, by using Lemma 2.4 and (5.1), (5.2), we have

/ xi |[A%0] dz
R2

= O[A%, xp]A0dx + [ OxpA*0dx
R? R?

< 160022 1A%, xe]A*) 22 + kB 22 420 .2
< Clolze (I9xkll, e,

< Ck=210112100 ;5 + X0 221161 oo
< Ok 2|0l 210l o+ + k01 2210 o+

N0 s s+ el e 18%6] o) + kbl 0] e

2—s

Thus, applying Propositions 4.1, 4.3 and 5.1, there exists Ty such that for ¢ > Ty > max{T}, T, T5}

t+1 t+1
/ / e A0 dadr < c/ 10llgese (572 4+ [xi0ll2) dr < &, k> ka(e, B).
t R2 t

Choosing K = ky(e, B) we finish the proof of (5.19).
Then (5.20) is an easy consequence of (5.19). Here Ty and K5 depend on u. O

Proposition 5.4. Let the conditions of Theorem 2.7 hold. Then, for every s > 2(1 — «) and any
e > 0 sufficiently small, there exist Ts = Ts(e, B) > 0 and K3 = Ks(e, B) > 0 such that any solution
0 =5()0° 0° € B, of (1.1) satisfies

/ IxkASO()|?de < e, Vt>Ts and k> Ks. (5.21)
R2

Proof. We divide the proof into several steps.
Step 1. Result for 0 < s <2a—1— q%.

Applying the operator A® to (1.1); and multiplying the resulting equation by xx A6, we have
1d
2 dt Jge
We first note that
(AS+2“9, xkASH) = (As+a07 [A, X&) ASH) + (As+a0,XkAs+a9)) .
Inserting this identity into (5.22), it follows that
1d
2 dt Jpe
(A° (f1(0)g1) + p + A0, xiA0) + (g2, A°(xkA°0)) — 5 (A7T90, [A%, x3] A°0) — (A (u - V), x1.A°0)
=L +1,)+ L+ 13+ 14 (5.23)

Xe |A%0 dz + ke (A™F220, , A%0) = (ASF, xxA*0) — (A®(u- V), xxA®0) . (5.22)

Xe [A%0] dz + I'i/ Xk |As+°‘€‘2 dz
R2
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Since s < «, we choose 0 < § = 219 < min {a — 5,820 — 1,2(a — q%)} (which is smaller than the
exponent 27y in the proof of (4.22), (4.23)) and rewrite the first term as
I = (A7 (f1(0)g1) , [A°, xa] A°0) + (A7 (f1(0)g1) , xxA*T00) . (5.24)
In view of (4.23)
1A (f2(0)g1) 122 < Cl0lzese g - (5.25)
On the other hand, by Lemma 2.4 we have for any g < ¢’ < min{a+1/2,s+a—1+ 19}

1A% xe) A%

|0 < CITXR A I8%00 o+ Cllall o2 8% o
<C (k—W + k—(é’—w) 10| grea- (5.26)
Therefore, we obtain (with ¢’ = 219 in (5.26))

(A0 (F10)01) [0 ] A70) | < € (K72 4 k70 18]y g (521)

[ (A2 (£1(0)91) . Xk A*76)) | < Cllga - 0]l g+ ( / xi [0 dw) - 62
R2

Moreover,

2

1 = 1o+ A°00a0) < Dol 00 ([ e ool ac)
For I3 we exploit (5.9) with 6 replaced by A®6 to get the bound
[Ls| < [IIA%, xw] A6 2 [16]] pr+o
<C(E2 4+ k7)Y 10]F 0k (5.29)

The term I is written in the form (gg,AS(XkASG)) = (gg, [A%, xk] ASQ)) + (ngz, AQSG) where we use
(5.26) with §’ := s for the first term to get that

(92, [A%, xa] A%6)| < llgal 2 (k7% + k= C77) 0] o (5.30)
|(xkga, A%0)] < lIxkgllL2 0] oo (5.31)
To estimate the crucial term Iy on the right hand side of (5.23), recall that s < 2o — 1 — q%) < o
Then we rewrite the term as
(A% (- V), xxA0) = (A% (- V0), [A°, xi] A%0) + (A% (u - V0), xzA"0))
=: Iy + Lao.
By Lemma 2.4, (2.3) and the incompressibility of u, we have

A% V02 < A% (u0) 2 < ClOl|a 0] 2 < Olfllaol|0] v, (5.32)

2s—atl,
smetlgg

where we used that H*+® < H*~**1%"2  Hence, by (5.32),

1

2
\Liz| < C|10]] oo ||0]] pro+e </ IxkA0 dx) . (5.33)
R
As to Iy, we apply Lemma 2.4, (2.3), (5.1) and Sobolev embeddings to get
A", xk] A%0l 22 < CIVXRN LAl racaia xRN 0o 2y 1A% 2

< C(k 2 4 k07175 79) 0] roses
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so that together with (5.32)
C(2a—1-2 _¢
I < C (B2 4 k=750 7) 0] Lao [16]10 5 (5.34)

Let 6y > 0 be a lower bound for all exponents of § appearing in (5.26)~(5.34). Combining (5.23)~
(5.34), and the estimate (4.4) for ||0]| L0, we obtain for all ¢ > max{T5, T3, T4} (with § = 215)

d
— | xe|A%6P dz + H/ Xk [AsTe0) da
dt ]R2 R2

< Ok~ 200 Freva (L + lgallzzs) + C (k™ llg2ll e + Ixrgall z2) 16]] oo

1 1
2 2
0||Hs+a (/ Xk |AS+60|2 dx) + C||9||H5+o¢ (/ |XkAa9|2 dx>
R2 R2

1

2
ol 0l ([ alacer ao)

Next we add the term &g fRZ Xk |A39|2 dz on both sides of the above inequality, multiply by e*°* and
integrate on (t1,t). Moreover, using a bound C for ||¢1|ms, ||g2/lgs—, |pllzr and, by (4.19), for
[10()|| s on (T, 00), we get for t > ¢; > max{Ts, T3, Ty} that

+ Cllorlla-

t
/Xk |A*0(t)|? dx+/<;/ e*'@o(t*ﬂ/ Xk |20 dedr
]R2 2

t1 R

<emrett) [ iaen) do
R2

t
+ O+ agelze) [ e (100 v + 1007 ) dr
ty

: : :
+C [ e o ((/ i [A ) dx) + (/ XA dw) )dT
t1 R2 R2
¢ 3
+ (ko + C’)/ e mo(t=7) </ X (A6 da + (/ Xk [A°6] dx) ) dr
t1 R? R2

=T+ 7Ty + (T31 + ng) + (T41 + T42). (535)
Let us estimate the terms ;. Firstly, by (4.19), we have

Ty < emRolt=t)||A%0(4)]2, < g for t > Ts, > 1,

where € > 0 is an arbitrary small constant. Secondly, by (4.32), the assumption g € L?(R?), and an
additional application of Holder’s inequality to the term j;tl e ro(t=7) 10113+« d7, we deduce that

Ty < Ok~ + xug2ll2) < g for k > ku(e, B).

Concerning Y31, Y32, Y41, T42 note that s+J < o. Then by Hélder’s inequality applied to the integral
over 7 and (4.32), (5.18), (5.20), we deduce that

Tap + Yoy + Yus + Tag < é for t > Tso > t1, k> ks(e,B).

Choosing Ts = max{Ts1, Ts2} and K} = max{K>, k4, k5} and summarizing the estimates of T; we
finish the proof of Step 1 with € = ¢.
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Next, we shall deal in several steps with the general case when s > 2o — 1 — q% and define s(") =
n(2a —1— q%) Since H* — H*" < H*" =7 for any 0 < n < s, we have the result from Step 1
with s replaced by s(!) — ), i.e.,

1 2
/ Xk ‘As( )"79(75)‘ de<e, Vt>Ts and k> K. (5.36)
RQ

t 2
/ ¢ ro(t=) / i ‘AS“)W*WJ‘ dedr<e, Vt>Ty >t >Ts, k> K. (5.37)
t1 R2

Step 2. Result for s <s< 5@,

For the first term (A® (f1(0)g1), xxA®0), we again write I; in the form (5.24) with 6 = 2 and
0 < 2ny < min{s™M +a—s,52(a— q%)} We need to estimate A*~% (f1(0)g1). If s — 0 < 1, then
it is easy to get (5.25) (similar to (4.23)). If s — ¢ > 1, we obtain (5.25) by an estimate similar to
(4.31). Moreover, by s+ < s) + a and (5.37), we see that fttl e o= fon X |A5+59|2 dz dr can
be arbitrary small.

In Step 2, we may have s > a. In this case we use an estimate for I in (5.23) with s > « similar
to I3 in (5.29), namely

o] = | (A" “ga, [A%, x&] A%0) + (A*"%g2, xiA°T0) |
<C (k—W + k—<a—1/2>) 10| gro+a g2 rs—a + C/ Xk |5 go|* da + f/ i |[A5T20]” da.
R2 8 ]R2
Since go € H*~%, we deduce that

C’/ Xk |AS_°‘g2‘2dx <C |A5_°‘gg|2dxd7' -0 as k— oo. (5.38)
R? le|>k

Concerning I4 we choose 0 < 7 < min{qio7 5(2) — s}, and write —I4 in the form (cf. Step 1)
(As (u . VG), XkAse) _ (A2sfs(1)fa+77(u . Vg)’ [As(1)+a75777’ Xk] ASO + XkAs(l)Jra*??g)
=: I}y + I}, (5.39)
As before, by Lemma 2.4, (2.3) and the incompressibility of u, we have
< OO ao 101 g5+,

2q
_ (1) 1, 0
2s—s a+n+ 5

2

5_3(1)—a
1A (4 - VO)|| 2 < C\|9||qu\|9||H

(1) —a+n+1 299

where we used n < s — s so that H¥t < H**~* "20-2, Consequently,

L 2 3
I3 < 18] oo ]| 1o+ (/ M dm) |
RQ

As to Ij;, using Lemma 2.4 and (2.3), then (5.1) and Sobolev embeddings, we get

[A5(1>+a,s,n7 Xk} )

L2
S S
< ClIVXEI Ll AN o o amn s+ DXHI e e IAON s

<C <k71/2 +/<;7(5<2)*5)) 10| grs-ter

where we exploited Hs+® < Fste <y fs+a=n-14 (note that s) + o — 5 — 1 can be negative) and
Ho+ < *2/w7 . Hence

| <C (k—1/2 +k—(s(2)—s)) 10| Lo [10] 2+
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Proceeding as in Step 1 and using (4.4) the terms Ty and Y3 (related to I},) in (5.35) are replaced
— with an appropriate §; > 0 — by

t
Cho [ e (0 v+ 100 e )dr +C [ a4 ga day if s> a
t R?
TI2: ' t
Co 4 lhaugalln) [ (00 + 107 Byevc) b it 5 <
t1

t Sal2 3 W 2 3
ngc/ e =) 16| ot (/ X [A5H90) da:) +(/ Xk’As +@—"9’ dx) dr.
t1 R2 R2

Applying Holder’s inequality,(4.32), (5.37) and (5.38), T3 and Y3 are bounded by
T, < Ok~ < g for & > ke(e),

Nl
M
B

T;’SO(E < Vt>Ts0 >t >T5 and k‘Zk@(E)

o|

for e sufficiently small.
Therefore, choosing T5 as defined before and K} = max{kq, K%}, we finish the proof of Step 2 with
=e.

=

€

Step 3. Result for s@ <5< s,
As before, we have from Step 2 the same results as (5.36)—(5.37) with s(!) replaced by s(?), i.e.,

R2

2
‘ dxﬁe%, Vt >Ts and k> KY

t 2
/ e*m(t*ﬂ/ Yo ‘AS”’M*W‘ dzdr <ei, Vt>Tsa >t >Ts, k> KY.
t1 R2

Therefore, as in Step 2, we deal with the third case s?) < s < s(3). In particular, we have with d > 0

1
Ty < Ck™% < g for k> kz(e,B), TI<Ces < %

and get the result with an adequate K7}’ and €16 = €.

Step 4. End of the proof.
For any s > 0 in Theorem 2.6, there exists ng € N such that s(~1) < s < s(")_ We repeat the

above proof (ng — 1)-times and get the result with suitable K3 and T5 and with (DT — g

Therefore, the proposition is proved. O

6. GLOBAL ATTRACTOR IN H°*

In this section, we prove the existence of the global attractor in H®. In view of Proposition 2.2
and Sect. 4, it is sufficient to prove the asymptotic compactness of the semigroup. As in Sect. 4 let
B C H*(R?) denote any bounded ball of initial values 6° for (1.1)

Proposition 6.1. Let the assumptions of Theorem 2.7 hold. Then the solutions § = S(:)6°, 0 € B,
of (1.1) satisfy

t41
/ A= (0:0)||2.dT < C, Vt>To+1, if s>a, (6.1)
t

t+1
/ 18:0)2.dr < C, ¥ t>Ts+1. (6.2)
t
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Proof. For s > a, taking the inner product of (1.1); with A26=%)9,0 in L?, we find that

4772 @8) I3 + 51401 = -

(u-VO) A2=29,0 dx + / F(z,0)A*¢=99,0 dx
R2

R2
=1+ I (6.3)
By Holder’s and Young’s inequalities, Lemma 2.4 and (1.4), (2.3), I is bounded by
I < [|A* (u- V0O) ||L2||As_a (0:0) || >
< CJIA (uh) 122 + IIAS “(0:9) |17

< Oll0)1 200 A1) 240 + ZIIAH (0:8) |1 22
L d90—2
1 S — Q¢
< ClONZa0 101354 + FIAT (040) |72, (6.4)

where we used H*F® < H*~*"h a2 For I, applying (3.2) and the trivial estimate |f1(0)] < K|6],
we have fora < s <14+«
I < |0 F(x, 0)|| 2 [A* (24) | 12
< C (1A (f1(0)gn) 122 + o+ A0] 12 + A g 1 12) A~ (240) | 2
<C(IAG, 2 91 ey + IO oz Nl 2 ) 1A (246 |22
(ol 10 a1 + A5~ gal| =) 1A (21) | 2
C (100 rs-ae gl + 1011 55 11| 1o ) A7 (210) 1
(1ol 10l + 1A° 2 gallz2) [A°= (210) | 12

S—x 1 S—x
< ClIONE- (loallzr- + llplze) + CIAT 9272 + 1A (20) 172, (6.5)

||91

where 0 < 0 < min{2a — 1,5+ o — 1}.

For s > 1+ «, we also know that 6 € L>°, see (4.30). Then, by (3.6) in Proposition 3.3, we deduce
the same inequality as (6.5) for all ¢ > T5. Inserting (6.4) and (6.5) into (6.3) and integrating over
[t,t +1],t > Ty, we obtain in view of (4.4), gy € H®, and p € L' that

t+1 t4+1
/ A= (8,0) |22 AT + K||AO(t + 1)||2. < K| A°O)|22 + C/ 10]|3:+a dr. (6.6)
t t

Now (4.20) yields the estimate (6.1).
As to (6.2), we multiply (1.1) by 00 and get

l0:6113: + = 5 ||A°“9||L2

dt
= —/ (u-Vo) 8t9d:r+/ F(z,0)0,0 dz
R2

R2

1
< C(llu-VOlZe +1F(z,60)[72) + 5 19:0I7:

IN

1
C ||9||Lao||V9||2 R A )gllZz + lollL: 101172 + |92||2L2) + 5 110:0172

1
< C (01200 1007720 + 1611720 lgallZ + llolZ: 10072 + ll9211Z2) + 5190117z, (6.7)
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. 1,290 .
since H?® — H a0-2 — L and ||f||r~ < K. Next, we claim that

t+1
/ 1020 dr < €, W t> Ty +1. (6.8)
t

In fact, we recall (4.27) in Proposition 4.3 which holds even when s < a and ¢g; € L* only; for the
proof the crucial term [ f1(0)g1(x) A0 is estimated by C||0]|7,]g1(|7~ + £[|A**6]7.. Then use (4.3)
and the uniform Gronwall Lemma to get a uniform bound of ||A®0(t)| 2 for all £ > T} + 1. Now an
integration of (4.27) yields (6.8). Combining the latter estimates with (6.7), we obtain (6.2). O

Remark 6.2. Combining (4.2) and a uniform bound for ||A%0(t)| .2 as above, we see that
o) | <C, Vt>T1+1. (6.9)

Proposition 6.3. Under the assumptions of Theorem 2.7, the solutions 0 = S(-)6°, 8° € B, of (1.1)
satisfy

10:0()]|3: <C, Vt>Ty+2, (6.10)
A= (00) (V)32 < C, Vt>To+3, if s>a. (6.11)
Proof. By differentiating (1.1) in time and writing w = 9;0, we have
Ow~+u-Vw+ k(—A)%w = —uy - VO + f1(0)g1(z)w + p * w. (6.12)
Taking the inner product of (6.12) with w and using |f1(0)| < K and g; € L*°, we obtain
1d
gl +rIATlEs < = [ (- V8 wda + Ol (6.13)
Since 2a — 1 > q% > 1 — s, we first choose ¢y small enough such that
1 2
O<eo<§min{2a717—, a, 572(1704)}; (6.14)
do

then we have

2 <qo, 2(1—a)+2¢ < s,

< -
200 — 1 — 2¢g

and hence 0 < 5 < %min{l,s} with § := 1 — a + ¢g. Using Hdlder’s, Young’s and interpolation

inequalities, the first term on the right hand side of (6.13) is bounded by

‘ / (ue - VO wda| < AT (ug - VO) |12 | A"l 2
R

1 —QT€ ]‘ a—€
< SlIATere () [7: + 1A% 0wz
1 3 K a
< 1A% o)1z + Cllwliz + A WL (6.15)

Concerning the term ||A®(u.0)| 2 we apply Lemma 2.4 and (1.4), (2.3) to get that

||A5(ut6)||%2§C<||A§ut||2 T
Ll— €0 L

a+

Fllael? e A0 )
L L

Za—1-2¢q T—ate a—cq

< C (1A B 1013 anz0 + A" 0w][3a11A%0]3. )
< OIA* w3 (103an0 + 1AZ0)2 (6.16)
hS L2 L2NL%0 2 )

where we used

. .= 1 . _ 2 o o~ .= 2
HO ¢ «y H5To¥a, HO %y [Toto and H? — H 5 .
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Thus, by (4.2), (4.4), (4.19), and an interpolation inequality applied to [|[A*~“w]|| 2,
1A= (w®)[Z2 < Cllwll7> + g”AaWHZLQ' (6.17)
Combining (6.13)—(6.17), we have
d, o 2 2
S llwliZe + RIAwIEs < O, V> T +1. (6.15)
Finally, we use (6.2) in Proposition 6.1 and the uniform Gronwall Lemma to get (6.10).

In the following let s > . To prove (6.11) we take the inner product of (6.12) with A2(*~®)w and

obtain
1d s—a, |2 s, 112 / 2(s—a)
§—dt||A w72 + &[N wl|F2 = (fi(O)g1(z)w + p*rw —u- Vw —uy - VO, A2~ Yw). (6.19)

We have
1 1
(O (), 82070)| < FIA (1 O)g10) [0 + 5 145w (6:20)
where for some 0 < q% <n<2a-1

—a 2 2 2
|4 (@@l < CIAOD G0 Wl . 0, +Clel? 2 IOty - (620

s—a,

If a < s < 1+a, we use (3.2) and the embeddings H* "+2/d0 HS T2 and HY <
B;E"H/q" — B, to show that the most right hand side terms of (6.21) is bounded by

)
T—aFn—2725")

1O ey < C (IO Illgnl . + 1) sl o0 )

_2 P P — R
T—a+n I-a+n—2/q9 H "1-—a+n—2/q9

<cC <||9|qu||91||b.[sn+;O + 16| B:Jn+q20|91||qu>

< C|0]|a

g1 ||Hs-

For s > 1+a, due to the embeddings H*™" — 5% and HS — H* "0, we get with (2.2)
and (3.6) that

1Ol ooz S NFO gro-nllgrllee + 91l gro—n /1 (O)] 2o

“®T-atn

< Cllgillm=|6]| s for all ¢ > Ts,

i.e., an estimate of f{(0)g1 as above. Moreover,

11091l Lo < C IO Lo lgnlloe < C Ol Lo -

Inserting the above inequalities into (6.21), we get with (4.4), (4.19) and an interpolation estimate for
w that

_ 2 2
A= (f1(0)910)|| 12 < C 10N ao 101 | 200 + Cllwll® 2 [16]1F-
H q0—2 Loa—n

s—a,

< S| ASw||2e 4 Cllw]2s. (6.22)

=

Furthermore, it is easy to see that
xw, A2670)4) < o||A°T%w .
(p Y p L2

For the nonlinear terms involving u; - VO and u - Vw on the right hand side of (6.19) we consider
two cases; actually, it suffices to consider u; - VO only since the other term satisfies similar estimates.



24 REINHARD FARWIG CHENYIN QIAN

Case 1. s > 2a — 1.
By Hoélder’s and Young’s inequalities we get that

]/‘ V) A2 da| < [AS2 (g - V8) || 2 | AW 12
R2
S—sitx K S
< A2 () 72 + 1A w7z (6.23)
As to ||AS72F (4;0) || 12, we apply Lemma 2.4 and (1.4), (2.3) to get with the exponents €y, 5 that

AS™ 2a+19H2 )

Ll a+50
; )

<C (AT w3 + HA%an) . (6.24)

A2 () 3 < € (JA2 5] sy, 160 + P
s

s¢ (”N SR [ 7 +llwll®

Here we used the embeddings H? — L@=i-2%, H* < H* 20*L1=a%% and (4.4), (4.19). Since
s—a<s—2a+1+ q% < s and 0 < 25 < s, by interpolation and Young’s inequalities, (6.19)—(6.24)
lead to the estimate

d —Q S S—x
IVl + slA W] T < C(IAT Wl + lwllZz), > T
By using (6.1) and (6.2) in Proposition 6.1 and the Uniform Gronwall Lemma, we obtain the result
(6.11) for s > 2a0 — 1.
Case 2. s <2«a — 1.
In this case, we have s — @ < 2(s — a) + 1 < s. Since [|0]|~ < ¢||0||g2a, We see that

‘ /Rz (ur - VO) A*C™Vwdar| < |AT" (up - VO) |2 | A2 ]| 2
< Cllusbl| p=l|A** 2wl 2
< Cllugllz2 10]] e [|A* 72 ]| 2
< ClwllZ2l161l2x + CIAT W]z + gIIASwIIiz~ (6.25)
Then, by (6.10) and (6.25), (6.19) yields the estimate
%IIAS_%H%z +allAw]Z. < C (AT Wl + lwlZs + 10]72), VE>T2+2.

Finally, by (6.1), (6.8) and the Uniform Gronwall Lemma, we get the result (6.11) for s < 2o — 1.
Now the proof of this proposition is completed. O

Proof of Theorem 2.7 (existence of the attractor). By Proposition 4.3 {S(t) }+>0 has a bounded
absorbing set in H®; we denote it by By. In the following, we check the asymptotic compactness of
the semigroup, i.e., we have to show that

for any {6°},>1 C By and t,, — 00, {0, (t,)}n>1 is precompact in H®,

where 0,,(t,) = S(t,,)0°.

First, we consider two arbitrary solutions 61,6 of problem (1.1) with initial data 69,609 € By,
respectively, and their difference 66 := 01 — 65 in H™#(%:%)  For the proof we consider two cases,
namely s < a and s > a.

Case 1. 0 <s<q«
By (1.4), we have corresponding velocities u; and us and set du = u; — up. From (1.1),, one has

8,00 + w1 - V60 + 1(—A)*50 = —du - Vs + F(z,01) — F(x,05). (6.26)
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Taking the inner product of (6.26) with §6, we obtain
K||A%60)|22 < — (8¢06,60) — (Ju - Vba,60) + C||56(1)||2 (6.27)

since (uy - V6, 60) = 0 and due to the properties of g1, g2, p and f;. We deal with each term on the
right hand side of (6.27). For the first term, by Holder’s inequality and (6.10) in Proposition 6.3, we
have for ¢t > T5 + 2

| (9:60,60) | < [10:36(2)] £2(156(t) ]| = < C|66(2)]| - (6.28)
Applying Holder’s and Young’s inequalities, we see that
| (Ou - V03, 00) | < [[A~F (Gu - Vs) || 2 |A*0060(t)]| 12
< CIATF (Sub) |72 + ClIoO)II- + ZHA“W@)H%
Recalling the exponents ¢y and § = 1 — a + ¢ from the proof of Proposition 6.3, we get as in (6.16)
1A% 503 < CIAT 08813 (16a)12 2z + 1427652
< C| AT 60721162
< CII80]13: + 1460,
where 25 < s and H® < L%. Thus the second term on the right hand side of (6.27) is bounded by
| (5u - V05,66) | < C||60]2 + g||Aa59\|§2. (6.29)
Inserting (6.28), (6.29) into (6.27) and using (6.9), we obtain
180()]13 < Cl0D)IZe + ClI90(8) 12 for amy t > T, (6.30)

Now, we choose K = max{Kj, K3} where K;, K3 are defined in Propositions 5.1 and 5.4, let
Qx = {z € R? : |z| < K} and assume t,, > t,, > T5. Applying (6.30) to the solutions 6,, and
0n(- + tn — t,,) with initial values 02, and 0,(t, — t;) = S(tn — tm)02, respectively, evaluated at
t = t,n, it follows that

||€n(tn) - ‘gm(tm)H%Ia <C (Hen(tn) - Hm(tm)HZL?(QK) + ||9n<tn) - em(tM)H%?(Q;)>
+C (10(tn) = (bl 22(@2sc) + 100 (tn) = Oun (b 2205 ) - (6:31)

Since H* (k) < L?*(Qk) is compact, (a subsequence of) {6, (t,)}n>1 is a Cauchy sequence in L?(Qk).
On the other hand, in view of (5.2) in Proposition 5.1, for any € > 0, there exists N, € N such that
for all m,n > N, by (6.31)

16 (tn) = O (tm) |77 < e (6.32)

Therefore, the semigroup S(t) is asymptotically compact in H*, and it is easy to that S(¢) is also
asymptotically compact in H® for s < a.
Case 2. s >«

To this end, taking the inner product of A2(*~%)§6 with (6.26), we obtain

K|[A%60)|2, = — (atae +6u- Vs +uy - V80 — Fz,01) + F(z,05), AQ(S‘“)M) . (6.33)
For the first term on the right hand side of (6.33), we get from (6.11) that for t > T5 + 3

‘(atae,ﬂs—a)(se)‘ < A (8,00) (£)| 12 | A5 200(8) || 12 < C|IAS—60(8)][ 12 (6.34)



26 REINHARD FARWIG CHENYIN QIAN

Since s > « implies s > 2« — 1, similar to (6.23)—(6.24), we have

‘(m V0, A2<5-a>59)( < A2 (- V) |12 || A% 1

HAs 2a+19 ||

<c (HAS-W&LH 2, 6ol + 60 ) 1A%50]] 2

2
2047172 Ll a+

1021l2- ) 1A%66] 2

< CA 0132 6021 77+ C1150]3 11021177 ZHASWH%Q, (6.35)

1,i

<C (IIASCWII 2 A° 66| 27|62 ]| oo + [|A°

and, by analogy,
| (w1 980, 426=)56) | < CYA 363 61 T + Cl013:1101] 5

el e L (R
Finally, by (3.3) in Proposition 3.1 and similar to (6.21)(6.22), we have
|(F(,61) — F(x,02), A*¢~60)| = |(g1[f1(61) — f1(02)] + px 66, A=) 50) |
< [IA (g f1(01) = F1(02)]) 22| A*=00] L2 + C||A**86)|7»
11436122 + 1661 3 (6.37)

IN

Therefore, inserting (6.34)—(6.37) into (6.33), we have
1A*60]17> < C|IA*=*50] 2 +CHAS a59||L2(||91||£qc7 1005
+Cla0N1Z2 (1 + 116117 i )-
By (4.4) and (4.19), one has for ¢t > T}
18017+ < ClOE) | zre— + CNOO) [ Fro-e + ClTOE)| 2,

and, by s > a and Young’s inequality, we conclude that

i + 0205

s+a

166(®)[1 < CllsO)I7= + Cllso(t)lI;

Thus, similarly to (6.31) and (6.32), we prove that S(¢) is asymptotically compact in H® for s > a.
Now the existence of a global attractor A in H® is proved. 0

for any ¢ > Ty. (6.38)

7. DIMENSION OF THE ATTRACTOR

In this section, we pay attention to the finite dimensionality of the global attractor A obtained
in Section 6. The general theory developed by Constantin, Foias and Temam [13] cannot be applied
since the solution operator for the linearized flowin the whole space R? is not compact. Therefore,
we use the method introduced by Ghidaglia and Temam in [21], see also Temam [41, Chapter V,
3.3-3.4]. To this aim, we use the Hausdorff and fractal dimensions of a compact set € C 2", denoted
by d# (¢) and df‘% (%), respectively (see [41] for detail), where 2" is a metric space. It is clear that

7 (€) < d7 ().

Lemma 7.1. Let X,Y be metric spaces, € C X be a compact subset, and L : € — Y be p-Holder
continuous on €. Then

In particular, the fractal dimension does not increase under a Lipschitz continuous mapping.
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Lemma 7.1 for dy is found as Lemma 1.3 in [33]; the case dg is proved similarly. Next, we prove
the following proposition which is crucial to get the dimension estimates of the attractor.

Proposition 7.2. Let 09,05 € A, and let 01(t) and 04(t) be the solutions to (1.1) with initial data 69
and 09, respectively. Then there exists C > 0 such that for every t > 0

161(2) = 62(t) 172 < (167 — 622 (7.1)
Proof. Define §6 = 6; — 02. Then, similarly to (6.26), we have
1d
5&\\59”%2 + K[|[A60))3 . = —/ ou - Vb 60 dz +/ [(f1(61) — f1(02)) g1 (x) + p = 06] 66 dz.
R2 R?

In view of (6.29) and the conditions of fi, g1 and p, it is easy to obtain
d
aHéQH%z + k[|[A*60|7. < C||50]|7-.
Thus the result of this proposition follows from Gronwall’s Lemma. O

Since S(t).A = A, by using (6.30) and (6.38), we have for 6;,05 € A

2a

161(8) = O2(8)[F= < ClI61(t) = O2(t)l[72 + Cll02() — Oa(&)]| 27077, (7.2)
and by (7.1), we conclude that

101(5) = 02(8) . < Ce (1168 — 08132 + 169 — o311 70T ).

This means that S(t) is a Holder continuous mapping from X = L?(R?) to Y = H*(R?). Applying
Lemma 7.1 and S(t)A = A again, we see that
A (A) < C(s,a) dE(A) and dE'(A) < O(s,a) di(A). (7.3)
So, instead of estimating the dimension of A in the space H*(R?), we estimate below its dimension in
the simpler space L?(R?), and write dy(A) and df(A) to denote the dimensions of A in L?(R?) for
simplicity.
To this end we start with some necessary preparation. For given §° € H*(R?) and corresponding
solution 0(t) = S(t)8°, t > 0, of (1.1), we see that the linearized flow around @ satisfies the equation

{ t+u-V +r(-A) = — -VO+ fi(0)gi(x) +px (7.4)
(z,0) = ¢ '
where = R' . As for the nonlinear problem, one can show that for given ¢ € L?(R?), there exists

a unique solution of (7.4) such that
€ L>(0,T; L*(R?) N L*(0, T; H*(R?)) for any T > 0.
Let L(t;0") denote the corresponding (linear) solution operator to (7.4) for fixed 8(t) = S(t)0°, i.e.,
L(t;6°) : L*(R?) — L*(R?), (¢ L(t;6°)¢ = ().
We will prove that L(t;6°) is bounded (see Proposition 7.6 below) and that {S(¢)}+>0 is uniformly
differentiable on A in the following sense:
b osup IS0 = SO — LE:0)(©° )]

0 o goey 16° — 6°]| -
0<[|0°—0°|| 2 <e

=0, (7.5)

see Proposition 7.7 below.
We write (7.4) as

1 =F'(0) =-u-V —k(=A) — -VO+ fi(0)gi(z) +px , (7.6)
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where .#'(0) is the Fréchet derivative of the nonlinear operator .# at 6 defined by the formulation of
QGE as the fixed point problem 6, = .%# (). Then the numbers ¢,,,, m € N, are defined by

1 t
¢m = limsup sup  sup f/ Te [/ (S(1)6°) 0 Qu(7)] dr, (7.7)
t—oo 0%cA (;eL? t Jo
H&\1|L251

where Q. (7) = Qum(7;0°,¢1, ..., () is the orthogonal projector in L?(R?) onto the subspace spanned
by L(7;0°)Cy, ..., L(7;0°)Cy. The trace (denoted by Tr) of F'(S(7)0%) o Q,n(7) in (7.7) is defined
for a.a. 7, see [41, Chapter V, 2.3]. If ¢, < 0 for some m € N, then the global attractor has finite
Hausdorff and fractal dimensions, respectively, estimated by

du(A) <m, (7.8)
de(A) <m (1 + max (qj)+> ) (7.9)

1<5<m—1 |gpm|

see [41, p. 291].
Before going further, we recall some important results which are necessary in our proof.

Lemma 7.3 (Lieb-Thirring inequality, see [4, 29]). Let ¢1,...,on € HY(R?) be an orthonormal
family of vectors in L*>(R?). Then for

N
po(@) = lpi(x)?
i=1

the following estimate holds:

N
14+2/d 40 < O / Vil?d 7.10
1% r < Uy Y253 x, .
[ > [, v (7.10)

where Cy depends only on d.

Lemma 7.4 (Fractional Lieb-Thirring inequality, see inequality (9) in [32]). For alld > 1 and s > 0,
there exists a constant C > 0 depending only on d and s such that for all N € N and for every
L2-normalized and anti-symmetric function ¥ € H*(R™), ie., || V| p2gav) =1 and

‘Il(xl,...,xi,...,xj,...,xN):—\Il(xl,...,xj,...,mi,...,xN),Vi;éj,
there holds
N
(‘P’D—MW) >0 [ pale) e d, (7.11)
— R

where py(x) is defined by
N
pu(x) == Z/ (U(z1,. ey @1, T, 1, s N )| Hdwi.
j=1/RAY i#]
Remark 7.5. ([30]) Let ¢1,...,on € H*(R?) be an orthonormal family in L?(R%) and
U(ay,...,on) = (N 2det{ep;(x;) ;.

Then ¥ is an L?-normalized and anti-symmetric function, it holds

N N N
pu(r) = Z |<Pz'(33)|2 = p@(m)v <‘I’72(—Ai)s‘1’> = Z/Rd |AS<Pi|2 dz,
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and the results in (7.11) imply that

N
1+28/dd <C / Ao, 2d 7 12)
P T = CUds Pi &Z. .
[ > [ e (

This result is reduced to (7.10) when s = 1.

Proposition 7.6. Let 0 be the unique solution of (1.1) with the initial data ° € H*(R?),s > 2(1—a).
Then for every ¢ € L*(R?), the linear problem (7.4) has a unique solution  such that

€ L>(0,T; L*(R?)) N L*(0, T; H*(R?)) for any T > 0.

Proof. We only prove the a priori estimates of the solution; the other assertions are achieved by
standard methods. Taking the inner product of (7.4); with in L? and using the conditions on f1, g1
and p, it follows that

1d
sag! 72 + KIIA 172 =—/ Vo d:v+/ f1(0)g1(2)] I2d:c+/ px dx
R2 R2 R2
< —/ VO dx+C| ||3e. (7.13)
R2

The trilinear term — [,, - V60 wdx is controlled as the term [, u; - VO wdz, see (6.15), (6.16), and
admits the bound

7/ VO dz < ZJAY |2, + O |2 (7.14)
2 2
Inserting (7.14) into (7.13), we obtain

d «@

gl 22 + 518 172 <Ol - (7.15)

The Gronwall inequality leads to € L*(0,T; L?(R?)) N L?(0,T; H*(R?)) for any T > 0. Finally,
since (7.4) is a homogeneous linear equation, the same a priori estimate yields uniqueness. O

Proposition 7.7. {S(t)}i>0 is uniformly differentiable on A in the sense of (7.5).

Proof. Let 6(t) and 6(t) denote the solution of (1.1) with initial data 6° and 6° in A, respectively,

i.e., O(t) and 6(t) satisty
0; +u-VO+ k(—A)*0 = F(x,0) where u =R"0,

0, +U-VO+r(—A)0 = F(z,0) where &t = RY0.
We denote by 00 = 8 — 0, u = u — U, and consider (t) = L(t,6°)(8° — 6°), the solution of (7.4)
with initial value (z,0) = 6° — §°. Then, after some elementary algebra, the equation satisfied by
9=860—- =60-—0— (and U=R1Y) reads as

19t+u-V19+/<(—A)“19+U-V9+6u-v&9:gl(x)(fl(e)—fl(e) f'(9))+p*19. (7.16)

Taking the inner product with ¢ we get

1d
§d—||19||2L2+n||Aa19H%2 = 7/ (U~V9)19dx7/ (6u - V0)9 dx
t R2 sz

+ [ (0@ - 7A@ - 76) )0+ pr99) do (117)
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Similarly to (7.14) and by the uniform boundedness of 6,6 € H*(R?) on (0,00), the first term on the
right hand side of (7.17) is bounded by

f/ U- VO 9da < gHAaﬂHQLz +C|J9| 2. (7.18)
R’.’

For the second term we start with the estimate | [, (u-V80)d da| < C||A%(5ud0)|2, + C||A>~ 9|2,
where § = 1 — a + €, cf. the proof of Proposition 6.3, and estimate A%(6u 60) as in (6.16), as follows:

N Guan)Ee <€ (I%0ul? _y 0017 o+ Ioul? s IA%O0I2 )

o

< C A 6ul| L 16612
a—e 2 2(1—
< Ol d0l[3a 0l 60l
where v = =25 € (0,1). Hence, with o = =% we obtain that

/Rg(éu V60)9 dx < C||A%56]12%[166) 7 7+ ZHAO‘ﬁH%z-i-CHﬁHZLz. (7.19)

As to the last term on the right hand side of (7.17), the assumptions on f; imply the elemen-
tary estimate |f1(0) — f1(0) — f1(0) | < c|60? + ¢|)|. Using the embeddings H'/2(R?) — L*(R?),
H'Y*4(R?) — L3/3(R?), and interpolation, the integral over |§0|?|¢J| can be estimated as

[ 160191 o < €160 9]

< C|IAY29)2, + C[|AY260]|%.
< TIADIE: + ClI3e + ClIAS0I " 601175

Consequently, the most right hand side term of (7.17) is controlled by

/ (91 (f1(6) = f1(6) = f1(6) ) O+ px99) do < — IIA‘WIILz + 9|13 + ClIA%60] 72 166] 12
R2

(7.20)
Combining (7.17)—(7.20), we are led to the estimate

[e% « —0 % é 4*%
IIﬁIILz + w]|A[F2 < Cl[9]1F2 + CIIA30 3311661135~ + ClIA*30]| . [166]

Note that the last terms on the right-hand side are of the type C||AO‘§9||QU’ ||59||2(17‘7"'+’”)7 j=12
with 01 = 0,7, =~ and 09 = 2a,’yg = 1. Then Gronwall’s inequality with J(0) = 0 gives

Hﬁ( HL2 <C€Ct2/ HAa(SeHZaJ||69H2(170j+%‘)dT
27 asn(29; —0j
ceCthaenLL(O,t;Lz) / |A°80127 [l50]2 " dr

t oj t 1—0o;
CtZH(seniﬁom) (/0 ||Aa59||i2d7> (/O ||5e||i2d7> ) (7.21)

To control the norms of §6 in (7.21) we consider the equation

8,60 + (u- V)00 + k(—A)*60 = —bu - VO + F(z,0) — F(x,0),
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cf. (6.26), which admits the estimate

[0 n R «
2dt”59HL2 + K||A%60)72 = —(du - V0,80) + C||60]|7. < 5||A 50|12, + C||66]]3 -,

¢f. (7.14) and also (6.26), (6.27). Absorbing the first term on the right hand side, Gronwall’s inequality
yields the exponential estimate

t
156(4)|122 + n/o IA®S6]|2, dr < ¢C*|150(0)| 2. (7.22)
Applying (7.22) to (7.21) we see that
2
1922 < Y Ottt 560(0))) 757,

j=1
ien, |98z < C@)(|160(0)[[75T" + [166(0)]73™). Hence, for every ¢ > 0,
0(t) — 0(t) — (b)||12 ~ ~ ~
! ()|90 ( )§O| Bl <CW)(10° - 0°17: +110° = 0°l72) =0 as |67 —6°)z2 — 0.
00| 1

Now the proof of this proposition is finished. O

Proposition 7.8. Let 0 be the unique solution of (1.1) with initial data 0° € H*(R?), s > 2(1 — a).
Then there exists a constant £’ > 0 such that

S L C 1 o2
7 ) Ol dr < 5 (143 ) (10°15. +1), ¢>0, (7.23)

1 [t C
; / ||9|zs+udr<|e°|m+(1+ )<||e°||%2+1>, t> T (7.24)

Proof. We recall that an argument as in (4.7)-(4.11) yields a constant & > 0 and the estimate
d
1011Z= + #1611z < C (16°]72 + 1) (7.25)
based on which (7.23) is obvious. As to (7.24), in view of (4.26), one has
d S ST S S—«
3 14°0lIZe + 26lIA 0T < CIONG + C (100w + ullpao ) [ATFPOT2 + ClIAga][ 72

< wIAT B+ +C (14 1005 ) 16132 + CIA gl (7.26)

Absorbing the term s[|A*T*6||2, and using (7.23), the result is proved. O

Proof of Theorem 2.7 (dimension of the attractor). In order to estimate the numbers ¢, in
(7.7), fix 0° € A and let 0(t) = S(t)0° as well as ;(t) = L(t;0°)(;, where (1,...,(n € L2(R?). For
fixed t > 0 let {¢1(),...,om(t)} be an orthonormal basis in L?(R?) for span{ 1(t),..., m(t)}. Since
i(t) € H*(R?) (for at least a.a. t), we can assume that ¢;(t) € H*(R?). Then we get with the

orthogonal projection @, (7) = Zj (', wj(T))@j(T)
Te[#(0(7)) © Qu(7)]

= K , K o
=3 (~ur Vs = S(=B)0s =y VO [ O)r(@)es = 5 (~A) 05+ px 25, 05)
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where . =R*yp;. In view of (4.7) and (4.8), one has
K o N 9 . N . (RO
(_E(_A) 0+ p* gpj,apj) < —Rollgjllz. with Ro:= mln{T, \pg|} > 0.
Let by assumption Kil|g1||r be so small that Ko := Ko — K1]|g1||~ > 0. Thus, we have

m
Ko -
T[#(007) 0 Q)] <3 (~518%% 5~ Folleslizs — (o, - V0.2)).  (721)
j=1
Under the alternative assumption in Theorem 2.7 that f{ < 0 and g; > 0 the integral (f1(0)g1;,%;)

is nonpositive so that we may choose Ky = kg without any smallness assumption on K1 ||g1 |-
Now, we estimate the last term on the right hand side of (7.27).

Z -V, ;) :/ (ZRLgﬁj@j>~Vﬁdx
=1 B2 \j=1
1/2 / 1/2
/. WI(Z&%F) (ZW) da
j=1 j=1
1/2
(Z‘P]l2>

m 1/2
(S mert)
j=1
Since the Riesz operator R = (R, R2) is bounded on L4(R?) for every 1 < g < oo, the corresponding
vector-valued estimate (cf. [22, Theorem 5.5.1]) implies that

(£mer)”

where py () = 37 |;(x)|*. Hence the above estimates imply that

IN

AN

IAY]| se

L2(1+a) L2(1+a)

1/2
1/2
= C||p<pHL/1+a

L2(1+a)

()

L2(14a)

Y (o V,05)| < cllAbl] vse [|pgl pse (7.28)
j=1

In the following, we differ between the cases « =1 and 1/2 < a < 1.
Case 1. a = 1.
Since {¢;} is orthonormal in L?(R?), the Lieb-Thirring inequality (Lemma 7.3) implies that

g2 = / pde < Cy 3 [V 12 (7.20)

j=1

with Cy as in (7.10). Insert (7.29) into (7.28) to find by Young’s inequality that

> (4, VO.05)| < CollA0]3: + va%np (7.30)

j=1 ] 1
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Hence (7.27) gives

- K ~
Te[/(0(r)) 0 Q)] £ D (5190513 = Follesl3e ) + Coll A6

j=1

m
— > Folleslizz + CollBll7

j=1
= —Kom + COHHH%P

IN

Thanks to (7.23) with « = 1 the energy dissipation flux,

1/ C
€ = limsup sup 7/ 1S(T)60° 132 dr < = (]|6°]132 + 1)
t—oo goca t Jo K
is finite. Then, from (7.31), we find for ¢, in (7.7) that

gm < —rom + Cpe, Vm € N.

Therefore, if m’ € N is defined by

m —1< @ <m/,
Ko
then ¢p,» < 0, so that due to (7.8)
C
dimg(A) <m/ <1+ ~—O€
Ro
Moreover, if m” € N is defined by
"_1< 2906 < //7
Ko
then by [41, Lemma VI.2.2] ¢,,» < 0 and % <1lforall j=1,...,m"”, so that by (7.9)
4006

Case 2. 1/2<a< 1.
We begin with (7.28) and the Fractional Lieb-Thirring inequality (7.12) to get that

m
loplkte, = / P dr < G A2 da
R™ =
Thus, it follows that

1
m m Feo

D (o VO.0)| S NAG] ssa | Coa Y A%
j=1

j=1
<Co||A9||‘i + ZIIA“%HLz

Next, we deal with the term

33

(7.31)

(7.32)

(7.33)

(7.34)

Ry Since 1/2 < ae < 1 and s > 2(1 — «), it is easy to see that

2-2a< p%a <2—a < s+asothat Hi5s — HL%*. Then an interpolation inequality and the

fact 6 € L>°(0, 00; H*(R?)) which follows from the invariance of S(-) on A C H*, imply that

2c
14+

I1AG]] 1 < CIATE0]12 < CJIA>270)| 3 Al <
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and consequently that

1ta
1861 5 < e (7.39)
for some absolute constant C’ > 0. Combining (7.34) and (7.35), we have
m K m N
D (e VO.95)| < CHlONFrera + ZZ 1A% 05117
=1 i=1

Together with (7.27) we conclude that
m
Ko ~
T[F(0r)) 0 Q)] < 3 (~5IA; 3. — Follg 32 + CE161 v
j=1

< —Fom + CJ 0]

We define the modified energy dissipation flux

¢ = limsup sup 7/ 1S (#)6°|37e4adT,

t—oo gocAlt
which is finite due to (7.24). For the remaining part of the proof, one proceeds as in the case a = 1.
Now the proof of the finite dimensionality of the global attractor .4 and of Theorem 2.7 is completed.
O
8. APPENDIX

For the sake of completeness of this paper, we show global existence and uniqueness of solutions
for system (1.1), (1.3) and (1.5), (1.6).

Theorem 8.1. Let a €]3,1], k> 0 and 6° € H*(R?) with s > 2(1 — «). Suppose further that
p € LY(R?),g; € H*(R*) N L™(R?), g» € H*~*(R?*) N L?(R?) N L®(R?)
and that f1 € C*(R) satisfies
f1(0) = f1(0) =0, [Ifillzee < Ky < o0, [[f] |1 < Ky < oo
Then for any T > 0, there is unique solution 0 of (1.1), (1.3) and (1.5), (1.6) such that
0 € C([0,T); H*(R?)) N L2(0, T; H*T*(R?)).

for some qo > 2a T

Proof. Step 1. We use a smoothing method to construct a sequence of approximate solutions as
follows. For n > 1, let J,, be the spectral cut-off defined by

Jnf =1p,f with B, = {£ € R?: |&] < n,|&| < n}.
Note that J,, commutes with the differential operators A° for any § > 0, A, V,div and with Riesz
operators. A
Consider the following ODE in the space L2 := {f € L*(R?) : suppf C By }:
0l = —Jpdiv(Jpudnl) — k(—A)*J,0 + J, F(x, J,0),

8.1
Jou=REJ.0, 0(x,0) = J,0°. ®1)

From the Picard-Lindelsf theorem, we get a unique maximal solution 6,, in C1([0,T7); L2) for some
time interval [0, TF). Since Jfb = J,, we see that 0,, and J,0,, are solutions with the same initial data.
By uniqueness, we have J,,0,, = 0,, (and thus J,u,, = u,). Therefore,

Ol + Jndiv(unby) + k(—A)*0, = J, F(z,60,),

8.2
= R0, O,(x,0)= J,0°. (8:2)
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As J,, is an orthogonal projector for the L? inner product, we have
1d
2 dt
Then Gronwall’s Lemma shows that

||9nHL2 < Cl(t) = et(K1H91HLoo+HPHL1) (HQOHL? + tHgQHL?) )

16n]17> + £IA0R 17> < (Killgallzee + llpllze) 10al1Z2 + g2l z2]|0nll - (8.3)

This implies that 6,, remains bounded in L2 for finite time, whence 7' = +oco. Similarly, we use
Lemma 2.5 to get

1 d

-1
qfoanenn%qo < (Killgallzos + o) 10nll a0 + g2l oo 16n 1 T

so that by Gronwall’s Lemma

10l a0 < Co(t) := et(Kll\ngLOOHIPHLl) (||00||Lq0 + t||92HLqO) . (8.4)
Now, multiplying (8.2); by A%%0,,, we have in view of (4.25) and (4.31)

d S STO S S—x
1470l + A0 < CllOnllZr + C(10nlloo + [lun Lo ) 1A 2OnlIZ2 + ClIA**g2]172
— s sea K\ Ast+a
< O(1+ 057 (1) [A%0n]72 + CL(1) + ClIIAT g5 72 + S IATOnl |72

After absorbing the last term of the above inequality, we use Gronwall’s Lemma and (8.4) to get with
continuous functions C3(t) and Cy(t) which are independent of n € N that

146, (2|72 + H/Ot IA5F20, [[F2dr = PO (103 + CHIA ™ ga| 72 + Cu(1)).
Therefore, for each T' > 0, the sequence of approximate solutions {6,,} is uniformly bounded with
respect to n € N on [0,T7]; to be more precise,
{6,y € L*(0,T; H*(R)?) N L*(0,T; H***(R)?) is bounded
{6,} € L>=(0,T; L% (R?)) is bounded. (8.5)

Step 2. We prove that {6, } is a Cauchy sequence in the space
L=(0,T,; H* (R?)) N L2(0, T,; H¥ T*(R?)) with 2(1 — a) < s’ < min{1, s}

where T, < T is to be determined later. Set for m,n € N with m > n

Ompn =0m — Ony U = U — Uy, and Jp, = Jn, — Jp,
and note that ||y, A~%|[r2 < 5 ||v|[z2 for any § > 0 and v € L?(R?). For 6, , we find that

0O + Im(Um - VO ) + EAOn = T (F(CC, Om) — F(x,0,) — U - V@n)
+ Jmn (F(av7 0n) — Up - Vﬁn),
O (2,0) = T n0°.

Testing this equation with A25/9m7n we get that

1d
2dt
- (Jm (F(2,00) — F(2,00) — tmn - VO — thy, - vemm),A?S’am,n)

1A Orm |72 + IAS O 72

n (Jm,n(F(x, 0,) — n - ven),A%’em,n) . (8.6)
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Since
| (T (F(@,0) = F(,60)), A O )| < CIAY (F(@,000) = F(2,00))[|72 + ClIA” 672,
we apply (3.3) in Proposition 3.1 and Lemma 2.4 to get with

2 2 2q0

1_g" P2:g, P3 = qo, P4:q0_2

p1 =
for the first right-hand side term the estimate

1A (F (@, 6m) = F(,60))]|72
< A% (1 Lf1(Om) = F18)]) 72 + 1A% (0 # Oy |72
< Cllgalzoe 1£10m) = fr(0n) I3 + Cl1Om) = fr(0n)ll7e g1l + CllOmnllZ,

<C<”0m,n”%m sup H9|2Bs’ + sup ||0|2LP3|9m,n||?'{s’,p4>
0€[01m,0s] P20 9Efm On)

+ CllmnlT<llgrlZrs + CllOm.nll.

2 2 2
s (e Dy

+ C ([10ml[700 + 10nllZa0) [1Omnl® 2oy + Cllbmnllzrersoms (8.7)

I 2
H

for some 0 < < o + p% —1,0< 6 < s +a—1< a. Similar to the estimate of (4.22)-(4.23), we

choose an 79 small enough such that 2(1 — o) < s’ < 14 219 where 0 < 219 < min {s’,,2(a — 2)}

90
and hence s’ + o — 19 > 1. Using (4.22)—(4.23) we get that

‘(Jm’nF@:vgn% AZSlem’n)‘ < HJm,nAS/_SAs_QnO (glf(en))HL"’||As,+2n09m,n||L2
+ (HJm,nASl_aP Oz + ||Jm7nAS,_ag2HL2) HASI+Q€W7”HL2

c "
— n2(s—s’) HenH%{Ha*no + ||9m,n||2L2 + CHJm,nAS a92||%2
S’fOé K S, [e3 2
+ O TN =0, |22 + gHA O] (8.8)

Furthermore, note that with some 5y > 0,

C
/ ﬁ”g2”%2 if & <« c
”Jm,nAS 70‘92”%2 < nz(é s) ’ < —
o=y l92lie-er i8>0

By analogy, and in view of (8.5), || JnnA® =0, 22 < -5-||6,]|%.. Hence (8.8) can be reduced to

nBo

/ O ’
[, 00), A2 O )| < s (U 100 Fpeve) + ClmnlFo + G AT
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The remaining terms in (8.6) are estimated as

’ ’ 2 K ’ 2 .

| (ot 982), A2 0 )| < € A7 (s 060) e |20 |, with
’_ 2 2
HAS a+1(um’n9n)HLz <C ||um,n||Lp1 Hennifs’—aﬂ,pz + CHHnHQLPSHUW,n ?'{s’—aﬁ,m
< Cllmnll 3o 100135 + CllON T o5 1O |75

’ ’ 2 K ’ 2

[ (ot ), A2 0 )| < €[4 )|+ 5 [ A with
E) ’ El L2 8 El L2

|‘ASI_a+1(um9m7n) HLz S CHem,n”?{a’

emHi{? + CH‘gmH%PS ||‘9m,n||%15a

2

Wheregzs’—a—i—Q—p—?,

s=¢ —-—a+2- p%. By analogy,

!’ !’ 2 ! 2
| (ot 90, A2 0 0)[ < C [T n A= )|+ 5 |[A 40, ]| with
9 ) 9 L2 8 9 L2
oA 1, 0) e LA ()|
m,n nUn 2 = nQ(S*S') nYn)|| 2
C
< 20— (”071”%?3 ”UnHi'Is—aﬂ,m + C”“ﬂ”%l’s ”‘gn”%s—aﬁ,m)
O 2 2
< WHQTL”L‘IO ||9nHHsfa+2fﬁ

C

< WH@,,HQL%H%H%ISM.

Moreover, we also have
1d
§§H9m,n”%2 + ’@'HAaem,nH%? = (Jm(F($>9m) - F(x,@n) — Um,n - ven)79m,n)

+ (i (F(2,0n) = tun - V0p), Omn), (8.9)
and the first two terms on the right hand side are estimated as follows:

Cu Ko .
| (T (- VO), 0mn) | < CIA ()1 72 + gHA Omonl7e with

_ 2
”Al a(um,ngn)H%? <C ”um,an1 ||0nH%(1—a,p2 + CHGnH%PS ||um,n||i'(17a,p4
<C ||9m,n||§1s/ |9nH%{& + CHen”Qqu Hem’nH?{&v
where @ =2 — o — p% anda=2—a— p%. Furthermore,

|(Jm,nF(x70n)7 am,n)‘ é HJm,nA_a (fl(an)gl + p* 977, + g2)“i12 + g ||Aa9m,n||i2

C Ko a )
< —5a (1On)gllZ2 + 16nl22 + llg2llZ2) + 5 1A Om.nll2:
C K
< e (L4 10n]7) + 1A,

[(imn (tn - V0,), On)

< O NN )2+ A0 2

¢ 2 s 2 K a
—aram) 10l Les [|A°0n 104 + 2 (1A% 0,0

C 2 2 K 2
e et L2 [ 0 AR P A

2
L2
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Next we estimate the energy term
Dipn(t) == ||9m,n”itooHs’ + ||9m,n|‘i§Hs’+a

which for 0 < t < 1 is obviously bounded by a multiple of the modified energy term lNDm,n(t) =
(16, LOCHb, + |A“0,, n||L2Hb” here L HS = L>(0,t; H* (R?)) etc. Applying the assertion (8.5) on
uniform boundedness for the sequence of solutions {6, } on (0,7), integrating (8.6) as well as (8.9)
over [0,t] with ¢ <T < 1 and using the previous estimates we obtain for D,, ,(¢) that

Dy < CtDmn+C/ 162,177+ 1mmlFgersas + 10m.nllzra + ||9mn||2 2 )d7+ T,

0 [ Wl (10 10l 100 e+ 1017 s 1017 )

C L(0,00) (@ = ") C C
+ n2(s+a-1) ( n2(a—s’) n2(s—s") + (1 + t) (810)
Because s := max{s’ — p% + 1,8 4+1— pj +1n,38, 8 a,al < s +a and all powers of n in the last

line of (8.10) are bounded from below by some (modified) By > 0, we rewrite (8.10) in view of (8.5)
applied to 0,, ,, = 0, — 0,, in the short form

t
Dinn(t) < CtDn(t) +C / (1mnli3rs0 + 10monl2r (10ml13r20 + 160 ]%-0) ) a

C
+ [ T 6|30 + —0(1 +1). (8.11)

Using the 1nterpolat10n 1nequahty 01l s0 < (1017, ||9||1 0 where 0 < g = S‘)T*s’ < 1 we get that

1o 1—no
||0m,n||%{so dr S Hamw||2 o fa dT ||0m,n||i1s’ dr < gl Dy, o ().
H 0

By analogy, applying (8.5) to Gm, 0,,, we see that

/ 16,

Moreover, ||J,, n0° o < en=(575 )HQOHHS.
Thus, (8.11) leads to the simpler estimate
C(1+1)
nBo
We choose T, < 1 such that C(T, + T, ") < 1 and get the estimate D, ,(t) < Cn=? on [0,T}) for
all m > n. Hence {6,} is a Cauchy sequence in L>°(0, T; H* (R)?) N L2(0, T.; H* t*(R)?).

 (10m 170 + 1001750 ) AT < Dy (t) CE ™.

Dpn(t) < + Ot + 7Dy (t) (8.12)

Step 3. From (8.1), we find that the limit 6 of {6,,} in L>(0,T,; H* (R?)) N L3(0, T,; H* T*(R?)) is
a solution of the system (1.1) with the initial data #° € H*(R?), and that, by a weak convergence
argument, even

0 € L>=(0,T,; H*(R?)) N L?(0, T.; H*T*(R?)). (8.13)
Due to the uniform boundedness of the sequence {6,} on any interval [0, T), the local solution can be
extended to a global one. As the proof of uniqueness is based on estimates similar to those for 6,, .,
it will be omitted.

It remains to prove the continuity of the solution in time. In fact, it is easily seen from the
equation (1.1) that 8,0 € L?(0,T; H*~*(R?) + L*(R?)) and hence 6 € C([0,T]; H*~%(R?) + L*(R?)).
Since § € L*>°(0,T,; H*(R?)), a classical density and reflexivity argument ([31, Lemma 8.1, p. 275])
implies that even § € C([0,T); H*(Q2)). Now the proof of this theorem is completed. O
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