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Abstract

In 1983, the authors introduced a Banach algebra of - as they called
them - Toeplitz-like operators. This algebra is defined in an axiomatic
way; its elements are distinguished by the existence of four related strong
limits. The algebra is in the intersection of Barria and Halmos’ asymptotic
Toeplitz operators and of Feintuch’s asymptotic Hankel operators.

In the present paper, we start with repeating and extending this ap-
proach and introduce Toeplitz and Hankel operators in an abstract and
axiomatic manner. In particular, we will see that our abstract Toeplitz
operators can be characterized both as shift invariant operators and as
compressions. Then we show that the classical Toeplitz and Hankel oper-
ators on the spaces Hp(T), lp(Z+), and Lp(R+) are concrete realizations
of our abstract Toeplitz operators. Finally we generalize some results by
Didas on derivations on Toeplitz and Hankel algebras to the axiomatic
context.
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1 Introduction

When an operator A on a Banach space X bears the name Toeplitz operator then
it is usually distinguished by one of the following properties:

• A is the compression of a ”nice” (e.g., a normal) operator onto a non-trivial
complementable closed subspace of X, or

• A owns a kind of shift-invariance.

For a concrete example, we recall the definition of the classical Toeplitz operators
(as well as of their close relatives, the Hankel operators) on the Hardy space. Let
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1 < p < ∞. For a function f ∈ Lp(T), the Lebesgue space over the unit circle
T := {z ∈ C : |z| = 1} in the complex plane, we let

f̂n =
1

2π

∫ 2π

0

f(eiϕ)e−inϕ dϕ

denote its nth Fourier coefficient. It is well-known that the Riesz projection

P :
∑
n∈Z

f̂ne
inϕ →

∑
n∈Z+

f̂ne
inϕ,

is bounded on Lp(T); its range is called the Hardy space Hp = Hp(T). We still
set Q := I − P and introduce the reflection operator

J : Lp(T)→ Lp(T), (Jf)(t) := t−1f(t−1).

Then J2 = I and JPJ = Q.
Let a ∈ L∞(T). We write aI for the operator f 7→ af of multiplication by a

on Lp(T). Then the Toeplitz operator T (a) and the Hankel operator H(a) on Hp

are defined as the compressions

T (a) := PaI|imP = PaI|Hp and H(a) := PaJ |imP = PaJ |Hp ,

respectively. In particular, T (a) is the compression of the ”nice” multiplication
operator aI onto the Hardy space. The function a is called the generating func-
tion of both T (a) and H(a). The assignment a 7→ T (a) is one-to-one, whereas
a 7→ H(a) is not. Toeplitz and Hankel operators possess completely different
properties, but are nevertheless closely related by

T (ab) = T (a)T (b) +H(a)H(b̃), H(ab) = T (a)H(b) +H(a)T (b̃) (1)

where c̃(t) := c(1/t) for c ∈ L∞(T). Note that JcJ = c̃I.
The function system {χn}n∈Z+ , χn(t) := tn (t ∈ T), forms a Schauder basis of

Hp. The matrix representations of T (a) and H(a), a ∈ L∞(T), with respect to
this basis are given by

(âj−k)
∞
j,k=0, (âj+k+1)

∞
j,k=1,

respectively, from which we conclude the other of the distinguishing properties
of Toeplitz operators, as follows. For every positive integer n, define

Vn : Hp → Hp, f 7→ χnf and V−n : Hp → Hp, f 7→ P (χ−nf).

Then A is a Toeplitz operator on Hp if and only if it is shift-invariant in the sense
that

A = V−nAVn for all positive n ∈ Z. (2)
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This is the starting point for several lines of research. Many work has been
done to understand algebras generated by Toeplitz (and Hankel) operators. To
mention at least one result in that direction, let A be a closed subalgebra of
L∞(T). We denote by algT (A) the smallest closed subalgebra of L(Hp), the Ba-
nach algebra of the bounded linear operators on Hp, which contains all Toeplitz
operators with generating function in A. Further we write qc (T ) for the qua-
sicommutator ideal of algT (A), i.e., for the smallest closed two-sided ideal of
algT (A) which contains all operators of the form T (ab)−T (a)T (b) with a, b ∈ A.

Theorem 1 (a) The algebra algT (A) decomposes into the direct sum

algω(A) = ω(A)⊕ qc (ω).

(b) The sequence

{0} → qc (T )→ algT (A)→ A→ {0}

is short exact; in particular, the quotient algebra algT (A)/qc (T ) is isomorphic
to A.

Further results along these lines, also for other kinds of Toeplitz operators, can
be found in [4, Section 2.40].

Barria and Halmos [2] took (2) as a starting point to initiate the study of
asymptotic Toeplitz operators. They call an operator A ∈ L(H2) an asymp-
totic Toeplitz operator if the sequence (V−nAVn)n≥0 converges strongly1. If the
strong limit of that sequence exists, then it is necessarily a Toeplitz operator,
whence the notation. They also proved that every operator A ∈ algTH(L∞) is
asymptotically Toeplitz, where algTH(L∞) refers to the smallest closed subalge-
bra of L(H2) which contains all Toeplitz and Hankel operators with generating
functions in L∞. Since the strong limit of the operators V−nAVn is a Toeplitz
operator T (ϕ) with generating function ϕ ∈ L∞, they arrived at a symbol map
smb : A 7→ ϕ. It is proved in [2] that the restriction of smb to algTH(L∞)
is a contractive ∗-homomorphism from algTH(L∞) onto L∞. This symbol map
obviously fulfills

smbT (a) = a for every a ∈ L∞.

For the Toeplitz algebra algT (L∞) ⊂ L(H2), this result was already discovered
by R. G. Douglas [9] using different methods.

Using a similar strong limit, Feintuch [10] introduced asymptotic Hankel op-
erators. Both ”asymptotic approaches” have the disadvantage that the sets of
all asymptotic Toeplitz (resp. Hankel) operators do not form algebras (see [2],
Example 13).

1Other kinds of convergence, e.g. norm, weak and Cesaro convergence, are considered as
well. Our focus is on strong convergence.
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In 1983, we published a preprint [17] where we independently of [2] introduced
a class of asymptotic Toeplitz operators (called Toeplitz-like operators in what
follows). Besides the strong limit by Barria and Halmos, we required the existence
of three other strong limits (one of which is Feintuch’s, but note that [10] appeared
only in 1989) so that the set of these operators actually forms a Banach algebra.
The motivation for introducing that algebra came from the study of the finite
section method for operators belonging to the algebra generated by Toeplitz
and Hankel operators with piecewise continuous generating functions. In 1985
we published our papers [18], [19] where we presented the results and related
applications.

The approach of [17] offers moreover the possibility to introduce Toeplitz and
Hankel operators in an abstract and axiomatic manner. Especially, the analogs
of (1) and of Theorem 1 can be proved for this class of abstract Toeplitz and
Hankel operators. In the present paper, we start with repeating and extending
this approach. In particular, we will see that our abstract Toeplitz operators can
be characterized both as shift invariant operators and as compressions. Then
we show that the classical Toeplitz and Hankel operators on the spaces Hp(T),
lp(Z+), and Lp(R+) are concrete realizations of our abstract Toeplitz operators.
Finally we generalize some results by Didas [7] on derivations on Toeplitz and
Hankel algebras to the axiomatic context.

2 Toeplitz-like operators

Here we introduce, in an axiomatic way, the algebra TL(X) of the Toeplitz-like
operators on a Banach space X. For full proofs and some more details we refer
to [17, 18] where this algebra was introduced and studied for the first time. A
few proofs are sketched here to make the presentation more accessible.

2.1 The axioms

Let X be a Banach space and write L(X) for the Banach algebra of the bounded
linear operators on X. The identity operator on X is denoted by I. Further let
G 6= {0} be a subgroup of the additive group of the real numbers and G+ the
semigroup of its non-negative elements. Our construction of the algebra of the
Toeplitz-like is based on two families, V = (Vt)t∈G and R = (Rt)t∈G, of bounded
linear operators on X which are specified and related by the following axioms:

(T1) The mappings t 7→ Vt and t 7→ V−t are semigroup homomorphisms on G+.
In particular, VsVt = Vs+t and V−sV−t = V−(s+t) for all s, t ∈ G+.

(T2) V−tVt = I but VtV−t 6= I for all t ∈ G+ \ {0}. Thus, for positive t, the
operators Vt are invertible only from the left-hand side.

By (T1) and (T2), V0 = I. Set Qt := VtV−t and Pt := I −Qt for t ∈ G.
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(T3) VtV−t +R2
t = I and VsRt = Rs+tPt for s, t ∈ G.

(T4) V−t → 0 strongly as t→∞ and supt∈G+
{‖Vt‖, ‖Rt‖} <∞.

The following properties are easily verified.

Lemma 2 (a) P 2
t = Pt and Q2

t = Qt for t ∈ G.
(b) P−t = 0 and Q−t = I for t ∈ G+.
(c) Pt → I and Qt → 0 strongly as t→∞.

Thus, Pt and Qt are complementary projections.

Lemma 3 For all s, t ∈ G,

(a) VsVt = Vs+t whenever s ≤ 0 or t ≥ 0.
(b) VsVt = QsVs+t = Vs+tQ−t.
(c) PsVs+t = Vs+tP−t.
(d) PsPt = Pmin{s,t} and QsQt = Qmax{s,t}.

Lemma 4 For all s, t ∈ G,

(a) RtPt = PtRt = Rt.
(b) Rt = 0 for t ≤ 0.
(c) RtV−s = PtRs+t.
(d) RsRt = Vs−tPt = PsVs−t.

Notice also that

sup
t∈G
{‖Vt‖, ‖Pt‖, ‖Qt‖, ‖Rt‖} =: M <∞. (3)

We will see several concrete examples of operators Vt and Rt satisfying axioms
(T1) – (T4) in Section 5. Note also that if the operators Vt and Rt satisfy these
axioms on a Banach space X, then the n× n diagonal matrices

diag (Vt, Vt, . . . , Vt) and diag (Rt, Rt, . . . , Rt)

satisfy these axioms in place of Vt and Rt on the direct sum Xn of n copies of X.

2.2 The algebra TL(X) of the Toeplitz-like operators

Given families (Vt)t∈G and (Rt)t∈G of operators subject to axioms (T1) – (T4), let
TL(X) (with TL for Toeplitz-like) stand for the set of all operators A ∈ L(X) for
which the sequences (V−tAVt), (RtARt), (V−tARt) and (RtAVt) converge strongly

as t → ∞. Their strong limits are denoted by T (A), T̃ (A), H(A) and H̃(A),
respectively.
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Example 5 (a) The operators Vt and Rt belong to TL(X), and

T (Vt) = Vt, T̃ (Vt) = V−t, H(Vt) = Rt, H̃(Vt) = 0.

The operators Rt lie in the kernel of each of the four strong limits.

(b) If Vt → 0 and Rt → 0 weakly as t → ∞, then every compact operator K on
X belongs to TL(X), and

T (K) = T̃ (K) = H(K) = H̃(K) = 0.

Theorem 6 (a) TL(X) is a norm-closed subalgebra of L(X) which contains the
identity operator.
(b) The following identities hold for all A, B ∈ TL(X)

T (AB) = T (A)T (B) +H(A)H̃(B),

T̃ (AB) = T̃ (A)T̃ (B) + H̃(A)H(B),

H(AB) = H(A)T̃ (B) + T (A)H(B),

H̃(AB) = T̃ (A)H̃(B) + H̃(A)T (B).

Theorem 7 (a) T , T̃ , H and H̃ are bounded linear operators on TL(X) which
map this algebra into itself.
(b) The composition of any two of the operators T , T̃ , H and H̃ belongs to

{T , T̃ , H, H̃, 0}. In particular,

◦ T T̃ H H̃

T T T̃ 0 0

T̃ T̃ T 0 0

H H H̃ 0 0

H̃ H̃ H 0 0.

Sketch of the proof. The linearity of the operators in (a) is evident; their
boundedness is a consequence of (3). So let us verify the first row of the table for
example. A basic ingredient are the identities collected in the following lemma.

Lemma 8 Let A ∈ TL(X) and s ∈ G+. Then

(a) V−sT (A)Vs = T (A),

(b) RsT (A)Rs = PsT̃ (A)Ps,
(c) V−sT (A)Rs = H(A)Ps,

(d) RsT (A)Vs = PsH̃(A).

Now let A ∈ TL(X) and write

T (A) = V−tAVt + Ct with Ct → 0 strongly as t→∞.
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Then, for every fixed s ∈ G+,

V−sT (A)Vs = V−sV−tAVtVs + V−sCtVs = V−s−tAVs+t + V−sCtVs.

Letting t go to∞ we arrive at identity (a) in Lemma 8, which on its hand implies
that T (T (A)) = T (A). In other words, T ◦ T = T .

Analogously, using (T3) and Lemma 4 (c) we write

RsT (A)Rs = RsV−tAVtRs = PsRs+tARs+tPs +RsCtRs,

and passage to the strong limit as t→∞ yields

RsT (A)Rs = PsT̃ (A)Ps.

Letting s go to ∞ we obtain T̃ (T (A)) = T̃ (A) or T̃ ◦ T = T̃ . Similarly,

V−sT (A)Rs = V−s−tARs+tPs + V−sCtRs

gives V−sT (A)Rs = H(A)Ps, whence H(T (A)) = H(A) and, finally,

RsT (A)Vs = PsRs+tAVs+t +RsCtVs

implies RsT (A)Vs = PsH̃(A) and H̃(T (A)) = H̃(A). The other entries of the
table can be checked analogously.

Theorem 9 (a) T is a bounded projection on TL(X), and im T is a closed sub-
space of L(X).
(b) TL(X) = im T ⊕ ker T .
(c) ker T is a closed two-sided ideal of TL(X) and a closed left-sided ideal of
L(X).

It is simple consequence of the last two identities in Theorem 6 that kerH and
ker H̃ are closed subalgebras of TL(X).

2.3 Compact operators in TL(X)

As mentioned in Example 5, the compact operators belong to TL(X) if Vs → 0
and Rs → 0 weakly. We will see now that the converse is also true.

Theorem 10 The following assertions are equivalent:

(a) all operators of rank one are in TL(X);
(b) Vs → 0 and Rs → 0 weakly;
(c) all compact operators are in TL(X).
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Proof. The only implication that needs a proof is (a) ⇒ (b). We prepare this
proof by a few facts.

Fact 1. The Rs do not converge strongly. Indeed, suppose the Rs converge
strongly to some operator R ∈ L(X). Then

V−sARs → 0AR = 0 strongly for every A ∈ L(X).

In particular, H(A) = 0 for every A ∈ TL(X). But then Rs = H(Vs) = 0, hence
Ps = R2

s = 0 for every s ∈ G+, which contradicts the strong convergence of Ps to
the identity.

Fact 2. Every rank one operator in TL(X) lies in ker T . Indeed, let Kx :=
〈x, y〉z with y ∈ X∗ and z ∈ X. Then

V−sKVsx = 〈Vsx, y〉V−sz → 0

since V−s → 0 strongly and sup ‖Vs‖ <∞ by axiom (T4).

Fact 3. There is a constant c > 0 such that

c−1‖Psx‖ ≤ ‖Rsx‖ ≤ c‖Psx‖ for all x ∈ X.

Indeed, with c := sup ‖Rs‖ we obtain

‖Rsx‖ = ‖RsPsx‖ ≤ c‖Psx‖ = c‖R2
sx‖ ≤ c2‖Rsx‖.

Now to the proof of the implication. By Fact 1, there is a z ∈ X such that the
Rsz do not converge. Clearly, z 6= 0. Consider the rank one operators

Kyx := 〈x, y〉z with y ∈ X∗.

They belong to TL(X) by assumption and are, hence, in ker T by Fact 2. Since

ker T = ker T̃ by Theorem 7, we conclude that

RsKyRsx = 〈Rsx, y〉Rsz → 0 for all x ∈ X, y ∈ X∗. (4)

Since ‖Psz‖ → ‖z‖ and by Fact 3, we get

‖Rsz‖ ≥ c−1‖Psz‖ ≥ (2c)−1‖z‖

for s sufficiently large. Hence, (4) implies that 〈Rsx, y〉 → 0 for all x ∈ X and
y ∈ X∗; in other words: Rs → 0 weakly.

The proof for Vs runs similarly. Now we use the inclusion ker T ⊆ ker H̃ by
Theorem 7 to conclude that

RsKyVsx = 〈Vsx, y〉Rsz → 0 for all x ∈ X, y ∈ X∗

from which we obtain the weak convergence Vs → 0 as before.
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3 Abstract Toeplitz and Hankel operators

3.1 Symbols

Let Smb denote the quotient algebra TL(X)/ ker T , which is correctly defined
by Theorem 9, and let smb refer to the canonical homomorphism from TL(X)
onto Smb. We call smbA the symbol of A. The symbol of the identity operator
is denoted by e. The symbol of an operator carries important information. For
example, we mention the following inverse closedness result from [18], the proof
of which makes use of the fact that ker T is a left-sided ideal of L(X).

Theorem 11 Let A ∈ TL(X) be invertible in L(X). Then A is invertible in
TL(X) if and only if smbA is invertible in Smb.

By Theorem 9 (a), every coset q = smbA ∈ Smb contains exactly one operator
from im T , namely T (A). We call this operator the abstract Toeplitz operator
with symbol q and denote it by T(q). Similarly, we call H(q) := H(T(q)) the
abstract Hankel operator with symbol q. The mappings

T : Smb→ im T , q 7→ T(q) and H : Smb→ imH, q 7→ H(q) (5)

are linear by construction. Whereas T is also a bijection, H fails to be injective
in general. We will see in Corollary 30 that these mappings are bounded.

There is a natural involution q 7→ q̃ on the symbol algebra Smb defined by
q̃ := smb T̃ (T(q)).

Lemma 12 (a) The mapping q 7→ q̃ is an automorphism of Smb with ∼◦∼ = id.
(b) If M = 1 in (3), then ∼ is an isometry and ‖q‖Smb = ‖T(q)‖L(X) for all
q ∈ Smb.

It in not hard to see that T̃ (T(q)) = T(q̃) and H̃(T(q)) = H(q̃). The following
lemmas show that abstract Toeplitz and Hankel operators behave as the concrete
Toeplitz and Hankel operators introduced in the introduction and deserve, hence,
their name.

Lemma 13 Let p, q ∈ Smb. Then

T(pq) = T(p)T(q) + H(p)H(q̃), H(pq) = H(p)T(q̃) + T(p)H(q).

Proof. Choose A and B in TL(X) such that smbA = p and smbB = q. Then
pq = smb (AB), and the operators T(p), T(q) and T(pq) coincide with T (A),
T (B) and T (AB), respectively, by definition. Since A − T(p) and B − T(q) lie
in ker T , we conclude from Theorem 7 (b) that H(A) = H(T(p)) = H(p) and

H̃(B) = H̃(T(q)) = H(q̃). Hence, the assertion of the lemma is a consequence of
the identities in Theorem 6 (b).
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Lemma 14 Let q1, . . . , qn ∈ Smb and set A :=
∏n

i=1 T(qi) and q :=
∏n

i=1 qi.
Then

T (A) = T(q), T̃ (A) = T(q̃), H(A) = H(q), H̃(A) = H(q̃).

There are several algebras that can be associated with abstract Toeplitz and
Hankel operators. The simplest ones are the Toeplitz algebras algT(S) where S
is a closed subalgebra of the symbol algebra Smb. By definition, algT(S) is the
smallest closed subalgebra of L(X) which contains all abstract Toeplitz operators
T(c) with c ∈ S. Clearly, algT(S) is a closed subalgebra of TL(X).

Similarly, given closed subalgebras S1 and S2 of the symbol algebra Smb, let
algTH(S1, S2) stand for the smallest closed subalgebra of L(X) which contains all
abstract Toeplitz operators T(c1) with c1 ∈ S1 and all abstract Hankel operators
H(c2) with c2 ∈ S2. If S1 = S2 =: S, then we simply write algTH(S) in place of
algTH(S, S). Algebras of this form are often referred to as Hankel algebras. By
Theorem 7, algTH(S1, S2) ⊆ TL(X). We will see in Section 5.1 that, in general,
algTH(Smb) is properly contained in TL(X).

A third natural candidate, with a strong coupling between Toeplitz and Han-
kel operators, is the Toeplitz-plus-Hankel algebra algTH+(S) which is the small-
est closed subalgebra of L(X) which contains all Toeplitz-plus-Hankel operators
T (c) +H(c) with c ∈ S. Clearly, algTH+(S) ⊆ algTH(S).

3.2 Quasicommutators and decompositions

The goal of this section is to understand the ideal ker T as a quasicommutator
ideal. A general approach to this circle of ideas is as follows. Let A and B be
Banach algebras and D : A → B a linear and bounded mapping. We write
algD(A) for the smallest closed subalgebra of B which contains all elements
D(a) with a ∈ A. We say that D(A) generates B (as a Banach algebra) if
algD(A) = B.

The quasicommutator ideal generated by D is a measure for the deviation of
D from being multiplicative (i.e., an algebra homomorphism). This quasicom-
mutator ideal, denoted by qc (D), is the smallest closed ideal of algD(A) which
contains all quasi-commutators D(ab) − D(a)D(b) with a, b ∈ A. Clearly, if D
is multiplicative then qc (D) = {0}, whereas qc (D) = algD(A) if this algebra is
simple and D is not multiplicative. The following lemma provides an equivalent
description of qc (D) is terms of higher quasi-commutators. The proof is an easy
exercise.

Lemma 15 Let A, B be Banach algebras and D : A → B a bounded linear
mapping such that D(A) generates B. Then

qc (D) = clos spanB {D(a1 . . . an)−D(a1) . . . D(an) : n ∈ N, a1, . . . , an ∈ A}.
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In what follows we consider bounded linear mappings D : A → B which own
a homomorphic left inverse, i.e. we suppose there is a bounded homomorphism
W : B → A such that W (D(a)) = a for all a ∈ A. Mappings D with that
property are often called discretizations or quantizations, in order to emphasize
their role in numerical analysis or operator theory, respectively (see, e.g., Section
6.5.3 in [12]).

Theorem 16 Let A and B be Banach algebras, D : A → B a bounded linear
mapping, and W : B → A a bounded homomorphism such that W (D(a)) = a for
every a ∈ A. Then

(a) D is injective, D(A) is a closed subspace of B, and W is surjective,

(b) the algebra B decomposes into the direct sum

B = D(A)⊕ kerW, (6)

(c) if D(A) generates B, then kerW = qc (D).

(d) if D and W are contractions, then D is an isometry, the canonical projection
P : B → D(A) associated with the decomposition B = D(A) ⊕ kerW has norm
1, and

‖D(a)‖ = min
k∈kerW

‖D(a) + k‖ for every a ∈ A. (7)

Proof. (a) First we show that D(A) is a closed subspace of B. Let D(an) be a
sequence in D(A) which converges to b ∈ B. Then the W (D(an)) = an form a
Cauchy sequence in A which converges to an element a ∈ A. Since D is bounded,
the D(an) converge to D(a); hence b = D(a) ∈ D(A), and D(A) is closed. The
other assertions follow immediately from W ◦D = idA.

(b) Writing b ∈ B as b = D(W (b)) + (b−D(W (b)) and noting that

W (b−D(W (b)) = W (b)−W (D(W (b))) = 0

we obtain B = D(A) + kerW . To see that this sum is direct, assume that
D(a) ∈ kerW . Then a = W (D(a)) = 0, hence D(a) = 0.

(c) Since W (D(ab)−D(a)D(b)) = W (D(ab))−W (D(a))W (D(b)) = 0 and qc (D)
is a closed ideal of B, the inclusion qc (D) ⊆ kerW is clear (and it holds without
the additional assumption in (c)).

For the reverse inclusion, let k ∈ kerW . Since D(A) generates B, there is a
sequence of elements kn =

∑
i

∏
j D(aijn) with aijn ∈ A such that ‖k − kn‖ → 0.

Using Lemma 15, we can write kn as

kn = D(
∑
i

∏
j

aijn) + qn = D(W (kn)) + qn = D(W (kn − k)) + qn

with qn ∈ qc (D) (note that W (k) = 0). Then

‖k − qn‖ ≤ ‖k − kn‖+ ‖kn − qn‖ ≤ ‖k − kn‖+ ‖D(W (kn − k))‖
≤ (1 + ‖D‖ ‖W‖) ‖k − kn‖ → 0.
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Thus, k can be approximated as closely as desired by elements in qc (D). Since
the quasi-commutator ideal is closed, the assertion follows.

(d) Let a ∈ A and k ∈ kerW . Then ‖a‖ = ‖W (D(a))‖ ≤ ‖D(a)‖ ≤ ‖a‖ and

‖D(a)‖ = ‖D(W (D(a)))‖ = ‖D(W (D(a) + k))‖ ≤ ‖D(a) + k‖,

which implies assertion (d).

The conditions in Theorem 16 are also necessary, as the following proposition
shows.

Proposition 17 Let the Banach algebra B = L ⊕ J be the direct sum of a
closed subspace L and a closed ideal J . Then there are a Banach algebra A,
a bounded linear mapping D : A → L such that D(A) = L, and a bounded
homomorphism W : B → A which is a left inverse for D. Moreover, J = kerW ,
and J = kerW = qc (D) if L generates B.

Proof. Let P : B → L be the canonical projection associated with the decompo-
sition B = L⊕J , set A := B/J , and write W for the canonical homomorphism
from B onto A. Then the mapping D : A → L, a + J 7→ P (a), is correctly
defined, linear and surjective, and

W ◦D : a+ J → P (a)→ P (a) + J = a+ J

is the identity mapping on A. Since L is closed and D is inverse to the (evidently
bounded and surjective) mapping W |L : L → A, D is bounded by the open map-
ping theorem. The equality J = kerW = qc (D) is a consequence of Theorem
16.

3.3 Algebras of abstract Toeplitz and Hankel operators

Next we are going to apply these general results in the context of (abstract)
Toeplitz and Hankel algebras. We start with the Toeplitz algebra algT(S), with
S a closed subalgebra of Smb. Slightly modifying the above notation, we write
qcT (S) (instead of qc (T|S)) for the quasicommutator ideal of the mapping T :
Smb → L(X) restricted to S. Thus, qcT (S) is the smallest closed ideal of
algT(S) which contains all operators T(cd) − T(c)T(d) with c, d ∈ S. Then
the restriction of the symbol homomorphism smb to algT(S) is a left inverse to
the linear mapping T, restricted to S. In this context, Theorem 16 specifies as
follows.

Corollary 18 (a) qcT (S) = ker(smb |algT(S)) = ker(T |algT(S)).
(b) The algebra algT(S) decomposes into the direct sum

algT(S) = T(S)⊕ qcT (S).

12



(c) The sequence

{0} → qcT (S)→ algT(S)→ S → {0},

with the second arrow standing for the natural embedding and the third one for
the restriction of the symbol mapping, is exact.

In general, the Hankel algebras algTH(S1, S2) do not arise from a discretization
mapping in the above sense; in particular there is no natural quasicommutator
ideal. So we deal with the kernel of T instead of the quasicommutator ideal.
Theorem 9 specifies as follows to this context.

Corollary 19 (a) algTH(S1, S2) = T(S1)⊕ ker(T |algTH(S1,S2)).
(b) The sequence

{0} → ker(T |algTH(S1,S2))→ algTH(S1, S2)→ S1 → {0},

where the second arrow stands for the embedding and the third one for the re-
striction of the symbol mapping, is exact.

In this context, there is an equivalent description of the kernel of T (see [7] for
the H2-setting).

Lemma 20 Let S1 ⊆ S2. Then ker(T |algTH(S1,S2)) is the smallest closed ideal of
algTH(S1, S2) which contains all Hankel operators H(q) with q ∈ S2.

Proof. Abbreviate ker(T |algTH(S1,S2)) by J1 and the closed ideal generated by
H(S2) by J2. Since every Hankel operator is in ker T , it is immediate that
J2 ⊆ J1. For the reverse inclusion, let A ∈ J1. Then A can be represented
as a norm limit

A = lim
n→∞

(
αn∑
i=1

A
(n)
i H(b

(n)
i )C

(n)
i +

γn∑
i=1

δn∏
j=1

T(d
(n)
ij )

)

with symbols d
(n)
ij ∈ S1 and b

(n)
i ∈ S2 and with operators A

(n)
i , C

(n)
i ∈ TH(S1, S2).

Since both A and all Hankel operators are in ker T and T is continuous, we
conclude from Lemma 14 that

0 = T (A) = lim
n→∞

T

(
γn∑
i=1

δn∏
j=1

d
(n)
ij

)
.

Hence, A = A− T (A) is equal to

lim
n→∞

(
αn∑
i=1

A
(n)
i H(b

(n)
i )C

(n)
i +

γn∑
i=1

δn∏
j=1

T(d
(n)
ij )− T

(
γn∑
i=1

δn∏
j=1

d
(n)
ij

))
.
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The first item is evidently in J2; the second one is in the quasicommutator ideal
of T(S1) by Lemma 15. This ideal is generated by the quasicommutators

T(a)T(b)− T(ab) = −H(a)H(b̃)

which are in J2 because of S1 ⊆ S2.

In contrast to the algebras algTH(S1, S2), the Toeplitz-plus-Hankel algebras
algTH+(S) again arise from a discretization mapping, namely from the restriction
of the mapping

T + H : Smb→ LT(X), s 7→ T(s) + H(s)

to S, again with smb as a homomorphic left inverse. We denote the related
quasicommutator ideal by qcT+H (S), i.e. qcT+H (S) is the smallest closed ideal
of algTH+(S) which contains all operators

T(cd) + H(cd)− (T(c) + H(c))(T(d) + H(d)) with c, d ∈ S.

Corollary 21 (a) qcT+H (S) = ker(smb |algTH+(S)) = ker(T |algTH+(S)).
(b) The algebra algTH+(S) decomposes into the direct sum

algTH+(S) = {T(c) + H(c) : c ∈ S} ⊕ qcT+H (S).

(c) The sequence

{0} → qcT+H (S)→ algTH+(S)→ S → {0},

with the second arrow standing for the natural embedding and the third one for
the restriction of the symbol mapping, is exact.

We conclude by a few remarks on commutators. The commutator ideal comB of a
Banach algebra B is the smallest closed ideal of B which contains all commutators
ab − ba with a, b ∈ B. It is easy to see that in the context of Theorem 16
and if D(A) generates B, the commutator ideal of B is already generated by
commutators D(c)D(d) − D(d)D(c) with c, d ∈ A. Thus, if A is commutative,
then comB is contained in qc (A), which follows from

D(c)D(d)−D(d)D(c) = (D(c)D(d)−D(cd))− (D(d)D(c)−D(dc)).

Note also that the commutator ideal of a closed subalgebra A of LT(X) with
commutative symbol algebra smbA is contained in ker T .

The above remarks apply in particular to Toeplitz and Toeplitz-plus-Hankel
algebras. For the commutator ideal of Hankel algebras, we have the following.

Lemma 22 If S1 is commutative, then com algTH(S1, S2) is contained in ker T .

14



Indeed, let A, B ∈ algTH(S1, S2). By Corollary 19, we write A = T(a) +K and
B = T(b) + L with a, b ∈ S1 and K; L ∈ ker T . Then

AB −BA = T(a)T(b)− T(b)T(a) +M

with M ∈ ker T . The assertion follows since

T (T(a)T(b)− T(b)T(a)) = T(ab− ba) = 0

by Lemma 14 and since S1 is commutative.

3.4 Continuous symbols

The operators Vt belong to the algebra TL(X) as we observed in Example 5. Let
alg (V) stand for the smallest closed subalgebra of TL(X) which contains all of
these operators.

Lemma 23 Let A be a closed subalgebra of TL(X) which contains V. Then the
following sets are equal for every t0 ∈ G+ \ {0}:
(a) the smallest closed ideal of A which contains all operators Pt, t ∈ G;
(b) the smallest closed ideal of A which contains Pt0.

Proof. Let I stand for the smallest closed ideal of A which contains Pt0 . Clearly,
I is contained in the ideal described in (a). For the reverse inclusion, we have to
show that Pt ∈ I for every t ∈ G+. Let k ∈ Z+ and k ≥ 2. Then

Pkt0 − P(k−1)t0 = V(k−1)t0V−(k−1)t0 − Vkt0V−kt0
= V(k−1)t0(I − Vt0V−t0)V−(k−1)t0
= V(k−1)t0Pt0V−(k−1)t0 ∈ I.

Summing up we conclude that Pkt0 ∈ I for every k ∈ Z+. Now, given t ∈ G+,
choose k ∈ Z+ such that t < kt0. Then, by Lemma 3 (a),

V−(kt0−t)Pkt0Vkt0−t = I − V−(kt0−t)Vkt0V−kt0Vkt0−t
= I − VtV−t = Pt,

whence Pt ∈ I.

In particular we see that if one of the projections Pt with t ∈ G+\{0} is compact,
then each of these projections is compact.

Let I(P) denote the smallest closed ideal of alg (V) which contains (one or
all of) the projections Pt. Further write ϕt for the symbol of Vt and C for the
smallest closed subalgebra of the symbol algebra Smb which contains all symbols
ϕt. We call C the algebra of the continuous symbols. This notion is inspired by
Gohberg and Feldman’s text [11]. Note that ϕsϕt = ϕs+t for all s, t ∈ G and
that ϕ0 is the identity element of Smb.
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Lemma 24 (a) alg (V) = alg (T(C)).
(b) I(P) = ker(T |alg (V)) = qcT (C).

Proof. Assertion (a) is a consequence of T(ϕt) = Vt. The second equality
in (b) comes from Corollary 18. The first equality is then evident since the
quasicommutators Pt = I − VtV−t belong to the kernel of T , and they generate
the quasicommutator ideal qcT (C).

Whereas the symbol algebra Smb need not to be commutative, its subalgebra of
the continuous symbols is commutative. Moreover, the following holds.

Lemma 25 C is a closed subalgebra in the center of Smb.

Proof. Let q ∈ Smb and t ∈ G+. By Lemma 8 (a), V−tT(q)Vt = T(q). Passing
to symbols we obtain ϕ−tqϕt = q or, equivalently, qϕt = ϕtq for t ∈ G+. Since
ϕ−t = (ϕt)

−1, this equality holds for negative t as well.

3.5 Abstract Toeplitz operators as compressions

We infer from Lemma 8 (a) that the elements of im T , hence all abstract Toeplitz
operators, are shift invariant. We will see now that abstract Toeplitz operators
also arise as compressions of abstract Laurent operators, for which we have to
embed X into a larger space. This construction will also shed new light onto
the algebra TL(X) since it identifies the four strong limits T , T̃ , H and H̃ as
components of a single strong limit.

Let the Banach space X, the group G and the operators Vt, Rt, Pt and Qt

with t ∈ G be as in Section 2.1. Let X2 stand for the direct sum X⊕X, provided
with the norm ‖(x1, x2)‖ = ‖x1‖X + ‖x2‖X (or with another norm making X2

to a Banach space into which X is isometrically embedded). Thinking of the
elements of X2 as column vectors, we identify operators in L(X2) with 2 × 2
matrices with entries in L(X).

For t ∈ G+, define operators U±t on X2 by

Ut :=

(
Vt Rt

0 V−t

)
and U−t :=

(
V−t 0
Rt Vt

)
. (8)

Proposition 26 The family {Ut}t∈G forms a commutative group, i.e. UsUt =
UtUs = Us+t for all s, t ∈ G.

Proof. We prepare the proof by establishing the identities

VsVt +RsR−t = Vs+t for all s, t ∈ G (9)

VsRt +RsV−t = Rs+t for all s, t ∈ G. (10)

From Lemmas 3 (b) and 4 (d) we know that RsR−t = PsVs+t and VsVt = QsVs+t.
Summing up gives (9). For (10), recall from Axiom (T3) and Lemma 4 (c) that
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VsRt = Rs+tPt and RsV−t = PsRs+t. Since V−t = V−tQt, the last identity implies
that RsV−t = PsRs+tQt. It thus remains to show that

PsRs+tQt = Rs+tQt or, equivalently, QsRs+tQt = 0,

which is further equivalent to V−sRs+tVt = 0. Now we have

V−sRs+tVt = RtPs+tVt by Axiom (T3)

= RtPtPs+tVt by Lemma 4 (a)

= RtPs+tPtVt by Lemma 3 (d)

= 0 since PtVt = 0.

The identities (9) and (10) together imply that(
Vs Rs

R−s V−s

)(
Vt Rt

R−t V−t

)
=

(
Vs+t Rs+t

R−s−t V−s−t

)
for all s, t ∈ G, from which the assertion follows (note that Rt = 0 for t ≤ 0).

The simple identity

U−t

(
A 0
0 0

)
Ut =

(
V−tAVt V−tARt

RtAVt RtARt

)
,

holding for every A ∈ L(X) and t ∈ G+, implies the relation between the two
approaches to Toeplitz-like operators.

Theorem 27 Let A ∈ L(X). Then the strong limit

L(A) := s-limt→∞ U−t

(
A 0
0 0

)
Ut

exists if and only if A ∈ TL(X). In this case,

L(A) =

(
T (A) H(A)

H̃(A) T̃ (A)

)
. (11)

Corollary 28 (a) The mapping L : TL(X) → L(X2) is a bounded homomor-
phism.
(b) U−tL(A)Ut = L(A) for every A ∈ TL(X) and t ∈ G.

Assertion (a) comes from the definition of L and Theorem 6 (b); assertion (b) can
be proved in the same as Lemma 8 (likewise: it follows from that lemma).

Define mappings

E : X → X2, x 7→ (x, 0)T , E−1 : X2 → X, (x, y)T 7→ x.
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Then, by (11),

E−1L(A)E = T (A) for every A ∈ LT(X). (12)

In other words, if P ∈ L(X2) stands for the projection (x, y)T 7→ (x, 0)T , then
every abstract Toeplitz operator can be viewed as the compression PA|imP of an
abstract Laurent operator A ∈ imL.

Theorem 29 (a) imL is a closed subalgebra of L(X2).
(b) The mapping A 7→ smb (E−1AE) is a bounded isomorphism from imL onto
Smb = smbTL(X).

Proof. (a) Let L(An) be a sequence in imL which converges in L(X2). Then,
by (12), (T (An)) is a Cauchy sequence in im T . Since im T is closed by Theorem
9 (a), there is a operator A ∈ LT(X) such that T (An) → T (A) in the operator
norm. The first column in the table in Theorem 7 shows that L(T (B)) = L(B)
for every B ∈ TL(X). Hence, L(An) = L(T (An)) converges in the norm to
L(A) = L(T (A)). Thus, imL is a closed subspace of L(X2). It is also an algebra
by Corollary 28.

(b) The mapping A 7→ smb (E−1AE) sends L(A) to smb T (A) by (12). This
mapping is a homomorphism because T (A) − T (A)T (B) ∈ ker T and smb is
a homomorphism. We are going to show that this mapping is injective. Let
smb (E−1L(A)E) = smb T (A) = 0 for an operator A ∈ TL(X). Then T (A) ∈
ker T ; hence, T (A) = 0. The first column in the table in Theorem 7 then shows
that L(A) = L(T (A)) = 0.

It is not hard to see that the inverse of the mapping A 7→ smb (E−1AE) in
Theorem 29 is explicitly given by

smbTL(X) = Smb→ imL, q 7→ L(T(q)).

So we have two ways to think of the symbol of a Toeplitz-like operator: first,
as an element of the quotient algebra TL(X)/ ker T ; second as an operator in
L(TL(X)) acting on X2.

Corollary 30 The mappings (5) are bounded.

Proof. We shall demonstrate this for the mapping T : Smb→ im T , q 7→ T(q).
Let µ : Smb→ imL denote the inverse of the bounded isomorphism in Theorem
29 (b). Then µ is bounded by a theorem by Banach; hence, the mapping

Smb→ im T , q 7→ T(q) = Pµ(q)|X

is bounded.
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Remark 31 With the above notation and results, it becomes evident that The-
orem 9 (b) can be viewed as a special case of Theorem 16, with D : imL →
TL(X), A 7→ E−1AE as the discretization mapping and L as its homomorphic
left inverse.

4 Laurent-like operators

4.1 The axioms

In the previous sections, we started with two families V and R of operators to
define first an algebra of Toeplitz-like operators and related abstract Toeplitz and
Hankel operators, and then a group of shifts on a larger space, together with the
related abstract Laurent operators. We will see now that one can also go the way
around.

This approach works for Banach spaces X ′ which are a direct sum of two
closed subspaces of equal size. Formally this means that there are operators
P, Q, J ∈ L(X ′) such that

P 2 = P, Q2 = Q, P +Q = I and J2 = I, JPJ = Q.

Then X ′ is equal to the direct sum imP⊕imQ, the mapping J |imP : imP → imQ
is a linear isomorphism and, with X := imP , there is a linear isomorphism

X ′ → X2, x 7→ (Px, JQx) = (Px, PJx).

In what follows we simply assume that X ′ is already of the form X2 for a certain
Banach space X and that P, Q and J are given by

P : (x, y) 7→ (x, 0), Q : (x, y) 7→ (0, y) and J : (x, y) 7→ (y, x).

Again we write the elements of X2 as column vectors and identify operators in
L(X2) with 2× 2 matrices with entries in L(X).

Let G 6= {0} and G+ be as before, and let (Ut)t∈G be a bounded family of
operators Ut ∈ L(X2) subject to the following axioms:

(L1) The mapping t 7→ Ut is a group isomorphism on G. In particular, UsUt =
Us+t for all s, t ∈ G.

(L2) U0 = I and JUtJ = U−t for every t ∈ G.

(L3) PUsPUtP = PUs+tP for all s, t ∈ G+.

(L4) U−tPUt → I strongly as t→∞.
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The first condition in axiom (L2) ensures that all operators Ut are invertible in
L(X2) and that U−1t = U−t. By calling an invertible operator U ∈ L(X2) J-
unitary, we can rephrase the second condition in axiom (L2) as the J-unitarity
of the Ut. It is easy to see that if U is J-unitary, then there are operators
V±, R± ∈ L(X) such that

U =

(
V+ R+

R− V−

)
and U−1 =

(
V− R−
R+ V+

)
.

In particular, there are operators Vt, Rt ∈ L(X) such that

Ut =

(
Vt Rt

R−t V−t

)
and U−1t = U−t =

(
V−t R−t
Rt Vt

)
for all t ∈ G+.

Lemma 32 The so-defined operators V±t and R±t are subject to axioms (T1) –
(T4).

Proof. The group property of the Ut implies that

VsVt +RsR−t = Vs+t, VsRt +RsV−t = Rs+t for s, t ∈ G. (13)

Since VsVt = Vs+t by (L3), the first identity in (13) implies that

RsR−t = 0 for s, t ∈ G+. (14)

Further we conclude from (L4) that(
V−t R−t
Rt Vt

)(
I 0
0 0

)(
Vt Rt

R−t V−t

)
=

(
V−tVt V−tRt

R−tVt R2
t

)
→
(
I 0
0 I

)
as t→∞, whence R2

t → I as t→∞. Together with (13) this implies that

0 = R2
sR−t → R−t as s→∞.

Thus, R−t = 0 for t ∈ G+, and the matrix representations of Ut and U−t are
upper and lower triangular, respectively. With this information it is easy to
check that the (V−t)t∈G+ own the semigroup property and that V−tVt = I for
t ∈ G+ and VtV−t → 0 as t → ∞. Then V−tVtV−t = V−t → 0 as t → ∞,
i.e., (T4) holds. Another consequence of VtV−t → 0 is that VtV−t 6= I respective
Pt := I − VtV−t 6= 0 for large t. It follows as in the proof of Lemma 23 that then
Pt 6= 0 for all positive t, i.e. VtV−t 6= I for all positive t.

It remains to check (T3). Let t ∈ G+. The identity VtV−t +R2
t = I is nothing

but the south-east corner of 2×2-matrix identity U−tUt = I. Further, RtVt = 0 by
the south-west corner of that identity. Hence, RtQt = 0 and RtPt = PtRt = Rt.
Now the second identity in (T3) follows easily by multiplying the second identity
in (13) from the right-hand side by Pt.

Note that, conversely, the operators defined by (8) satisfy the axioms (L1) – (L4).
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4.2 Laurent-like operators

Let X2 and the operators Ut be as in Section 4.1. We let LL(X2) stand for the
set of all operators A ∈ L(X2) for which the two strong limits

L±(A) := s-limt→±∞U−tAUt

exist. We call the elements of LL(X2) Laurent-like operators.

Theorem 33 (a) LL(X2) is a closed subalgebra of L(X2).
(b) An operator A ∈ L(X2) is in LL(X2) if and only if

A =

(
B C
D E

)
with B, C, D, E ∈ TL(X) and C, D ∈ ker T . (15)

(c) If A is of the form (15), then

L+(A) =

(
T (B) H(B)

H̃(B) T̃ (B)

)
and L−(A) =

(
T̃ (E) H̃(E)
H(E) T (E)

)
. (16)

Proof. Assertion (a) is standard. Let A be of the form (15). Then

U−tAUt =

(
V−tBVt V−tBRt + V−tCV−t

RtBVt + VtDVt RtBRt + VtDRt +RtCV−t + VtEV−t

)
.

The operators V−tBVt, V−tBRt, RtBVt and RtBRt converge strongly to T (B),

H(B), H̃(B) and T̃ (B) as t → ∞, respectively, because B ∈ TL(X). Since
V−t → 0 strongly, the operators V−tCV−t and VtEV−t converge strongly to 0.
Finally, the operators VtDVt and VtDRt converge strongly to 0 because D ∈ ker T
and by Lemma 1.11 in [18]. This proves the first assertion in (c); the second one
follows analogously.

It remains to verify the ”only if” implication in (b). From (L4) and the J-
unitarity of the Ut we conclude that P and Q belong to LL(X2). Thus, if

A =

(
B C
D E

)
∈ LL(X2),

then (
B 0
0 0

)
,

(
0 C
0 0

)
,

(
0 0
D 0

)
,

(
0 0
0 E

)
∈ LL(X2).

From

U−t

(
B 0
0 0

)
Ut =

(
V−tBVt V−tBRt

RtBVt RtBRt

)
we conclude that B ∈ TL(X). Further, the equality

U−t

(
0 0
D 0

)
Ut =

(
0 0

VtDVt VtDRt

)
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implies that the operators VtDVt and VtDRt converge strongly. Since V−t → 0
strongly, we conclude that

DVt = V−tVtDVt → 0 and DRt = V−tVtDRt → 0 strongly as t→∞.

But then

V−tDVt → 0, RtDVt → 0, V−tDRt → 0, RtDRt → 0 strongly as t→∞.

Hence, D ∈ TL(X), and each of the four strong limits is zero. In particular,
D ∈ ker T . Working with L− instead of L+, we obtain that C, E ∈ TL(X) and
C ∈ ker T .

5 Examples of Toeplitz-like operators

Here we present a few concrete Banach spaces and examine the related algebras of
Toeplitz-like operators. A main objective is to identify the abstract Toeplitz and
Hankel operators T(a) and H(a) with classical (concrete) Toeplitz and Hankel
operators acting on these spaces. For a general acquaintance with (concrete)
Toeplitz and Hankel operators see, e.g., [4, 8, 14, 16].

5.1 Toeplitz-like operators on Hp

Let Hp, 1 < p <∞, be the Hardy space introduced in Section 1, and let G = Z.
Let V0 := I and, for n ∈ Z+ \ {0}, define operators V±n on Hp by

Vnf := χnf and V−nf := χ−n

(
f −

n−1∑
i=0

f̂iχi

)
,

respectively. Clearly, V−nVn = I and V−n → 0 strongly as n → ∞. Note also
that

kerV−n =

{
f ∈ Hp : f =

n−1∑
i=0

f̂iχi

}
.

Finally, we define operators Rn on Hp by

Rnf :=
n−1∑
i=0

f̂n−1−iχi

if n ∈ Z+ \ {0} and Rn = 0 else. Then all axioms of Section 2.1 are satisfied,
and the corresponding algebra TL(Hp) is well defined. Moreover, Vn → 0 and
Rn → 0 weakly. We let Un stand for the related operators on (Hp)

2, defined as
in Section 3.5.
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As already mentioned, the space Hp ⊂ Lp(T) is equal to imP , with P the
classical Riesz projection. Set Q := I − P . Thus, Lp(T) = imP ⊕ imQ, whereas
(Hp)2 = imP ⊕ imP , which we may write as

Lp(T) =

(
imP
imQ

)
and (Hp)2 =

(
imP
imP

)
.

With respect to this identification, we may further identify operators from Lp(T)
to (Hp)2 with 2× 2-matrices. It is easy to see that the operators

η :=

(
P 0
0 JQ

)
:

(
imP
imQ

)
→
(

imP
imP

)
and

η−1 :=

(
P 0
0 JP

)
:

(
imP
imP

)
→
(

imP
imQ

)
are inverse to each other and that η−1Unη = χnI for all n ∈ Z.

Now let A ∈ TL(Hp). From U−nL(A)Un = L(A) for n ∈ Z+ we conclude that

χ−n(η−1L(A)η)χnI = η−1L(A)η.

Hence, η−1L(A)η is the operator of multiplication by some function q ∈ L∞(T)
(see [5]), and

η−1L(A)η = qI =

(
PqP PqQ
QqP QqQ

)
,

which implies

L(A) =

(
T (q) H(q)
H(q̃) T (q̃)

)
.

In particular, T (A), T̃ (A), H(A) and H̃(A) coincide with the familiar (concrete)
Toeplitz and Hankel operators T (q), T (q̃), H(q) and H(q̃) on Hp as defined in
Section 1.

As a consequence, we observe that the corresponding symbol algebra Smb is a
subalgebra of L∞(T). In fact, Smb = L∞(T), which is an immediate consequence
of the identities

V−nT (a)Vn = T (a), RnT (a)Rn = PnT (ã), (17)

V−nT (a)Rn = H(a)Pn, RnT (a)Vn = PnH(ã) (18)

for all a ∈ L∞(T) and n ∈ Z+. Let us check the last identity of (18), for example.
By the first relation in (1) we have

I = T (χnχ−n) = T (χn)T (χ−n) +H(χn)H(χn).

Hence, H(χn)2 = Pn. Further,

RnT (a)Vn = RnT (aχn) = Rn(T (χn)T (a)−H(χn)H(ã)).
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Since Rn = H(χn) and RnT (χn) = 0, we conclude that RnT (a)Vn = PnH(ã), as
desired. Note that one could also start with (17), (18) in order to derive that
η−1L(T (a))η = aI.

Let C be a closed subalgebra of L∞(T). Then, in the present context, Corollary
19 specifies to

algTH(C) = T (C)⊕ ker(T |algTH(C)).

This result was recently proved by Didas [7, Theorem 2.4] for p = 2 and under
the assumption that C is an inner subalgebra of L∞(T) in the sense of [15].
For example, C(T) is inner, and so is every closed subalgebra of L∞(T) which
strictly contains H∞. Moreover, Didas showed that ker(T |algTH(C)) equals the

commutator ideal of algTH(C) under this additional assumption.

At the end of Section 2.2 we remarked that kerH and ker H̃ are subalgebras
of TL(X). In the setting of this section, we can describe these algebras more
precisely as

kerH = {T (a) : a ∈ H∞} ⊕ ker T , ker H̃ = {T (a) : a ∈ H∞} ⊕ ker T .

Remark 34 The construction of the algebra TL(X) works as well on weighted
Hardy spaces Hp(w) and the above results remain valid in this setting provided
that the weight w is symmetric (i.e. w(t) = w(1/t)) and that the Riesz projection
P is bounded on Lp(w) (which holds if w is a Muckenhoupt weight, for example
if w is a power weight; see [3], Chapter 2). In this setting, the operators Vn and
Rn can be defined as above; they are uniformly bounded and all requirements
made in Section 2.1 are satisfied.

Remark 35 If 1 < p < ∞ and S is a closed subalgebra of the symbol algebra
L∞(T) which contains C(T), then the Toeplitz algebra algT(S) ⊂ L(Hp) contains
all compact operators. An analogous result holds in the following two examples
if S is a closed subalgebra of corresponding multiplier algebras which contains all
functions in the Wiener algebra over T and R, respectively.

5.2 Toeplitz-like operators on lp

Here we are going to employ the alternative approach of Section 3.5 to define
Toeplitz-like operators on the classical sequence spaces lp(Z+), 1 ≤ p < ∞.
Consider the reflection operator J : (xn)n∈Z 7→ (yn)n∈Z where yn = x−n−1 and
the discrete Riesz projection J : (xn)n∈Z 7→ (yn)n∈Z where yn = xn if n ≥ 0 and
yn = 0 else. Clearly, J2 = I and JPJ = I − P =: Q.

Let a ∈ L∞(T). On l0(Z), the linear space of the finitely supported sequences,
we consider the Laurent operator L(a) defined by

(L(a)x)k :=
∑
m∈Z

âk−mxm.
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Note that only finitely many items in this sum do not vanish. The function a is
called a multiplier on lp(Z) if

‖L(a)‖ := sup{‖L(a)x‖p : x ∈ l0(Z), ‖x‖p} <∞.

If a is a multiplier, then L(a) extends to a bounded linear operator on lp(Z)
which we denote by L(a) again. The set Mp of all multipliers on lp(Z) forms a
Banach algebra under the norm ‖a‖Mp := ‖L(a)‖L(lp(Z)) (see [4, Chapter 2]). In
particular, every function a ∈ L∞(T) with bounded total variation belongs to
Mp, and there is a constant cp independent of a such that Stechkin’s inequality

‖a‖Mp ≤ cp(‖a‖∞ + Var (a))

holds. Note also that JL(a)J = L(ã) for every a ∈Mp.
Write lp for lp(Z+) = imP and let a ∈Mp. The operators

T (a) : lp → lp, f 7→ PL(a)f, H(a) : lp → lp, f 7→ PL(a)QJf

are called the (concrete) Toeplitz and Hankel operator with generating function
a, respectively. These operators are bounded if a ∈ Mp. It is also easy to see
that if T (a)f = g and H(a)f = h then

gj =
∞∑
k=0

âj−kfk, hj =
∞∑
k=0

âj+k+1fk.

Let {ej}j∈Z+ stand for the standard basis on lp, i.e. the jth entry of ej is 1
whereas all other entries are 0. The lp-version of a Theorem by Brown and
Halmos (Theorem 2.7 (b) in [4]) tells us that if A ∈ L(lp) and if there is a
sequence (an)n∈Z in C such that

〈Aej, ek〉 = aj−k for all j, k ∈ Z+,

then there exists a multiplier a ∈ Mp such that A = T (a) and an is the nth
Fourier coefficient of a. Here, as usual, 〈x, y〉 :=

∑
xnyn for x ∈ lp and y ∈ lq

with p−1 + q−1 = 1.
Next we are going to define the related algebra TL(lp) of Toeplitz-like opera-

tors. Set G = Z and define

Vn := T (χn) and Rn := H(χn) for n ∈ Z. (19)

One easily checks that these operators satisfy axioms (T1) – (T4); hence, the
algebra TL(lp) with respect to these families is well defined. Moreover, if 1 < p <
∞, then Vn → 0 and Rn → 0 weakly as n → ∞. Note that this claim fails for
p = 1. Indeed, consider the bounded linear functional

g : l1(Z+)→ C, x = (xi)i∈Z+ 7→
∑
i∈Z+

xi.
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Then g(Vnx) = g(x) for all x ∈ l1(Z+) and n ∈ Z+; hence, the Vn cannot converge
weakly to zero. The argument for the Rs is similar.

If A ∈ TL(lp) and T (A) = A, then V1AV1 = A. Thus, A satisfies the hypothe-
ses of the Brown/Halmos theorem, and there is a multiplier a ∈ Mp such that
A = T (a). Thus, every abstract Toeplitz (or Hankel) operator on lp is a concrete
Toeplitz (or Hankel) operator as defined above. The lp-version of Theorem 9
implies

TL(lp)/ ker T ∼= Mp.

Remark 36 An equivalent treatment of Toeplitz-like operators on weighted lp-
spaces fails: the operators (19) are not longer uniformly bounded then. This is
in strong contrast to the Hp-setting in the previous section.

Our final goal is to provide some of the counter examples promised above. In
particular, we are going to show that

(a) TL(l2) is not a C∗-algebra.

(b) ker T ⊂ TL(l2) is not a two-sided ideal of L(l2).

(c) algTH(L∞) is a proper subalgebra of TL(l2).

(d) algT (L∞) is a proper subalgebra of algTH(L∞).

For (a), assume that TL(l2) is a C∗-algebra. Then ker T is a closed symmetric
ideal of TL(l2) and, hence, a closed symmetric left-sided ideal of L(l2). So we have
BC, B∗C∗ ∈ ker T for every B ∈ L(l2) and C ∈ ker T by the left ideal property,
whence (B∗C∗)∗ = CB ∈ ker T by the symmetry. Thus, ker T turns out to be a
closed two-sided ideal of L(l2). Moreover, ker T contains non-compact operators
(for example, the Hankel operator which generates the Hilbert matrix), but not
every bounded linear operator on l2 is in ker T (for example, I 6∈ ker T ). This
contradicts the well known fact that the only non-trivial closed two-sided ideal
of L(l2) is the ideal of the compact operators.

The same arguments show assertion (b), and (c) follows because algTH(L∞)
is a symmetric closed subalgebra of TL(l2), whereas TL(l2) fails to be symmetric
by (a). Finally, (d) comes from the existence of Hankel operators which do not
belong to algT (L∞) as first observed by S. Axler and proved in Power [16].

The following explicit example of an operator A ∈ TL(l2) for which A∗ 6∈
TL(l2) is due to our former colleague Hans-Jürgen Fischer.

Example 37 Let the operator A be given by the matrix representation A =
(aij)

∞
i,j=0 where

aij =

{ 1√
2i

if 0 ≤ j ≤ 2i − 1,

0 if j ≥ 2i.
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We show that A is a bounded operator on l2. Let x = (xi)i≥0 ∈ l2 and ‖x‖ = 1.
Then

‖Ax‖2 =
∞∑
n=0

1

2n

∣∣∣∣∣
2n−1∑
k=0

xk

∣∣∣∣∣
2

.

For k ∈ Z+, set λk := (k + 1)−
1
4 . Then, by the Cauchy-Schwartz inequality,∣∣∣∣∣

2n−1∑
k=0

xk

∣∣∣∣∣
2

=

∣∣∣∣∣
2n−1∑
k=0

λkλ
−1
k xk

∣∣∣∣∣
2

≤

(
2n−1∑
k=0

λ2k

)(
2n−1∑
k=0

∣∣∣∣xkλk
∣∣∣∣2
)
.

The estimate
2n−1∑
k=0

λ2k =
2n−1∑
k=0

(k + 1)−
1
2 ≤ 2

√
2n − 1

then gives

‖Ax‖2 ≤
∞∑
n=0

2
√

2n − 1

2n

(
2n−1∑
k=0

∣∣∣∣xkλk
∣∣∣∣2
)

≤ 2
∞∑
n=0

2n−1∑
k=0

1√
2n

∣∣∣∣xkλk
∣∣∣∣2

= 2
∞∑
k=0

∑
n≥log2(k+1)

1√
2n

∣∣∣∣xkλk
∣∣∣∣2 .

Using ∑
n≥log2(k+1)

1√
2n

=
1√
k + 1

1

1− 1/
√

2
=

1√
k + 1

√
2(
√

2 + 1),

we arrive at

‖Ax‖2 ≤ 2
√

2(
√

2 + 1)
∞∑
k=0

1√
k + 1

∣∣∣∣xkλk
∣∣∣∣2 = 2

√
2(
√

2 + 1)
∞∑
k=0

|xk|2,

whence the boundedness of A and the estimate ‖A‖2 ≤ 2
√

2(
√

2 + 1). From

‖AVnek‖2 = ‖Aen+k‖2 = 2− log2(n+k) for k, n ≥ 0

and
‖ARnek‖2 = ‖Aen−k‖2 = 2− log2(n−k) for n > k ≥ 0

we further conclude that AVn → 0 and ARn → 0 strongly as n → ∞. Hence,
A ∈ TL(l2) (and A ∈ ker T ). Suppose that A∗ ∈ TL(l2). Then (V−nA

∗Vn)
converges strongly to some operator T (A∗) by definition. On the other hand,
(V−nA

∗Vn) = (V−nAVn)∗ → 0 weakly because V−nAVn → 0 strongly. Hence,
T (A∗) = 0. Then, by Lemma 1.11 in [18], A∗Vn → 0 strongly, which is impossible
since ‖A∗Vne0‖ = 1 for all n ∈ Z+.
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Remark 38 It is an open question if algTH(L∞) is a proper subalgebra of

TL∗(l2) := {A ∈ TL(l2) : A∗ ∈ TL(l2)}.

5.3 Toeplitz-like operators on Lp(R+)

Throughout this section, we let Lp, Lp+ and Lp− stand for the classical Lebesgue
spaces on R, R+ = [0, ∞) and R− = R \ R+, respectively. Every function
a ∈ L∞ induces a bounded operator f 7→ af on Lp which we denote by m(a).
In particular, if χ+ and χ− stand for the characteristic functions of R+ and R−,
then we let P and Q denote the operators m(χ+) and m(χ−), respectively. The
ranges of P and Q can be identified with Lp+ and Lp−. We will also need the
flip operator J on Lp which is defined by (Jf)(t) = f(−t). Clearly, J2 = I and
Jm(a)J = m(ã) where ã = a(−t) for a ∈ L∞.

We write the Fourier transform on L1 in the form

(Ff)(x) =
1√
2π

∫
R
f(t)eixt dt, x ∈ R,

and use the same letter F to denote the continuous extension of F to a unitary
operator on L2. Note that F−1 = JF .

Let a ∈ L∞. Then the operator M(a) := F−1m(a)F : L2 → L2 is bounded
and has norm ‖a‖∞. For 1 ≤ p <∞, we let Mp(R) stand for the collection of all
functions a ∈ L∞ owning the following property: Whenever f ∈ L2 ∩ Lp, then
M(a) ∈ Lp, and there is a constant cp independent of f such that ‖M(a)f‖p ≤
cp‖f‖p for all f ∈ L2 ∩Lp. If a ∈Mp(R), then M(a) : L2 ∩Lp → Lp extends to a
bounded operator on Lp, called the operator of convolution by a. We denote this
operator by M(a) again. The elements of Mp(R) are also called Lp-multipliers.

An operator A on Lp is called translation invariant if U−sAUs = A for all
s ∈ R where (Usf)(t) := f(t − s). If a ∈ Mp(R), then the convolution operator
M(a) is translation invariant. A theorem of Hörmander [13] (see also 9.2 in [4])
states that the converse is also true: every translation invariant operator on Lp

is an operator of convolution by a certain Lp-multiplier.
If a ∈ L∞ is of finite total variation V (a), then a ∈Mp(R), and the Stechkin

inequality
‖M(a)‖L(Lp) ≤ Cp(‖a‖∞ + V (a))

holds. Here, Cp is a constant independent of a which can be chosen concretely
as Cp = ‖M(χ+ − χ−)‖L(Lp). Note also that JM(a)J = M(ã). Further basic
properties of Mp(R) can be found in [4, Chapter 9], for example.

Let 1 ≤ p <∞. With every multiplier a ∈ Mp(R), we associate the Wiener-
Hopf integral operator W (a) and the Hankel integral operator HR(a) by

W (a) := WM(a)|Lp
+

: Lp+ → Lp+ and HR(a) := PM(a)QJ |Lp
+

: Lp+ → Lp+,
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respectively. These operators are bounded on Lp+, and the following analogues of
(1) hold for all Lp-multipliers a, b:

W (ab) = W (a)W (b) +HR(a)HR(b̃), HR(ab) = W (a)HR(b) +HR(a)W (b̃).

For s ∈ R, define ωs(x) := eisx. Then ωs ∈ Mp(R) for every p ∈ [1, ∞) and
M(ωs) is nothing but the translation operator Us. Now set Vs := W (ωs) for
s ∈ G, Rs := HR(ωs) for s ∈ R+ and Rs = 0 for s ∈ R−. Then the axioms
in Section 2.1 are satisfied, thus, the algebra TL(Lp+) is well defined. Moreover,
the operators Vs and Rs tend weakly to 0 as s → ∞ if 1 < p < ∞. For p = 1,
neither the Vs nor the Rs tend weakly to zero which follows by arguments similar
to those for X = l1.

As before, one can easily prove that for s ≥ 0 and a ∈Mp(R),

V−sW (a)Vs = W (a), RsW (a)Rs = PsW (ã)Ps,

V−sW (a)Rs = HR(a)Ps, RsW (a)Vs = PsHR(ã).

What results is that every Wiener-Hopf operator W (a) belongs to TL(Lp+) and
that

T (W (a)) = W (a), T̃ (W (a)) = W (ã),

H(W (a)) = HR(a), H̃(W (a)) = HR(ã).

Conversely, we are going to show that if A ∈ TL(Lp+) and T (A) = A, then there
exists a multiplier a ∈ Mp(R) such that A = W (a). We proceed as in Section
5.1. Slightly abusing the notation, we let Us stand for the related operators on
(Lp+)2, defined as in Section 3.5. As already mentioned, the space Lp+ ⊂ Lp is
equal to imP . Thus, Lp = imP ⊕ imQ, whereas (Lp+)2 = imP ⊕ imP , which we
may write as

Lp =

(
imP
imQ

)
and (Lp+)2 =

(
imP
imP

)
.

With respect to this identification, we may further identify operators from Lp to
(Lp+)2 with 2× 2-matrices. It is easy to see that the operators

η :=

(
P 0
0 JQ

)
:

(
imP
imQ

)
→
(

imP
imP

)
and

η−1 :=

(
P 0
0 JP

)
:

(
imP
imP

)
→
(

imP
imQ

)
are inverse to each other and that η−1Usη = M(ωs) for all s ∈ R.

Now let A ∈ TL(Lp+). From U−sL(A)Us = L(A) for s ∈ R+ we conclude that

M(ω−s)(η
−1L(A)η)M(ωs) = η−1L(A)η.
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This equality implies that η−1L(A)η is translation invariant. By Hörmander’s
theorem, there is a multiplier a ∈Mp(R) such that

η−1L(A)η = M(a) =

(
PM(a)P PM(a)Q
QM(a)P QM(a)Q

)
,

which implies

L(A) =

(
W (a) HR(a)
HR(ã) W (ã)

)
.

In particular, T (A), T̃ (A), H(A) and H̃(A) coincide with the familiar (concrete)
Wiener-Hopf and Hankel operators W (a), W (q̃), HR(a) and HR(ã) as defined in
the beginning of this section.

We thus arrived at the following theorem which can be viewed as the analogue
of the Brown/Halmos theorem in the Lp+-setting:

Theorem 39 (a) If a ∈Mp(R), then W (a) belongs to TL(Lp+).

(b) If A ∈ TL(Lp+) and A = T (A), then there exists a multiplier a ∈Mp(R) such
that A = W (a).

Corollary 40 TL(Lp+)/ ker T ∼= Mp(R).

In particular we conclude that Mp(R) actually forms a Banach algebra.

6 Derivations

LetA and B be Banach algebras. A derivation onA is a (not necessarily bounded)
linear operator D : A → B such that D(ab) = D(a)b + aD(b) for all a, b ∈ A.
Every element c ∈ A induces a derivation a 7→ ca− ac on A.

Chernoff [6] showed that if X is an infinite-dimensional Banach space and A
a closed subalgebra of L(X) which contains the compact operators, then every
derivation D : A → L(X) is bounded, and there is an operator C ∈ L(X) such
that D(A) = CA− AC for all A ∈ A.

Theorem 41 Let A be a closed subalgebra of LT(X) and suppose that the symbol
algebra smbA is commutative and semisimple. Then every bounded derivation
D : A → A maps A into ker T .

Proof. Let π denote the canonical homomorphism from A onto A/comA =: Aπ.
From

D(AB −BA) = (D(A)B + AD(B))− (D(B)A+BD(A))

= (D(A)B −BD(A)) + (AD(B)−D(B)A)
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we conclude that D maps comA into comA. Hence, the quotient mapping

Dπ : Aπ → Aπ, π(A) 7→ π(D(A))

is a well defined bounded derivation on Aπ. Since A/comA is commutative,
Dπ maps the algebra Aπ into its Jacobson radical radAπ by the Singer-Wermer
theorem (see [20]).

Since smbA is commutative, the commutator ideal comA is contained in
A∩ker T , as we observed at the end of Section 3.2. Hence, π maps A∩ker T onto
a closed ideal (A∩ ker T )π of Aπ. It is not hard to see that the quotient algebra
Aπ/(A ∩ ker T )π is isomorphic to the algebra smbA, which is semisimple by
assumption. Hence, radAπ ⊆ (A∩ker T )π. Thus, Dπ maps Aπ into (A∩ker T )π,
which implies that D maps A into A ∩ ker T .

Combining this result with Chernoff’s theorem, we arrive at the following.

Corollary 42 Let A be as in Theorem 41 and suppose that A contains the com-
pact operators. Then every derivation D : A → A is bounded, there is an operator
T ∈ L(X) such that D(A) = TA− AT , and D maps into ker(TA).

Note that if A contains the compact operators then TL(X) contains the compact
operators, which happens if and only if Vs → 0 and Rs → 0 weakly as s→∞ by
Theorem 10.

Didas [7] derived Corollary 42 in the context of (concrete) Toeplitz and Hankel
operators acting on the Hardy space H2 on the unit disk (as defined in the
introduction). Moreover, assuming that C is an inner subalgebra of L∞(T) which
strictly contains H∞, he showed that every derivation on algTH(C) maps into
the commutator ideal of that algebra. The strict containment of H∞ in C implies
that algTH(C) contains the compact operators and that the commutator ideal
equals algTH(C) ∩ ker T (see [8]).

If 1 < p < ∞ and S is a closed subalgebra of the symbol algebra L∞(T)
which contains C(T), then the Toeplitz algebra algT(S) ⊂ L(Hp) contains all
compact operators. An analogous result holds for concrete Toeplitz algebras on
lp and Lp(R), 1 < p < ∞, if S is a closed subalgebra of the corresponding
multiplier algebras which contains all functions in the Wiener algebra over T and
R, respectively.
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