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Abstract

In this paper we investigate the local boundedness of weak solutions to the equation −∆u+
b·∇u = 0 describing the diffusion in a stationary incompressible flow. The corresponding theory
is well-known in the case of the general (not necessary divergence-free) sufficiently smooth drift
(namely, for b ∈ Ln, where n is the dimension of the space). Our main interest is focused on
the case of b with limited regularity (namely, b ∈ L2). In this case the structure assumption
div b = 0 turns out to be crucial. In our paper (which is partly expository) we recall some known
properties of weak solution in the case of the divergence-free drifts b ∈ L2 and also establish
some new results on the local boundedness of weak solutions.

1 Introduction and Main Results

Assume n ≥ 2, Ω ⊂ Rn is a smooth bounded domain, b : Ω → Rn, f : Ω → R. In this paper we
investigate the properties of weak solutions u : Ω → R to the following scalar equation

−∆u+ b · ∇u = f in Ω. (1.1)

If it is not stated otherwise, we always impose the following conditions

b ∈ L2(Ω) (1.2)

f ∈W−1
2 (Ω) (1.3)

(See the list of notation at the end of this section). We use the following definition for weak
solutions:

Definition 1.1 Assume conditions (1.2), (1.3) are satisfied. The function u ∈W 1
2 (Ω) is called

a weak solution to the equation (1.1) if the following integral identity holds:∫
Ω

∇u · (∇η + bη) dx = ⟨f, η⟩, ∀ η ∈ C∞
0 (Ω). (1.4)
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Together with the equation (1.1) one can consider the formally conjugate (up to the sign of the
drift) equation

−∆u+ div(bu) = f in Ω. (1.5)

Definition 1.2 Assume conditions (1.2), (1.3) are satisfied. The function u ∈W 1
2 (Ω) is called

a weak solution to the equation (1.5) if∫
Ω

(∇u− bu) · ∇η dx = ⟨f, η⟩, ∀ η ∈ C∞
0 (Ω). (1.6)

The advantage of the equation (1.5) is that it allows one to define weak solutions from the
class W 1

2 (Ω) for a drift b belonging to a weaker class than (1.2). Namely, Definition 1.2 makes
sense for u ∈W 1

2 (Ω) even if

b ∈ Ls(Ω) where s =

{
2n
n+2 , n ≥ 3

1 + ε, ε > 0, n = 2
(1.7)

Nevertheless, for a divergence-free drift b ∈ L2(Ω) the Definitions 1.1 and 1.2 coincide:

Theorem 1.1 Assume conditions (1.2), (1.3) and assume additionally

div b = 0 in D′(Ω) (1.8)

Then u ∈W 1
2 (Ω) is a weak solution to the equation (1.1) (in the sense of Definition 1.1) if and

only if it is a weak solution to (1.5) (in the sense of Definition 1.2).

The proof of this result is just an integration by parts.

Together with the equation (1.1) we discuss boundary value problems with Dirichlet bound-
ary conditions: {

−∆u+ b · ∇u = f in Ω

u|∂Ω = φ
(1.9)

For weak solutions the boundary condition is understood in the sense of traces. We distinguish
between two cases: the case of “general” boundary data

φ ∈W
1/2
2 (∂Ω) (1.10)

and the case of boundary data possessing some additional regularity:

φ ∈ L∞(∂Ω) ∩W 1/2
2 (∂Ω) (1.11)

Discussing the questions of existence and uniqueness of weak solutions to the problem (1.9) we
also distinguish between another two cases: first we consider sufficiently smooth drifts, namely,

b ∈ Ln(Ω) (1.12)

and then we focus on the case of drifts b satisfying only (1.2).
Assuming b satisfies (1.2) and u ∈ W 1

2 (Ω), η ∈ C∞
0 (Ω) we can introduce the following

quadratic form:

[u, η] :=

∫
Ω

∇u · b η dx

We say this form is bounded on W 1
2 (Ω) if there is a constant cb (depending on b) such that the

following estimate holds:∣∣[u, η]∣∣ ≤ cb ∥u∥W 1
2 (Ω) ∥η∥W 1

2 (Ω), ∀ u ∈W 1
2 (Ω), ∀ η ∈ C∞

0 (Ω).

We have the following theorem:
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Theorem 1.2 Assume b satisfies (1.12). Then

1) if n ≥ 3 then the quadratic form [u, η] is bounded on W 1
2 (Ω);

2) if n = 2 then there exist b ∈ L2(Ω), u ∈
◦
W 1

2(Ω) and η ∈
◦
W 1

2(Ω) such that
∣∣[u, η]∣∣ = +∞.

The part 1) of Theorem 1.2 follows by the imbedding theorem and the Hölder inequality. For
the part 2) one can take Ω = B1/3 and

u(x) = η(x) = |ln |x||1/4 − (ln 3)1/4, b(x) =
−x

|x|2 |ln |x||1/2 ln |ln |x||
.

What comes to the rescue in the case of n = 2 is the divergence-free condition (1.8):

Theorem 1.3 Assume n = 2 and b satisfies (1.2) and (1.8). Then the quadratic form [u, η] is
bounded on W 1

2 (Ω).

The proof of Theorem 1.3 is based on the application of the known div–curl lemma and the
duality between BMO and the Hardy space, see details in [5].

For b such that the quadratic form [u, η] is bounded on W 1
2 (Ω) the existence of a weak

solution to the problem (1.9) with φ ≡ 0 follows by simple application of the Lax–Millgram
lemma and Fredholm theorem (i.e. existence follows from the uniqueness). In particular, in

the case of b satisfying (1.12), (1.8) the quadratic form [u, η] is skew-symmetric on
◦
W 1

2(Ω) and
hence

[u, u] = 0, ∀ u ∈
◦
W 1

2(Ω).

This implies the uniqueness of weak solutions for the problem (1.9). In the case of φ satisfying
to (1.10) the problem (1.9) with non-homogeneous boundary conditions can be reduced to the
corresponding problem with homogeneous boundary conditions for the function v := u − φ̃
where φ̃ is some extension of φ from ∂Ω to Ω with the control of the norm

∥φ̃∥W 1
2 (Ω) ≤ c∥φ∥

W
1/2
2 (∂Ω)

.

Namely, the function v can be determined as a weak solution to the problem{
−∆v + b · ∇v = f + fφ in Ω

v|∂Ω = 0
(1.13)

where
fφ := div

(
∇φ̃− bφ̃

)
. (1.14)

Note that for n ≥ 3, b satisfying (1.12) and φ̃ ∈ W 1
2 (Ω) we have bφ̃ ∈ L2(Ω) and hence

fφ ∈ W−1
2 (Ω). In the case of n = 2 and b satisfying (1.2), (1.8) the function b · ∇φ̃ belongs to

the Hardy space and hence again we have fφ ∈W−1
2 (Ω). So, we obtain the following result:

Theorem 1.4 Assume b satisfies (1.12), (1.8) and φ satisfies (1.10). Then for any f satisfying
(1.3) the problem (1.9) has the unique weak solution u ∈ W 1

2 (Ω). Moreover, if φ ≡ 0 then this
solution satisfies the energy identity ∫

Ω

|∇u|2 dx = ⟨f, u⟩. (1.15)
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In the case of b satisfying (1.7), (1.8) we can prove the existence of at least one weak solution
to the problem (1.9) if we impose some additional regularity on the boundary data φ. Namely,
in this case we require φ to be the trace of some function φ̃ ∈ W 1

2 (Ω) ∩ L∞(Ω). In this case
the existence of at least one weak solution to the problem (1.9) (understood in the sense of
Definition 1.2) can be easily obtained by approximations of b by smooth divergence–free vector
fields. Weak solutions which are weak limits (in W 1

2 (Ω)–norm) of solutions to a regularized
problem are called approximative weak solutions. The uniqueness of weak solutions to the
problem (1.9) for divergence-free drifts b belonging to the class (1.7) does not hold even in the
case of φ ≡ 0. Namely, in [10] it was constructed b satisfying (1.8), (1.7) (actually a little bit

better than (1.7)) and a weak solution u ∈
◦
W 1

2(Ω) to the problem (1.9) with φ ≡ 0 which is not
an approximative one (which immediately implies non-uniqueness, see [10] for details).

Nevertheless, if we assume some better integrability on b, we obtain the uniqueness of weak
solutions to the problem (1.9). Namely, the following theorem holds (see [10], Theorem 1.2):

Theorem 1.5 Assume f satisfies (1.3), b satisfies (1.2), (1.8) and φ satisfies (1.10). Then a
weak solution to the problem (1.9) is unique.

Theorem 1.5 together with the existence of weak solutions are resumed in the following
theorem:

Theorem 1.6 Assume b satisfies (1.2), (1.8). Then for any f satisfying (1.3) and any φ
satisfying (1.11) the problem (1.9) has the unique weak solution u ∈W 1

2 (Ω). Moreover, if φ ≡ 0
then this solution satisfies the energy inequality∫

Ω

|∇u|2 dx ≤ ⟨f, u⟩. (1.16)

We prove Theorem 1.6 in Section 2. Theorems 1.4 and 1.6 demonstrate two different cases
of weak solvability of the problem (1.9). Indeed, in Theorem 1.4 we assume that the boundary
data are general (i.e. φ satisfies only (1.10)), but the drift b possesses some additional regularity
(namely, b satisfies (1.12)). On the other hand, in Theorem 1.6 the drift b is an arbitrary function
satisfying (1.2) while some additional regularity is required for the boundary data (i.e. φ satisfies
(1.11) instead of (1.10)).

Another important tool in the investigation of the problem (1.9) is the maximum principle.
Indeed, the following theorem is true:

Theorem 1.7 Assume conditions (1.2), (1.8), (1.11) hold. Assume also

f ∈ Lq(Ω), with q >
n

2
. (1.17)

Let u ∈W 1
2 (Ω) be a weak solution to the problem (1.9). Then u ∈ L∞(Ω) and

∥u∥L∞(Ω) ≤ C
(
∥φ∥L∞(∂Ω) + ∥f∥Lq(Ω)

)
(1.18)

where the constant C depend only on n, q and Ω. Moreover, if f ≡ 0 then

∥u∥L∞(Ω) ≤ ∥φ∥L∞(∂Ω).
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We prove Theorem 1.7 in the Section 2.

The main goal of the present paper is to overview the local properties (such that local
boundedness, continuity, Hölder continuity etc) of weak solutions to the equation (1.1). Note
that any weak solutions to (1.1) belonging to the class W 1

2 (Ω) can be viewed as a weak solution
the problem (1.9) with some φ satisfying (1.10).

We start with the discussion of the local boundedness of weak solution to (1.1). Again we
distinguish between cases of drifts satisfying (1.12) and drifts satisfying only (1.2).

For n ≥ 3 and for drifts b satisfying (1.12), even not necessary satisfying (1.8), the local
boundedness of weak solutions (or even their Hölder continuity) follows from the general theory,
see Theorem 1.12 below. The case n = 2 is a bit special and, as we show in Theorem 1.8 below,
this case requires the assumption (1.8). Nevertheless, if n = 2 and b satisfies (1.2), (1.8), then
weak solutions to (1.1) are locally Hölder continuous, see Theorem 1.11 below.

The following theorem shows that assumption (1.8) plays the crucial role in local bound-
edness of weak solutions if one considers drifts b ∈ Lp(Ω) with n ≥ 3, p < n, or with n = 2,
p = 2.

Theorem 1.8 Assume Ω = BR, f ≡ 0. Then

1) if n ≥ 3 then there exist b ∈
∩

1≤p<n
Lp(Ω) and a weak solution u ∈

◦
W 1

2(Ω) to the problem

(1.9) with φ ≡ 0 such that u ̸∈ L∞(Ω);

2) if n = 2 then there exist b ∈ L2(Ω) and a weak solution
◦
W 1

2(Ω) to the problem (1.9) with
φ ≡ 0 such that u ̸∈ L∞(Ω).

Theorem 1.8 is proved in [2]. Note that Theorem 1.8 demonstrates also the non-uniqueness
of weak solutions to the problem (1.9) with φ ≡ 0 under stated assumptions on the drift.

In the case of b satisfying (1.2), (1.8) the problem of local boundedness of weak solution to
(1.1) was formulated in [2] as an open question. The following two theorems (which are main
results of the our paper) give the partial answer to this question:

Theorem 1.9 Let B be a unite ball in Rn, n ≥ 3. Assume b satisfies (1.2), (1.8) and

b ∈ Lp(B), f ∈ Lp(B) for some p >
n

2
. (1.19)

Let u ∈ W 1
2 (B) be a weak solution to (1.1). Then u ∈ L∞(B1/2) and the following estimate

holds
∥u∥L∞(B1/2) ≤ C

(
∥u∥W 1

2 (B) + ∥f∥Lp(B)

)
(1.20)

where the constant C depends only on n, p and ∥b∥Lp(B).

Note that for b satisfying (1.2) the condition b ∈ Lp(B) with p > n
2 is superfluous if n = 3.

Theorem 1.10 Assume n ≥ 4, B is a unite ball in Rn. Then there exist b satisfying to (1.8)
and

b ∈ Lp(B) for any p <
n− 1

2
, (1.21)

and a weak solution u ∈W 1
2 (B) to (1.1) (in the sense of Definition 1.2) with f ≡ 0 such that

u ̸∈ L∞(B1/2)

Namely,

u(x) = log r, b = (n− 3)

(
1

r
er − (n− 3)

z

r2
ez

)
,

where r2 = x21+...+x
2
n−1, z = xn and er, ez are the basis vectors of the corresponding cylindrical

coordinate system in Rn.
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Theorem 1.9 seems to be new. We prove it in Section 3. Theorem 1.10 is also new and it
can be verified by direct computations. Note, that the assumption n ≥ 4 in Theorem 1.10 is
necessary to provide u ∈W 1

2 (B). The drift b in Theorem 1.10 has the asymptotic r−2 near the
axis of symmetry and hence (1.21) holds. It is easy to see that if we want to have in Theorem
1.10 b ∈ L2(Ω) then it leads to the restriction n ≥ 6.

Theorems 1.7 and 1.10 together establish an interesting phenomena: for drifts b which are
not sufficiently smooth, namely, satisfy only (1.2) and (1.8), the property of the elliptic operator
in (1.1) (with zero right-hand side) to improve the “regularity” of weak solutions (in the sense
that every weak solution is locally bounded) in higher dimensions (i.e. for n ≥ 6) depends on
the behavior of a weak solution on the boundary of the domain. If the values of a weak solution
φ := u|∂Ω on the boundary are bounded (i.e. φ satisfies (1.11)) then this weak solution must
be bounded (as Theorem 1.7 says). On the other hand, if the function φ is singular on ∂Ω (but
still φ satisfies (1.10)) then the weak solution can be unbounded even near internal points of
of the domain Ω (as Theorem 1.10 shows). To our opinion such a behavior of solutions to an
elliptic equation is unexpected. Allowing some abuse of language we can say that in a sense
non-smoothness of the drift can destroy the hypoellipticity of the operator.

Theorem 1.7 impose some restrictions on the structure of set of singular points of weak
solutions. Namely, let us define a singular point of a weak solution as a point for which the
weak solution is unbounded in any its neighborhood and then define the singular set of a weak
solution as the set of all its singular points. Theorem 1.7 shows that if for some weak solution its
singular set is non-empty then its 1-dimensional Hausdorff measure must be positive. Indeed,
due to Theorem 1.7 a singular point, if exists, never can be surrounded by a ball with regular
values on its boundary and hence the singular set must have a non-empty intersection with
every sphere centered at a singular point. In particular, this means that no isolated singularity
is possible. This exactly what the counterexample in Theorem 1.10 demonstrates: the singular
set in this case is the axe of symmetry (i.e. the whole line).

In conclusion we remark that for the moment of writing of this paper we can say nothing
about local boundedness of weak solutions to (1.1) with b satisfying only (1.2), (1.8) in the case
of n = 4, 5. We state this problem as an open question.

Now we pass to the discussion of local continuity and Hölder continuity of weak solutions
to the problem (1.1). For simplicity we will assume f ≡ 0 in (1.1). To the contrast to the local
boundedness, it turns out that the divergence-free condition (1.8) does not help in this situation
too much.

We start with the 2D-case. As we know from Theorem 1.8 for b satisfying (1.2) without
condition (1.8) for n = 2 weak solutions to the equation (1.1) can be locally unbounded. Nev-
ertheless, if we additionally assume (1.8), we immediately obtain not only local boundedness,
but even local Hölder continuity:

Theorem 1.11 Assume n = 2 and let b satisfy (1.2) and (1.8). Let u ∈ W 1
2 (B) be a weak

solution to (1.1) with f ∈ Lp(B) for some p > 1. Then u ∈ Cα
loc(B) with any α < 1.

For the proof in the case of f ≡ 0 see [2]. The case of f ̸≡ 0 can be considered in a similar
way. Note that for n = 2 the statement of Theorem 1.11 remains true if b, not necessary
satisfying (1.8), meets the condition∫

B

|b|2 ln(2 + |b|2) dx < +∞.

The proof can be found in [2], §4.4 or in [7].
As we mentioned before, for n ≥ 3 and drifts b satisfying (1.12) we obtain the local Hölder

continuity of weak solutions even without divergence-free assumption (1.8):
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Theorem 1.12 Assume n ≥ 3 and let b satisfy (1.12). Let u ∈ W 1
2 (B) be a weak solution to

(1.1) with f ∈ Lp(B) for some p > n
2 . Then u ∈ Cα

loc(B) with any α < 1.

For the proof see [2].
The following counterexample constructed in [2] shows that if one is interested in the local

continuity of weak solutions to the equation (1.1) then the assumption b ∈ Ln(Ω) can not be
weakened and the structure condition (1.8) does not help in this situation at all:

Theorem 1.13 Assume n ≥ 3, 2 ≤ p < n. Then there exist b ∈ Lp(B) satisfying (1.8) and a
weak solution u to (1.1) with f ≡ 0 such that u ∈W 1

2 (B) ∩ L∞(B) but u ̸∈ C(B̄1/2).

Finally, if we assume that b is better than in (1.12) (even without condition (1.8)), we
immediately obtain that the gradient of weak solutions is locally Hölder continuous:

Theorem 1.14 Assume b ∈ Lp(B) with p > n and u ∈W 1
2 (B) is a weak solution to (1.1) with

f ∈ Lp(B). Then u ∈ C1+α
loc (B) with α = 1− n

p .

For the proof see [4], Chapter III, Theorem 15.1.
In conclusion we remark that though we consider only an elliptic equation with a drift, but

there are also many papers devoted to the corresponding parabolic equation, see, for example,
[8], [9] and reference there.

Our paper is organized as follows. In Section 2 we prove Theorems 1.6 and 1.7. In Section
3 we present the proof of Theorem 1.9.

In the paper we explore the following notation. For any a, b ∈ Rn we denote by a · b its
scalar product in Rn. For any p ∈ [1,+∞) we denote by Lp(Ω) and W

k
p (Ω) the usual Lebesgue

and Sobolev spaces. We do not distinguish between spaces of scalar functions and vector fields
in the notation. The space of measurable functions whose values are essentially bounded in Ω is
denoted by L∞(Ω). We denote by C∞

0 (Ω) the set of all smooth functions which are compactly

supported in Ω. The space
◦
W 1

p(Ω) is the closure of C∞
0 (Ω) in W 1

p (Ω) norm. We denote by
D′(Ω) the set of distributions on Ω. The negative Sobolev space W−1

p (Ω), p ∈ (1,+∞), is

the set of all distributions which are bounded functionals on
◦
W 1

p′(Ω) with p′ := p
p−1 . For any

f ∈ W−1
p (Ω) and w ∈

◦
W 1

p′(Ω) we denote by ⟨f, w⟩ the value of the distribution f on the

function w. We use the notation W
1/2
2 (∂Ω) for the fractional Slobodetskii–Sobolev space which

consists of traces of all functions from W 1
2 (Ω). By C(Ω̄) and Cα(Ω̄), α ∈ (0, 1) we denote

the Banach spaces of continuous and Hölder continuous functions on Ω̄. The space C1+α(Ω̄)
consists of functions u whose gradient ∇u is Hölder continuous. The index “loc” in notation of
the functional spaces L∞,loc(Ω), C

α
loc(Ω), C

1+α
loc (Ω) etc implies that the function belongs to the

corresponding functional class over every compact set which is contained in Ω. The symbols ⇀
and → stand for the weak and strong convergence respectively. We denote by BR or B(R) the
ball in Rn of radius R centered at the origin. We write B instead of B1.
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2 Preliminaries

First we establish some regularization result.

Theorem 2.1 Assume b satisfies (1.2), (1.8), φ satisfies (1.11) and f satisfies (1.3). Let bε be a
sequence of vector fields satisfying (1.12), (1.8) such that bε → b in L2(Ω). Assume uε ∈W 1

2 (Ω)
is a weak solution to the regularized problem{

−∆uε + bε · ∇uε = f in Ω

uε|∂Ω = φ
(2.1)

(The existence and uniqueness of uε is guaranteed by Theorem 1.4). Then the sequence {uε}
is bounded in W 1

2 (Ω) and hence there is a function u ∈ W 1
2 (Ω) and a subsequence of {uε} (for

which we keep the same notation) such that

uε ⇀ u in W 1
2 (Ω), (2.2)

Moreover, the function u is a weak solution to the problem (1.9) (understood in the sense of
Definition 1.2). Additionally, if φ ≡ 0 then u satisfies the energy inequality (1.16).

To prove Theorem 2.1 we need the following extension result:

Theorem 2.2 Assume Ω ⊂ Rn is a bounded domain of class C1. Then there exists a bounded

linear extension operator T : L∞(∂Ω) ∩W 1/2
2 (∂Ω) → L∞(Ω) ∩W 1

2 (Ω) such that

Tφ|∂Ω = φ, ∀ φ ∈ L∞(∂Ω) ∩W 1/2
2 (∂Ω).

∥Tφ∥W 1
2 (Ω) ≤ C(Ω) ∥φ∥

W
1/2
2 (∂Ω)

, ∥Tφ∥L∞(Ω) ≤ C(Ω) ∥φ∥L∞(∂Ω)

Proof of Theorem 2.2

For the sake of completeness we briefly recall the proof of Theorem 2.2. After the localization
and flattening of the boundary it is sufficient to construct the extension operator from Rn−1 to
Rn
+ := Rn−1 × (0,+∞). Then we can take the standard operator

(Tφ)(x′, xn) = η(xn)

∫
Rn−1

φ(x′ − xnξ
′)ψ(ξ′) dξ′, (x′, xn) ∈ Rn

+,

where x′ := (x1, . . . , xn−1), x
′ ∈ Rn−1, η ∈ C∞

0 (R), ψ(0) = 1, ψ ∈ C∞
0 (Rn−1),

∫
Rn−1

ψ(ξ′) dξ′ = 1.

This operator is bounded from W
1/2
2 (Rn−1) to W 1

2 (Rn
+) and also from L∞(Rn−1) to L∞(Rn

+).
More details can be found in [1]. �
Proof of Theorem 2.1

Denote φ̃ := Tφ where T is the extension operator from Theorem 2.2. Taking in the integral

identity (1.6) for uε and bε the test function η = uε − φ̃ ∈
◦
W 1

2(Ω) we obtain∫
Ω

|∇uε|2 dx −
∫
Ω

uεbε · ∇(uε − φ̃) dx = ⟨f, uε − φ̃⟩
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Using the divergence–free condition (1.8) we obtain∫
Ω

uεbε · ∇(uε − φ̃) dx =

∫
Ω

φ̃bε · ∇(uε − φ̃) dx

Hence we obtain the estimate

∥∇uε∥2L2(Ω) ≤
(
∥φ̃∥L∞(Ω)∥bε∥L2(Ω) + ∥f∥W−1

2 (Ω)

)(
∥uε∥W 1

2 (Ω) + ∥φ̃∥W 1
2 (Ω)

)
From this inequality we obtain the estimate

∥uε∥W 1
2 (Ω) ≤ C,

with the constant C independent on ε. The rest of the proof is obvious. �
Proof of Theorem 1.6

The existence of at least one weak solution follows from Theorem 2.1. The uniqueness of
this solution u for b satisfying (1.2), (1.8) is established in Theorem 1.5. Moreover, as a weak
solution is unique we obtain that the whole sequence {uε} in Theorem 2.1 must converge weakly
in W 1

2 (Ω) to the function u. The inequality (1.16) in the case of φ ≡ 0 follows from the energy
identity (1.15) for uε and lower semicontinuity of the norm with respect to the weak convergence.
Theorem (1.6) is proved. �

To prove Theorem 1.7 we first prove the corresponding result for a regularized problem:

Theorem 2.3 Assume conditions (1.12), (1.8), (1.11), (1.17) hold. Let u ∈ W 1
2 (Ω) be a weak

solution to the problem (1.9). Then u ∈ L∞(Ω) and the estimate (1.18) holds with the constant
C depending only on n, q and Ω.

Proof of Theorem 2.3

We present the proof only in the case n ≥ 3. The case n = 2 differs from it only by routine
technical details. As b satisfies (1.12) we can complete the integral identity (1.4) up to the test

functions η ∈
◦
W 1

2(Ω). Denote k0 := ∥φ∥L∞(∂Ω) and assume k ≥ k0. Take in (1.4) η = (u− k)+,

where we denote (u)+ := max{u, 0}. As k ≥ k0 we have η ∈
◦
W 1

2(Ω) and ∇η = χAk
∇u where

χAk
is the characteristic function of the set

Ak := { x ∈ Ω : u(x) > k }.

We obtain the identity∫
Ak

|∇u|2 dx +

∫
Ak

b · (u− k)∇u dx =

∫
Ak

f(u− k) dx

From (1.8) we obtain∫
Ak

b · (u− k)∇u dx =
1

2

∫
Ω

b · ∇|(u− k)+|2 dx = 0,

and hence ∫
Ak

|∇u|2 dx =

∫
Ak

f(u− k) dx, ∀ k ≥ k0.

9



The rest of the proof goes as in the usual elliptic theory: applying the imbedding theorem we
obtain  ∫

Ak

|∇u|2 dx


1
2

≤ C(n)

 ∫
Ak

|f |
2n
n+2 dx


n+2
2n

,

and using the Hölder inequality we get

∥f∥L 2n
n+2

(Ak) ≤ |Ak|
n+2
2n

− 1
q ∥f∥Lq(Ak)

So we arrive at ∫
Ak

|∇u|2 dx ≤ C(n) ∥f∥2Lq(Ω) |Ak|1−
2
n
+ε, ∀ k ≥ k0,

where ε := 2
(

2
n − 1

q

)
> 0. This inequality implies the following estimate, see [4], Lemma 5.3:

esssup
Ω

(u− k0)+ ≤ C(n, q,Ω) ∥f∥Lq(Ω)

The estimate of essinf
Ω

u can be obtained in a similar way if we replace u by −u. Theorem 2.3

is proved. �
Proof of Theorem 1.7

Assume u is a weak solution to the problem (1.9) with b satisfying (1.2), (1.8) and let bε be
smooth divergence-free vector fields such that bε → b in L2(Ω). Denote by uε the weak solution
to the problem (2.1). Then from Theorem 2.3 we obtain the estimate

∥uε∥L∞(Ω) ≤ C
(
∥φ∥L∞(∂Ω) + ∥f∥Lq(Ω)

)
(2.3)

with the constant C depending only on n, q, Ω. From (2.2) we can extract a subsequence (for
which we keep the same notation) such that

uε → u a.e. in Ω.

This subsequence is uniformly bounded and passing to the limit in (2.3) we obtain (1.18) for
the unique weak solution u to the problem (1.9). Theorem 1.7 is proved. �
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3 Proof of Theorem 1.9

First we derive the estimate (1.20) as an a priori estimate under additional assumption that the
weak solution is bounded. We explore Moser’s iteration technique, see [6], see also [3].

Theorem 3.1 Assume all conditions of Theorem 1.9 hold and assume additionally that u ∈
L∞(B). Then the estimate

∥u∥L∞(B( 1
2
)) ≤ C

(
2 + ∥b∥Lp(B)

)µ (
∥u∥L2p′ (B) + ∥f∥Lp(B)

)
(3.1)

holds with some positive constants C and µ depending only on n and p.

Proof of Theorem 3.1

Let ζ ∈ C∞
0 (B) be a cut-off function such that ζ ≥ 0, 0 ≤ ζ ≤ 1 and assume β ≥ 0 and

k ≥ 0 are arbitrary. Denote

ū := max{u, 0} + k, A := { x ∈ B : u(x) > 0 },

and take in (1.4) the test function

η = ζ2
(
ūβ+1 − kβ+1

)
∈

◦
W 1

2(B) ∩ L∞(B).

We have
∇η = (β + 1)ζ2ūβ∇ū + 2ζ∇ζ

(
ūβ+1 − kβ+1

)
and as ∇ū = ∇u a.e. in A and η ≡ 0 on B \A we obtain∫
B

∇u · ∇η dx =

∫
A

∇ū · ∇η dx = (β + 1)

∫
B

ζ2ūβ|∇ū|2 dx + 2

∫
B

ζ∇ū · (ūβ+1 − kβ+1)∇ζ dx

∫
B

ζ∇ū · (ūβ+1 − kβ+1)∇ζ dx =

∫
B

∇ū · ūβ+1ζ∇ζ dx − kβ+1

∫
B

∇ū · ζ∇ζ dx =

= − 1

β + 2

∫
B

ūβ+2 div (ζ∇ζ) dx + kβ+1

∫
B

ū div (ζ∇ζ) dx

The drift term is estimated in the following way:∫
B

b · ∇u η dx =

∫
A

b · ∇ū η dx =
1

β + 2

∫
B

ζ2b · ∇ūβ+2 dx − kβ+1

∫
B

ζ2b · ∇ū dx

Integrating by parts we obtain∫
B

b · ∇u η dx = − 2

β + 2

∫
B

ζ∇ζ · b ūβ+2 dx + 2kβ+1

∫
B

ζ∇ζ · bū dx

So, we obtain the identity

(β + 1)

∫
B

ζ2ūβ|∇ū|2 dx =
2

β + 2

∫
B

ūβ+2 div (ζ∇ζ) dx − 2kβ+1

∫
B

ūdiv (ζ∇ζ) dx +

+
2

β + 2

∫
B

ζ∇ζ · b ūβ+2 dx − 2kβ+1

∫
B

ζ∇ζ · bū dx +

∫
B

ζ2f
(
ūβ+1 − kβ+1

)
dx

11



Hence we obtain the inequality∫
B

ζ2ūβ|∇ū|2 dx ≤ 2

(β + 1)2

∫
B

ūβ+2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx +

+
2kβ+1

β + 1

∫
B

ū
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx +

1

β + 1

∫
B

|f | ūβ+1 dx

Taking into account that k ≤ ū and 1
(β+1)2

≤ 1
β+1 we obtain∫

B

ζ2ūβ|∇ū|2 dx ≤ 4

β + 1

∫
B

ūβ+2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx +

1

β + 1

∫
B

|f | ūβ+1 dx

If k > 0 the last integral we estimate as follows:∫
B

|f | ūβ+1 dx ≤
∥∥∥∥fk

∥∥∥∥
Lq(B)

∥∥∥ūβ+2
∥∥∥
Lq′ (B)

Now fix k := ∥f∥Lq(B) if f ̸≡ 0 and k = 0 if f ≡ 0. In both cases we obtain∫
B

ζ2ūβ|∇ū|2 dx ≤ 4

β + 1

∫
B

ūβ+2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx +

1

β + 1

∥∥∥ūβ+2
∥∥∥
Lq′ (B)

Denote by

w := ū
β+2
2 =⇒ ∇w =

β + 2

2
ū

β
2∇ū, |∇w|2 = (β + 2)2

4
ūβ|∇ū|2, ūβ+2 = w2,

Hence we obtain the estimate

4

(β + 2)2

∫
B

ζ2|∇w|2 dx ≤ 4

β + 1

∫
B

|w|2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx +

1

β + 1
∥w∥2L2q′ (B)

which gives∫
B

|∇(ζw)|2 dx ≤ C(β + 2)

∫
B

|w|2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx + ∥w∥2L2q′ (B)


Applying the imbedding theorem we obtain∫

B

|ζw|
2n
n−2 dx

n−2
n

≤ C

∫
B

|∇(ζw)|2 dx

Hence∫
B

|ζw|
2n
n−2 dx

n−2
n

≤ C(β + 2)

∫
B

|w|2
(
|∇ζ|2 + |∇2ζ|+ |b| |∇ζ|

)
dx + ∥w∥2L2q′ (B)


Assume ζ ≡ 1 on Br, ζ ∈ C∞

0 (BR) and |∇ζ| ≤ C
R−r , |∇

2ζ| ≤ C
(R−r)2

. Applying the Hölder

inequality we obtain ∫
B

|w|2|b| |∇ζ| dx ≤ C

R− r
∥b∥Lp(BR) ∥w∥2L2p′ (BR)
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where p′ := p
p−1 . As p >

n
2 we have 2n

n−2 > 2p′. (Without loss of generality we can take p = q).
So, we obtain

∥w∥L 2n
n−2

(Br) ≤ C
√
β + 2

R− r
∥w∥L2(BR) +

√
β + 2

(
C

(R− r)1/2
∥b∥

1
2

Lp(BR) + 1

)
∥w∥L2p′ (BR)

As 2 ≤ 2p′ by the Hölder inequality we have

∥w∥L2(BR) ≤ C ∥w∥L2p′ (BR)

Clearly,
C

(R− r)1/2
∥b∥

1
2

Lp(BR) ≤ C

R− r
+ ∥b∥Lp(BR)

and hence

∥w∥L 2n
n−2

(Br) ≤
√
β + 2

(
C0

R− r
+ ∥b∥Lp(BR) + 1

)
∥w∥L2p′ (BR)

Going back to the function ū and denoting β + 2 =: γ we obtain

∥ū∥L nγ
n−2

(Br) ≤ e
ln γ
γ

(
C0

R− r
+ ∥b∥Lp(BR) + 1

) 2
γ

∥ū∥Lp′γ(BR) (3.2)

Denote χ := 1
p′

n
n−2 = n(p−1)

p(n−2) , s0 = 2p′, sm := χsm−1 = 2p′χm, Rm = 1
2 + 1

2m+1 . Then

∥ū∥Lsm (BRm ) = ∥ū∥L n
n−2

sm−1
p′

(BRm )

Applying (3.2) with γ = sm−1

p′ , r = Rm, R = Rm−1, we obtain the inequality

∥ū∥Lsm (BRm ) ≤ e
ln(2χm−1)

2χm−1

(
C0

Rm−1 −Rm
+ ∥b∥Lp(B) + 1

) 1
χm−1

∥ū∥Lsm−1 (BRm−1
) =

= e
ln 2+(m−1) lnχ

2χm−1
(
C02

m+1 + ∥b∥Lp(B) + 1
) 1

χm−1 ∥ū∥Lsm−1 (BRm−1
)

Iterating this estimate we obtain

∥ū∥Lsm (BRm ) ≤
m∏
j=1

e
ln 2+(j−1) lnχ

2χj−1
(
C02

j+1 + ∥b∥Lp(B) + 1
) 1

χj−1 ∥ū∥Ls0 (B)

Note that

m∏
j=1

e
ln 2+(j−1) lnχ

2χj−1
(
C02

j+1 + ∥b∥Lp(B) + 1
) 1

χj−1 =

= exp

 m∑
j=1

ln 2 + (j − 1) lnχ

2χj−1

 · exp

 m∑
j=1

1

χj−1
ln

(
C02

j+1 + ∥b∥Lp(B) + 1
)

The following series is convergent:

∞∑
j=1

ln 2 + (j − 1) lnχ

χj−1
< +∞

As for x ≥ 2, y ≥ 2 the inequality ln(x+ y) ≤ lnx+ ln y is true, we have

ln
(
C02

j+1 + ∥b∥Lp(B) + 1
)

≤ ln(C02
j+1) + ln(2 + ∥b∥Lp(B))
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and we have one more convergent series:

∞∑
j=0

1

χj

(
ln(C02

j+2) + ln(2 + ∥b∥Lp(B))
)
< +∞.

Hence for any m = 0, 1, 2, . . . the following estimate holds

∥ū∥Lsm (B( 1
2
)) ≤ C

(
2 + ∥b∥Lp(B)

)µ ∥u∥L2p′ (B)

where C and µ depend only on n and p. Taking the limit as m→ +∞ we obtain

∥ū∥L∞(B( 1
2
)) ≤ C

(
2 + ∥b∥Lp(B)

)µ ∥ū∥L2p′ (B)

The last inequality implies the estimate

∥u+∥L∞(B( 1
2
)) ≤ C

(
2 + ∥b∥Lp(B)

)µ (
∥u∥L2p′ (B) + k

)
with some positive constant C and µ depending only on n and p. The estimate of ∥u−∥L∞(B( 1

2
))

where u− := max{−u, 0} can be obtained in a similar way. Theorem 3.1 is proved. �
Proof of Theorem 1.9.

We need to get rid of the assumption of u ∈ L∞(B) in Theorem 3.1. Let all assumptions
of Theorem 1.9 hold. Assume ζ ∈ C∞

0 (B) is a cut-off function such that ζ ≡ 1 on B(56) and
denote v := ζu. Then v is a weak solution to the boundary value problem{

−∆v + b · ∇v = g in B

v|∂B = 0

where
g := ζf + fζ + fb, fζ := −u∆ζ − 2∇u · ∇ζ, fb := bu · ∇ζ

Note that both fζ ≡ fb ≡ 0 on B(56), g ≡ f and v ≡ u on B(56). As p > n
2 we have

fζ ∈ L2(B), fb ∈ Ls(B), with some s >
2n

n+ 2
,

and hence we have g ∈ W−1
2 (B). Assume now bε be a sequence of smooth divergence-free

vector fields such that bε → b in Lp(B) and let vε ∈
◦
W 1

2(B) be the unique weak solution to the
boundary value problem {

−∆vε + bε · ∇vε = g in B

vε|∂B = 0

From Theorem 2.1 we have vε ⇀ v in W 1
2 (B) and as p > n

2 we can extract a subsequence (for
which we keep the same notation) such that vε → v a.e. in B and vε → v in L2p′(B). As vε is
a weak solution to the equation

−∆vε + bε · ∇vε = f in B(56)

with smooth bε and f ∈ Lp(B), p > n
2 , from the usual elliptic theory (see [4], Chapter III,

Theorem 14.1) we conclude that vε is Hölder continuous in B(34). Hence applying Theorem 3.1
(with the obvious modification in radius) we obtain the estimate

∥vε∥L∞(B( 1
2
)) ≤ C

(
2 + ∥bε∥Lp(B)

)µ (
∥vε∥L2p′ (B( 3

4
)) + ∥f∥Lp(B( 3

4
))

)
14



Hence vε are equibounded on B(12). Passing to the limit in the above inequality and taking into
account that v = u on B(56) we obtain

∥u∥L∞(B( 1
2
)) ≤ C

(
2 + ∥b∥Lp(B)

)µ (
∥u∥L2p′ (B( 3

4
)) + ∥f∥Lp(B( 3

4
))

)
To conclude the proof we remark that for p > n

2 due to the imbedding theorem we have

∥u∥L2p′ (B) ≤ C(n, p) ∥u∥W 1
2 (B)

and hence the estimate (1.20) follows. �
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