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1 Introduction

In a damped hyperbolic system with periodic forcing, resonance can be avoided if the
energy from the external forces accumulated over a period is dissipated via the damping
mechanism. The existence of a time-periodic solution would be a manifestation hereof.
Our aim in this article is to develop a method that can be used to ensure existence of
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this particular type of non-resonant solution for nonlinear hyperbolic systems. Although
the method is generic in nature, we restrict our analysis to a nonlinear wave equation
with Kelvin-Voigt damping in a three-dimensional domain. Specifically, we consider
the Kuznetsov equation, which is a nonlinear wave equation that describes acoustic
wave propagation. As our main result, we show for any periodic forcing term that is
sufficiently restricted in “size” existence of a time-periodic solution. We shall treat non-
homogeneous boundary values of both Dirichlet and Neumann type. We consider spatial
domains Ω ⊂ R3 that are either bounded, the half-space or the whole-space.

Well-posedness of the initial-value problem for the Kuznetsov equation has only re-
cently been established [6, 7, 9]. Our result can be viewed as an extension of these results
to the corresponding time-periodic problem. Related time-periodic problems have been
studied by other authors over the years. In particular we mention the work of Kokocki
[8], where a class of nonlinear wave equations with Kelvin-Voigt damping, which do not
contain the Kuznetsov equation though, are investigated.

We will work in a setting of time-periodic functions and therefore take the whole of
R as a time-axis. In the following, (t, x) ∈ R × Ω will always denote a time-variable t
and spatial variable x, respectively. The Kuznetsov equation with Dirichlet boundary
condition then reads{

∂2
t u−∆u− λ∂t∆u− ∂t

(
γ(∂tu)2 + |∇u|2

)
= f in R× Ω,

u = g on R× ∂Ω.
(KD)

The corresponding Neumann problem reads ∂2
t u−∆u− λ∂t∆u− ∂t

(
γ(∂tu)2 + |∇u|2

)
= f in R× Ω,

∂u

∂n
= g on R× ∂Ω.

(KN)

Here, λ, γ > 0 are constants. We shall consider both data and solutions that are time-
periodic with the same period T > 0, that is, functions u, f and g satisfying

∀t ∈ R : h(T + t, ·) = h(t, ·). (TP)

More precisely, we will show for data f and g satisfying (TP), and whose norm in
appropriate Sobolev spaces are sufficiently small, the existence of a solution u to (KD)
and (KN) also satisfying (TP).

Our approach is based on Lp estimates of solutions to the corresponding linearizations{
∂2
t u−∆u− λ∂t∆u = f in R× Ω,

u = g on R× ∂Ω
(WD)

and  ∂2
t u−∆u− λ∂t∆u = f in R× Ω,

∂u

∂n
= g on R× ∂Ω,

(WN)
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of (KD) and (KN), respectively, and an application of the contraction mapping principle.
The novelty of our approach is rooted in the method we employ to establish the Lp

estimates of (WD) and (WN). Instead of relying on a Poincaré map, which is the
standard procedure in the investigation of time-periodic problems, and also the approach
used in [8], we obtain the estimates directly via a representation formula for the solution.
We hereby circumvent completely the theory for the corresponding initial-value problem
that is needed to construct a Poincaré map. Not only do we develop a much more direct
approach, the representation formula we establish also seems interesting in the context
of resonance, or rather the avoidance hereof, since it exposes the way different modes of
the solution are damped in relation to the modes of the forcing term. We shall briefly
outline the method in the whole-space case Ω = R3. The main idea is to reformulate the
time-periodic problem as a partial differential equation on the locally compact abelian
group G := R/T Z × R3. Since the data f and the solution u are both T -time-periodic
functions, they can be interpreted as functions on G. A differentiable structure on G is
canonically inherited from R×R3 via the quotient mapping π : R×R3 → R/T Z×R3 in
such a way that the damped wave equation can be reformulated as a partial differential
equation

∂2
t u−∆u− λ∂t∆u = f in G (1.1)

in a setting of functions u : G→ R and f : G→ R. In this setting, it is possible to use the
Fourier transform FG in combination with the space of tempered distributions S ′(G),
the dual of the Schwartz-Bruhat space S (G), and derive from (1.1) the representation
formula

u = F−1
G

[
1

|ξ|2 − k2 + iλk|ξ|2
FG[f ]

]
(1.2)

when f ∈ S (G). Here (k, ξ) denote points in the dual group Ĝ := 2π
T Z×R3. The term

iλk|ξ|2 in the denominator of the Fourier multiplier in (1.2) stems from the damping.
For modes k 6= 0, the multiplier is bounded due to the damping term, whereas the mode
k = 0 of the multiplier is not “damped” at all. To obtain the desired estimates of u, we
shall therefore split the “damped” and “non-damped” modes, in this case

u = F−1
G

[
1

|ξ|2
FG[f ]

]
+ F−1

G

[
(1− δZ(k))

|ξ|2 − k2 + iλk|ξ|2
FG[f ]

]
=: us + up, (1.3)

where δZ(k) := 1 if k = 0 and δZ(k) := 0 otherwise. The main advantage of the
decomposition is that the bounded multiplier in the representation of up leads to a
better Lp estimate than can be obtained for the full solution u. We shall establish the
estimate by invoking a transference principle for group multipliers, which allows us to
transfer the multiplier into a Euclidean setting. This principle was originally established
by de Leeuw [1] and later generalized by Edwards and Gaudry [3]. The estimate
of us can be obtained by standard methods. Clearly, a more complex damping than
the Kelvin-Voigt damping term would lead to a more complex splitting in (1.3), but the
general idea should still be applicable. We postpone the investigation of more general
damping mechanisms to future works.
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2 Preliminaries

2.1 Notation

In the following, Ω ⊂ R3 will always denote a domain, namely, an open connected set.
Points in R × Ω are generally denoted by (t, x), with t being referred to as time and x
as the spatial variable. A time-period T > 0 remains fixed.

For functions f defined on time-space domains, we let

Pf(t, x) :=
1

T

T∫
0

f(s, x) ds, P⊥f(t, x) := f(t, x)− Pf(t, x) (2.1)

whenever the integral is well defined. Since Pf is independent on time t, we shall
implicitly treat Pf as a function of the spatial variable x only.

Classical Lebesgue and Sobolev spaces with respect to spatial domains are denoted by
Lp(Ω) and W k,p(Ω), respectively. We further introduce the homogeneous Sobolev space

Ẇ 2,p (Ω) := {u ∈ L1
loc(Ω) | ∂αxu ∈ Lp(Ω), |α| = 2}, |u|2,p :=

( ∑
|α|=2

‖∂αxu‖pp
) 1
p

.

2.2 Group setting and Fourier transform

We introduce the group G := T × R3, where T denotes the torus group R/T Z. The
quotient mapping

π : R× R3 → G, π (t, x) := ([t] , x) (2.2)

induces a topology and a differentiable structure onG. Equipped with the quotient topol-
ogy, G becomes a locally compact abelian group. Via the restriction Π := π

∣∣
[0,T )×R3 ,

we can identify G with the domain [0, T ) × R3, and the Haar measure dg on G as the
product of the Lebesgue measure on R3 and the Lebesgue measure on [0, T ). From the
uniqueness of the Haar measure up to a constant, it is possible to choose dg in such a
way that

∫
G

u (g) dg =
1

T

T∫
0

∫
R3

u ◦Π (x, t) dxdt.

For the sake of convenience, we will omit the Π in integrals of G-defined functions with
respect to dxdt. Furthermore, we define by

C∞(G) := {u : G→ R | ∃U ∈ C∞
(
R× R3

)
: U = u ◦ π}, (2.3)

the space of smooth functions on G. Derivatives of a function u ∈ C∞(G) are defined
by

∂βt ∂
α
xu :=

[
∂βt ∂

α
x (u ◦ π)

]
◦Π−1 ∀ (α, β) ∈ N3

0 × N0.
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By C∞0 (G) := {u ∈ C∞(G) | suppu is compact} we denote the space of compactly
supported smooth functions on G. The Schwartz-Bruhat space on G is defined by

S (G) := {u ∈ C∞(G) | ∀(α, β, γ) ∈ N3
0 × N0 × N3

0 : ρα,β,γ(u) <∞},

where

ρα,β,γ(u) := sup
(t,x)∈G

∣∣∣xγ∂βt ∂αxu(t, x)
∣∣∣.

Equipped with the semi-norm topology of the family {ρα,β,γ | (α, β, γ) ∈ N3
0 × N0 × N3

0},
S (G) becomes a topological vector space. The corresponding topological dual space
S ′(G) equipped with the weak∗ topology is referred to as the space of tempered dis-
tributions on G. Distributional derivatives for a tempered distribution u are defined by
duality as in the classical case.

Let Ĝ denote the dual group of G. Each (k, ξ) ∈ 2π
T Z × R3 can be associated with a

character χ : G→ C, χ (t, x) := eix·ξ+ikt on G. Thus we can identify Ĝ = 2π
T Z×R3, and

the compact-open topology on Ĝ as the product of the Euclidean topology on R3 and the
discrete topology on 2π

T Z. The Haar measure on Ĝ is then the product of the counting

measure on 2π
T Z and the Lebesgue measure on R3. The space of smooth functions on Ĝ

is defined as

C∞(Ĝ) := {u ∈ C (Ĝ) | ∀k ∈ 2π

T
Z : u(k, ·) ∈ C∞(R3)},

and the Schwartz-Bruhat space as

S (Ĝ) := {u ∈ C∞(Ĝ) | ∀(α, β, γ) ∈ N3
0 × N3

0 × N0 : ρ̂α,β,γ(u) <∞},

where

ρ̂α,β,γ(u) := sup
(k,ξ)∈Ĝ

∣∣∣ξα∂βξ kγu(k, ξ)
∣∣∣

are the generic semi-norms.
By FG we denote the Fourier transform associated to the locally compact abelian

group G defined by

FG : S (G)→ S (Ĝ), FG[u](k, ξ) := û(k, ξ) :=
1

T

T∫
0

∫
R3

u(t, x) e−ix·ξ−ikt dxdt.

We recall that FG : S (G)→ S (Ĝ) is a homeomorphism and the inverse is given by

F−1
G : S (Ĝ)→ S (G), F−1

G [w](t, x) := w∨(t, x) :=
∑
k∈ 2π
T Z

∫
R3

w(k, ξ) eix·ξ+ikt dξ.

By duality, FG extends to a homeomorphism S ′(G)→ S ′(Ĝ).

5



2.3 Multiplier theory

Next, we introduce two helpful tools from harmonic analysis, which will enable us to
estimate the solution to (WD) and (WN). Due to the lack of sufficient multiplier theory
in the general group setting, we make use of the following lemma to transfer the inves-
tigation into an Euclidean stetting. The idea goes back to De Leeuw [1]; the lemma
below is due to Edwards and Gaudry [3].

Lemma 2.1. Let G and H be locally compact abelian groups. Moreover, let Φ : Ĝ→ Ĥ
be a continuous homomorphism and p ∈ [1,∞]. Assume that m ∈ L∞(Ĥ;C) is a
continuous Lp-multiplier, i.e., there is a constant C such that

∀f ∈ L2 (H) ∩ Lp (H) : ‖F−1
H [m · f̂ ]‖p ≤ C‖f‖p.

Then m ◦ Φ ∈ L∞(Ĝ;C) is also an Lp-multiplier with

∀f ∈ L2 (G) ∩ Lp (G) : ‖F−1
G [m ◦ Φ · f̂ ]‖p ≤ C‖f‖p.

Proof. See [3, Theorem B.2.1].

Remark 2.2. Applying Lemma 2.1 with G := T×R3, H := R×R3 and Φ : 2π
T Z×R3 7→

R × R3, Φ(k, ξ) := (k, ξ), we are able to transform and investigate an Lp-multiplier on
G into an R4 setting.

We shall make use of the following multiplier theorem of Marcinkiewicz type:

Lemma 2.3. Let m : Rn → C be a bounded function with m ∈ Cn(Rn). Assume there
is a constant A such that

sup
ε∈{0,1}n

sup
ξ∈Rn

∣∣∣ξε11 · · · ξ
εn
n ∂

ε1
ξ1
· · · ∂εnξnm(ξ)

∣∣∣ ≤ A. (2.4)

Then for any p ∈ (1,∞) there is a constant C such that

∀f ∈ L2(Rn) ∩ Lp(Rn) : ‖F−1[m · f̂ ]‖p ≤ CA‖f‖p,

with C = C(p).

Proof. See [5, Corollary 6.2.5].

2.4 Function spaces

Let E(Ω) be a Banach space. By the same construction as in (2.3), we introduce the
space C∞

(
T;E(Ω)

)
of smooth vector-valued functions on the torus. For p ∈ (1,∞) and

k ∈ N0 we further introduce the norms

‖f‖Lp(T;E(Ω)) :=

(
1

T

T∫
0

‖f(t, ·)‖pE(Ω) dt

) 1
p

,

‖f‖Wk,p(T;E(Ω)) :=

( k∑
α=0

‖∂αt f‖
p
Lp(T;E(Ω))

) 1
p

,

(2.5)
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and let

Lp (T;E(Ω)) := C∞ (T;E (Ω))
‖·‖Lp(T;E(Ω))

,

W k,p (T;E(Ω)) := C∞ (T;E (Ω))
‖·‖

Wk,p(T;E(Ω)) .

Clearly Lp (T× Ω) = Lp (T;Lp (Ω)). We sometimes write ‖·‖p instead of ‖·‖Lp(T;Lp(Ω))

when no confusion can arise.
Recalling (2.1), we observe that P and P⊥ are complementary projections on the

space C∞ (T;E(Ω)). We shall employ these projections to decompose the Lebesgue and
Sobolev spaces introduced above. Since Pf is time independent, we shall refer to Pf as
the steady-state part of f , and P⊥f as the purely periodic part. By continuity, P and
P⊥ extend to bounded operators on Lp (T;E(Ω)) and W k,p (T;E(Ω)).

We introduce the anisotropic Sobolev space

Xp
⊥ (T× Ω) := P⊥W 2,p(T;Lp(Ω)) ∩ P⊥W 1,p

(
T;W 2,p(Ω)

)
, (2.6)

‖u‖Xp
⊥

:=

(
‖∂2

t u‖pp + ‖u‖p
W 1,p(T;W 2,p(Ω))

) 1
p

. (2.7)

Sobolev-Slobodeckĭı spaces

T pD(T× ∂Ω) := W
2− 1

2p
,p

(T;Lp(∂Ω)) ∩W 1,p
(
T;W

2− 1
p
,p

(∂Ω)
)
,

T pN (T× ∂Ω) := W
1
2

(
3− 1

p

)
,p

(T;Lp(∂Ω)) ∩W 1,p
(
T;W

1− 1
p
,p

(∂Ω)
)
,

(2.8)

are defined in the usual way using real interpolation. One may verify that the trace
operators

TrD : W 2,p(T;Lp(Ω)) ∩W 1,p
(
T;W 2,p(Ω)

)
→ T pD(T× ∂Ω), TrD(u) := u|T×∂Ω,

TrN : W 2,p(T;Lp(Ω)) ∩W 1,p
(
T;W 2,p(Ω)

)
→ T pN (T× ∂Ω), TrN (u) :=

∂u

∂n |T×∂Ω
,

are continuous and surjective; see for example [2].

3 Linear Problem

We shall investigate the linearized problems (WD) and (WN) and establish maximal Lp

regularity in a setting of T -time-periodic functions. For a Banach space E(Ω) we define
by

C∞per (R;E (Ω)) := {f ∈ C∞ (R;E (Ω)) | f(t+ T , x) = f(t, x)}

the space of smooth vector-valued T -time-periodic functions. Lebesgue and Sobolev
spaces of time-periodic vector-valued functions are defined by

Lpper (R;E(Ω)) := C∞per (R;E(Ω))
‖·‖Lp(T;E(Ω))

,

W k,p
per (R;E(Ω)) := C∞per (R;E(Ω))

‖·‖
Wk,p(T.E(Ω)) ,
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where the norms ‖·‖Lp(T;E(Ω)) and ‖·‖Wk,p(T.E(Ω)) are defined as in (2.5). Similarly,
T pD,per(R× ∂Ω) and T pN,per(R× ∂Ω) are defined in accordance with (2.8).

Theorem 3.1 (Dirichlet problem). Assume that either Ω = R3, Ω = R3
+ or Ω ⊂ R3

is a bounded domain with a C1,1-smooth boundary. Let p ∈ (1,∞). Then for any
f ∈ Lpper(R;Lp (Ω)) and g ∈ T pD,per(R× ∂Ω) there is a solution u to (WD) with

u(t, x) = us(x) + up(t, x) ∈ Ẇ 2,p (Ω)⊕ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
(3.1)

satisfying

|us|2,p ≤ c1

(
‖Pf‖p + ‖Pg‖T pD

)
, (3.2)

‖up‖Xp
⊥
≤ c2

(
‖P⊥f‖p + ‖P⊥g‖T pD

)
, (3.3)

where c1 = c1 (p,Ω) > 0 and c2 = c2 (p,Ω, T ) > 0. If v = vs+vp is another solution with

vs ∈ Ẇ 2,q1 (Ω) and vp ∈ P⊥W 2,q2
per (R;Lq2(Ω)) ∩ P⊥W 1,q2

per

(
R;W 2,q2(Ω)

)
, q1, q2 ∈ (1,∞),

then us − vs is a polynomial of order 1 and up = vp.

Theorem 3.2 (Neumann problem). Let Ω and p be as in Theorem 3.1. Furthermore,
let f ∈ Lpper(R;Lp (Ω)) and g ∈ T pN,per(R× ∂Ω). If Ω is a bounded domain, assume

T∫
0

∫
Ω

f dxdt+

T∫
0

∫
∂Ω

g dSdt = 0. (3.4)

Then there is a solution u to (WN) with

u(t, x) = us(x) + up(t, x) ∈ Ẇ 2,p (Ω)⊕ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
(3.5)

satisfying

|us|2,p ≤ c1

(
‖Pf‖p + ‖Pg‖T pN

)
, (3.6)

‖up‖Xp
⊥
≤ c2

(
‖P⊥f‖p + ‖P⊥g‖T pN

)
, (3.7)

where c1 = c1 (p,Ω) > 0 and c2 = c2 (p,Ω, T ) > 0. If v = vs+vp is another solution with

vs ∈ Ẇ 2,q1 (Ω) and vp ∈ P⊥W 2,q2
per (R;Lq2(Ω)) ∩ P⊥W 1,q2

per

(
R;W 2,q2(Ω)

)
, q1, q2 ∈ (1,∞),

then us − vs is a polynomial of order 1 and up = vp.

Corollary 3.3. Let Ω and p be as in Theorem 3.1. The operator

A: P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
→ P⊥Lpper(R;Lp (Ω))× P⊥T pS,per(R× ∂Ω),

A(up) :=
(
∂2
t up −∆up − λ∂t∆up,TrS up

)
,

with S ∈ {D,N}, is a homeomorphism.

Proof. Follows directly from Theorem 3.1 and 3.2.

We divide the proof of Theorem 3.1 and Theorem 3.2 into a number of steps.

8



3.1 The Whole-Space

In the whole-space case the resolution to T -time-periodic solutions to (WD) and (WN)
is equivalent, via the quotient mapping π, to the resolution to the system

∂2
t u−∆u− λ∂t∆u = f in G (3.8)

on the group G. The system (3.8) can be investigated in the framework introduced in
Section 2.2.

We consider f ∈ Lp(G). We use the projections P and P⊥ to decompose f as

f = Pf + P⊥f ∈ Lp(R3)⊕ P⊥Lp(G),

and seek a solution u to (3.8) as a sum u = us + up, where us is a solution to

−∆us = Pf in R3 (3.9)

and up a solution to

∂2
t up −∆up − λ∂t∆up = P⊥f in G. (3.10)

The resolution to the elliptic problem (3.9) is well known. We therefore turn our focus
to (3.10).

Lemma 3.4. Let p ∈ (1,∞). For any f ∈ P⊥Lp(G) there exists a solution u ∈ Xp
⊥(G)

to (3.10). Moreover

‖u‖Xp
⊥
≤ c‖f‖p, (3.11)

were c = c(p, T ) > 0. The solution u is unique in S ′
⊥(G).

Proof. Recall that FG[P⊥f ] = (1− δZ) FG[f ]. Formally applying the Fourier transform
FG in (3.10), we therefore obtain

u = F−1
G

[
(1− δZ)

|ξ|2 − k2 + iλk|ξ|2
FG[f ]

]
. (3.12)

We put

M : Ĝ→ C, M (k, ξ) :=
1− δZ

|ξ|2 − k2 + iλk|ξ|2
(3.13)

and write

u = F−1
G [M (k, ξ) FG[f ]] . (3.14)

Since M ∈ L∞(Ĝ) is bounded, it is clear that u given by (3.12) is well-defined as an
element in S ′(G). We want to use the transference principle for multipliers, i.e., Lemma
2.1, to establish (3.11). For this purpose, let χ be a ”cut-off” function with

χ ∈ C∞0 (R;R), χ(η) = 1 for |η| ≤ π

T
, χ(η) = 0 for |η| ≥ 2π

T
.
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We then define

m : R× R3 → C, m (η, ξ) :=
1− χ(η)

|ξ|2 − η2 + iλη|ξ|2
. (3.15)

In order to employ Lemma 2.1, we define the group H := R× R3 and put

Φ : Ĝ→ Ĥ, Φ(k, ξ) := (k, ξ). (3.16)

Recall that Ĥ = R× R3. Clearly, Φ is a continuous homomorphism. Moreover,

M = m ◦ Φ. (3.17)

Consequently, if we can show that m is a continuous Lp(H)-multiplier, we may conclude
from Lemma 2.1 that M is an Lp(G)-multiplier. Observe the only zero of the denom-
inator in (3.15) is (η, ξ) = (0, 0). Since the numerator 1 − χ(η) in (3.15) vanishes in a
neighborhood of (0, 0), we see that m is continuous; in fact m is smooth. We shall now
apply Marcinkiewicz’s multiplier theorem to show that m is an Lp(H)-multiplier. For
this purpose we must verify that

sup
ε∈{0,1}4

sup
(η,ξ)∈R×R3

∣∣ξε11 ξ
ε2
2 ξ

ε3
3 η

ε4∂ε11 ∂
ε2
2 ∂

ε3
3 ∂

ε4
η m(η, ξ)

∣∣ <∞. (3.18)

Since m is smooth, we only need to show that all functions of type

(η, ξ)→ ξε11 ξ
ε2
2 ξ

ε3
3 η

ε4∂ε11 ∂
ε2
2 ∂

ε3
3 ∂

ε4
η m(η, ξ)

stay bounded as |(η, ξ)| → ∞. Observe that these functions are rational functions with
non-vanishing denominators away from (0, 0). Since 1− χ(η) vanish in a neighborhood
of (0, 0), it follows that |m(η, ξ)| ≤ c0. We further estimate

|η∂ηm(η, ξ)| ≤ |χ′(η)| |η|√
(|ξ|2 − η2)2 + λ2η2|ξ|4

+
|1− χ(η)|

√
4η4 + λ2η2|ξ|4

(|ξ|2 − η2)2 + λ2η2|ξ|4

≤ 2π |χ′(η)|

T
√

(|ξ|2 − η2)2 + λ2η2|ξ|4

+
|1− χ(η)|√

(|ξ|2 − η2)2 + λ2η2|ξ|4

√√√√ 4(
|ξ|2
η2 − 1

)2
+ λ2 |ξ|4

η2

+
1

(|ξ|2−η2)2

λ2η2|ξ|4 + 1

≤ 2π |χ′(η)|

T
√

(|ξ|2 − η2)2 + λ2η2|ξ|4
+ c0

√
4c1 + 1

with c1 := min(1, T
2

λ2π2 ). Since the denominator
(
|ξ|2 − η2

)2
+ λ2η2|ξ|4 does not vanish

for η ∈ supp |χ′(η)| ⊂ {η ∈ R | πT < |η| <
2π
T }, there is a constant c2 > 0 such

|η∂ηm(η, ξ)| ≤ c2 + c0

√
4c1 + 1.
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For the partial derivative ∂jm we have

|ξj∂jm(η, ξ)| = 2 |1− χ(η)| |ξj |2|1 + iλη|
||ξ|2 − η2 + iλη|ξ|2|2

≤ 2 |1− χ(η)|√
(|ξ|2 − η2)2 + λ2η2|ξ|4

√
|ξ|4 + λ2η2|ξ|4

(|ξ|2 − η2)2 + λ2η2|ξ|4

≤ 2 |1− χ(η)|√
(|ξ|2 − η2)2 + λ2η2|ξ|4

√
1

λ2η2
+ 1 ≤ 2c0c3,

with c3 :=
√
T 2

λ2π2 + 1. Furthermore,

|ξjξk∂j∂km(η, ξ)| ≤ 8 |1− χ(η)|
|ξ|4

(
1 + λ2η2

)(
(|ξ|2 − η2)2 + λ2η2|ξ|4

)3/2
≤ 8c0c

2
3

and

|ξjη∂j∂ηm(η, ξ)| ≤ 2
∣∣χ′(η)

∣∣ √
|ξ|4 + λ2η2|ξ|4

(|ξ|2 − η2)2 + λ2η2|ξ|4
+ 2 |1− χ(η)| λ|ξ|2|η|

(|ξ|2 − η2)2 + λ2η2|ξ|4

+ 4 |1− χ(η)|
√

4η4 + λ2η2|ξ|4
√
|ξ|4 + λ2η2|ξ|4(

(|ξ|2 − η2)2 + λ2η2|ξ|4
)3/2

≤ 2 |χ′(η)| c3√
(|ξ|2 − η2)2 + λ2η2|ξ|4

+ 2c0 + 4c0c3

√
4c1 + 1

≤ T
π
c2c3 + 2c0 + 4c0c3

√
4c1 + 1.

Boundedness of the terms with derivatives of third order is given by

|ξjξkη∂j∂k∂ηm(η, ξ)| ≤ 8 |χ′(η)| · |η| · |ξ|4(1 + λ2η2)(
(|ξ|2 − η2)2 + λ2η2|ξ|4

)3/2
+

16 |1− χ(η)| · |η| · |ξ|4
√

1 + λ2η2(
(|ξ|2 − η2)2 + λ2η2|ξ|4

)3/2

+
24 |1− χ(η)| · |ξ|4

(
1 + λ2η2

)
· |η|

√
λ2|ξ|4 + 4η2(

(|ξ|2 − η2)2 + λ2η2|ξ|4
)2

≤ 8 |χ′(η)| c2
3√

(|ξ|2 − η2)2 + λ2η2|ξ|4
+ 16c0c3 + 24c0c

2
3

√
4c1 + 1

≤ 4T
π
c2c

2
3 + 16c0c3 + 24c0c

2
3

√
4c1 + 1

and

|ξjξkξl∂j∂k∂lm(η, ξ)| ≤ 48 |1− χ(η)| |ξ|6(1 + λ2η2)3/2(
(|ξ|2 − η2)2 + λ2η2|ξ|4

)2 ≤ 48c0c
3
3.
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We see that

|ξjξkξlη∂j∂k∂l∂ηm(η, ξ)| ≤
192 |1− χ(η)| · |η| · |ξ|6

(
1 + λ2η2

)3/2√
λ2|ξ|4 + 4η2(

(|ξ|2 − η2)2 + λ2η2|ξ|4
)5/2

+
144 |1− χ(η)| · λ|η| · |ξ|6

(
1 + λ2η2

)(
(|ξ|2 − η2)2 + λ2η2|ξ|4

)2 +
48 |χ′(η)| · |η| · |ξ|6(1 + λ2η2)3/2(

(|ξ|2 − η2)2 + λ2η2|ξ|4
)2

≤ 192c0c
3
3

√
4c1 + 1 + 144c0c

2
3 +

48 |χ′(η)| c3
3√

(|ξ|2 − η2)2 + λ2η2|ξ|4

≤ 192c0c
3
3

√
4c1 + 1 + 144c0c

2
3 +

24T
π

c2c
3
3.

Consequently, we conclude (3.18) and by Marcinkiewicz’s multiplier theorem that m is
an Lp(H)-multiplier. Hence, due to (3.17) it follows from Lemma 2.1 that M is an
Lp(G)-multiplier. Recalling (3.12) or (3.14), we thus obtain

‖u‖p ≤ c‖f‖p. (3.19)

Note that the neighborhood in which m is vanishing becomes small as T → ∞, and
hence the corresponding bound in (3.18) grows for large periods T . Differentiating u
with respect to time and space, we obtain from (3.12) the formulas

∂βt u = F−1
G

[
(ik)βM (k, ξ) FG[f ]

]
∂αxu = F−1

G

[
i|α|ξαM (k, ξ) FG[f ]

]
∂t∂

α
xu = F−1

G

[
i|α|+1kξαM (k, ξ) FG[f ]

]
.

We can repeat the argument above with (ik)βM(k, ξ) in the role of the multiplier M ,
and (iη)βm(η, ξ) in the role of m, to conclude

‖∂βt u‖p ≤ c‖f‖p. (3.20)

Similarly, we obtain

‖∂αxu‖p ≤ c‖f‖p, ‖∂t∂αxu‖p ≤ c‖f‖p. (3.21)

Collecting (3.19)-(3.21) we conclude (3.11). Due to (3.12) it is clear that P⊥u = u,
whence we have u ∈ Xp

⊥(G).
It remains to show uniqueness. Assume that v ∈ S ′(G) is another solution with
Pv = 0. Therefore, we notice

∂2
t (u− v)−∆ (u− v)− λ∂t∆ (u− v) = 0.

Applying the Fourier transform FG, it then follows
(
|ξ|2 − k2 + iλk|ξ|2

)
FG[u− v] = 0

and thus supp FG[u − v] ⊂ {(0, 0)}. Recall that P(u − v) is time independent. From
this we obtain that δZ · FG[u − v] = FG[P(u − v)] = 0 and therefore we must have
(0, 0) /∈ supp FG[u− v]. Consequently, we conclude supp FG[u− v] = ∅ and u = v.

12



3.2 Dirichlet Boundary Condition

Next, we consider the damped wave equation with Dirichlet boundary conditions. We
first treat the half-space case, then the bent half-space case, and finally the bounded
domain. We utilize the equivalence between the resolution to T -time-periodic solutions
to (WD) and the resolution of the system obtained by replacing the time axis in (WD)
with the torus T. The latter system is investigated in the framework introduced in
Section 2.4.

3.2.1 The Half-Space

We first consider the half-space case{
∂2
t u−∆u− λ∂t∆u = f in T× R3

+,

u = g on T× ∂R3
+.

(3.22)

We make use of a reflection principle argument.

Lemma 3.5. Let p ∈ (1,∞). For any f ∈ P⊥Lp(T×R3
+) and g ∈ P⊥T pD

(
T× ∂R3

+

)
there

exists a unique solution u ∈ Xp
⊥(T×R3

+) to (3.22) and there is a constant c = c(p, T ) > 0
such that

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pD

)
. (3.23)

If additionally f ∈ P⊥Ls(T× R3
+) and g ∈ P⊥Ts

D

(
T× ∂R3

+

)
for some s ∈ (1,∞), then

also u ∈ Xs
⊥(T× R3

+).

Proof. For homogeneous boundary values, i.e. g = 0, the existence of a solution u ∈
Xp
⊥(T×R3

+) to (3.22) satisfying (3.23) follows from the reflection principle in combination
with Lemma 3.4. We demonstrate this principle for the Dirichlet problem. Define

f̃(t, x) :=

{
f(t, x′, x3) if x3 ≥ 0,

−f(t, x′,−x3) if x3 < 0,

with x′ := (x1, x2). By Lemma 3.4 there is a solution ũ ∈ Xp
⊥(T× R3) to

∂2
t ũ−∆ũ− λ∂t∆ũ = f̃ in T× R3 (3.24)

satisfying (3.23). To classify u := ũ|T×R3
+

as a solution to (3.22), we still have to verify

that u satisfies the boundary condition. For this purpose, we show that v(t, x) :=
−ũ(t, x′,−x3) is another solution to (3.24). We observe that(
∂2
t −∆− λ∂t∆

)
v(t, x) =

(
−∂2

t + ∆ + λ∂t∆
)
ũ(t, x′,−x3) = −f̃(t, x′,−x3) = f̃(t, x).

Since a solution to (3.24) is unique in the whole-space case by Lemma 3.4, we obtain
ũ(t, x′, x3) = −ũ(t, x′,−x3) and thus

TrD

[
ũ(t, x′, x3)|T×R3

+

]
= −TrD

[
ũ(t, x′,−x3)|T×R3

+

]
.

13



Consequently, TrD

[
ũ|T×R3

+

]
= 0. We conclude that u(t, x) := ũ(t, x)|T×R3

+
is a solu-

tion to (3.22) with g = 0 and satisfies (3.23). Utilizing that TrD : Xp
⊥(T × R3

+) →
P⊥Tp

D

(
T× ∂R3

+

)
is continuous and surjective, we can extend this assertion to the case

of inhomogeneous boundary values g ∈ P⊥T pD
(
T× ∂R3

+

)
by a standard lifting argument.

Concerning uniqueness, let u ∈ Xp
⊥(T × R3

+) be a solution to (3.22) with data f = 0

and g = 0. Let ψ ∈ P⊥Lp
′
(T × R3

+) be arbitrary. By the argument above there is

a φ ∈ Xp′

⊥ (T × R3
+) such that ∂2

t φ − ∆φ − λ∂t∆φ = ψ and φ
∣∣
T×∂R3

+
= 0. Defining

φ̃(t, x) := φ(−t, x), we conclude

1

T

T∫
0

∫
R3

+

uψ dxdt =
1

T

T∫
0

∫
R3

+

u
(
∂2
t φ̃−∆φ̃+ λ∂t∆φ̃

)
dxdt

=
1

T

T∫
0

∫
R3

+

(
∂2
t u−∆u− λ∂t∆u

)
φ̃ dxdt = 0.

Since ψ was arbitrary, it follows that u = 0.
Now assume in addition f ∈ P⊥Ls(T × R3

+) for some s ∈ (1,∞) and g = 0. Using

the reflection principle in the same way as above, we obtain a solution Ũ ∈ Xs
⊥(T×R3).

Lemma 3.4 yields that Ũ is unique in S ′(G) and thus Ũ = ũ in S ′(G). It follows that
u ∈ Xs

⊥(T × R3
+). By a standard lifting argument, the same is true for inhomogeneous

boundary values g ∈ P⊥Ts
D

(
T× ∂R3

+

)
.

3.2.2 The Bent Half-Space

In the next step, we consider the Dirichlet problem in a bent half-space T × R3
ω. Here,

R3
ω := {(x′, x3) ∈ R3 | x3 > ω(x′)} is a perturbation of the half-space R3

+ by a continuous
function ω : R2 → R.

Lemma 3.6. Let p ∈ (1,∞) and ω ∈ C0,1(R2). There is a constant δ = δ(p) > 0 with
the following property: If ‖∇ω‖∞, ‖∇2ω‖∞ < δ, then for any f ∈ P⊥Lp

(
T× R3

ω

)
and

g ∈ P⊥T pD
(
T× ∂R3

ω

)
there exists a unique solution u ∈ Xp

⊥
(
T× R3

ω

)
to{

∂2
t u−∆u− λ∂t∆u = f in T× R3

ω,

u = g on T× ∂R3
ω.

(3.25)

Moreover, there is a constant c = c(p, ω, T ) > 0 such that

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pD

)
. (3.26)

If additionally ‖∇ω‖∞, ‖∇2ω‖∞ < min{δ(p), δ(s)} and f ∈ P⊥Ls
(
T× R3

ω

)
and g ∈

P⊥Ts
D

(
T× ∂R3

ω

)
for some s ∈ (1,∞), then u ∈ Xs

⊥(T× R3
ω).

14



Proof. Let

φω : R3
ω → R3

+, φω(x) := x̃ := (x′, x3 − ω(x′)). (3.27)

For a function u defined on T × R3
ω, we set Φ[u](t, x̃) := ũ(t, x̃) := u(t, φ−1

ω (x̃)), where
(t, x̃) ∈ T× R3

+. Observe that

Φ
[ (
∂2
t −∆− λ∂t∆

)
u
]

=
(
∂2
t −∆− λ∂t∆ + R̃

)
ũ, (3.28)

where R̃ : Xp
⊥
(
T× R3

+

)
→ P⊥Lp

(
T× R3

+

)
is given by

R̃ũ :=− |∇ω|2 ∂2
3 ũ+ 2 (∇ω, 0)∇∂3ũ+ (∆ω) ∂3ũ

− λ |∇ω|2 ∂t∂2
3 ũ+ 2λ (∇ω, 0)∇∂t∂3ũ+ λ (∆ω) ∂t∂3ũ.

(3.29)

Moreover, due to (3.23) we can estimate

‖R̃ũ‖p ≤ 8δ (δ + 1) ‖ũ‖Xp
⊥

≤ c 8δ (δ + 1)
(
‖
(
∂2
t −∆− λ∂t∆

)
ũ‖p + ‖TrD ũ‖TpD

)
.

(3.30)

By Lemma 3.5, the operator

K̃ : Xp
⊥(T× R3

+)→ P⊥Lp(T× R3
+)× P⊥Tp

D(T× ∂R3
+),

K̃(ũ) :=
(
∂2
t ũ−∆ũ− λ∂t∆ũ,TrD ũ

)
is a homeomorphism. For sufficiently small δ, we infer from (3.30) that also

K : Xp
⊥(T× R3

+)→ P⊥Lp(T× R3
+)× P⊥Tp

D(T× ∂R3
+),

K(ũ) :=
(
∂2
t ũ−∆ũ− λ∂t∆ũ+ R̃ũ,TrD ũ

)
is a homeomorphism. Since ‖∇ω‖∞, ‖∇2ω‖∞ <∞, it is standard to verify that

Φ : P⊥Lp
(
T× R3

ω

)
→ P⊥Lp

(
T× R3

+

)
,

Φ : Xp
⊥
(
T× R3

ω

)
→ Xp

⊥
(
T× R3

+

)
,

Φ : P⊥Tp
D

(
T× ∂R3

ω

)
→ P⊥Tp

D

(
T× ∂R3

+

)
are homeomorphisms. From (3.28) we thus deduce that

K : Xp
⊥(T× R3

ω)→ P⊥Lp(T× R3
ω)× P⊥Tp

D(T× ∂R3
ω),

K(u) :=
(
∂2
t u−∆u− λ∂t∆u,TrD u

)
is a homeomorphism. The existence of a unique solution to (3.25) that satisfies (3.26)
thus follows. The regularity assertion follows if we consider intersection spaces Xp

⊥∩X
s
⊥

instead of Xp
⊥ in the argument above.
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3.2.3 Bounded Domains

The key lemma for bounded domains Ω ⊂ R3 with a boundary of class C1,1 reads as
follows.

Lemma 3.7. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). The operator

K : Xp
⊥(T× Ω)→ P⊥Lp(T× Ω)× P⊥Tp

D(T× ∂Ω),

K(u) :=
(
∂2
t u−∆u− λ∂t∆u,TrD u

)
is injective and has a dense range. Moreover, there exists a constant c = c(p,Ω, T ) > 0
such that for all u ∈ Xp

⊥(T× Ω) holds

‖u‖Xp
⊥
≤ c

(
‖
(
∂2
t −∆− λ∂t∆

)
u‖p + ‖u‖p + ‖TrD u‖T pD

)
. (3.31)

Proof. Consider for k ∈ 2π
T Z \ {0} the equation{
−k2v − (1 + ikλ) ∆v = h in Ω,

v = 0 on ∂Ω.
(3.32)

Standard elliptic theory yields for every h ∈ Lp(Ω) a unique solution v ∈ W 2,p(Ω)
to (3.32). If u ∈ Xp

⊥(T × Ω) satisfies K(u) = 0, then FT[u] (k, ·) ∈ W 2,p (Ω) solves
(3.32) with a homogeneous right-hand side. Here FT denotes the Fourier transform
on the torus. Consequently FT[u] (k, ·) = 0. Since k ∈ 2π

T Z \ {0} was arbitrary and
FT[u] (0, ·) = 0 by the assumption Pu = 0, it follows that u = 0. Consequently, K is
injective.

To show that K has a dense range, consider (f, g) ∈ P⊥Lp(T× Ω)×P⊥Tp
D(T× ∂Ω).

Choose G ∈ Xp
⊥(T × Ω) with TrDG = g. Since trigonometric polynomials are dense in

Lp
(
T;Lp(Ω)

)
= Lp(T × Ω), there is a sequence {pn}∞n=1 ⊂ Lp(T × Ω) of trigonometric

polynomials with pn → f −
(
∂2
tG−∆G− λ∂t∆G

)
. If we can find a solution ũn to

K(ũn) = (pn, 0), then K(ũn+G)→ (f, g), and we may conclude density of K’s range. To
show existence of ũn, it clearly suffices to solve K(ũn) = (pn, 0) for a simple trigonometric
polynomial pn := h eikt with arbitrary h ∈ Lq(Ω) and k ∈ 2π

T Z \ {0}. A solution to this
problem is given by ũn := vk eikt, where vk is the solution to (3.32).

Finally, we show (3.31) by a localization method. We choose finitely many balls
Bj ⊂ R3, j ∈ {1, . . . , m} covering Ω, where each j ∈ {1, . . . , m} is of one of the two
types:

1. type R3: if Bj ⊂ Ω,

2. type R3
ωj : if Bj ∩ ∂Ω 6= ∅.

In the second case, ωj : R2 → R denote Lipschitz functions with Bj ∩ ∂Ω ⊂ graph(ωj) in
the respective local coordinates. If we choose the balls sufficiently small, the functions
ωj meet the regularity and smallness assumption in Lemma 3.6 due to the boundary
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regularity of Ω. Let ψj ∈ C∞0
(
R3
)

be smooth cut–off functions satisfying suppψj ⊂ Bj
and

m∑
j=1

ψj = 1 in Ω. We obtain for j ∈ {1, . . . , m}

∂2
t (ψju)−∆ (ψju)− λ∂t∆ (ψju) = fj in T× Ω ∩Bj , (3.33)

where

fj := ψj
(
∂2
t −∆− λ∂t∆

)
u− (∆ψj)u− 2 (∇ψj)∇u− λ (∆ψj) ∂tu− 2λ (∇ψj) ∂t∇u.

Depending on whether j ∈ {1, . . . , m} is of type R3 or R3
ωj , we interpret (3.33) as a

problem in T× R3 or T× R3
ωj and obtain from Lemma 3.4 or Lemma 3.6

‖ψju‖Xp
⊥
≤ c
(
‖
(
∂2
t −∆− λ∂t∆

)
u‖p + ‖u‖p + ‖∇u‖p

+ ‖∂tu‖p + ‖∂t∇u‖p + ‖TrD u‖T pD
)
.

Summing up over j ∈ {1, . . . , m} and using standard interpolation, (3.31) follows.

The next step is to show that we can drop the term ‖u‖p on the right-hand side in
(3.31).

Lemma 3.8. Let p ∈ (1,∞) and Ω ⊂ R3 be a bounded domain with boundary of class
C1,1. There exists a constant c = c (p,Ω, T ) > 0 such that for all u ∈ Xp

⊥ (T× Ω) holds

‖u‖Xp
⊥
≤ c

(
‖
(
∂2
t −∆− λ∂t∆

)
u‖p + ‖TrD u‖T pD

)
. (3.34)

Proof. If (3.34) does not hold, then we find a sequence (uk)k∈N ⊂ X
p
⊥ (T× Ω) such that

‖uk‖Xp
⊥

= 1 for all k ∈ N and ‖
(
∂2
t −∆− λ∂t∆

)
uk‖p + ‖TrD uk‖T pD → 0 as k → ∞.

Suppressing the notation of subsequences, we thus have the weak convergence uk ⇀ u
in Xp

⊥ (T× Ω), and u solves{
∂2
t u−∆u− λ∂t∆u = 0 in T× Ω,

u = 0 on T× ∂Ω.

By Lemma 3.7 it follows that u = 0. Since the domain Ω is bounded, the embedding
Xp
⊥ (T× Ω) ↪→ Lp (T× Ω) is compact, whence ‖uk‖p → 0 as k → ∞. This yields the

contradiction

1 = lim
k→∞
‖uk‖Xp

⊥
≤ lim

k→∞
c
(
‖
(
∂2
t −∆− λ∂t∆

)
uk‖p + ‖uk‖p + ‖TrD uk‖T pD

)
= 0.

Therefore, (3.34) has to hold.

Lemma 3.9. Let p ∈ (1,∞) and Ω ⊂ R3 be a bounded domain of class C1,1. For any
f ∈ P⊥Lp (T× Ω) and g ∈ P⊥T pD (T× ∂Ω) there exists a unique solution u ∈ Xp

⊥ (T× Ω)
to {

∂2
t u−∆u− λ∂t∆u = f in T× Ω,

u = g on T× ∂Ω,
(3.35)
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and there is a constant c = c(p,Ω, T ) > 0 such that

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pD

)
. (3.36)

If additionally f ∈ P⊥Ls (T× Ω) and g ∈ P⊥Ts
D (T× ∂Ω) for some s ∈ (1,∞), then

also u ∈ Xs
⊥ (T× Ω).

Proof. The operator K in Lemma 3.7 is injective and has a dense range. By Lemma 3.8,
the range is also closed. Hence, K is an isomorphism. The unique solvability of (3.35)
as well as the estimate (3.36) follows. The regularity assertion follows immediately from

the unique solvability of (3.35) in X
min{s,p}
⊥ (T× Ω).

3.3 Neumann Boundary Condition

We now consider the corresponding Neumann problems in a half-space and a bounded
domain.

3.3.1 The Half-Space

We first consider the half-space case ∂2
t u−∆u− λ∂t∆u = f in T× R3

+,

∂u

∂n
= g on T× ∂R3

+.
(3.37)

Lemma 3.10. Let p ∈ (1,∞). For any f ∈ P⊥Lp
(
T× R3

+

)
and g ∈ P⊥T pN

(
T× ∂R3

+

)
there exists a unique solution u ∈ Xp

⊥
(
T× R3

+

)
to (3.37) and there is a constant c =

c(p, T ) > 0 such that

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pN

)
. (3.38)

If additionally f ∈ P⊥Ls
(
T× R3

+

)
and g ∈ P⊥T sN

(
T× ∂R3

+

)
for some s ∈ (1,∞), then

also u ∈ Xs
⊥
(
T× R3

+

)
.

Proof. Existence of a solution u ∈ Xp
⊥
(
T× R3

+

)
to (3.37) satisfying (3.38) follows as in

the case of Dirichlet boundary values by using even instead of odd reflection in combi-
nation with Lemma 3.4. Uniqueness of the solution in the space Xp

⊥
(
T× R3

+

)
follows

as in Lemma 3.5.

3.3.2 The Bent Half-Space

Next, we study the Neumann problem in the bent half-space T×R3
ω. Here, ω is defined

as in section 3.2.2.
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Lemma 3.11. Let p ∈ (1,∞) and ω ∈ C1,1(R2). Then there is a constant δ = δ(p) > 0
with the following property: If ‖∇ω‖∞, ‖∇2ω‖∞ < δ, then for any f ∈ P⊥Lp

(
T× R3

ω

)
and g ∈ P⊥T pN

(
T× ∂R3

ω

)
there exists a unique solution u ∈ Xp

⊥
(
T× R3

ω

)
to ∂2

t u−∆u− λ∂t∆u = f in T× R3
ω,

∂u

∂n
= g on T× ∂R3

ω,
(3.39)

which satisfies

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pN

)
, (3.40)

where c = c (p, ω, T ) > 0. If additionally ‖∇ω‖∞, ‖∇2ω‖∞ < min{δ(p), δ(s)} and f ∈
P⊥Ls

(
T× R3

ω

)
and g ∈ P⊥T sN

(
T× ∂R3

ω

)
for some s ∈ (1,∞), then u ∈ Xs

⊥(T× R3
ω).

Proof. Let φω be as in (3.27) and Φ be the lifting operator Φ[u](t, x̃) := ũ(t, x̃) :=
u(t, φ−1

ω (x̃)). Then Φ is a homeomorphism Φ: P⊥T pN
(
T× ∂R3

ω

)
→ P⊥T pN

(
T× ∂R3

+

)
with

Φ [TrN u] =
(
∇u ◦ φ−1

ω · n ◦ φ−1
ω

)
=
(
∇
(
u ◦ φ−1

ω

)
∇φω|cof∇φω · n ◦ φ−1

ω | (cof∇φω)−1 ñ
)

= |cof∇φω · n ◦ φ−1
ω |
(
∇ũ∇φω (∇φω)> ñ

)
= |cof∇φω · n ◦ φ−1

ω |
(
∇ũ · ñ+∇ũ

(
∇φω (∇φω)> − I

)
ñ
)

= |cof∇φω · n ◦ φ−1
ω |TrN ũ+ TrD S̃ũ,

(3.41)

with

S̃ũ := |cof∇φω · n ◦ φ−1
ω |∇ũ

(
∇φω (∇φω)> − I

)
ñ.

Here, ñ denotes the external unit normal vector on T × R3
+ and n the external unit

normal vector on T × R3
ω. It should be understood that TrN u denotes the Neumann

trace operator in T × R3
ω and TrN ũ the Neumann trace operator in T × R3

+. Due to
(3.38), we can estimate

‖S̃ũ‖T pN ≤ c‖cof∇φω · n ◦ φ−1
ω ‖W 1,∞(∂R3

+)‖∇ũ
(
∇φω (∇φω)> − I

)
ñ‖T pN

≤ c(1 + δ)‖∇ũ‖T pN · ‖
(
∇φω (∇φω)> − I

)
ñ‖W 1,∞(∂R3

+)

≤ cδ (1 + δ)2 ‖ũ‖Xp
⊥
≤ cδ (1 + δ)2 (‖(∂2

t −∆− λ∂t∆
)
ũ‖p + ‖TrN ũ‖TpN

)
.

(3.42)

Lemma 3.10 implies that

K+ : Xp
⊥
(
T× R3

+

)
→ P⊥Lp

(
T× R3

+

)
× P⊥T pN

(
T× ∂R3

+

)
,

K+(ũ) :=
(
∂2
t ũ−∆ũ− λ∂t∆ũ,TrN ũ

)

19



is a homeomorphism. The operator

K : Xp
⊥
(
T× R3

+

)
→ P⊥Lp

(
T× R3

+

)
× P⊥T pN

(
T× ∂R3

+

)
,

K(ũ) := K+(ũ) + (R̃ũ,−S̃ũ),

with R̃ defined as in (3.29), is a perturbation of K+ for sufficiently small δ by (3.30) and
(3.42). Consequently, K is also a homeomorphism for sufficiently small δ.

By a direct computation, we observe that the operator on the left-hand side of (3.39)
can be expressed as Φ−1 ◦ K ◦Φ, and thus it is a homeomorphism. Hence, the existence
of a solution u ∈ Xp

⊥
(
T× R3

ω

)
satisfying (3.40) follows.

Now assume in addition f ∈ P⊥Ls
(
T× R3

ω

)
and g ∈ P⊥T sN

(
T× ∂R3

ω

)
for some

s ∈ (1,∞). We obtain u ∈ Xs
⊥
(
T× R3

ω

)
if we consider intersection spaces Xp

⊥ ∩ X
s
⊥

instead of Xp
⊥ in the argument above.

3.3.3 Bounded Domains

Finally, we investigate the Neumann problem for a bounded domain.

Lemma 3.12. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). The operator

K : Xp
⊥(T× Ω)→ P⊥Lp(T× Ω)× P⊥Tp

N (T× ∂Ω),

K(u) :=
(
∂2
t u−∆u− λ∂t∆u,TrN u

)
is injective and has a dense range. Moreover, there exists a constant c = c (p,Ω, T ) > 0
such that for all u ∈ Xp

⊥ (T× Ω) holds

‖u‖Xp
⊥
≤ c

(
‖
(
∂2
t −∆− λ∂t∆

)
u‖p + ‖u‖p + ‖TrN u‖T pN

)
. (3.43)

Proof. Like in the case of Dirichlet boundary value problem, we consider for k ∈ 2π
T Z\{0}

the Helmholtz equation −k
2v − (1 + ikλ) ∆v = h in Ω,

∂v

∂n
= 0 on ∂Ω.

(3.44)

Standard theory for elliptic equations yields for every h ∈ Lp (Ω) a unique solution
v ∈W 2,p (Ω) to (3.44). The injectivity of K and the density of its range follow as in the
proof of Lemma 3.7. Proceeding as in the proof of Lemma 3.7, (3.43) follows.

Lemma 3.13. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). For any f ∈ P⊥Lp (T× Ω) and g ∈ P⊥T pN (T× ∂Ω) there exists a unique
solution u ∈ Xp

⊥ (T× Ω) to ∂2
t u−∆u− λ∂t∆u = f in T× Ω,

∂u

∂n
= g on T× ∂Ω,

(3.45)
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and there is a constant c = c (p,Ω, T ) such that the estimate

‖u‖Xp
⊥
≤ c

(
‖f‖p + ‖g‖T pN

)
(3.46)

holds. If additionally f ∈ P⊥Ls (T× Ω) and g ∈ P⊥T sN (T× ∂Ω) for some s ∈ (1,∞),
then also u ∈ Xs

⊥ (T× Ω).

Proof. The operator K is injectiv and has a dense range by Lemma 3.12. As in Lemma
3.8, we can omit the mid term on the right-hand side in (3.43) and obtain

‖u‖Xp
⊥
≤ c

(
‖
(
∂2
t −∆− λ∂t∆

)
u‖p + ‖TrN u‖T pN

)
. (3.47)

It follows that the range of K is also closed. Hence, K is a homeomorphism. The
unique solvability of (3.45) as well as (3.46) follows. The regularity assertion follows

immediately from the unique solvability of (3.45) in X
min{s,p}
⊥ (T× Ω).

3.4 Proof of the Theorems 3.1 and 3.2

Proof of Theorem 3.1. Existence of a solution us ∈ Ẇ 2,p (Ω) to{
−∆us = Pf in Ω,

us = Pg on ∂Ω
(3.48)

that satisfies (3.2) is well-known from standard theory on elliptic equations. Via the
canonical quotient map π : R → T, the spaces C∞per (R;E(Ω)) and C∞ (T;E(Ω)) are
isometrically isomorphic in the norms ‖·‖p and ‖·‖Xp

⊥
for any Banach space E. By con-

struction, also the Sobolev spaces W k,p
per (R;E (Ω)) and W k,p (T;E (Ω)) are isometrically

isomorphic for any Banach space E. Hence Lemma 3.1 in the case Ω = R3, Lemma 3.5
in the case Ω = R3

+ and Lemma 3.9 in the case of a bounded domain provides a solution

up ∈ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
to

∂2
t up −∆up − λ∂t∆up = P⊥f in R× Ω,

up = P⊥g on R× ∂Ω,

up (t+ T , x) = up (t, x)

(3.49)

that satisfies (3.3). Setting u := us + up, we thus obtain the desired solution to
(WD). Assume v = vs + vp is another solution to (WD) with vs ∈ Ẇ 2,q1 (Ω) and

vp ∈ P⊥W 2,q2
per (R;Lq2(Ω)) ∩ P⊥W 1,q2

per

(
R;W 2,q2(Ω)

)
. Since up and vp both solve (3.49),

the uniqueness statements of the lemmas mentioned above yield up = vp. Similarly, since
both us and vs solve (3.48), us− vs is a polynomial of order 1 when Ω = R3 or Ω = R3

+,
and us − vs = 0 when Ω is a bounded domain.
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Proof of Theorem 3.2. From Lemma 3.1, Lemma 3.10 and Lemma 3.13 we conclude in
the same way as in the Dirichlet case the unique solvability of

∂2
t up −∆up − λ∂t∆up = P⊥f in R× Ω,

∂up
∂n

= P⊥g on R× ∂Ω,

up (t+ T , x) = up (t, x) .

(3.50)

If Pf and Pg satisfy the compatibility condition∫
Ω

Pf dx+

∫
∂Ω

Pg dS = 0,

i.e., if f and g satisfy the condition (3.4), standard theory on elliptic equations yields a
solution us ∈ Ẇ 2,p (Ω) to −∆us = Pf in Ω,

∂us
∂n

= Pg on ∂Ω.

The uniqueness assertion of Theorem 3.2 follows as in the proof of Theorem 3.1.

4 Nonlinear Problem – The Kuznetsov Equation

Existence of a solution to the nonlinear problems (KD) and (KN) shall now be estab-
lished. We employ a fixed point argument based on the estimates established for the
linearized systems (WD) and (WN) in the previous section.

Theorem 4.1. Assume that either Ω = R3, Ω = R3
+ or Ω ⊂ R3 is a bounded domain

with a C1,1-smooth boundary. Let p ∈ (5
2 , 3). There is an ε > 0 such that for all

f ∈ Lpper(R;Lp (Ω)) and g ∈ T pD,per(R× ∂Ω) satisfying

‖f‖p + ‖g‖T pD ≤ ε (4.1)

there is a solution u to (KD) with

u(t, x) = us(x) + up(t, x) ∈ Ẇ 2,p (Ω)⊕ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
.

(4.2)

Theorem 4.2. Let Ω and p be as in Theorem 4.1. There is an ε > 0 such that for all
f ∈ Lpper(R;Lp (Ω)) and g ∈ T pN,per(R× ∂Ω) satisfying

‖f‖p + ‖g‖T pN ≤ ε (4.3)

and

T∫
0

∫
Ω

f dxdt+

T∫
0

∫
∂Ω

g dSdt = 0
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there is a solution u to (KN) with

u(t, x) = us(x) + up(t, x) ∈ Ẇ 2,p (Ω)⊕ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
.

(4.4)

To prove Theorem 4.1 and 4.2, we shall need estimates of the nonlinear terms in
(KD) and (KN). For this purpose we utilize the following embedding properties of
time-periodic Sobolev spaces.

Lemma 4.3. Let Ω be as in Theorem 4.1 and p ∈ (1,∞). Assume that α ∈
[
0, 2
]

and
q0, r0 ∈ [p,∞] satisfy

r0 ≤
2p

2− αp
if αp < 2,

r0 <∞ if αp = 2,

r0 ≤ ∞ if αp > 2,


q0 ≤

np

n− (2− α)p
if (2− α)p < n,

q0 <∞ if (2− α)p = n,

q0 ≤ ∞ if (2− α)p > n,

(4.5)

and that β ∈
[
0, 1
]

and q1, r1 ∈ [p,∞] satisfy
r1 ≤

2p

2− βp
if βp < 2,

r1 <∞ if βp = 2,

r1 ≤ ∞ if βp > 2,


q1 ≤

np

n− (1− β)p
if (1− β)p < n,

q1 <∞ if (1− β)p = n,

q1 ≤ ∞ if (1− β)p > n.

(4.6)

Then for all u ∈W 1,2,p
per (R× Ω) := W 1,p

per(R;Lp(Ω)) ∩ Lpper

(
R;W 2,p(Ω)

)
:

‖u‖Lr0per(R;Lq0 (Ω)) + ‖∇u‖Lr1per(R;Lq1 (Ω)) ≤ C1‖u‖1,2,p, (4.7)

with C1 = C1(T , n,Ω, r0, q0, r1, q1).

Proof. See [4, Theorem 4.1].

Furthermore, we make use of the following lemma.

Lemma 4.4. Let Ω and p be as in Theorem 4.1. Then

‖∂tv∂2
t u‖p + ‖∇v · ∂t∇u‖p ≤ c‖v‖Xp

⊥
‖u‖Xp

⊥

holds for any u, v ∈ Xp
⊥ (T× Ω).

Proof. Clearly, ∂tv ∈W 1,p (T;Lp (Ω))∩Lp
(
T;W 2,p (Ω)

)
for any v ∈ Xp

⊥ (T× Ω). Using
(4.5) with α = 4

5 , we deduce for p ∈ (5
2 ,∞)

‖∂tv‖∞ ≤ c‖v‖Xp
⊥
.

It thus follows from Hölder’s inequality for p ∈ (5
2 ,∞) that

‖∂tv∂2
t u‖p ≤ ‖∂tv‖∞‖∂2

t u‖p ≤ c‖∂tv‖1,2,p‖u‖Xp
⊥
≤ c‖v‖Xp

⊥
‖u‖Xp

⊥
. (4.8)
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A further application of Hölder’s inequality yields

‖∇v · ∂t∇u‖p ≤ ‖∇v‖L∞(T;L3(Ω))‖∂t∇u‖
Lp(T;L

3p
3−p (Ω))

.

From Lemma 4.3 with β = 0 we obtain for p ∈ (1, 3)

‖∂t∇u‖
Lp(T;L

3p
3−p (Ω))

≤ c‖∂tu‖1,2,p ≤ c‖u‖Xp
⊥
.

Choosing β = 4
5 , Lemma 4.3 yields for all p ∈ (5

2 ,∞)

‖∇v‖L∞(T;L3(Ω)) ≤ c‖v‖Xp
⊥
.

Hence we obtain for p ∈ (5
2 , 3)

‖∇v · ∂t∇u‖p ≤ c‖v‖Xp
⊥
‖u‖Xp

⊥
. (4.9)

The lemma now follows from (4.8) and (4.9).

Proof of Theorem 4.1. We shall establish existence of a solution u to (KD) of the form
u = us + up, where us ∈ Ẇ 2,p (Ω) is a solution to the steady-state problem{

−∆us = Pf in Ω,

us = Pg on ∂Ω
(4.10)

and up ∈ P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
a solution to the purely periodic

problem
∂2
t up −∆up − λ∂t∆up − ∂t

(
γ(∂tup)

2 + |∇up|2
)

−2∇us · ∇∂tup = P⊥f in R× Ω,

up = P⊥g on R× ∂Ω.

(4.11)

Standard theory for elliptic problems yields for every Pf ∈ Lp (Ω) a solution us ∈
Ẇ 2,p (Ω) to (4.10) with

‖∇us‖ 3p
3−p
≤ ‖∇2us‖p ≤ c

(
‖Pf‖p + ‖Pg‖T pD

)
∀p ∈ (1, 3). (4.12)

The solution to (4.11) shall be obtained as a fixed point of the mapping

N : P⊥W 2,p
per(R;Lp(Ω)) ∩ P⊥W 1,p

per

(
R;W 2,p(Ω)

)
→ P⊥W 2,p

per(R;Lp(Ω)) ∩ P⊥W 1,p
per

(
R;W 2,p(Ω)

)
N (up) := A−1

(
∂t

(
γ (∂tup)

2 + |∇up|2
)

+ 2∇us · ∇∂tup + P⊥f,P⊥g
)
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with A as in Corollary 3.3. We shall verify that N is a contracting self-mapping on
a ball of sufficiently small radius. For this purpose, let ρ > 0 and consider some up ∈
P⊥W 2,p

per(R;Lp(Ω))∩P⊥W 1,p
per

(
R;W 2,p(Ω)

)
∩Bρ. Since A is a homeomorphism, we obtain

‖N (up)‖Xp
⊥
≤ c ‖A−1‖

(
‖∂tup∂2

t up‖p + ‖∇up · ∂t∇up‖p + ‖∇us · ∇∂tup‖p

+ ‖P⊥f‖p + ‖P⊥g‖T pD
)
.

Utilizing Lemma 4.4, we find that

‖∂tup∂2
t up‖p + ‖∇up · ∂t∇up‖p ≤ c ‖up‖2Xp

⊥
.

Employing (4.12) and Lemma 4.3 with β = 0, we also obtain

‖∇us · ∇∂tup‖p ≤ ‖∇us‖
L

3p
3−p (Ω)

‖∇∂tup‖Lpper(R;L3(Ω)) ≤ c ‖∇2us‖p‖up‖Xp
⊥
.

Consequently,

‖N (up)‖Xp
⊥
≤ c

(
ρ2 + ερ+ ε

)
.

Choosing ε = ρ2 and ρ sufficiently small, we have c
(
ρ2 + ερ+ ε

)
≤ ρ, i.e., N is a

self-mapping on Bρ. Moreover

‖N (up)−N (vp)‖Xp
⊥
≤ c ‖A−1‖

(
‖∂tup∂2

t up − ∂tvp∂2
t vp‖p

+ ‖∇up · ∂t∇up −∇vp · ∂t∇vp‖p + ‖∇us · ∂t∇up −∇us · ∂t∇vp‖p
)

≤ c
(
‖∂tup∂2

t (up − vp)‖p + ‖∂2
t vp∂t (up − vp)‖p + ‖∇up · ∂t∇ (up − vp)‖p

+ ‖∂t∇vp · ∇ (up − vp)‖p + ‖∇us · ∂t∇ (up − vp)‖p
)

≤ c
(

4ρ‖up − vp‖Xp
⊥

+ ε‖up − vp‖Xp
⊥

)
= c(4ρ+ ρ2)‖up − vp‖Xp

⊥
.

Therefore, if ρ is sufficiently small N becomes a contracting self-mapping. By the con-
traction mapping principle, existence of a fixed point for N follows. This concludes the
proof.

Proof of Theorem 4.2. Similar to the proof of Theorem 4.1.
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