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Abstract

We present a new residual-type a posteriori error estimator for the discontin-
uous finite element solution of contact problems. The theoretical results are
derived for two and three-dimensional domains and arbitrary gap functions.
The estimator yields upper and lower bounds to a suitable error norm which
measures the error in the displacements and in a quantity related to the contact
stresses and the actual contact zone. In the derivation of the error estimator
the local properties of the discontinuous solution are exploited appropriately so
that, on the one hand, the error estimator has no contributions related to the
non-linearity in the interior of the actual contact zone and, on the other hand,
the critical region between the actual and non-actual contact zone can be well
refined.

Keywords: Signorini problem, residual-type a posteriori error estimator,
discontinuous Galerkin method, Galerkin functional, full-contact zone.

1. Introduction

For the numerical simulation of processes in engineering and natural science
adaptive mesh refinement is an indispensable tool to reach certain accuracy of
the discrete solution for given computational resources. Adaptive mesh refine-
ment is steered by a posteriori error estimators. It is desirable that a posteriori
error estimators are equivalent to the error, such that they are reliable, i.e. giv-
ing an upper bound to the error and efficient, i.e. giving a lower bound to the
error.

We consider the numerical simulation of Signorini’s problem [1] which mod-
els the contact between a linear elastic body and a rigid body. The penetra-
tion of the bodies is avoided by inequality constraints at the potential contact
boundary. In the weak formulation the problem is described by a variational
inequality due to the constraints. The numerical solution of discrete variational
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inequalities is expensive. Usually, primal-dual-active set strategies or monotone
multigrid methods are used. In this work we assume that a piecewise linear
discontinuous Galerkin finite element discretization has been chosen. Discon-
tinuous finite elements are more flexible, e.g. for unstructured grids, different
polynomial degrees on each element and parallel computing. However, the num-
ber of degrees of freedom is much higher than for continuous finite elements,
thus, increasing the computational costs. Therefore, adaptive mesh refinement
is an important tool.

Residual based error estimators are explicit error estimators which can be
computed directly from the finite element approximation and the given data,
hence no further computation is required. In this article we present a new
residual-type error estimator for the discontinuous finite element solution of
contact problems. The theory is derived for two and three-dimensional domains
and even non-discrete gap functions are considered. Exemplarily, we deal with
the symmetric interior penalty method [2, 3]. It will turn out that in the case
no actual contact occurs, the new error estimator coincides with the standard
residual error estimator for linear elliptic problems. The new error estimator is
also an extension of the latest error estimator for the continuous finite element
solution of contact problems [4] to the non-conforming case.

Solving variational inequalities does not only provide the solution which in
continuums mechanics is the displacement or deformation but also the con-
straining force which here in the case of contact problems corresponds to the
contact stresses at the contact boundary. Even the actual contact zone where
the contact stresses are non-zero ist a priori not known. The article [5] reveals
that sharp a posteriori error estimators can be obtained by involving the error
in the constraining forces in the error measure. Therein a Galerkin functional
is introduced replacing the role of the residual for linear equations.

In the present work we propose a suitable Galerkin functional and an er-
ror measure for both unknowns in order to derive a sharp a posteriori error
estimator. In contrast to continuous finite elements the nonconformity of the
discretization has to be considered. Therefore, we exploit the definition of a
so-called smoothing function which is a continuous finite element function con-
structed from the discontinuous finite element solution. An important point in
this work is the definition of the discrete counterpart of the contact force density
as a functional onH1, which we call quasi-discrete contact force density. In Sec-
tion 3.1 we give a short excursion to the meaning of the linear residual and the
discrete contact force as well as to different definitions of this discrete counter-
part of the contact force density in the literature, e.g. in [5, 6, 7, 8, 9, 4, 10, 11]
where it has been used for the derivation of a posteriori error estimators. We
point out that applied to discontinuous finite elements the two existing ap-
proaches are very close and even in the interior of the actual contact zone, called
full-contact, these two approaches coincide. Moreover, the works [12, 9, 4] reveal
that a definition of the quasi-discrete contact force density which distinguishes
between areas of the contact boundary where the bodies are fully or only par-
tially in contact, gives rise to a localization of the error estimator contributions
related to the non-linearity. In the present work this insight is translated to the
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discontinuous finite element solution, for the first time. In contrast to the case
of continuous finite elements for contact problems the definition of full-contact
is more localized and a nonlinear definition of the quasi-discrete contact force
density [4] is avoidable due to the elementwise definition of the basis functions.

In the derivation of the new a posteriori error estimator we exploit local
properties of the variational inequality where in some parts the non-penetration
condition and the contact force density have to be considered, while in the
rest the variational inequality reduces locally to a variational equation. We
emphasize that an appropriate splitting of the arising terms after integration by
parts of the Galerkin functional is important to maximize cancellation effects.
Thereby, we avoid any error estimator contribution related to the non-linearity
in the area of so-called full-contact in contrast to the work [11]. In consequence,
the error estimator perceives that at the boundary which is in full-contact, where
the solution equals the gap function, adaptive refinement cannot improve the
solution. Here, we like to mention that in the case of arbitrary non-discrete gap
functions error estimator contributions related to the obstacle approximation
occur.

The proofs of efficiency are shown for all error estimator contributions occur-
ring for discrete gap functions. They are mainly based on classical arguments
known from residual error estimation except for one error estimator contribution
which is associated to the complementarity condition. Such an error estimator
contribution also occurs in the upper bound of the error estimator proposed
in [11]. Therein it is argued that this error estimator contribution is of higher
order. We like to emphasize that in the present work we explicitly derive a lower
bound in terms of the error estimator contribution associated to the comple-
mentarity condition. The argument that terms are of higher order is only used
for data oscillation.

Finally, numerical examples confirm our theoretical results. The conver-
gence rate of the error estimator as well as refined meshes are shown for differ-
ent examples. The mesh is refined more at the free boundary as in the area of
full-contact, so that the transition zone between actual contact and non-contact
is well resolved. It is obvious that the area of full-contact is not overrefined, es-
pecially compared to the standard residual estimator. Thus, the computational
resources can be used for other areas where high errors are predicted.

2. The Signorini contact problem

The Signorini contact problem describes the contact of a linear elastic body
with a rigid obstacle. The linear elastic body is represented by a domain Ω ⊂ Rd,
d = 2, 3. The boundary Γ = ∂Ω is subdivided in three pairwise disjoint parts,
the Neumann boundary ΓN which is an open subset of Γ, the Dirichlet boundary
ΓD which is a closed subset of Γ and the potential contact boundary ΓC which
is also a closed subset. Each material particle in the closure Ω̄ is identified
with a point x = (x1, ..., xd)

T . Throughout this work we denote all quantities
which refer to tensors of order ≥ 1 by bold symbols as, e.g., the displacements
u : Ω → Rd which are vector-valued. Their components are printed in normal
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type and are indicated by subindices, e.g., ui. The Cartesian basis vectors of
Rd are denoted by ei, i = 1, . . . , d.

As the body is assumed to consist of linear elastic material, the stress tensor
σ(u) : Ω→ Rd×d obeys Hooke’s law

σij(u) = Eijmlεml(u) (1)

where ε is the linearized strain tensor given by

ε(u) =
1

2

(
∇u+ (∇u)T

)
and Eijml are the components of Hooke’s tensor which is symmetric, elliptic
and bounded.

In linear elasticity the non-penetration condition can be approximated by
the so-called linearized non-penetration condition, compare [13] and [1]. The
gap function describing the distance between the elastic body and the rigid
body is given by g : ΓC → R and the direction of constraints are denoted
by ν. Thus, the linearized non-penetration condition is uν ≤ g where uν :=
u ·ν. The non-penetration condition evokes so-called contact stresses which are
boundary stresses in direction of the constraints at the actual contact boundary.
We use the notation σ̂(u) := σ(u)n for boundary stresses where n is the
unit outward normal to the boundary. Hence, the contact stresses are given
by σ̂ν(u) := σ̂(u) · ν. As we neglect frictional effects the frictional stresses
σ̂T (u) := σ̂(u)− σ̂ν(u) · ν are assumed to be zero.

The linear elastic body might be subjected to a volume force density f , to
surface forces π and to Dirichlet values uD. The complete problem formulation
is given in Problem 1.

Problem 1. Strong formulation of the Signorini contact problem
Find u : Ω̄→ Rd such that

−divσ(u) = f in Ω

σ̂(u) = π on ΓN

u = uD on ΓD

uν ≤ g on ΓC

σ̂ν(u) ≤ 0 on ΓC

(uν − g) · σ̂ν(u) = 0 on ΓC

σ̂T (u) = 0 on ΓC .

In the following, we assume that the actual contact boundary, where uν = g,
is a strict subset of the potential contact boundary.

2.1. Weak formulation

The solution space of the weak formulation is the subspace

H := {v ∈H1(Ω) | tr|ΓD (v) = uD}
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of H1(Ω) := (H1(Ω))d where tr is the trace operator. For convenience in the
discrete approximation of the Dirichlet values we assume uD to be continu-
ous and piecewise linear on ΓD. Whenever it is clear from the context that the
restriction to the boundary requires the trace operator we omit the special nota-
tion. The space of test functions is given by H0 := {ϕ ∈H1(Ω) | tr|ΓD (ϕ) = 0}
and its dual is H∗. For a gap function g ∈ H 1

2 (ΓC) we define the admissible set

K := {v ∈H | vν ≤ g on ΓC}. (2)

We assume the force density f and the Neumann data π to be L2-functions
on Ω or ΓN , respectively. Further, the directions of constraints ν are given by
a measurable vector field with absolute value |ν(x)| = 1. The L2-norm and its
scalar product are denoted by ‖ · ‖ and 〈·, ·〉 without any subindex. The duality
pairing between H1 and its dual H−1 is given by 〈·, ·〉−1,1 and the corresponding

norms are ‖ · ‖1 and ‖ · ‖−1. The duality pairing between H
1
2 and its dual H−

1
2

is denoted with 〈·, ·〉− 1
2 ,

1
2

and the corresponding norms are ‖ · ‖ 1
2

and ‖ · ‖− 1
2
.

Later on, we need restrictions to subdomains which are indicated by a further
subindex, e.g., ‖ · ‖1,ω for ω ⊂ Ω. Finally, we define the symmetric bilinear form

a(·, ·) :=

∫
Ω

σ(·) : ε(·), (3)

which is associated with the elastic energy.
The variational inequality in Problem 2 may be derived from the strong

formulation (Problem 1) by integration by parts and exploiting σ̂ν(u)(vν−uν) ≥
0 for u,v ∈ K.

Problem 2. Variational inequality of the Signorini problem
We seek a solution u ∈ K such that

a(u,v − u) ≥ 〈f ,v − u〉+ 〈π,v − u〉ΓN ∀v ∈ K. (4)

The unique solvability of Problem 2 follows from the Theorem of Lions and
Stampacchia, see e.g., [1, Theorem 2.1].

It exists a distribution λ ∈H∗ which turns the variational inequality (4) in
an equation

〈f ,ϕ〉+ 〈π,ϕ〉ΓN − a(u,ϕ) = 〈λ,ϕ〉−1,1 ∀ϕ ∈H0. (5)

From the optimization point of view λ is the Lagrange multiplier while from the
physical point of view λ has the meaning of a constraining force density on ΓC

which we call contact force density. The contact force density is directly related
to the contact stresses

〈λ,ϕ〉−1,1 = −〈σ̂ν(u), ϕν〉− 1
2 ,

1
2

which follows from the generalized Green’s formula, see e.g., [1, Theorem 5.9].
Due to the variational inequality the contact force density fulfills the weak sign
condition 〈λ,v − u〉−1,1 ≤ 0.
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2.2. Discrete formulation

In the discrete setting the domain Ω is polygonal and the grid is a regular
simplicial mesh M. It is taken from a shape-regular family, meaning that the
ratio of the diameter of any element to the diameter of its inscribed circle is
uniformly bounded. The polygonal boundary segments ΓD,ΓC ,ΓN are resolved
by the mesh, meaning that their boundaries ∂ΓC , ∂ΓN , ∂ΓD are either nodes or
edges. Further, we denote the set of all elements having a contact boundary side
by MC and the set of all other elements by MI . For the ease of presentation we
assume that each element e ∈MC has exactly one potential contact boundary
side. The set of all sides s (edges in 2D or faces in 3D) is denoted by S and we
distinguish between the set SD of Dirichlet boundary sides, SN of Neumann
boundary sides, SC of potential contact boundary sides and the set of interior
sides SI .

The set of all nodes p of the mesh is given by N and we distinguish between
the set ND of nodes on the Dirichlet boundary, the set NN of nodes at the
Neumann boundary, the set NC of nodes at the potential contact boundary and
the set of interior nodes NI . If we refer to a set of nodes of a subset of the mesh
we specify it by an additional subindex, as e.g. Ne denotes the set of all nodes
belonging to an element e. Further, we define a patch ωp as the interior of the
union of all elements sharing the node p and the union of all sides of elements
belonging to ω̄p is denoted by γp. We call the union of all sides in the interior of
ωp, not including the boundary of ωp skeleton and denote it by γIp . For Dirichlet
and contact boundary nodes we denote the intersections between Γ and ∂ωp by
γDp := ΓD ∩ ∂ωp and γCp := ΓC ∩ ∂ωp, respectively. Further, we will make use
of ωs which is the union of all elements sharing a side s.

The piecewise linear discontinuous finite element space corresponding to the
mesh M is denoted by

Vm := P1
d(M) = {vm ∈ L2(Ω) | ∀e ∈M vm|e ∈ P1

d(e)}.

Let φp be the linear finite element basis function. Then we define for
all nodes p and all elements e the piecewise linear basis functions by φp,e ={
φp on e
0 otherwise

.

Thus vm|e ∈ P1
d(e) can be represented by

vm|e =
∑
p∈Ne

d∑
i=1

vm,i(p)φp,eei.

We assume the direction of constraints ν to be constant so that vm,ν |e :=
vm|e · ν restricted to an element e is a linear finite element function. Further,
we set ν to the first coordinate direction e1. The discrete approximation gm
of the gap function g is assumed to be a continuous piecewise linear function.
Then the discrete admissible set is given by

Km := {vm ∈ Vm | vm,1|e(p) ≤ gm(p) ∀p ∈ Ne ∀e ∈MC}.
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For the formulation of the discontinuous Galerkin method we need the defi-
nitions of jumps and mean values. Let s be an interior edge and e1 and e2 be two
neighboring elements sharing the side s and ne1 , ne2 the two unit outward nor-
mals. The mean value on the common side is defined by {w} = 1

2 (w|e1 +w|e2)
where w can be scalar, vector or tensor-valued. If w is scalar-valued the jump
can be defined as [w] = w|e1 − w|e2 which is also scalar-valued or it can be
defined as [w] = w|e1ne1 + w|e2ne2 which is vector-valued. If w is vector-
valued the jumps can be either defined component-by-component like in the
scalar case or alternatively defined as a matrix [[v]] = (v|e1 ⊗ne1) + (v|e2 ⊗ne2)
where ⊗ is the dyadic product. For matrices τ the jump term is defined as
[τ ] = τ |e1ne1 + τ |e2ne2 which is a vector. For boundary edges s we define
{w} = [w] = w.

For the discrete problem formulation we consider the symmetric interior
penalty method, see e.g. [2]. The bilinear form is given by

asip(vm,wm) =
∑
e∈M

∫
e

σ(vm) : ε(wm)

−
∑

s∈SI∪SD

∫
s

{σ̂(vm)}[wm] + [vm]{σ̂(wm)}

+
∑

s∈SI∪SD

η̂

hs

∫
s

[vm][wm]

where η̂ is a positive parameter. We note that the scalar product {σ̂(vm)}[wm]
can be rewritten as the Frobenius scalar product {σ} : [[wm]]. Further the

scalar product [vm][wm] =
∑d
i=1[vm,i][wm,i] can be reformulated to the Frobe-

nius scalar product [[vm]] : [[wm]].
The right hand side is given by

F sip(wm) =
∑
e∈M

∫
e

fwm +
∑

s∈SN

∫
s

πwm

−
∑

s∈SD

∫
s

uDσ̂(wm) +
∑

s∈SD

η̂

hs

∫
s

uDwm.

Thus we can state the discrete problem formulation.

Problem 3. Discrete variational inequality of the Signorini problem
Find um ∈ Km fulfilling the variational inequality

asip(um,vm − um) ≥ F sip(vm − um) ∀vm ∈ Km. (6)

The discrete formulation Problem 3 is consistent, i.e. the exact solution
u fulfills the discrete variational inequality under the regularity assumption
u ∈H ∩H2(Ω).

The norm corresponding to the bilinearform is

‖v‖a,sip =

(∑
e∈M

‖ε(v)‖2L2(e) +
∑

s∈SI∪SD

1

hs
‖[v]‖2L2(s)

) 1
2

.
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With respect to this norm the discrete coercivity of the bilinearform can be
shown for a sufficiently large parameter η̂. In [3] it is shown that η̂ & 6(µ+ λ)
where µ, λ are the Lamé constants. Thus, as the bilinearform is bounded and
elliptic on Vm and Km is a closed and convex subset of Vm the well-posedness
in the discrete setting is guaranteed. For the two-dimensional case an a priori
error estimate can be found in [3].

3. A posteriori error estimator

In this section we state the main results. The error measure, the Galerkin
functional and the error estimator contributions will be defined and finally the
Theorems of reliability and efficiency are formulated. The proofs of the Theo-
rems are postponed to Sections 4 and 5. In order to define the error measure and
the Galerkin functional (Section 3.2) we motivate and define the quasi-discrete
contact force density in Section 3.1.

For the subsequent analysis we need a continuous approximation of the dis-
continuous solution. We call this function smoothing function and denote it by
ûm. It is a function of the linear finite element space with incorporated Dirichlet
values

Hm := {vm ∈ C0(Ω̄) | ∀e ∈ m, vm|e ∈ P1
d(e) and vm = uDm on ΓD}.

Usually, for Dirichlet nodes ûm(p) := uDm(p) and for all remaining nodes the
node values are defined as the average ûm(p) := 1

#(e⊂ωp)

∑
e∈ωp

um|e(p), see e.g.

in [14].
Here, we have to adapt this definition at least for nodes p ∈ NC and the

direction of constraints. We define ûm,1(p) := max{um,1|s(p) : s ∈ γCp } ∀p ∈ NC .
Thus, there exist s∗ such that ûm,1(p) = um,1|s∗(p). For a contact boundary
node and the tangential coordinate directions we can e.g. choose the node value
ûm,i(p) = um,i(p)|s∗ where s∗ has been taken from the definition of ûm,1(p) or
choose the average as for the other nodes.

In the derivation of the error estimator we will make use of the following
result. The proof follows similar to [10] and [14].

Lemma 1. Let M be a shape regular mesh and vm ∈ Vm. It holds

∑
e∈M

h−2
e ‖v̂m − vm‖2L2(e) .

(∑
s∈SI

∫
s

1

he
[vm]2

)
+

( ∑
s∈SD

∫
s

1

he
(vm − uDm)2

)

and

∑
e∈M

‖∇(v̂m − vm)‖2L2(e) .

(∑
s∈SI

∫
s

1

he
[vm]2

)
+

( ∑
s∈SD

∫
s

1

he
(vm − uDm)2

)
.

Remark 1. For the more general case that uD ∈ C0(ΓD) a variant of Lemma
1 can be found in [15].
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3.1. Quasi-discrete contact force density

As in [4] we aim to find an upper and lower bound of the error measure

‖u− um‖a,sip + ‖λ− λ̃m‖−1 (7)

where λ̃m ∈ H∗ called quasi-discrete contact force density is a functional on
H0, approximating the discrete counterpart of the contact force density (5).
This quantity will be motivated and defined in this Section.

In order to give a better understanding of the role of λ̃m ∈ H∗ and of the
error measure we make a short excursion to conforming finite elements and
existing residual-type error estimators for obstacle and contact problems.

We note that in the case of conforming finite elements and linear equations
the quantity 〈R(um), ·〉−1,1 := F (·)− a(um, ·), called linear residual, is used for
the derivation of the error estimator. In this case if R(um) is tested against
functions in H0 it is a measure of the error. In the nonlinear case of obstacle
and contact problems, if R(um) is tested against discrete functions it represents
the difference between the discrete equation and the discrete inequality. Thus,
we call it discrete contact force density and denote it by λm. In consequence, in
the case of obstacle and contact problems, the linear residual is no appropriate
measure of the error. It has parts of the error as well as of the discrete contact
force density.

Further, in the case of variational inequalities not only the displacements u
but also the contact force density λ is an unknown of the system. The error
measure (7) accounts for the errors in both quantities and the linear residual will
be replaced by a Galerkin functional, see Section 3.2. Therefore, the discrete
counterpart of the contact force density λ̃m ∈H∗ has to be defined.

In [5, 6, 7] for obstacle and contact problems discretized with continuous
finite elements the discrete approximation of the contact force density is defined

as a discrete function Λm =
∑
p∈NC spφp with sp =

〈λm,φpe1〉−1,1∫
φp

. By definition

it is a functional on H0. We call Λm lumped linear residual and sp are the node
values. Recently, this method has been used for discontinuous finite element
discretizations in [10, 11]. We denote that sp ≥ 0 if um,1(p) = gm(p) and sp = 0
if um,1(p) < gm(p), thus fulfilling nodewise a discrete counterpart of the sign and
complementarity conditions of λ or σ̂ν(u), respectively. As Λm =

∑
p∈NC spφp

is a discrete function a complementarity condition cannot be fulfilled in the so-
called semi-contact zone which consists of elements having nodes which are in
contact and nodes which are not in contact. It is only valid in so-called full-
contact areas where um,1 = gm and in non-actual-contact areas where um,1 < gm.

For a posteriori error estimation it would be very advantageous, especially
for the efficiency and the localization of estimator contributions, if the quasi-
discrete contact force density is defined differently for the different areas of full-
and semi-contact. Such an approach has been first used for the derivation of an a
posteriori error estimator in [12] and applied to the finite element discretization
of obstacle and contact problems in [8, 9, 4]. As far as we know, this article
is the first one exploiting this approach for the derivation of a posteriori error
estimators for a discontinuous Galerkin method for contact problems.
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We call an element full-contact element, if u1,m|e(p) = gm|e(p) for all contact
boundary nodes p ∈ NC

e . This implies that û1,m|e(p) = gm|e(p) ∀p ∈ NC
e . We

call an element semi-contact element if u1,m|e(p) = gm|e(p) for at least one node
p ∈ NC

e but not for all nodes. As in the case of discontinuous finite elements
the support of a basis function is the element while in the case of continuous
finite elements the support of a basis function is the patch ωp, the definition
of full-contact is more localized for the discontinuous than for the continuous
finite element discretization, compare [4]. The set of all full-contact elements is
denoted by MfC . The set of all semi-contact elements is denoted by MsC . The
elements of MC which are neither in full- nor in semi-contact belong to the set
of non-actual contact elements MnC .

We define the quasi-discrete contact force density λ̃m as follows〈
λ̃m,ϕ

〉
−1,1

:=
∑

e∈MC

∑
p∈NC

e

sp,ecp,e(ϕ1)

∫
s∈SC

e

φp,e (8)

where cp,e(ϕ1) is defined differently depending on the contact status of the
elements. For full-contact elements e ∈ MfC and the corresponding contact
boundary side s ⊂ SC

e we define for all nodes p ∈ NC
e ∩ s

cp,e(ϕ1) =

∫
s
ϕ1φp,e∫
s
φp,e

. (9)

For semi-contact and non-actual contact elements e ∈ MsC ∪MnC and the
corresponding contact boundary side s ⊂ SC

e we define for all nodes p ∈ NC
e ∩ s

cp,e(ϕ1) =

∫
b
ϕ1φp,e∫
b
φp,e

(10)

where b ( s, e.g. the side belonging to p obtained by uniform refinement of s.

Further sp,e :=
〈λm,φp,ee1〉−1,1,e∫

s∈SC
e
φp,e

is the node value of the lumped linear resid-

ual. Using integration by parts (6) can be reformulated to∑
e∈M

∫
e

(divσ(um) + f) · (vm − um)−
∑
s∈SI

∫
s

[σ̂(um)]{vm − um}

−
∑

s∈SN

∫
s

(σ̂(um)− π){vm − um} −
∑

s∈SC

∫
s

σ̂(um){vm − um}

+
∑
s∈SI

∫
s

[um]{σ̂(vm − um)}+
∑

s∈SD

∫
s

(um − uDm){σ̂(vm − um)}

−
∑
s∈SI

η̂

hs

∫
s

[um][vm − um]−
∑

s∈SD

η̂

hs

∫
s

(um − uDm)(vm − um) ≤ 0.

(11)

From now on, we use the abbreviation r(um) := f + divσ(um) for the element
residual.

10



For e ∈ MC , p ∈ NC
e and vm = um − φp,ee1 ∈ Km in (11), we get the

following representation of 〈λm, φp,ee1〉−1,1,e

〈λm, φp,ee1〉−1,1,e

=

∫
e

r1(um)φp,e −
∑
s∈SI

e

∫
s

[σ̂1(um)]
1

2
φp,e

−
∑

s∈SN
e

∫
s

(σ̂1(um)− π1)φp,e −
∑

s∈SC
e

∫
s

σ̂1(um)φp,e

−
∑
s∈SI

e

η̂

hs

∫
s

[um,1]φp,ene −
∑

s∈SD
e

η̂

hs

∫
s

(um,1 − uDm,1)φp,e

+
∑
s∈SI

e

∫
s

[um]
1

2
σ̂(φp,ee1) +

∑
s∈SD

e

∫
s

(um − uDm)σ̂(φp,ee1) ≥ 0. (12)

Thus, sp,e ≥ 0 ∀e ∈ MC . As for all e ∈ MnC one can choose test functions
vm = um ± εφp,ee1 ∈ Km in the variational inequality (11), it follows that
sp,e = 0 ∀e ∈MnC .

Inserting this representation (12) of sp,e in (8) we get the formulation〈
λ̃m,ϕ

〉
−1,1

=
∑

e∈MC

 ∑
p∈NC

e

∫
e

(r1(um))cp,e(ϕ1)φp,e −
∑
s∈SI

e

∫
s

[σ̂1(um)]
1

2
cp,e(ϕ1)φp,e

−
∑

s∈SN
e

∫
s

(σ̂1(um)− π1)cp,e(ϕ1)φp,e −
∑

s∈SC
e

∫
s

σ̂1(um)cp,e(ϕ1)φp,e

−
∑
s∈SI

e

η̂

hs

∫
s

[um,1]cp,e(ϕ1)φp,ene −
∑

s∈SD
e

η̂

hs

∫
s

(um,1 − uDm,1)cp,e(ϕ1)φp,e

+
∑
s∈SI

e

∫
s

[um]
1

2
cp,e(ϕ1)σ̂(φp,ee1) +

∑
s∈SD

e

∫
s

(um − uDm)cp,e(ϕ1)σ̂(φp,ee1)

 .

(13)

As σ̂(um)1 is constant on each element it follows from the definition of cp,e(ϕ1)
for full-contact elements that∑

s∈SC
e

∫
s

σ̂1(um)cp,e(ϕ1)φp,e =
∑

s∈SC
e

∫
s

σ̂1(um)ϕ1φp,e ∀e ∈MfC .

11



Exploiting this fact and sp,e = 0 ∀e ∈MnC , we get the alternative formulation〈
λ̃m,ϕ

〉
−1,1

=
∑

e∈MsC

∑
p∈NC

e

sp,ecp,e(ϕ1)

∫
s∈SC

e

φp,e

+
∑

e∈MfC

 ∑
p∈NC

e

∫
e

r1(um)cp,e(ϕ1)φp,e −
∑
s∈SI

e

∫
s

[σ̂1(um)]
1

2
cp,e(ϕ1)φp,e

−
∑

s∈SN
e

∫
s

(σ̂1(um)− π1)cp,e(ϕ1)φp,e −
∑

s∈SC
e

∫
s

σ̂1(um)ϕ1φp,e

−
∑
s∈SI

e

η̂

hs

∫
s

[um,1]cp,e(ϕ1)φp,ene −
∑

s∈SD
e

η̂

hs

∫
s

(um,1 − uDm,1)cp,e(ϕ1)φp,e

+
∑
s∈SI

e

∫
s

[um]
1

2
cp,e(ϕ1)σ̂(φp,ee1) +

∑
s∈SD

e

∫
s

(um − uDm)cp,e(ϕ1)σ̂(φp,ee1)

 .

(14)

We note that the definition (14) of the quasi-discrete contact force density re-
minds us of the definitions in [12, 9, 4] while the definition (8) is similar to the
lumped linear residuals used in e.g. [5, 11]. The difference can only be found

in a factor ρ(ϕ1) =
( ∫

s
φp,e∫

s
ϕ1φp,e

∫
b
ϕ1φp,e∫
b
φp,e

)
which is the ratio of the integral means

cp,e(ϕ1) over s and the subset b. The contributions for semi-contact elements
are weighted by this ratio.〈

λ̃m,ϕ
〉
−1,1

=
∑

e∈MC

∑
p∈NC

e

sp,ecp,e(ϕ1)

∫
s∈SC

e

φp,e

=
∑

e∈MfC

∑
p∈NC

e

sp,e

∫
s∈SC

e

ϕ1φp,e

+
∑

e∈MsC

∑
p∈NC

e

sp,eρ(ϕ1)

∫
s∈SC

e

ϕ1φp,e

In the following we will use the representation (8) as it is easier in the subsequent
analysis.

3.2. Galerkin functional

Similar to the linear case where the error is bounded by the linear residual
we want to exploit the dual norm of the Galerkin functional defined by

〈Gm,ϕ〉−1,1 := a (u− um,ϕ) +
〈
λ− λ̃m,ϕ

〉
−1,1

∀ϕ ∈H1
0(Ω) (15)

12



for the derivation of upper and lower bounds. From the definition of the Galerkin
functional it follows directly

‖λ− λ̃m‖2−1 . ‖Gm‖2−1 + ‖ε(u− um)‖2 (16)

and
‖Gm‖−1,e . ‖ε(u− um)‖e + ‖λ− λ̃m‖−1,e. (17)

The latter will be exploited in the proofs of the local lower bounds.
For the upper bound it remains to bound ‖ε(u − um)‖2 which also occurs

in the error norm ‖u− um‖2a,sip.
From the triangle inequality, Young’s inequality, Lemma 1 and the ellipticity

of Hooke’s tensor follows

‖ε(u− um)‖2 . ‖ε(u− ûm)‖2 + ‖ε(ûm − um)‖2

. ‖ε(u− ûm)‖2 +

(∑
s∈SI

∫
s

1

he
[um]2

)
+

( ∑
s∈SD

∫
s

1

he
(um − uDm)2

)
︸ ︷︷ ︸

(∗)

.

(18)

As the contributions (∗) occur in the error norm as well as in the error estimator,
it remains to bound further ‖ε(u− ûm)‖2 by means of Lemma 1 like in (18), of
the boundedness of Hooke’s tensor and of the weighted Young’s inequality

‖ε(u− ûm)‖2 . a(u− ûm,u− ûm)

= a(u− um,u− ûm) + a(um − ûm,u− ûm)

= 〈Gm,u− ûm〉−1,1 −
〈
λ− λ̃m,u− ûm

〉
−1,1

+ a(um − ûm,u− ûm)

≤ C1 (‖Gm‖−1 + ‖ε(um − ûm)‖) ‖ε(u− ûm)‖ −
〈
λ− λ̃m,u− ûm

〉
−1,1

.
C1

2

(
‖Gm‖2−1 +

(∑
s∈SI

∫
s

1

hs
[um]2

)
+

( ∑
s∈SD

∫
s

1

hs
(um − uDm)2

))

+
1

2
‖ε(u− ûm)‖2 −

〈
λ− λ̃m,u− ûm

〉
−1,1

≤ C1

(
‖Gm‖2−1 +

(∑
s∈SI

∫
s

1

hs
[um]2

)
+

( ∑
s∈SD

∫
s

1

hs
(um − uDm)2

))

− 2
〈
λ− λ̃m,u− ûm

〉
−1,1

. (19)

3.3. Error estimator and main results

The error estimator

η :=

9∑
k=1

ηk, (20)

13



for which we prove efficiency and reliability in the following sections consists of
the following contributions:

η1 :=

(∑
e∈M

η2
1,e

) 1
2

, η1,e := he‖r(um)‖e

η2 :=

(∑
s∈SI

η2
2,s

) 1
2

, η2,s := h
1
2
s ‖[σ̂(um)]‖s

η3 :=

( ∑
s∈SN

η2
3,s

) 1
2

, η3,s := h
1
2
s ‖σ̂(um)− π‖s

η4 :=

 ∑
s∈(SI∪SD)

η2
4,s

 1
2

, η4,s :=

{
h
− 1

2
s ‖[um]‖s if s ∈ SI

h
− 1

2
s ‖um − uDm‖s if s ∈ SD

η5 :=

( ∑
s∈SC

d∑
i=2

η2
5,s

) 1
2

, η5,s := h
1
2
s ‖σ̂i(um)‖s

η6 :=

 ∑
e∈MnC∪MsC

∑
s∈SC

e

η2
6,s

 1
2

, η6,s := h
1
2
s ‖σ̂1(um)‖s

η7 :=

( ∑
e∈MsC

η2
7,e

) 1
2

, η7,e :=

 ∑
p∈NC

e

sp,e

∫
b

(gm − ûm,1)φp,e

 1
2

, b ⊂ s ∈ SC
e

η8 :=

 ∑
e∈MsC∪MfC

η2
8,e

 1
2

, η8,e :=

 ∑
p∈NC

e

sp,ecp,e((g − gm)+)

∫
s

φp,e

 1
2

, s ∈ SC
e

η9 := ‖(ûm,1 − g)+‖ 1
2 ,ΓC

In the following we will make use of the abbreviation

dp,e :=

∫
b

(gm − ûm,1)φp,e (21)

in η7. We denote the positive part of a function by ϕ+ := max{ϕ, 0} and the
negative part by ϕ− := max{−ϕ, 0} such that ϕ = ϕ+−ϕ−. Note that in η7, η9

the smoothing function ûm,1 occurs. The error estimator contributions are like
the ones in [4], except η4 which is special for discontinuous Galerkin methods.
Further, in the absence of any contact, we have η7 = η8 = η9 = 0 and η6

has contributions from all potential contact nodes such that η is a residual error
estimator for linear elliptic boundary value problems where the potential contact

14



boundary is replaced by a Neumann boundary with π = 0. If contact occurs
this standard residual error estimator for linear equations would overestimate
the error because the expected boundary stresses in the actual contact zone
are non-zero. Except for the error estimator parts η8,e, η9 which disappear for
discrete gap functions we provide lower bounds. For a discussion about the
meaning of additional error estimator contributions like η8,e, η9 in the upper
bound we refer to [5].

In [11] the error estimator contribution h
1
2
e ‖σ1(um) − Λm‖s occurs instead

of η6. Thus, in [11] there is a non-zero contribution from the contact boundary
in the area of full-contact. In the proofs in Section 4 we will see, how these
contributions are avoided by splitting the different contributions occurring in
the Galerkin functional in a way that cancellations are maximized.

In Sections 4 and 5 we will give the proofs of the following theorems about
reliability and efficiency of the error estimator η defined in (20) and its local
contributions.

Theorem 1 (Reliability). The error estimator η provides an upper bound of
the error measure (7):

‖u− um‖a,sip + ‖λ− λ̃m‖−1 . η.

In a posteriori error estimation f̄ and π̄ denote piecewise constant approx-

imations of f and π. We recall that he‖f̄ − f‖e and h
1
2
s ‖π̄ − π‖s are formally

of higher order.

Theorem 2 (Efficiency). For the different local error estimator contributions
ηk,e with k = 1, 5, 6 the following local lower bounds hold

ηk,e . ‖u− um‖a,sip,e + ‖λ− λ̃m‖−1,e + he‖f̄ − f‖e

and

η2,s . ‖u− um‖a,sip,ωs
+ ‖λ− λ̃m‖−1,ωs

+
∑
e⊂ωs

he‖f̄ − f‖e

η3,s . ‖u− um‖a,sip,e + ‖λ− λ̃m‖−1,e + he‖f̄ − f‖e + h
1
2
s ‖π̄ − π‖s.

Under the assumption that for each p ∈ NC
e with e ∈MsC there exists a neigh-

boring interior node p ∈ NI and for a suitable extension ḡm ∈ Hm of gm to a
finite element function on Ω, the following estimate holds for η7:

η7 . ‖u−um‖a,sip+‖λ−λ̃m‖−1+
∑
e

he‖f̄−f‖e+
∑

e∈MsC

∑
p∈Ne

h
1
2
e

∥∥∥∥[σ̂( ḡm
0

)]∥∥∥∥
γp,I

where for simplicity we supposed that the actual contact zone is a strict subset
of the potential contact boundary.
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The local estimator contributions

η4,s = h
− 1

2
s ‖[um]‖s ∀s ∈ SI and η4,s = h

− 1
2

s ‖um − uDm‖s ∀s ∈ SD

are part of the norm

‖u− um‖a,sip =

(∑
e∈M

‖ε(u− um)‖2L2(e) +
∑

s∈SI∪SD

1

hs
‖[u− um]‖2L2(s)

) 1
2

as [u− um] = [um] for all s ∈ SI and [u− um] = [uDm − um] for all s ∈ SD as
we assumed uD to be continuous and piecewise linear. Thus, the global bound
η4 ≤ ‖u− um‖a,sip follows directly.

We note that Theorem 2 also deals with the error estimator contributions
related to the non-linearity. While for η6 standard arguments from residual error
estimation for linear problems have been adapted, the argumentation for η7 is
different as can be seen in the proofs of Section 5. In [11] an error estimator
contribution of the same type as η7 occurs in the upper bound. We like to
emphasize that in the present work a proof for the lower bound in terms of η7

in both dimensions d = 2, 3 is given.

4. Reliability of the error estimator

4.1. Upper bound of the Galerkin functional

In this Section we derive an upper bound of the Galerkin functional tested
against a function ϕ ∈ H0. First, we use integration by parts, the identity∫
s
[σ̂(v)w] =

∫
s
{σ̂(v)}[w] +

∫
s
[σ̂(v)]{w} for all s ∈ SI and exploit [ϕ] = 0.
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〈Gm,ϕ〉−1,1

= a(u− um,ϕ) +
〈
λ− λ̃m,ϕ

〉
−1,1

= 〈f ,ϕ〉+
∑
e∈M

∫
e

divσ(um)ϕ−
∑
s∈SI

∫
s

[σ̂(um)ϕ]

+
∑

s∈SN

∫
s

(π − σ̂(um))ϕ−
∑

s∈SC

∫
s

σ̂(um)ϕ−
〈
λ̃m,ϕ

〉
−1,1

= 〈f ,ϕ〉+
∑
e∈M

∫
e

divσ(um)ϕ−
∑
s∈SI

∫
s

{σ̂(um)} [ϕ]︸︷︷︸
=0

−
∑
s∈SI

∫
s

[σ̂(um)]{ϕ}

+
∑

s∈SN

∫
s

(π − σ̂(um))ϕ−
∑

s∈SC

∫
s

σ̂(um)ϕ−
〈
λ̃m,ϕ

〉
−1,1

=
∑
e∈M

∫
e

r(um)ϕ−
∑
s∈SI

e

∫
s

[σ̂(um)]
1

2
ϕ−

∑
s∈SN

e

∫
s

(σ̂(um)− π)ϕ

−
∑

s∈SC
e

∫
s

σ̂(um)ϕ

− 〈λ̃m,ϕ
〉
−1,1

−
∑
e∈M

∑
s∈SI

e

η̂

hs

∫
s

[um] [ϕ]︸︷︷︸
0

−
∑
e∈M

∑
s∈SD

e

η̂

hs

∫
s

(um − uDm) ϕ︸︷︷︸
0

=
∑
e∈M

 d∑
i=1

∑
p∈Ne

∫
e

ri(um)ϕiφp,e −
∑
s∈SI

e

∫
s

[σ̂i(um)]
1

2
ϕiφp,e

−
∑

s∈SN
e

∫
s

(σ̂i(um)− πi)ϕiφp,e −
∑

s∈SC
e

∫
s

σ̂i(um)ϕiφp,e

−
∑
s∈SI

e

η̂

hs

∫
s

[um,i]ϕineφp,e −
∑

s∈SD
e

η̂

hs

∫
s

(um,i − uDm,i)ϕiφp,e


−
〈
λ̃m,ϕ

〉
−1,1

(22)

For nodes p ∈ N\NC and all coordinate directions and for nodes p ∈ NC and
the directions i 6= 1 we can choose test functions vm = um±φp,eei ∈ Km in the
variational inequality (11) concluding for all elements 〈λm, φp,eei〉−1,1,e = 0 as
in the linear case without constraints where λm is the linear residual. Thus, we
can add for the aforementioned nodes and coordinate directions

〈λm, cp,e(ϕi)φp,eei〉−1,1 = 0
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where

cp,e(ϕi) =

∫
e
ϕiφp,e∫
e
φp,e

. (23)

Further, we exploit the definition of λ̃m (13) to get

〈Gm,ϕ〉−1,1

=
∑
e∈M

 d∑
i=1

∑
p∈Ne

(∫
e

ri(um)(ϕi − cp,e(ϕi))φp,e

−
∑
s∈SI

e

∫
s

[σ̂i(um)]
1

2
(ϕi − cp,e(ϕi))φp,e

−
∑

s∈SN
e

∫
s

(σ̂i(um)− πi)(ϕi − cp,e(ϕi))φp,e

−
∑

s∈SC
e

∫
s

σ̂i(um)(ϕi − cp,e(ϕi))φp,e

−
∑
s∈SI

e

η̂

hs

∫
s

[um,i](ϕi − cp,e(ϕi))φp,ene

−
∑

s∈SD
e

η̂

hs

∫
s

(um,i − uDm,i)(ϕi − cp,e(ϕi))φp,e


+
∑
s∈SI

e

∫
s

[um]
1

2

∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)

+
∑

s∈SD
e

∫
s

(um − uDm)
∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)

 .

We recall that for e ∈ MfC and the direction of constraints which has
been chosen i = 1 the part

∑
s∈SC

e

∫
s
σ̂(um)i(ϕi − cp,e(ϕi))φp,e vanishes. We

like to emphasize that due to the right splitting of the contributions of the
Galerkin functional we can exploit cancellation properties. Thus, there will be
no contribution in the error estimator stemming from the contact stresses in the
full-contact zone.

Applying Hölder’s inequality to the Galerkin functional and rearranging the
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different parts we end up with the bound

〈Gm,ϕ〉−1,1

≤
∑
e∈M

 d∑
i=1

∑
p∈Ne

(‖ri(um)‖e‖(ϕi − cp,e(ϕi))φp,e‖e

+
∑
s∈SI

e

‖[σ̂i(um)]‖s
1

2
‖(ϕi − cp,e(ϕi))φp,e‖s

+
∑

s∈SN
e

‖σ̂i(um)− πi‖s‖(ϕi − cp,e(ϕi))φp,e‖s

+
∑
s∈SI

e

η̂

hs
‖[um,i]‖s‖(ϕi − cp,e(ϕi))φp,e‖s

+
∑

s∈SD
e

η̂

hs
‖um,i − uDm,i‖s‖(ϕi − cp,e(ϕi))φp,e‖s


+
∑
s∈SI

e

‖[um]‖s
1

2
‖
∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)‖s

+
∑

s∈SD
e

‖um − uDm‖s‖
∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)‖s


+
∑

e∈MC

 d∑
i=2

∑
p∈Ne

 ∑
s∈SC

e

‖σ̂i(um)‖s‖(ϕi − cp,e(ϕi))φp,e‖s


+

∑
e∈MnC∪MsC

∑
p∈Ne

 ∑
s∈SC

e

‖σ̂1(um)‖s‖(ϕ1 − cp,e(ϕ1))φp,e‖s

 (24)

The mean values (23) fulfill the standard L2-approximation properties

‖ϕi − cp,e(ϕi)‖e . he‖∇ϕi‖e

‖ϕi − cp,e(ϕi)‖s . h
1
2
e ‖∇ϕi‖e,

(25)

e.g., [16]. The L2-approximation properties hold also for the constants cp,e(ϕi)
defined in (9) and (10) for semi- and full-contact elements, see [17].

It remains to bound ‖
∑
p∈e cp,e(ϕi)σ̂(φp,eei)‖s in terms of ‖∇ϕi‖e.

Lemma 2. For an arbitrary function ϕ, an element e, a node p ∈ Ne and
cp,e(ϕi) defined as in (23),(9) or (10) for all coordinate directions ei with ϕi =
ϕ · ei the following stability estimate holds

‖
∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)‖s . h
− 1

2
e ‖∇ϕi‖e.

19



Proof. First we use a scaling argument

‖
∑
p∈Ne

cp,e(ϕi)σ̂(φp,eei)‖s . h
− 1

2
e ‖

∑
p∈Ne

cp,e(ϕi)σ(φp,eei)‖e. (26)

To further bound ‖
∑
p∈Ne

cp,e(ϕi)σ(φp,eei)‖e we exploit 0 = σ(ei) = σ(
∑
p∈e φp,eei) =∑

p∈e σ(φp,eei) and the local L2-approximation properties.

‖
∑
p∈e

cp,e(ϕi)σ(φp,eei)‖2e

=

∫
e

(∑
p∈e

cp,e(ϕi)σ(φp,eei)

)2

.
∫
e

∣∣∣∣∣∑
p∈e

(cp,e(ϕi)− ϕi)σ(φp,eei)

∣∣∣∣∣
∣∣∣∣∣∑
p∈e

cp,e(ϕi)σ(φp,eei)

∣∣∣∣∣
.
∑
p∈e
‖σ(φp,eei)‖L∞(e) ‖cp,e(ϕi)− ϕi‖L2(e)

∥∥∥∥∥∑
p∈e

cp,e(ϕi)σ(φp,eei)

∥∥∥∥∥
L2(e)

.
1

he
he‖∇ϕi‖e‖

∑
p∈e

cp,e(ϕi)σ(φp,eei)‖e. (27)

Thus, combining (26) and (27) we end up with the desired result.

Lemma 3. The Galerkin functional defined in (15) and the error estimator
contributions defined in Section 3.3 satisfy

‖Gm‖−1 .

(
6∑
k=1

η2
k

) 1
2

. (28)

Proof. Applying in (24) the result of Lemma 2, the L2-approximation properties
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Hölder’s inequality and the shape regularity, we get

〈Gm,ϕ〉

.

(∑
e∈M

(he‖r(um)‖e)2

) 1
2

+

∑
e∈M

∑
s∈SI

e

(
h

1
2
e ‖[σ̂(um)]‖s

)2

 1
2

+

∑
e∈M

∑
s∈SN

e

(
h

1
2
e ‖σ̂(um)− π‖s

)2

 1
2

+

∑
e∈M

∑
s∈SI

e

(
h
− 1

2
e ‖[um]‖s

)2

+
∑

s∈SD
e

(
h
− 1

2
e ‖um − uDm‖s

)2

 1
2

+

 ∑
e∈MC

∑
s∈SC

e

n∑
i=2

(
h

1
2
e ‖σ̂i(um)‖s

)2

 1
2

+

 ∑
e∈MnC∪MsC

∑
s∈SC

e

(
h

1
2
e ‖σ̂1(um)‖s

)2

 1
2

 ‖∇ϕ‖L2(Ω)

.

(
6∑
k=1

η2
k

) 1
2

‖ϕ‖1,Ω. (29)

4.2. Upper bound

In Section 3.2 we have shown that in order to give an upper bound of

‖ε(u − um)‖2 we have to bound ‖Gm‖−1 and
〈
λ̃m − λm,u− ûm

〉
. As we

have derived the upper bound of ‖Gm‖−1 in the foregoing section it remains to

bound
〈
λ̃m − λ,u− ûm

〉
. We recall that 〈λi, ϕi〉 =

〈
λ̃m,i, ϕi

〉
= 0 for i 6= 1.

First, we consider the case where the gap function is discrete g = gm.

Lemma 4. We assume g = gm. Let the continuous approximation ûm defined
as in Section 3 and the quasi-discrete contact force density as in Section 3.1
then it holds 〈

λ̃m,1 − λ1, u1 − ûm,1
〉
−1,1

. η2
7

Proof. If gm = g it holds ûm ∈ Km ⊂ K and thus 〈λ1, ûm,1 − u1〉−1,1 ≤ 0. It

remains to bound
〈
λ̃m,1, u1 − ûm,1

〉
−1,1

.
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Due to the definition of the continuous approximation ûm for the contact
boundary side s ∈ SC

e of a full-contact element e ∈MfC it holds ûm,1|s = gm|s.〈
λ̃m,1, u1 − ûm,1

〉
−1,1

=
∑

e∈MC

∑
p∈NC

e

sp,ecp,e(u1 − ûm,1)

∫
s

φp,e

=
∑

e∈MfC

∑
p∈NC

e

sp,e︸︷︷︸
≥0

∫
s
(u1 − ûm,1)φp,e∫

s
φp,e︸ ︷︷ ︸
≤0

∫
s

φp,e

+
∑

e∈MsC

∑
p∈NC

e

sp,e

∫
b
(u1 − ûm,1)φp,e∫

b
φp,e

∫
s

φp,e

+
∑

e∈MnC

∑
p∈NC

e

sp,e︸︷︷︸
=0

∫
b
(u1 − ûm,1)φp,e∫

b
φp,e

∫
s

φp,e

.
∑

e∈MsC

∑
p∈NC

e

sp,e


∫
b
(u1 − gm)φp,e∫

b
φp,e︸ ︷︷ ︸
≤0

+

∫
b
(gm − ûm,1)φp,e∫

b
φp,e


∫
s

φp,e

.
∑

e∈MsC

∑
p∈NC

e

sp,e

∫
b
(gm − ûm,1)φp,e∫

b
φp,e

∫
s

φp,e

.
∑

e∈MsC

∑
p∈NC

e

sp,edp,e

Second, we consider the general case for an arbitrary gap function g ∈
H

1
2 (ΓC). Thus, in contrast to the foregoing case ûm,1 ≤ g may not hold.

We start with the same idea as in [4, Section 4.3] applied to the continuous
approximation ûm,1. We define

û∗m,1 := min{ûm,1|ΓC
, g} ∈ H 1

2 (ΓC)

and a harmonic extension w̃ of w := ûm,1− û∗m,1 ∈ H
1
2 (ΓC) so that the stability

estimate (see e.g., [18], pp. 70–71)

‖ûm,1 − û∗m,1‖1 . ‖ûm,1 − û∗m,1‖ 1
2 ,ΓC

(30)

holds. We set û∗m,1 := ûm,1 − w̃ ∈ H.

Lemma 5. Let g ∈ H 1
2 (ΓC). The continuous approximation ûm is defined as

in Section 3 and the quasi-discrete contact force density as in Section 3.1. Then
it holds 〈

λ̃m,1 − λ1, u1 − ûm,1
〉
−1,1

.
1

2
‖λ1 − λ̃m,1‖2−1 + η2

7 + η2
8 + η2

9
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Proof. The upper bound of 〈λ1, ûm,1 − u1〉 follows as in [4, Section 4.3]

〈λ1, ûm,1 − u1〉−1,1 =
〈
λ1, ûm,1 − û∗m,1

〉
−1,1

+
〈
λ1, û

∗
m,1 − u1

〉
−1,1︸ ︷︷ ︸

≤0

=
〈
λ1 − λ̃m,1, ûm,1 − û∗m,1

〉
−1,1

+
〈
λ̃m,1, ûm,1 − û∗m,1

〉
−1,1

.
1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖ûm,1 − û∗m,1‖21

2 ,ΓC
+
〈
λ̃m,1, ûm,1 − û∗m,1

〉
−1,1

.

Thus,〈
λ̃m,1 − λ1, u1 − ûm,1

〉
−1,1

.
1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖ûm,1 − û∗m,1‖21

2
+
〈
λ̂m,1, u1 − û∗m,1

〉
−1,1

.

For further estimations we use the following identities on the contact bound-
ary

u1 − û∗m,1 = (u1 − g) + (g − û∗m,1) ≤ (g − ûm,1)+

and

(g − ûm,1)+ ≤ (g − gm)+ + (gm − ûm,1)+ ≤ (g − gm)+ + (gm − ûm,1).

Putting all together we end up with〈
λ̃m,1 − λ1, u1 − ûm,1

〉
−1,1

.
1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖(ûm,1 − g)+‖21

2 ,ΓC

+
∑

e∈MC

∑
p∈NC

e

sp,ecp,e((g − ûm,1)+)

∫
s∈SC

e

φp,e

.
1

2
‖λ1 − λ̃m,1‖2−1 +

1

2
‖(ûm,1 − g)+‖21

2 ,ΓC

+
∑

e∈MC

∑
p∈NC

e

sp,ecp,e((g − gm)+)

∫
s∈SC

e

φp,e

+
∑

e∈MC

∑
p∈NC

e

sp,ecp,e(gm − ûm,1)

∫
s∈SC

e

φp,e

.
1

2
‖λ1 − λ̃m,1‖2−1 + η2

9 + η2
8 + η2

7

Theorem 1 is established by inserting the results of Lemmata 3, 4, 5 in (19)
and (16), respectively.
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5. Efficiency of the error estimator

In this section we give the proof of Theorem 2. Therefore, it is useful to
rewrite the definition of the Galerkin functional (15) as follows

〈Gm,ϕ〉−1,1 =
∑
e∈M

∫
e

r(um)ϕ−
∑
s∈SI

e

∫
s

[σ̂(um)]
1

2
ϕ

−
∑

s∈SN
e

∫
s

(σ̂(um)− π)ϕ−
∑

s∈SC
e

∫
s

σ̂(um)ϕ


−
∑

e∈MC

∑
p∈NC

e

sp,ecp,e(ϕ1)

∫
s∈SC

e

φp,e.

To prove that η1,e, η2,s, η3,s and η5,s are bounded from above by the error
measure (7) (plus data oscillation) the properties of the element bubble functions
Ψe and side bubble functions Ψs, see, e.g., [19] are used. Due to the definition
of the quasi-discrete contact force density, especially the mean values cp,e(ϕ1)
for all p ∈ NC

e and e ∈ MC , it follows that cp,e(Ψe) = 0 and cp,e(Ψs) = 0 for
all s 6∈ SC . Thus, it is obvious that the proof follows as in the case of a linear
elliptic problem where Gm replaces the linear residual.

Next, we consider η6,s for all contact boundary sides s belonging to a semi-
or non-actual contact boundary element. Imagine a triangle or intervall s to be
refined uniformly. The four new triangles or three new intervals are denoted by
sM and sp where sp are the new sides belonging to the nodes p and we set b,

occuring in the definition of the mean values cp,e(ϕi) =
∫
b
ϕiφp,e∫
b
φp,e

to b := sp. We

define a bubble function θs = aMΨM belonging to sM . Thus, cp,e(θs) = 0 as
θs = 0 on b. The coefficient aM is chosen such that

∫
s

1 =
∫
s
aMΨM . Thus,

‖σ̂1(um)‖2s =

∫
s

σ̂1(um)σ̂1(um)θs

= −〈Gm, σ̂1(um)θse1〉−1,1,e +

∫
e

r1(um)σ̂1(um)θs

+
∑
p∈NC

e

sp,eσ̂1(um)|s cp,e(θs)︸ ︷︷ ︸
=0

∫
s∈SC

e

φp,e

≤ ‖Gm‖−1,e‖σ̂1(um)θs‖1,e + ‖r1(um)‖e‖σ̂1(um)θs‖e

. ‖Gm‖−1,eh
− 1

2
s ‖σ̂1(um)‖s + h

1
2
s ‖r1(um)‖e‖σ̂1(um)‖s.

Thus, it follows from Lemma 3 and from the bound of η1,e

h
1
2
e ‖σ̂1(um)‖s . ‖ε(u− um)‖e + ‖λ− λ̃m‖−1,e + he‖f̄ − f‖e.

It remains to bound η7,e = (sp,edp,e)
1
2 in terms of the error measure. If e

is a full-contact element we have dp,e = 0 and if we have a non-actual contact
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element we have sp,e = 0. In consequence it suffices to consider semi-contact
elements and a node p with sp,e > 0 and (gm − ûm,1)(p) = 0. We choose q̂ as
the node maximizing (gm − ûm,1)(q̂) > 0 for all nodes q ∈ s and we define an
extension of gm to a function in H1(Ω) by means of ḡm(q) = ûm,1(q) for all
q ∈ Ne\NC

e . The function under consideration (ḡm − ûm,1) is continuous such
that we can use arguments from the case of continuous linear finite element
functions. Thus, it holds as in [4]

(gm − ûm,1)(q̂) . h
−d+3

2
e

∥∥∥∥[σ̂((ḡm0
)
− ûm

)]∥∥∥∥
γp,I

.

In a next step we apply the result of Lemma 1 for discontinuous finite elements

(gm − ûm,1)(q̂) . h
−d+3

2
e

∥∥∥∥[σ̂((ḡm0
)
− ûm

)]∥∥∥∥
γp,I

. h
−d+3

2
e

(∥∥∥∥[σ̂((ḡm0
)
− um

)]∥∥∥∥
γp,I

+ ‖[σ̂(um − ûm)]‖γp,I

)

. h
−d+3

2
e

(∥∥∥∥[σ̂((ḡm0
)
− um

)]∥∥∥∥
γp,I

+ ‖[∇(um − ûm)]‖γp,I

)

. h
−d+2

2
e

(
h

1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p
+ h

1
2
e ‖[σ̂(um)]‖γI

p

+h
1
2
e h
− 1

2
e ‖∇(um − ûm)‖ωp

)
. h

−d+2
2

e

(
h

1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p
+ h

1
2
e ‖[σ̂(um)]‖γI

p

+

∑
q∈ωp

∑
s⊂γI

q

∫
s

1

he
[um]2

 1
2

 .

For the ease of presentation we here exploited the fact that ΓC ∩ ΓD = ∅.
Otherwise contributions from the Dirichlet boundary would occur.
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Exploiting the fact that q̂ is the node maximizing (gm− ûm,1) on s we deduce

dp,e =

∫
sp

(gm − ûm,1)φp,e

. hd−1
e h

−d+2
2

e

h 1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p
+ h

1
2
e ‖[σ̂(um)]‖γI

p
+

∑
q∈ωp

∑
s⊂γI

q

∫
s

1

h
[um]2

 1
2


. h

d
2
e

h 1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p
+ h

1
2
e ‖[σ̂(um)]‖γI

p
+

∑
q∈ωp

∑
s⊂γI

q

∫
s

1

h
[um]2

 1
2


= h

d
2
e

h 1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p
+
∑
s∈γI

p

η2,s +
∑
q∈ωp

∑
s⊂γI

q

η4,s

 . (31)

For the upper bound of sp,e we use the representation (12), Hölder’s inequality
and scaling arguments

sp,e =
〈λm, φp,e〉−1,1,e∫

s
φp,e

. h−d+1
s

‖r1(um)‖e‖φp,e‖e +
∑
s⊂SI

e

‖[σ̂1(um)]‖‖φp,e‖s

+
∑

s⊂SN
e

‖[σ̂1(um)− π1]‖‖φp,e‖s +
∑

s⊂SC
e

‖σ̂1(um)‖‖φp,e‖s

+
∑
s∈SI

e

η̂

hs
‖[um,1]‖s‖‖φp,e‖s +

∑
s∈SD

e

η̂

hs
‖(um,1 − uDm,1)‖s‖‖φp,e‖s

+
∑
s∈SI

e

‖[um]‖s‖σ̂(φp,ee1)‖s +
∑

s∈SD
e

‖(um − uDm)‖s‖σ̂(φp,ee1)‖s


. h−d+1

e

‖r1(um)‖eh
d
2
e +

∑
s⊂SI

e

‖[σ̂1(um)]‖h
d−1
2

e +
∑

s⊂SN
e

‖[σ̂1(um)− π1]‖h
d−1
2

e

+
∑

s⊂SC
e

‖σ̂1(um)‖h
d−1
2

e +
∑
s∈SI

e

η̂

hs
‖[um,1]‖sh

d−1
2

e +
∑

s∈SD
e

η̂

hs
‖um,1 − uDm,1‖sh

d−1
2

e

+
∑
s∈SI

e

‖[um]‖sh−1
e h

d−1
2

e +
∑

s∈SD
e

‖um − uDm‖sh−1
e h

d−1
2

e


. h

−d
2

e

η1,e +
∑
s⊂SI

e

η2,s +
∑

s⊂SN
e

η3,s +
∑

s⊂SC
e

η6,s +
∑

s∈(SI
e∪SD

e )

η4,s

 . (32)
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Combining (31) and (32) and exploiting the local lower bounds in terms of
η1,e, η2,s, η3,s, η6,s and the fact that η4,s is part of the norm

η2
7 =

∑
e∈MsC

∑
p∈NC

e

sp,edp,e

.
∑

e∈MsC

∑
p∈NC

e

η1,e +
∑
s⊂SI

e

η2,s +
∑

s⊂SN
e

η3,s +
∑

s⊂SC
e

η6,s +
∑

s∈(SI
e∪SD

e )

η4,s

+
∑
s∈γI

p

η2,s +
∑
q∈ωp

∑
s⊂γI

q

η4,s + h
1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p

2

.

‖u− um‖a,sip + ‖λ− λm‖−1 +
∑
e∈M

he‖f − f̄‖e +
∑

e∈MsC

∑
p∈Ne

h
1
2
e ‖[σ̂

(
ḡm
0

)
]‖γI

p

2

.

6. Numerical results

The implementation has been carried out in MATLAB. For the adaptive
mesh generation we have taken from [20, Chapter 5] the refinement strategy
refineNVB.m for simplicial meshes and we extended the provideGeometricData.m.
As solver for the variational inequalities we implemented a primal-dual-active
set method similar to [21, Chapter 5.3.1].

In this section we have a look at different contact problems in 2D. We ex-
amine the structure of the refined simplicial meshes and the rate of convergence
of the new estimator for adaptive und uniform refinement.

The starting grid has been two times uniformly refined by means of newest
vertex bisection, compare [20, Chapter 5] and thus consists of 32 elements. As
marking strategy for the adaptive process we use the maximum strategy, i.e. an
element is marked for refinement if its local element estimator is bigger than 0.6
times the maximum of all element estimators.

In all our experiments Dirichlet conditions are applied to push the linear
elastic body against a rigid obstacle while the force density f and the Neumann
values π are set to zero. The Poisson ratio is ν = 0.3 and the Young’s modulus
is E = 500 kN

mm2 .

6.1. Contact with a rigid wedge

In the first example we simulate the deformation of a linear elastic unit
square which is moved in x-direction towards the obstacle g(y) = −0.2 + 0.5 ·
|y−0.5| which describes a wedge with a semi-angle α ≈ 63. The Dirichlet values
on the left side at x = 0 are uDm,1 = 0.1.

Figure 1 (a) illustrates the deformed unit square above the undeformed ge-
ometry. The convergence of the new error estimator for contact on adaptively
and uniformly refined grids is shown in Figure 1 (b) with logarithmic scales on
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(a) deformation
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Figure 1: Wedge example
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Figure 2: Wedge example: Part of the adaptively refined grid

both axes. The blue line (with circles) refers to uniform refinement. The exper-
imental order of convergence is about 0.443. And the red line (with stars) refers
to adaptive refinement steered by our new error estimator for contact problems.
The experimental order of convergence is about 0.509.

In Figure 2 the adaptively refined grid in the area [0.4, 1]× [0.2, 0.8] is shown.
The adaptively refined grid steered by the presented estimator for contact (Fig-
ure 2 (a)) is refined strongly around the corner caused by the tip of the wedge
and at the free boundary. In contrast, the adaptively refined grid steered by
the standard residual error estimator for linear elliptic problems (Figure 2(b)) is
refined strongly at the whole contact boundary. This can be seen even clearer in
Figure 3 where a magnifying glass shows the area around the contact boundary
for both methods.
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(a) new estimator for contact (b) standard estimator

Figure 3: Wedge example: Zoom of grid at the contact boundary

6.2. Contact with a rigid block

In the second example we simulate the deformation of a linear elastic unit
square which is moved in x-direction towards the obstacle which is a block,
coming into contact in the interval [0.25, 0.75]. The Dirichlet values on the left
side at x = 0 are uDm,1 = 0.1.

Figure 4 (a) illustrates the deformed unit square above the undeformed ge-
ometry. The convergence of the new error estimator for contact on adaptively
and uniformly refined grids is shown in Figure 4 (b) with logarithmic scales
on both axes. The blue line (with circles) refers to uniform refinement. The
black line (with diamonds) refers to adaptive refinement steered by the standard
residual error estimator for linear elliptic problems without constraints. And
the red line (with stars) refers to adaptive refinement steered by our new error
estimator for contact problems.

The adaptively refined grid, steered by the presented estimator for contact
(Figure 5(a)) and steered by the standard estimator (Figure 5(b)) can be seen.
It is obvious that we have an over-refinement of the contact boundary in Figure
5(b) due to the standard residual error estimator for linear elliptic problems.
In Figure 6 we see the area around the contact boundary through a magnifying
glass.

6.3. Contact with a parable

In the third example we simulate the deformation of a linear elastic unit
square which is moved in x-direction towards the obstacle which has the form
of a parable g(y) = (y − 0.5)2 − 0.1. The Dirichlet values on the left side at
x = 0 are uDm,1 = 0.1.

Figure 7 (a) illustrates the deformed unit square above the undeformed ge-
ometry. The convergence of the new error estimator for contact on adaptively
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Figure 4: Block example
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Figure 5: Block example: Adaptively refined mesh
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(a) new estimator for contact (b) standard estimator

Figure 6: Block example: Zoom of grid at the contact boundary

and uniformly refined grids is shown in Figure 7 (b) with logarithmic scales on
both axes. The blue line (with circles) refers to uniform refinement. The exper-
imental order of convergence is about 0.475. And the red line (with stars) refers
to adaptive refinement steered by our new error estimator for contact problems.
The experimental order of convergence is about 0.513.

In Figure 8 the adaptively refined grid in the area [0.2, 1]× [0.1, 0.9] is shown.
In Figure 8 (a) the adaptive refinement is steered by the new error estimator for
contact and in Figure 8 (b) the adaptive refinement is steered by the standard
residual error estimator for linear elliptic problems. While in Figure 8 (b) a
thin line around the whole contact boundary is highly refined in Figure 8 (a)
the contact boundary is not entirely strongly refined. But there are well refined
regions close to the boundary which are symmetrically distributed. This refine-
ment comes mainly from the jumps in the stresses and in the solution due to
the deformation. The different structure of the grids can be seen even clearer in
Figure 9. We denote the number of nodes of a mesh by #N and the number of
nodes in the discontinuous finite element setting, meaning the number of pairs
(p, e), is denoted by #Ndg. The number of nodes at the contact boundary in
the grid shown in Figure 8 (a) amounts to #NC = 123 which corresponds to
#NC

dg = 244. The whole number of nodes in the grid represented in Figure 8
(a) is #Ndg = 39366. In comparison, the grid shown in Figure 8 (b) consists of
#NC

dg = 1968 contact nodes where the whole number of nodes #Ndg = 38850
is approximately the same as in Figure 8 (a). In other words we have approx-
imately 8 times less contact boundary nodes using the new a posteriori error
estimator for contact which reflects the fact that in the full-contact area the
solution is fixed and cannot be improved by adaptive refinement.
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Figure 7: Parable example
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Figure 8: Parable example: Part of the adaptively refined mesh
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(a) new estimator for contact (b) standard estimator

Figure 9: Parable example: Zoom of grid at the contact boundary
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