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Abstract

We consider weak solutions of the instationary Navier-Stokes system in a smooth
bounded domain Ω ⊂ R3 with initial value u0 ∈ L2

σ(Ω). It is known that a weak
solution is a local strong solution in the sense of Serrin if u0 satisfies the optimal

initial value condition u0 ∈ B
−1+3/q
q,sq with Serrin exponents sq > 2, q > 3 such

that 2
sq

+ 3
q = 1. This result has recently been generalized by the authors to

weighted Serrin conditions such that u is contained in the weighted Serrin class∫ T
0 (τα‖u(τ)‖q)s dτ < ∞ with 2

s + 3
q = 1 − 2α, 0 < α < 1

2 . This regularity is

guaranteed if and only if u0 is contained in the Besov space B
−1+3/q
q,s . In this article

we consider the limit case of initial values in the Besov space B
−1+3/q
q,∞ and in its

subspace
◦
B
−1+3/q
q,∞ based on the continuous interpolation functor. Special emphasis

is put on questions of uniqueness within the class of weak solutions.
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1 Introduction

We consider the Navier-Stokes initial value problem

∂tu−∆u+ u · ∇u+∇p = f, div u = 0 in (0, T )× Ω (1.1)

u|∂Ω = 0, u(0) = u0

in a bounded domain Ω ⊂ R3 with boundary ∂Ω of class C2,1 and a time interval [0, T ),
0 < T ≤ ∞. For simplicity, the coefficient of viscosity is assumed to be equal to 1.

Let us recall the definition of weak and strong solutions to (1.1) and define special
types of strong solutions contained in spaces with weights in time, so-called strong Lsα(Lq)-
solutions.
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Definition 1.1. Let u0 ∈ L2
σ(Ω) be an initial value and let f = divF with F = (Fij)

3
i,j=1 ∈

L2(0, T ;L2(Ω)) be an external force.

(i) A vector field u on Ω× (0, T ) in the Leray-Hopf class

LHT = L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)) (1.2)

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes system (1.1)
with data u0,f , if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T (1.3)

holds for each test function w ∈ C∞0 ([0, T );C∞0,σ(Ω)), and if the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 −
∫ t

0

(F,∇u) dτ (1.4)

is satisfied for 0 ≤ t < T .

(ii) A weak solution u of (1.1) is called a strong Lsα(Lq)-solution with exponents 2 <
s ≤ ∞, 3 < q < ∞ and weight τα in time, where 0 < α < 1

2
and 2

s
+ 3

q
= 1 − 2α, if

additionally the weighted Serrin condition

u ∈

Lsα(0, T ;Lq(Ω)), i.e.,

∫ T

0

(τα‖u(τ)‖q)s dτ <∞, if 2 < s <∞,

L∞α (0, T ;Lq(Ω)), i.e., ess supτ∈(0,T ) τ
α‖u(τ)‖q <∞, if s =∞.

(1.5)

If in (1.5) α = 0 and 2
s

+ 3
q

= 1, then u is called a strong solution (in the sense of Serrin).

In this definition we use the usual Lebesgue and Sobolev spaces, Lq(Ω) with norm
‖ · ‖Lq(Ω) = ‖ · ‖q and W k,q(Ω) with norm‖ · ‖Wk,q(Ω) = ‖ · ‖k;q, respectively, for 1 < q <∞
and k ∈ N. Let Ls(Lq) = Ls(0, T ;Lq(Ω)), 1 < q, s < ∞, with norm ‖ · ‖Ls(0,T ;Lq(Ω)) =

‖ · ‖q,s;T =
( ∫ T

0
‖ · ‖sq dt

)1/s
denote the classical Bochner spaces. If additionally α ≥ 0 is

given, we define the weighted (in time) Bochner spaces Lsα(0, T ;Lq(Ω)) = Lsα(Lq) with
norm

‖ · ‖Lsα(0,T ;Lq(Ω)) = ‖ · ‖Lsα(Lq) =
(∫ T

0

(τα‖ · ‖)sq dτ
)1/s

.

Of course, if s =∞, then

L∞α (0, T ;Lq(Ω)) =
{
u : (0, T )→ Lq(Ω) strongly measurable,

‖u‖L∞α (0,T ;Lq(Ω)) = ess sup
τ∈(0,T )

τα‖u(τ)‖q <∞
}
. (1.6)

The expression 〈·, ·〉Ω = 〈·, ·〉 denotes the pairing of functions on Ω, and 〈·, ·〉Ω,T means
the corresponding pairing on [0, T )×Ω. Furthermore, to deal with solenoidal vector fields
we use the smooth function spaces C∞0 (Ω) and C∞0,σ(Ω) = {v ∈ C∞0 (Ω) : div v = 0},
and the spaces Lqσ(Ω) = C∞0,σ(Ω)

‖·‖q
, W 1,q

0 (Ω) = C∞0 (Ω)
‖·‖1,q

, W 1,q
0,σ(Ω) = C∞0,σ(Ω)

‖·‖1,q
.

Throughout this paper, A = A2 denotes the Stokes operator in L2
σ(Ω). More general,

Aq, 1 < q < ∞, means the Stokes operator in Lqσ(Ω), and e−tAq , t ≥ 0, is the semigroup
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generated by Aq in Lqσ(Ω). Note that, with x = (x1, x2, x3) ∈ Ω ⊂ R3, for F = (Fij)
3
i,j=1,

u = (u1, u2, u3) we let divF =
(∑3

i=1 ∂iFij
)3

j=1
, u ·∇u = (u ·∇)u, so that u ·∇u = div(uu)

if u is solenoidal; here uu = (uiuj)
3
i,j=1.

We may assume in the following, without loss of generality, that each weak solution u :
[0, T )→ L2

σ(Ω) of (1.1) is weakly continuous, see Sohr [28, V. Theorem 1.3.1]. Therefore,
u(0) = u0 is well-defined.

For further properties of weak and strong solutions to (1.1) (in the classical sense,
i.e., α = 0, u ∈ Ls(0, T ;Lq(Ω)), 2

s
+ 3

q
= 1), we refer to [2, 3, 19, 20, 22, 24, 29]. It is

well-known that Serrin’s condition (1.5) with α = 0 yields the regularity property

u ∈ C∞((0, T )× Ω),

provided that ∂Ω is of class C∞ and F ∈ C∞((0, T ) × Ω). Moreover, we get uniqueness
within the class of weak solutions satisfying the energy inequality (1.4), see [28, V. The-
orem 1.8.2, Theorem 1.5.1]. In the context of uniqueness a stronger version of the energy
inequality (1.4) is helpful: A weak solution satisfies the strong energy inequality if

1

2
‖u(t)‖2

2 +

∫ t

t0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 −
∫ t

t0

(F,∇u) dτ (1.7)

holds for a.a. t0 ∈ [0, T ) including t0 = 0 and for all t0 ≤ t < T . It is well-known that
for a bounded domain weak solutions constructed by standard approximation procedures
(Galerkin approximation, Yosida approximation, difference quotients in time, mollifiers
in space and/or time) satisfy (1.7). Finally, if in (1.4) there holds equality, u is said to
satisfy the energy equality. The condition u ∈ L4(0, T ;L4(Ω)) is known to be sufficient
to guarantee the energy equality. For conditions weaker than L4(L4)-integrability for
bounded domains we refer to [11].

Since the pioneering work of J. Leray and E. Hopf. see [20, 24], the existence of at least
one weak solution u of (1.1) is well-known. However, the existence of a strong solution u
could be shown up to now at least in a sufficiently small interval [0, T ), 0 < T ≤ ∞, and
under additional smoothness conditions on the initial data u0 and the external force f .
The first sufficient condition on the initial data for a bounded domain seems to be due to
[22], yielding a solution class of so-called local strong solutions. Since then many results
on sufficient initial value conditions for the existence of local strong solutions have been
developed, see [2, 12, 15, 16, 19, 21, 23, 26, 28, 29], with weaker and weaker assumptions
on u0, thus making the space of initial values to guarantee the existence of a local strong
solution larger and larger.

The optimal condition, i.e. sufficiency and necessity, was found by Sohr, Varnhorn
and the first author of this article, see [9, 10], and can be written in terms of (solenoidal)

Besov spaces B−1+3/q
q,sq (Ω) where 2

sq
+ 3

q
= 1. This space is defined by real interpolation as

B
−1+ 3

q
q,sq =

(
B

2
sq

q′,s′q

)′
=
(
D(Aq′)

′, Lqσ
)

1
2

(1+ 3
q

),sq
,

where Aq′ denotes the Stokes operator on the space Lq
′
σ (Ω), 1

q
+ 1

q′
= 1, of solenoidal vector

fields. Note that similar results in the whole space case are well-known.
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Recently, this result has been generalized by the authors ([5, 6]) to initial values in

B
−1+ 3

q
q,s (Ω) =

(
D(Aq′)

′, Lqσ
)

1
2

(1+ 3
q

),s
,

where 2
s

+ 3
q

= 1− 2α, 0 < α < 1
2
. An equivalent explicit norm for u ∈ B

−1+ 3
q

q,s (Ω) is given
by the weighted integral(∫ ∞

0

(
τα‖e−τAu0‖q

)s
dτ
)1/s

= ‖e−τAqu0‖Lsα(0,∞;Lq(Ω)) <∞;

note that this norm is scaling invariant with respect to the scaling properties of the
Navier-Stokes solutions. For further details see [6, §4]. The term ‖A−1u0‖q which usually
appears as an additional term on the left hand side of the norm can be omitted since
the semigroup on a bounded domain decays exponentially. Moreover, we note that the
interval of integration (0,∞) may be replaced by any finite interval (0, δ), yielding a
family of equivalent norms. In particular, by choosing δ > 0 small, we can achieve that
‖e−τAqu0‖Lsα(0,δ;Lq(Ω)) is as small as we want. Altogether, we get for sq < s1 < s2 < ∞ a
scale of growing Besov spaces

B
−1+ 3

q
q,sq ⊂ B

−1+ 3
q

q,s1 ⊂ B
−1+ 3

q
q,s2 ⊂

◦
B
−1+ 3

q
q,∞ ⊂ B

−1+ 3
q

q,∞ . (1.8)

Here
◦
B−1+3/q
q,∞ (Ω) denotes the continuous interpolation space in this scale, also called little

Nikol’skii space, see Amann [4, p. 4, p. 8].

The space
◦
B−1+3/q
q,∞ (Ω), 1 < q 6= 3, was used by Amann [2] to construct a global

unique solution in C
(
[0, T );

◦
B−1+3/q
q,∞ (Ω)

)
when ‖u0‖B−1+3/q

q,∞
is small; here Ω is a bounded

or exterior domain, the whole or half space, including the n-dimensional case with a
suitable modification. Recently, Ri et al. [27] showed for all 3 ≤ q < ∞ the existence
of a local unique solution u ∈ L∞

(
0, T ;B0

q,∞(Ω)
)

for initial values u0 in B0
q,∞(Ω); if even

u0 ∈
◦
B0
q,∞(Ω) then u ∈ C0

(
[0, T );B0

q,∞(Ω)
)
. Note that B0

3,∞(R3) is a scaling invariant
space, and that analogous results are obtained for the n-dimensional whole and half space.
Similar results to those of this paper and of [6] are discussed by Haak and Kunstmann
in [18]; the authors consider the whole space Rn in different scaling invariant function
spaces, but bounded domains mainly in L2(Ω)-spaces. In these papers the relation to

weak Leray-Hopf solutions is not investigated. For details on the Besov spaces B−1+3/q
q,∞ (Ω)

and
◦
B−1+3/q
q,∞ (Ω) we refer to Sect. 5 and particularly to [2, 27].

Whereas the focus of the articles [2, 18, 27] and of numerous articles dealing only with
the whole space case are on solutions with values in a given Besov space, our focus is
on solutions with initial values in L2

σ(Ω) intersected with a Besov space such that the
solution is also a weak one. In this setting the main results of [6] for a bounded smooth
domain Ω ⊂ Rn read as follows:

Theorem 1.2. ([6, Theorems 1.2, 1.3]) Assume u0 ∈ L2
σ(Ω) and f = divF where F ∈

L2(0, T ;L2(Ω)) ∩ Ls/22α (0, T ;Lq/2(Ω)); here, 2 < s < ∞, 3 < q < ∞ and 0 < α < 1
2

satisfying 2
s

+ 3
q

= 1− 2α.
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(i) Then there exists a constant ε∗ = ε∗(q, s, α,Ω) > 0 with the following property: If

‖e−τAu0‖Lsα(0,T ;Lq) + ‖F‖
L
s/2
2α (0,T ;Lq/2)

≤ ε∗, (1.9)

then the Navier-Stokes system (1.1) has a unique strong Lsα(Lq)-solution with data u0, f
on the interval [0, T ).

(ii) The condition u0 ∈ B
−1+ 3

q
q,s (Ω) is sufficient and necessary for the existence of a

(unique) local in time strong Lsα(Lq)-solution of the Navier-Stokes system (1.1).

Of course, solutions with initial values in the space B
−1+ 3

q
q,s (Ω) larger than the optimal

space studied in [9, 10] are strong solutions in the sense of Serrin on each interval (δ, T ]
with 0 < δ < T , but not on (0, T ]. Another disadvantage is related to Serrin’s Uniqueness
Theorem: It cannot be proved that a weak solution satisfying the energy inequality and a
strong Lsα(Lq)-solution with the same data u0, f coincide. This problem can be solved for
so-called well-chosen weak solutions constructed by an admissible approximation scheme.
E.g., weak solutions constructed by a semigroup-Yosida approximation procedure are well-
chosen. The same holds under some restrictive conditions for solutions given by Galerkin’s
method. For details we refer to [6] and in particular to [5].

The aim of this paper is the study of the limit case s =∞, i.e., u0 ∈ B
−1+ 3

q
q,∞ (Ω) working

with the largest space in the scale (1.8). The disadvantage of this space is the fact that
it is no longer separable and that the norm ‖e−τAqu0‖q will not converge to 0 as τ → 0.

Now our first main theorem reads as follows:

Theorem 1.3. Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1, and let
0 < T ≤ ∞, 3 < q < ∞ and 0 < α < 1

2
with 3

q
= 1 − 2α be given. Consider the Navier-

Stokes equations (1.1) with initial value u0 ∈ L2
σ(Ω) ∩ B−1+3/q

q,∞ (Ω) and an external force
f = divF where F ∈ L2(0, T ;L2(Ω)) ∩ L∞2α(0, T ;Lq/2(Ω)). Then there exists a constant
ε∗ = ε∗(q, α,Ω) > 0 with the following property: If

‖e−τAu0‖L∞α (0,T ;Lq) + ‖F‖L∞2α(0,T ;Lq/2) ≤ ε∗, (1.10)

then (1.1) has a strong L∞α (Lq)-solution with data u0, f on the interval [0, T ).

This solution is unique in the class of all strong L∞α (Lq)-solutions on (0, T ) with suf-
ficiently small norm in L∞α (Lq).

The reader is referred to Theorem 5.1 in Sect. 5 below for an explanation of the Besov
space B−1+3/q

q,∞ (Ω) which is equipped with norm ‖e−τA · ‖L∞α (0,T ;Lq). This space has the
disadvantage that in general the term τα‖e−τAu0‖q does not converge to 0 as τ → 0. This

drawback is removed in the continuous interpolation space
◦
B−1+3/q
q,∞ where the property

limτ→0 τ
α‖e−τAu0‖q = 0 is satisfied by definition, see Sect. 5. By analogy, we define the

subspace

◦
L
∞
2α

(
0, T ;Lq/2(Ω)

)
=
{
F ∈ L∞2α

(
0, T ;Lq/2(Ω)

)
: ‖F‖L∞2α(0,t;Lq/2) → 0 as t→ 0

}
of L∞2α(0, T ;Lq/2(Ω)). In this case, condition (1.10) can be achieved by choosing T suffi-
ciently small, and we get the following variant of Theorem 1.3:
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Corollary 1.4. Under the assumptions of Theorem 1.3 let u0 ∈ L2
σ(Ω) ∩

◦
B−1+3/q
q,∞ (Ω) and

f = divF where F ∈ L2(0, T ;L2(Ω))∩
◦
L∞2α
(
0, T ;Lq/2(Ω)

)
. Then the Navier-Stokes system

(1.1) has a unique strong L∞α (Lq)-solution with data u0, f on some interval [0, T ′) ⊂ [0, T ).

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 are fulfilled.

(i) The condition

ess sup
τ∈(0,∞)

τα‖e−τAu0‖q <∞ (1.11)

is necessary for the existence of a strong L∞α (Lq)-solution u ∈ L∞α (0, T ;Lq) of the Navier-
Stokes system (1.1) with data u0, f in some interval [0, T ), 0 < T ≤ ∞.

(ii) If additionally F ∈
◦
L∞2α
(
0, T ;Lq/2(Ω)

)
, then the condition

u0 ∈
◦
B
−1+ 3

q
q,∞ (Ω) (1.12)

is even necessary and sufficient for the existence of a unique strong L∞α (0, T ;Lq)-solution

u ∈
◦
L∞α
(
0, T ;Lq(Ω)

)
of the Navier-Stokes system (1.1).

We note that the solutions constructed in Theorems 1.2 and 1.3, Corollaries 1.4 and

1.5 are continuous in time with values in B−1+3/q
q,s and

◦
B
−1+ 3

q
q,∞ , i.e.,

u ∈ C
(
[0, T ];B−1+3/q

q,s (Ω)
)

and u ∈ C
(

[0, T ];
◦
B−1+3/q
q,∞ (Ω)

)
,

respectively. This includes the more classical case u0 ∈ B−1+3/q
q,sq where 2

sq
+3
q

= 1 considered

in [9, 10]. For details of the proof we refer to the forthcoming article [7]. In case that

u0 ∈ B−1+3/q
q,∞ (Ω) continuity of u(t) holds on (0, T ], but cannot be expected at t = 0+.

For the definition of well-chosen weak solutions we need a slight extension of Definition
1.2 in [5] to the case of L∞-type spaces. Because of the bad approximation properties

of the spaces B
−1+ 3

q
q,∞ (Ω) and L∞2α

(
0, T ;Lq/2(Ω)

)
it is convenient to work in this definition

immediately with the smaller spaces
◦
B−1+3/q
q,∞ and

◦
L∞2α
(
0, T ;Lq/2(Ω)

)
. Of course, a version

with the spaces B1+3/q
q,∞ (Ω) and L∞2α

(
0, T ;Lq/2(Ω)

)
is possible, but looks awkward.

Definition 1.6. A well-chosen weak solution v is a weak solution of the Navier-Stokes
system (1.1) with v(0) = u0 ∈ L2

σ(Ω) and force f = divF , F ∈ L2
(
0, T ;L2(Ω)

)
, satisfying

the strong energy inequality (1.7), defined by a concrete so-called admissible approximation
procedure, and compatible with the notion of L∞α (Lq)-solutions in the following sense:

1. The initial value u0 ∈
◦
B
−1+ 3

q
q,∞ is approximated by a sequence (u0n) ⊂ L2

σ(Ω) ∩
B
−1+ 3

q
q,∞ (Ω) converging to u0 in L2

σ(Ω) ∩ B
−1+ 3

q
q,∞ (Ω) as n→∞.

2. The force F ∈ L2
(
0, T ;L2(Ω)

)
∩
◦
L∞2α
(
0, T ;Lq/2(Ω)

)
is approximated by a sequence

(Fn) ⊂ L2
(
0, T ;L2(Ω)

)
∩ L∞2α

(
0, T ;Lq/2(Ω)

)
such that Fn → F in both spaces.
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3. The approximation method yields approximate weak solutions (un), uniformly bounded
in LHT , and containing a subsequence (unk) such that unk ⇀ v in Leray-Hopf’s class

LHT , i.e., unk ⇀ v in L2
(
0, T ;H1(Ω)

)
and unk

∗
⇀ v in L∞

(
0, T ;L2

σ(Ω)
)

as k →∞.

4. (un) is uniformly bounded in L∞α (0, T ′;Lq) for some T ′ ∈ (0, T ].

Remark 1.7. (1) The crucial part of Definition 1.6 for an admissible approximation
procedure is assumption (4) on (un).

(2) The strong convergence u0n → u0 in L2(Ω) in Definition 1.6 (1) can be replaced
by the corresponding weak convergence. By analogy, the strong convergence Fn → F in
L2
(
0, T ;L2(Ω)

)
may be replaced by a weak one due to Definition 1.6 (2).

(3) Although the assumptions on F, Fn do not imply that ‖F‖L∞2α(0,t;Lq/2) converges
to 0 as t → 0 uniformly in n ∈ N, the following smallness condition is satisfied due to
Definition 1.6 (2): For any ε > 0 there exists an Nε ∈ N and T ′ ∈ (0, T ] such that

‖F‖L∞2α(0,T ′;Lq/2) ≤ ε for all n ≥ Nε. (1.13)

By analogy, for any ε > 0 there exists an Nε ∈ N and T ′ ∈ (0, T ] such that

sup
(0,T ′)

τα‖e−τAqu0n‖q ≤ ε for all n ≥ Nε. (1.14)

Now our main theorem on uniqueness reads as follows.

Theorem 1.8. Under the assumptions of Theorem 1.3 let u0 ∈ L2
σ(Ω) ∩

◦
B−1+3/q
q,∞ (Ω) and

f = divF with F ∈ L2
(
0, T ;L2(Ω)

)
∩
◦
L∞2α
(
0, T ;Lq/2(Ω)

)
be given. Furthermore, let

u ∈
◦
L∞α
(
0, T ;Lq(Ω)

)
be the unique strong L∞α (Lq)-solution of (1.1) with data u0, F .

(i) The solution u is unique within the class of all well-chosen weak solutions of (1.1)
in the sense of Definition 1.6.

(ii) Assume that each subsequence of (un) converging weakly in LHT converges weakly
to any weak solution of (1.1). Then the whole sequence (un) converges to u. Moreover,
for any sequence of initial values (u0n) and external forces (Fn) approximating u0 and F
in the sense of Definition 1.6 (1), (2), respectively, and generating approximate solutions
(un) with a subsequence weakly convergent in LHT to any weak solution of (1.1), the whole
sequence (un) converges weakly in LHT to u.

The crucial point is to show that an approximation procedure for the construction of
weak solutions is admissible in the sense of Definition 1.6.

Theorem 1.9. Let 3 < q <∞, 0 < α < 1
2

and 3
q

= 1− 2α. Then the Yosida approxima-
tion scheme and, if 3 < q ≤ 4, the Galerkin approximation scheme are admissible. To be
more precise, in this context these methods are defined as follows:

(i) (The Yosida approximation scheme) Let Jn = (I + 1
n
A1/2)−1 denote the Yosida

operator, let u0n = Jnu0, and assume that Fn → F in L2
(
0, T ;L2(Ω)

)
∩
◦
L∞2α(0, T ∗;Lq/2(Ω))

for some 0 < T ∗ ≤ T . Then the approximate solution un is defined as the solution of the
approximate Navier-Stokes system

∂tun −∆un + (Jnun) · ∇un +∇pn = divFn, div un = 0,

un|∂Ω = 0, un(0) = u0n.
(1.15)
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(ii) (The Galerkin approximation scheme) Let Πn denote the L2
σ-projection onto the

space of the first n eigenfunctions of the Stokes operator A2, and suppose that u0n ∈
ΠnL

2
σ(Ω) as well as Fn ∈ L2(0, T ;L2(Ω)) satisfy the assumptions of Definition 1.6 (1),

(2). Then let un denote the Galerkin approximation of (1.1) with data u0n, Fn.

(iii) In both cases (i) and (ii) the assumption in Theorem 1.8 (ii) is satisfied. Hence
the whole sequence given by these admissible approximation schemes converges to the well-
chosen weak solution, irrespective of the sequences (u0n) and (Fn).

2 Preliminaries

For the reader’s convenience, we first explain some well-known properties of the Stokes
operator. Let Ω ⊂ Rn be a bounded domain of class C2,1, let [0, T ), 0 < T ≤ ∞, be a
time interval, and let 1 < q < ∞. Then Pq : Lq(Ω) → Lqσ(Ω) denotes the Helmholtz
projection, and the Stokes operator Aq = −Pq∆ : D(Aq)→ Lqσ(Ω) is defined with domain
D(Aq) = W 2,q(Ω) ∩W 1,q

0 (Ω) ∩ Lqσ(Ω) and range R(Aq) = Lqσ(Ω). Since Pqv = Pγv for
v ∈ Lq(Ω) ∩ Lγ(Ω) and Aqv = Aγv for v ∈ D(Aq) ∩ D(Aγ), 1 < γ < ∞, we sometimes
write Aq = A to simplify the notation if there is no misunderstanding. Furthermore,
let Aαq : D(Aαq ) → Lqσ(Ω), −1 ≤ α ≤ 1, denote the fractional powers of Aq. It holds
D(Aq) ⊆ D(Aαq ) ⊆ Lqσ(Ω), R(Aαq ) = Lqσ(Ω) if 0 ≤ α ≤ 1. We note that (Aαq )−1 = (A−αq )

and (Aq)
′
= Aq′ where 1

q
+ 1

q′
= 1.

Now we recall the embedding estimate

‖v‖q ≤ c‖Aαγv‖γ , v ∈ D(Aαγ ), 1 < γ ≤ q <∞, 2α +
3

q
=

3

γ
, 0 ≤ α ≤ 1, (2.1)

and the estimate

‖Aαq e−tAqv‖q ≤ ct−αe−δt‖v‖q , v ∈ Lqσ(Ω), 0 ≤ α ≤ 1, t > 0, (2.2)

with constants c = c(Ω, q) > 0, δ = δ(Ω, q) > 0, see [1, 8, 13, 14, 17, 29]. Using (2.1),
(2.2) with 1 < γ ≤ q < ∞, 2β + 3

q
= 3

γ
and constants c, δ > 0 not depending on t, we

obtain for v ∈ Lγσ(Ω) that A−βv ∈ Lqσ(Ω) and that

‖e−tAv‖q ≤ ct−βe−δt‖v‖γ, t > 0. (2.3)

Consequently, ‖e−tAu0‖q with u0 ∈ L2
σ(Ω) is well-defined at least for t > 0, and there holds

ess sup(δ,∞)(τ
α‖e−τAu0‖q) < ∞ for any δ > 0 and α > 0. In particular, the conditions

sup(0,∞)(τ
α‖e−τAu0‖q) <∞ and sup(0,δ)(τ

α‖e−τAu0‖q) <∞ are equivalent for any δ > 0.

Further note that D(A
1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) and that the norms

‖A
1
2
q v‖q ≈ ‖∇v‖q , v ∈ D(A

1
2
q ).

are equivalent. In particular, if q = 2, then ‖A1/2
2 v‖2 = ‖∇v‖2 for v ∈ D(A1/2).

Consider any g = divG with G = (Gij)
3
i,j=1 ∈ Lq(Ω). Then a duality argument, see

[16, Lemma 2.1], [28, Lemma 2.6.1], shows that A
−1/2
q Pq divG ∈ Lqσ(Ω) is well-defined by
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the identity 〈A−
1
2

q Pq divG,ϕ〉 = −〈G,∇A−
1
2

q′ ϕ〉 for ϕ ∈ Lq′σ (Ω), and that

‖A−
1
2

q Pq divG‖q ≤ c‖G‖q (2.4)

holds with c = c(Ω, q) > 0.

The Yosida approximation operator Jn defined by Jn = (I + 1
n
A1/2)−1, n ∈ N, has on

each space Lqσ(Ω), 1 < q <∞, the following fundamental properties:

‖Jn‖L(Lqσ) +
∥∥ 1

n
A

1
2Jn
∥∥
L(Lqσ)

≤ Cq <∞ for all n ∈ N, (2.5)

Jnu→ u in Lqσ(Ω) for each u ∈ Lqσ(Ω) as n→∞. (2.6)

Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev inequality on
weighted Ls-spaces on R, cf. [30, 31],

Lsα(R) =
{
u : ‖u‖Lsα =

(∫
R
(|τ |α|u(τ)|)s dτ

)1/s

<∞
}
, α ∈ R, s ≥ 1.

Lemma 2.1. Let 0 < λ < 1, 1 < s1 ≤ s2 < ∞, − 1
s1
< α1 < 1 − 1

s1
, − 1

s2
< α2 < 1 − 1

s2

and 1
s1

+ (λ+ α1 − α2) = 1 + 1
s2

, α2 ≤ α1. Then the integral operator

Iλf(t) =

∫
R
|t− τ |−λf(τ) dτ

is bounded as operator Iλ : Ls1α1
(R)→ Ls2α2

(R).

3 Proof of Theorem 1.3 and Corollaries 1.4, 1.5

Proof of Theorem 1.3. Let Ef,u0 denote the solution of the instationary Stokes problem
on Ω× (0, T ) with data f, u0:

∂tv −∆v +∇p = f, div v = 0

v|∂Ω = 0, v(0) = u0,

i.e.,

Ef,u0(t) = e−tAu0 +

∫ t

0

A1/2e−(t−τ)AA−1/2P divF (τ) dτ

=: E0,u0(t) + Ef,0(t). (3.1)

Evidently, the assumptions u0 ∈ L2
σ(Ω) and F ∈ L2(0, T ;L2(Ω)) imply that Ef,u0 ∈

C0([0, T ];L2) ∩ L2(0, T ;H1), satisfying the energy equality. Moreover,

‖∇Ef,u0‖L2(0,T ;L2) ≤ c
(
‖u0‖2 + ‖F‖L2(0,T ;L2(Ω))

)
.
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By assumption (1.10) there holds E0,u0 ∈ L∞α (Lq). Finally, using the estimates (2.1) and
(2.2) with 2β + 3

q
= 3

q/2
for q > 3, i.e., β = 3

2q
= 1

2
− α,

‖Ef,0(t)‖q ≤ c

∫ t

0

‖A
1
2

+βe−(t−τ)A(A−
1
2P div)F (τ)‖ q

2
dτ

≤ c

∫ t

0

(t− τ)−1+ατ−2ατ 2α‖F (τ)‖ q
2

dτ

≤ c ess sup
(0,t)

‖τ 2αF (τ)‖ q
2

∫ t

0

(t− τ)−1+ατ−2α dτ (3.2)

= ct−α ess sup
(0,t)

‖τ 2αF (τ)‖ q
2
.

Hence we proved that ‖Ef,0‖L∞α (0,t;Lq) ≤ c‖F‖L∞2α(0,t;Lq/2) and even

‖E0,u0‖L∞α (0,t;Lq) + ‖Ef,0‖L∞α (0,t;Lq) ≤ c
(
‖e−τAu0‖L∞α (0,t;Lq) + ‖F‖L∞2α(0,t;Lq/2)

)
(3.3)

with a constant c > 0 independent of t > 0.

We then set ũ = u− Ef,u0 which solves the (Navier-)Stokes system

∂tũ−∆ũ+ u · ∇u+∇p = 0, div ũ = 0

ũ|∂Ω = 0, ũ(0) = 0.

At least formally, we can write

ũ(t) = −
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(u⊗ u)(τ) dτ (3.4)

so that we define the nonlinear operator

F(ũ)(t) = −
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(u⊗ u)(τ) dτ, u = ũ+ Ef,u0 . (3.5)

With β = 3
2q

= 1
2
− α we get as in (3.1), (3.2)

‖F(ũ)(t)‖q ≤ c

∫ t

0

(t− τ)−1+ατ−2α(τα‖u‖q)2 dτ. (3.6)

We proceed as in (3.2), (3.3) and conclude that

‖F ũ‖L∞α (0,t;Lq) ≤ c‖u‖2
L∞α (0,t;Lq). (3.7)

Since u = ũ+ Ef,u0 we get from (3.3), (3.7) that for any T > 0

‖F ũ‖L∞α (0,T ;Lq) ≤ c0

(
‖ũ‖L∞α (0,T ;Lq) + ‖F‖L∞2α(0,T ;Lq/2) + ‖e−τAu0‖L∞α (0,T ;Lq)

)2
(3.8)

where c0 = c0(Ω, q) > 0 is independent of T and the data. With the abbreviation

b = b(T ) := ‖F‖L∞2α(0,T ;Lq/2) + ‖e−τAu0‖L∞α (0,T ;Lq)
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we obtain from (3.8) the estimate

‖F ũ‖L∞α (0,T ;Lq) + b ≤ c0(‖ũ‖L∞α (0,T ;Lq) + b)2 + b. (3.9)

Assume the smallness condition

4bc0 = 4c0

(
‖F‖L∞2α(0,T ;Lq/2) + ‖e−τAu0‖L∞α (0,T ;Lq)

)
< 1. (3.10)

Obviously, the quadratic equation r = c0r
2 + b has a minimal positive root given by

r1 = 2b(1 +
√

1− 4bc0)−1 ∈ (b, 2b). Note that r1 = r1(b, c0) is increasing in b as well as
in c0 and that r1 − b = c0r

2
1 ∈ (c0b

2, 4c0b
2). We conclude that F maps the non-empty

closed ball B = {v ∈ L∞α (0, T ;Lq) : ‖v‖L∞α (0,T ;Lq) ≤ r1 − b} into itself. Moreover, it is
straightforward to modify the above estimates to show that for ũ, û ∈ B

‖F ũ−F û‖L∞α (0,T ;Lq) ≤ 4bc0‖ũ− û‖L∞α (0,T ;Lq).

Since 4bc0 < 1, Banach’s Fixed Point Theorem proves the existence of a unique fixed
point ũ ∈ L∞α (0, T ;Lq) of F in B; this fixed point ũ solves (3.4). Hence the mild solution
u = ũ+ Ef,u0 is contained in L∞α (0, T ;Lq).

Now we will prove that this mild solution u is indeed a weak solution. To this aim,
we need the following lemmata.

Lemma 3.1. The mild solution u constructed in the above procedure satisfies ∇u ∈
L2(0, T ;L2(Ω)).

Proof We use a modification of the proof described in [10]. Since for the moment
differentiability properties of the mild solution u are yet unknown, we apply the Yosida
operator Jn = (I+ 1

n
A

1
2 )−1, n ∈ N, to (3.4) and write JnP div u⊗u in the form JnP div(u⊗

(ũ+ Ef,u0)), ũ = (I + 1
n
A

1
2 )ũn, where ũn = Jnũ. Then we have

JnP div u⊗ u = JnP (u · ∇Ef,u0) + JnP (u · ∇ũn) +
1

n
JnP div(u⊗ A

1
2 ũn)

= JnP (u · ∇Ef,u0) + JnP (u · ∇ũn) +
1

n
A

1
2Jn(A−

1
2P div)(u⊗ A

1
2 ũn).

By (2.5), (2.6) and Hölder’s inequality with 1
γ

= 1
2

+ 1
q

we obtain the estimate

‖JnP div(u⊗ u)‖γ ≤ c‖u‖q
(
‖∇Ef,u0‖2 + ‖∇ũn‖2 + ‖A

1
2 ũn‖2

)
= c‖u‖q

(
‖∇Ef,u0‖2 + 2‖A

1
2 ũn‖2

)
.

Applying A
1
2Jn to (3.4) it holds the identity

A
1
2 ũn(t) = −

∫ t

0

A
1
2 e−(t−τ)AJnP div(u⊗ u)(τ) dτ,

and by (2.1) with 2β + 3
2

= 3
γ
, i.e., β = 3

2q
= 1

2
− α, the estimate

‖A
1
2 ũn(t)‖2 ≤ c

∫ t

0

‖A
1
2

+βe−(t−τ)A‖‖JnP div(u⊗ u)(τ)‖γ dτ

≤ c

∫ t

0

(t− τ)−1+α‖u(τ)‖q
(
‖∇Ef,u0(τ)‖2 + 2‖A

1
2 ũn(τ)‖2

)
dτ.

11



Now let s1 = 2, α1 = α, s2 = 2, α2 = 0, λ = 1 − α, so that 1
2

+ (1 − α + α − 0) = 1 + 1
2
.

By Lemma 2.1 we have for any 0 < T1 ≤ T

‖A
1
2 ũn(t)‖L2(0,T1;L2) ≤ c

(∫ T1

0

(
τα‖u‖q(‖∇Ef,u0‖2 + ‖A

1
2 ũn‖2)

)2
dτ
)1/2

≤ c1‖u‖L∞α (0,T1;Lq)

(
‖∇Ef,u0‖L2(0,T1;L2) + ‖A

1
2 ũn‖L2(0,T1;L2)

)
.

Next, to achieve for u = Ef,u0 + ũ the smallness condition

c1‖u‖L∞α (0,T1;Lq) ≤
1

2
(3.11)

note that, with a constant c2 = c2(Ω, q) > 0,

c1‖u‖L∞α (0,T1;Lq) ≤ c2

(
‖e−τAu0‖L∞α (0,T1;Lq) + ‖F‖L∞2α(0,T1;Lq/2) + r1 − b

)
≤ c2(b+ r1 − b) ≤ 2c2b.

Thus, in order to satisfy (3.11) by means of the condition

4c∗b < 1, c∗ := max(c0, c2), (3.12)

it suffices to replace in (3.10) c0 by c2. Then the absorption argument yields the estimate

‖A
1
2 ũn‖L2(0,T1;L2) ≤ 2c1‖u‖L∞α (0,T1;Lq)‖∇Ef,u0‖L2(0,T1;L2) <∞

independent of n ∈ N. Consequently, using reflexivity arguments, A
1
2 ũ,∇ũ ∈ L2(0, T1;L2)

and ∇u ∈ L2(0, T1;L2).

Lemma 3.2. Under the assumptions of Lemma 3.1 we have the following results:

(i) u ∈ Ls2(0, T ;Lq2) for all 2
s2

+ 3
q2

= 3
2
, 2 ≤ s2 ≤ ∞, 2 ≤ q2 ≤ 6.

(ii) ‖ũ(t)‖2 → 0 and u(t)→ u0 in L2(Ω) as t→ 0+.

(iii) u ∈ L4
α/(2+8α)(0, T ;L4(Ω)).

(iv) u satisfies the energy equality on [0, T ].

Proof (i) From Lemma 3.1 we know that ∇u ∈ L2(0, T ;L2). Moreover, by (2.3) with
β = 3

2q
= 1

2
− α, Hölder’s inequality implies that

‖ũ(t)‖2 ≤ c

∫ t

0

(t− τ)−
1
2

+ατ−α(τα‖u‖q)‖∇u‖2 dτ

≤ C‖u‖L∞α (0,t;Lq)‖∇u‖L2(0,t;L2); (3.13)

we note that here α > 0 is necessary. Hence

‖ũ‖L∞(0,t;L2) ≤ C‖u‖L∞α (0,t;Lq)‖∇u‖L2(0,t;L2).

From the properties u ∈ L∞(L2) and ∇u ∈ L2(L2) it follows immediately that u ∈
Ls2(Lq2) as required in (i).
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(ii) From (i), to be more precise from (3.13), we conclude that ‖ũ(t)‖2 → 0 as t→ 0.
Since also e−tAu0 → u0 in L2(Ω) and Ef,0(t)→ 0 in L2(Ω) as t→ 0, (ii) is proven.

(iii) Given q, α and β = 1
2+8α

we define q1,s1 by 1
4

= β
q

+ 1−β
q1

and 2
s1

+ 3
q1

= 3
2
, i.e.,

s1 = 4(1− β). From Hölder’s inequality we know that ‖u‖4 ≤ ‖u‖
β
q ‖u‖

1−β
q1

. Hence∫ T

0

τ 4αβ‖u‖4
4 dτ ≤

∫ T

0

(τα‖u‖q)
4β‖u‖4(1−β)

q1
dτ

≤ ‖u‖4β
L∞α (Lq)‖u‖

4(1−β)

L4(1−β)(Lq1 )
<∞.

(iv) From (iii) we know that u ∈ L4(ε, T ;L4) for all 0 < ε < T . So, by [28, IV. Thm.
2.3.1, Lemma 2.4.2] and for a.a. ε ∈ (0, T ), u is the unique weak solution in L4(ε, T ;L4)
on the interval (ε, T ) of the linear Stokes problem

∂tu−∆u+∇p = div F̃ , div u = 0

u|∂Ω = 0, u|t=ε = u(ε)

with external force div F̃ , F̃ = F − u⊗ u ∈ L2(ε, T ;L2) and initial value u(ε) ∈ L4(Ω) ⊂
L2(Ω). Therefore, u satisfies the energy equality on (ε, T ), i.e.

1

2
‖u(t)‖2

2 +

∫ t

ε

‖∇u‖2
2 dτ =

1

2
‖u(ε)‖2

2 −
∫ t

ε

(F,∇u) dτ

for all t ∈ (ε, T ) and a.a. ε ∈ (0, T ). Letting ε → 0 we conclude in view of (ii) that u
satisfies the energy equality even on [0, T ).

End of Proof of Theorem 1.3. Concerning uniqueness we note that r1 − b = c∗r
2
1 ∈

(c∗b
2, 4c∗b

2). Hence u coincides with any other strong L∞α (0, T ;Lq(Ω))-solution v satisfying
ṽ = v − Ef,u0 ∈ B; this can be achieved when ‖ṽ‖L∞α (0,T ′;Lq) ≤ c∗b

2.

By Lemma 3.2 we obtain that u is a weak solution of (1.1); this completes the proof
of Theorem 1.3.

Proof of Corollary 1.4. The proof follows the lines of the proof of Theorem 1.3. However,
by the assumptions on u0 and F conditions (3.10) and (3.12) can be achieved by choosing
T ′ > 0 sufficiently small. Given any other strong L∞α (0, T ;Lq)-solution v we find T ′ ≤ T
such that ‖ṽ‖L∞α (0,T ′;Lq) < c∗b

2. Then v coincides with u on (0, T ′).

Proof of Corollary 1.5. (i) Assume that u ∈ L∞α (0, T ;Lq), 0 < T ≤ ∞, is a strong L∞α (Lq)
solution of (1.1). Recall that E0,u0 = u− ũ−Ef,0 where by (3.7) ũ = F ũ ∈ L∞α (Lq), and
by (3.2) Ef,0 ∈ L∞α (Lq). Hence E0,u0 ∈ L∞α (Lq) as well, and (1.11) is satisfied.

(ii) By assumption on F and in view of (3.2), we conclude that Ef,0 ∈
◦
L∞α
(
0, T ;Lq

)
.

Given that u ∈
◦
L∞α
(
0, T ;Lq

)
, also ũ = F ũ ∈

◦
L∞α
(
0, T ;Lq

)
due to (3.7). Hence we get that

u0 ∈
◦
B−1+3/q
q,∞ .

4 Proof of Theorems 1.8 and 1.9

Proof of Theorem 1.8 By Definition 1.6 (3) there exists a sequence of approximate weak
solutions (un) bounded in LHT such that a subsequence (unk) converges to a weak solution
v ∈ LHT of (1.1) satisfying the strong energy equality (1.7).

13



Since (un) is uniformly bounded in L∞α (0, T ′;Lq) with T ′ from Definition 1.6 (4) we
find a subsequence (un′k) of (unk) converging weakly-∗ in L∞α (0, T ′;Lq) to an element
v′ ∈ L∞α (0, T ′;Lq). Now, since unk ⇀ v in LHT ′ , we may conclude that v = v′ on (0, T ′);
in particular, v′ is a weak and even a strong L∞α (Lq)-solution of (1.1) on (0, T ′). Since
strong L∞α (Lq)-solutions are unique by Theorem 1.3 on some interval (0, T ′′), v = v′ = u
on (0, T ′′) ⊂ (0, T ′). This uniqueness also implies that any other subsequence (umk) of
(un) converging weakly in LHT ′ to any weak solution actually converges weakly to v′

on (0, T ′′) as k → ∞. Hence the whole sequence (un) converges weakly to v on (0, T ′′).
Moreover, again due to uniqueness, this result will hold for any sequence (u0n) and (Fn)
with convergence properties as in Definition 1.6.

If T ′′ < T , then we find due to (SEI) applied to v some 0 < T ∗ ≤ T ′′ such that
the weak solution v satisfies the energy estimate on [T ∗, T ) with initial time T ∗. Since
3
q

= 1− 2α < 1, there exists 2 < s <∞ with 2
s

+ 2
q

= 1 such that u ∈ Ls(T ∗, T ;Lq(Ω)) is
a ”classical” strong solution, and Serrin’s Uniqueness Theorem implies that u = v even
on [0, T ).

Proof of Theorem 1.9 (i) Given u0, u0n and F , Fn as in Definition 1.6 classical L2-
methods, see [28, Ch. V.2], prove the existence of a unique approximate solution un ∈
LHT of (1.15) and the convergence of a subsequence of (un) to a weak solution u ∈ LHT of
(1.1). Indeed, each un satisfies the energy equality, and consequently the energy estimate

‖un(t)‖2
2 +

t∫
0

‖∇un‖2
2 dτ ≤ ‖u0n‖2

2 +

t∫
0

‖Fn‖2
2 dτ,

with a right-hand side uniformly bounded with respect to n ∈ N and 0 < t < T due to
the convergence properties of u0n, Fn in Definition 1.6, see also Remark 1.7 (2). Finally,
(∂tun) is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
, see [28, Lemma V. 2.6.1, Theorem V.

1.6.2]. Hence, by the Aubin-Lions-Simon compactness theorem for Bochner spaces, there
exists a subsequence (unk) of (un) and v ∈ LHT such that

unk ⇀ v in LHT , unk → v in L2
(
0, T ;L2

σ(Ω)
)

(4.1)

as k →∞. Furthermore,

unk(t)→ v(t) in L2
σ(Ω) for a.a. t ∈ (0, T ) (4.2)

as k → ∞; this step needs the extraction of a further subsequence, as the case may be.
Now (4.1) allows us to pass to the limit in (1.15) and to show that v is a weak solution
of (1.1) in the sense of Leray-Hopf. In particular, v satisfies the energy inequality (1.4),
and due to (4.2) even the strong energy inequality (1.7).

In the second step of the proof we improve the previous results by exploiting the

properties of u0 in
◦
B−1+3/q
q,∞ and of F in

◦
L∞2α

(
0, T ;Lq/2

)
, see Definition 1.6. Since (u0n)

converges strongly to u0 in B−1+3/q
q,∞ we find some T ′ ∈ (0, T ] and N∗ ∈ N such that

sup
τ∈(0,T ′)

‖ταe−τAu0n‖q ≤
ε∗
2
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for all n ≥ N∗ where ε∗ > 0 is the absolute constant from (1.10), see also (1.14). Further-
more, since Fn → F in L∞2α

(
0, T ;Lq/2(Ω)

)
we may also assume that

‖Fn‖L∞2α(0,T ′;Lq/2) ≤
ε∗
2

for all n ≥ N∗, see (1.13). We follow the construction of strong L∞α (Lq)-solutions in the
proof of Theorem 1.3, decompose the solution un of (1.15) into un = ũn + En where En
solves the linear nonhomogeneous Stokes problem with data u0n, Fn, i.e.,

En(t) = e−tAu0n +

t∫
0

A1/2e−(t−τ)
(
A−1/2P div

)
Fn(τ) dτ. (4.3)

Then ũn = un−En has an integral representation based on the variation of constants
formula and can be considered as solution of the fixed point problem ũn = Fnũn in
L∞α
(
0, T ′;Lq(Ω)

)
where

Fnũn(t) = −
t∫

0

A1/2e−(t−τ)A
(
A−1/2P div

)(
Jn(ũn + En)⊗ (ũn + En)

)
(τ) dτ ;

note that Fn differs from F in (3.5) only by the additional term Jn. Due to fundamental
properties of the Yosida operators Jn the fixed point of Fn can be constructed by Ba-
nach’s Fixed Point Theorem in the same way as in in the proof of Theorem 1.3. By the
assumptions on un, Fn and (3.8), (3.9), (3.10), ũn, un satisfy the estimate

‖ũn‖L∞α (0,T ′;Lq), ‖un‖L∞α (0,T ′;Lq) ≤ Cε∗ (4.4)

with a constant C > 0 independent of n ≥ N∗. Thus (ũn)n∈N and (un)n∈N are bounded
in L∞α (0, T ′;Lq).

(ii) It is well known that the Stokes operator A2 on the bounded C2,1-domain Ω ⊂ R3

admits an orthonormal basis of eigenfunctions ψk ∈ D(A2) with corresponding eigenvalues
λk monotonically increasing to ∞ as k →∞. For n ∈ N let

Πn : L2
σ(Ω)→ Vn := span{ψ1, . . . , ψn} ⊂ L2

σ(Ω)

denote the corresponding orthogonal projection. Obviously, ‖Πn‖L(L2
σ(Ω)) = 1 for all

n ∈ N. In the Galerkin method we are looking for a solution un : [0, T ) → Vn of the
ordinary differential n× n-system

(∂tun, ψk) + (∇un,∇ψk)− (un ⊗ un,∇ψk) = −(Fn,∇ψk)
un(0) = u0n ∈ Vn

(4.5)

on (0, T ) for each k = 1, . . . , n. By the L2-assumptions on u0n and Fn we know that there
exists a sequence of unique solutions (un) to (4.5) bounded in LHT . Moreover, (∂tun)
is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
. As in the first part of the proof we find a

subsequence (unk) of (un) and a vector field v satisfying (4.1) and (4.2). In particular,
v ∈ LHT is a weak solution to (1.1) satisfying (1.7).
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The crucial question is whether un is also a strong L∞α (0, T ′;Lq)-solution, uniformly
bounded in n. To address this problem we consider arbitrary linear combinations of (4.5)1

to see that for all w ∈ D(A1/2)

(∂tun,Πnw) + (∇un,∇Πnw)− (un ⊗ un,∇Πnw) = −(Fn,∇Πnw)

un(0) = u0n ∈ Vn
(4.6)

Since Πn = PΠn, P ∗ = P , A commutes with Πn, and (∇un,∇Πnw) = (Aun, w), we may
omit the test function w ∈ H1

0,σ(Ω) and rewrite (4.6) in the form

∂tun + Aun + ΠnP div(un ⊗ un) = ΠnP divFn, un(0) = u0n ∈ Vn. (4.7)

Thus un(t) can be considered as a solution in W 1,4/3(0, T ) (with respect to time) of an
abstract Cauchy problem and as a mild solution with integral representation

un(t) = e−tAu0n −
∫ t

0

A1/2e−(t−τ)A
(
A−1/2ΠnP div

)
(un ⊗ un − Fn)(τ) dτ. (4.8)

Although ‖Πn‖L(L2
σ(Ω)) = 1 and A−1/2P div ∈ L(Lq(Ω)) for each 1 < q < ∞, similar

estimates will neither hold for Πn on Lqσ(Ω) nor for the operator A−1/2ΠnP div on Lq(Ω)
uniformly in n ∈ N. Actually, an estimate of the type ‖Πn‖L(Lqσ(Ω)) ≤ c(q) uniformly in
n ∈ N is questionable when q 6= 2.

Using (2.1), (2.3) and exploiting the uniform boundedness and commutator properties
of Πn on L2

σ(Ω) we get that

‖A1/2e−(t−τ)A(A−1/2ΠnP div)(un ⊗ un − Fn)‖q
≤ c‖A

3
4

+αe−(t−τ)A(A−1/2ΠnP div)(un ⊗ un − Fn)‖2

≤ c‖A
3
4

+αe−(t−τ)A(A−1/2P div)(un ⊗ un − Fn)‖2

≤ c(t− τ)−1+α‖un ⊗ un − Fn‖q/2.

(4.9)

This estimate directly implies that with a constant c > 0 independent of n ∈ N and T

‖un − e−tAu0n‖L∞α (0,T ;Lq) ≤ c
(
‖un‖2

L∞α (0,T ;Lq) + ‖Fn‖L∞2α(0,T ;Lq/2)

)
.

Then by standard arguments we find T ′ ∈ (0, T ) independent of n ∈ N such that (un) ⊂
L∞α (0, T ′;Lq) is uniformly bounded.

Now we complete the proof as in the previous case.

5 Interpretation in Terms of Besov Spaces

For 1 < q < ∞, 1 ≤ r ≤ ∞ and t ∈ R let Bt
q,r(R3) denote the usual Besov spaces, see

[32, 2.3.1], and define for the bounded domain Ω ⊂ R3 the space Bt
q,r(Ω) by restriction of

elements in Bt
q,r(R3) in the sense of distributions to Ω; the norm of u ∈ Bt

q,r(Ω) is given
by the infimum of norms of all v ∈ Bt

q,r(R3) such that v|Ω = u. Concerning Besov spaces
on Ω with vanishing trace - if possible -, the definition is modified as follows: Considering
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only vector fields rather than scalar-valued functions and the range t ∈ [−2, 2] we follow
Amann [4], [2] and define

Bt
q,r(Ω) =


{u ∈ Bt

q,r(Ω)3; γu = 0} 1/q < t ≤ 2

{u ∈ B1/q
q,r (R3)3; supp(u) ⊂ Ω} 1/q = t

Bt
q,r(Ω)3 0 ≤ t < 1/q(
B−tq′,r′(Ω)

)′
(1 < r ≤ ∞) −2 ≤ t < 0

(5.1)

where γ denotes the trace operator defined by γu = u|∂Ω for continuous functions. For
spaces of solenoidal vector fields on Ω let

Btq,r(Ω) =


Bt
q,r(Ω) ∩ Lqσ(Ω) 0 < t ≤ 2

cl
(
C∞0,σ(Ω)

)
in B0

q,r(Ω) t = 0(
B−tq′,r′(Ω)

)′
(1 < r ≤ ∞) −2 ≤ t < 0

; (5.2)

here “cl” denotes the closure. Note that u ∈ Btq,r(Ω) with 1
q
< t ≤ 2 vanishes on ∂Ω

(γu = 0) by (5.1), but that only the normal component of u vanishes on ∂Ω when
0 < t ≤ 1

q
since u ∈ Lqσ(Ω).

Moreover, we need the spaces

◦
Btq,∞(Ω) := cl

(
Ht
q(Ω) ∩ Lqσ(Ω)

)
in Btq,∞(Ω), −2 ≤ t ≤ 2,

where Ht
q(Ω) is a Bessel potential space defined by restriction of the usual Bessel potential

space H t
q(R3)3 to vector fields on Ω (and vanishing on ∂Ω as in (5.1)), cf. [4, pp. 3-4].

For 0 < |t| < 2 these spaces are also called little Nikol’skii space and denoted by ntq,0,σ(Ω).
Then, using the notation (·, ·)θ,r, 1 ≤ r < ∞, of real interpolation, and (·, ·)0

θ,∞ for the
continuous interpolation functor, Theorem 3.4 in [2] states that

(Lqσ(Ω),D(Aq))θ,r = B2θ
q,r(Ω), 0 < θ < 1, (5.3)

(Lqσ(Ω),D(Aq))
0
θ,∞ =

◦
B2θ
q,∞(Ω), 0 < θ < 1. (5.4)

Note that D(Aq) is equipped with its graph norm, and that for a bounded domain this
graph norm can be simplified to ‖Aq · ‖q. As is well-known ([25, Proposition 6.2, Exercise
6.1.1 (1)], equivalent norms on the spaces (Lqσ(Ω),D(Aq))θ,r, 1 ≤ r <∞, are given by

‖u‖B2θ
q,r
∼
(∫ T

0

(
τ 1−θ‖Aqe−τAqu‖q

)rdτ

τ

)1/r

,

where T ∈ (0,∞) can be chosen arbitrarily and an additional term ‖u‖q on the right-hand
side can be omitted since Ω is bounded. For r =∞ we have

‖u‖B2θ
q,r
∼ sup

(0,T )

τ 1−θ‖Aqe−τAqu‖q. (5.5)

In the case (5.4)
◦
B2θ
q,∞(Ω) may be equipped with the equivalent norm given in (5.5), but

elements u ∈
◦
B2θ
q,∞(Ω) enjoy the further property that

lim
τ→0

τ 1−θ‖Aqe−τAqu‖q = 0. (5.6)
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The conclusion is that the spaces (Lqσ(Ω),D(Aq))θ,∞ and (Lqσ(Ω),D(Aq))
0
θ,∞ are special

Besov spaces characterized by (5.5) and (5.5)-(5.6), respectively.

The aim is to find similar characterizations of those spaces and norms used in Sections
1-4. Theorem 3.4 in [2] applies to negative exponents of regularity as well. E.g., for
−1 < θ < 0 and 1 < r <∞, we have by (5.2)(

Lqσ(Ω),D(Aq′)
′)
−θ,r =

((
Lq
′

σ (Ω),D(Aq′)
)
−θ,r′

)′
=
(
B−2θ
q′,r′(Ω)

)′
= B2θ

q,r(Ω).

To deal with the cases r = 1 and r = ∞ note that Aq is an isomorphism from D(Aq) to
Lqσ(Ω) and also from Lqσ(Ω) to D(Aq′)

′. Hence, for 1 ≤ r ≤ ∞ and −1 < θ < 0(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,r
= A

((
Lqσ(Ω),D(Aq)

)
1+θ,r

)
, (5.7)

with a similar result for the continuous interpolation functor (·, ·)0
θ,∞. Then we get the

following characterizations of real interpolation spaces of D(Aq′)
′ and Lqσ(Ω) (here −1 <

θ < 0): (
D(Aq′)

′, Lqσ(Ω)
)

1+θ,r
= B2θ

q,r(Ω), 1 ≤ r <∞, (5.8)(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,∞ = B2θ
q,∞(Ω) ∼= B2θ

q,∞(Ω)/
(
B−2θ
q′,1 (Ω)

)⊥
, (5.9)(

D(Aq′)
′, Lqσ(Ω)

)0

1+θ,∞ =
◦
B 2θ
q,∞(Ω) = cl

(
H2
q(Ω)

)
in
(
B−2θ
q′,1 (Ω)

)′
= cl

(
Lqσ(Ω)

)
in B2θ

q,∞(Ω). (5.10)

Actually, (5.8) for r = 1 and (5.10) follow from [2, Theorem 3.4], [4, p.4], for −1 < θ < 0.
Moreover, to prove (5.9) we use the duality theorem of real interpolation to get that
identity

(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,∞ =
((
Lq
′
σ (Ω),D(Aq′)

)
−θ,1

)′
=
(
B−2θ
q′,1 (Ω)

)′
and the definition

B2θ
q,∞(Ω) =

(
B−2θ
q′,1 (Ω)

)′
in (5.2); this space is called Nikol’skii space N2θ

q,0,σ(Ω) in [2]. The
second part of (5.9) is found in the proof of [2, Remark 3.6] and a consequence of the
isomorphism

B2θ
q,∞(Ω) =

(
B−2θ
q′,1 (Ω)

)′ ∼= B2θ
q,∞(Ω)/(B−2θ

q′,1 (Ω))⊥;

here B2θ
q,∞(Ω) =

(
B−2θ
q′,1 (Ω)

)′
by [32, Theorems 4.3.2, 4.8.1], since in our application −2θ =

2α > 1
q′
− 1 and −2θ − 1

q′
/∈ Z. Recall that the characterization (5.7) also holds when

r =∞.

Thus for any 1 ≤ r ≤ ∞ and −1 < θ < 0, by (5.7), (5.8), (5.9) and (5.3),(
D(Aq′)

′, Lqσ(Ω)
)

1+θ,r
= A(B2+2θ

q,r (Ω)) = B2θ
q,r(Ω) and has the equivalent norm

‖u‖A(B2+2θ
q,r ) ∼

(∫ T

0

(
τ−θ‖e−τAqu‖q

)r dτ

τ

)1/r

, −1 < θ < 0, 1 ≤ r <∞, (5.11)

‖u‖A(B2+2θ
q,∞ ) ∼ sup

τ∈(0,T )

τ−θ‖e−τAqu‖q, −1 < θ < 0. (5.12)

This result was used in [10] when 2
r

+ 3
q

= 1, θ = 0, 2 < r <∞.

Let us summarize these results for the case θ = −α = 1
2

(
3
q
− 1
)

needed in this paper.

Theorem 5.1. Let 3 < q < ∞, 0 < α < 1
2

and 3
q

= 1 − 2α such that 1
2
(3
q

+ 1) = 1 − α.

Choose any T ∈ (0,∞).
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(i) The real interpolation space
(
D(Aq′)

′, Lqσ(Ω)
)

1−α,∞ coincides with the space of

Besov-type B−1+3/q
q,∞ (Ω) and has the equivalent norm sup(0,T ) τ

α‖e−τAqu‖q.

(ii) The interpolation space
(
D(Aq′)

′, Lqσ(Ω)
)0

1−α,∞ equals the Besov space
◦
B−1+3/q
q,∞ (Ω),

equipped with the equivalent norm sup(0,T ) τ
α‖e−τAqu‖q, such that additionally the property

limτ→0 τ
α‖e−τAqu‖q = 0 holds for u ∈

◦
B−1+3/q
q,∞ (Ω).
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