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Abstract

We consider weak solutions of the instationary Navier-Stokes system in a smooth
bounded domain  C R3 with initial value ug € L2(2). It is known that a weak
solution is a local strong solution in the sense of Serrin if ug satisfies the optimal

initial value condition uy € By,

that Sl + 5 = 1. This result has recently been generalized by the authors to

3/9 with Serrin exponents s, > 2,q > 3 such

Welght((led Serrln conditions such that u is contained in the weighted Serrin class

Jo (7

1

7 u(7)|q)*dT < oo with %—i—% =1-2a, 0 < a < 5. This regularity is

guaranteed if and only if ug is contained in the Besov space By, ; 3/ 11 this article

we consider the limit case of initial values in the Besov space By oo +3/ 7 and in its

subspace Bq,o;r /% hased on the continuous interpolation functor. Special emphasis
is put on questions of uniqueness within the class of weak solutions.
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1 Introduction

We consider the Navier-Stokes initial value problem

Oou—Au+u-Vu+Vp=f, divu=0 in (0,7) x Q (1.1)
uloa = 0, u(0) = ug

in a bounded domain 2 C R? with boundary 99 of class C*! and a time interval [0,T),
0 < T < oo. For simplicity, the coefficient of viscosity is assumed to be equal to 1.

Let us recall the definition of weak and strong solutions to (1.1) and define special
types of strong solutions contained in spaces with weights in time, so-called strong L3 (L?)-

solutions.



Definition 1.1. Let ug € L2(Q) be an initial value and let f = div F' with F = (Fy;); -, €
L?(0,T; L*(Q)) be an external force.
(i) A wvector field uw on Q@ x (0,T) in the Leray-Hopf class

LHp = L(0,T; L2(Q)) N L*0,T; W, *(Q)) (1.2)

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes system (1.1)
with data ug, f, if the relation

—(u, we)q r + (Vu, V) 7 — (uu, Vw)g 7 = (uo, w(0))q — (F, Vw)q 1 (1.3)

holds for each test function w € C§°([0,T); C5%(S2)), and if the energy inequality

1 t 1 t
SO+ [ 1vuliar < Sl - [ (R vwar (1.4

is satisfied for 0 <t < T.

(ii) A weak solution u of (1.1) is called a strong L? (L?)-solution with exponents 2 <
s <00, 3 < q < oo and weight T in time, where 0 < a < % and§+§ =1-2a, if
additionally the weighted Serrin condition

T
we L:(0,7T5 LK), e, / (T*u()|],)* dT < 00, if 2 < s < o0,
0

L (0,75 L)), e, esssup,cop 7 /|u(r)|y < oo, if s=oo0.

(1.5)

Ifin (1.5) a =0 and §+§ =1, then u is called a strong solution (in the sense of Serrin).

In this definition we use the usual Lebesgue and Sobolev spaces, L(€2) with norm
|+ ey = || - [l; and W*4(2) with norm)|| - lwkacy = | - [l;q> Tespectively, for 1 < ¢ < oo
and k € N. Let L*(L9) = L*(0,T; L)), 1 < q,s < oo, with norm || - ||zs(0,7;20(0)) =
| Nlgsr = (foT | - ||2dt) "* denote the classical Bochner spaces. If additionally o > 0 is
given, we define the weighted (in time) Bochner spaces L?/(0,7; L%(Q2)) = L?/(L?) with

norm
T N 5 1/s
s = ([ 1) ™

Of course, if s = 0o, then

s0.75L9() = || -

L2(0,T; L)) ={u: (0,T) — L) strongly measurable,
1wl oo 0,750(0)) = esssup 7{|u(T)||q < oo}. (1.6)
7€(0,T

The expression (-, ) = (-, -) denotes the pairing of functions on , and (-, -)q, ; means
the corresponding pairing on [0,77) x Q. Furthermore, to deal with solenoidal vector fields
we use the smooth function spaces C§°(2) and C§%(2) = {v € C5°(Q?) : dive = 0},

and the spaces L1(Q) = CSOG(Q)” o Wyi(Q) = C‘X’(Q)” g , Wd(Q) = Cng(Q)H'Hl’q.
Throughout this paper, A = A, denotes the Stokes operator in L2 2(€2). More general,
A,, 1 < ¢ < 0o, means the Stokes operator in LZ(€2), and e~ ¢ > 0, is the semigroup
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generated by A, in LZ(Q). Note that, with z = (21,9, 73) € Q@ C R?, for F = (Fj;)},_;,
u = (uq, ug, ug) we let div F' = (2?21 @-Fij)j:l, u-Vu = (u-V)u, so that u- Vu = div(uu)
if u is solenoidal; here uu = (uzu;)3;_;.

We may assume in the following, without loss of generality, that each weak solution u :
[0,T) — L2(9) of (1.1) is weakly continuous, see Sohr [28, V. Theorem 1.3.1]. Therefore,
u(0) = ug is well-defined.

For further properties of weak and strong solutions to (1.1) (in the classical sense,
ie, a =0, u € L(0,T;LYQ)), %—i—% = 1), we refer to [2, 3, 19, 20, 22, 24, 29]. It is

well-known that Serrin’s condition (1.5) with av = 0 yields the regularity property
u € C™((0,T) x Q),

provided that 982 is of class C> and F € C*>((0,7T) x Q). Moreover, we get uniqueness
within the class of weak solutions satisfying the energy inequality (1.4), see [28, V. The-
orem 1.8.2, Theorem 1.5.1]. In the context of uniqueness a stronger version of the energy
inequality (1.4) is helpful: A weak solution satisfies the strong energy inequality if

t t
1IIU(ﬁ)IIng/ IVull; dr < 1||u@||§—/ (F, Vu)dr (L.7)
2 to 2 to
holds for a.a. ty € [0,T) including to = 0 and for all ty < ¢t < T. It is well-known that
for a bounded domain weak solutions constructed by standard approximation procedures
(Galerkin approximation, Yosida approximation, difference quotients in time, mollifiers
in space and/or time) satisfy (1.7). Finally, if in (1.4) there holds equality, u is said to
satisfy the energy equality. The condition u € L*(0,7T; L*(Q)) is known to be sufficient
to guarantee the energy equality. For conditions weaker than L*(L*)-integrability for
bounded domains we refer to [11].

Since the pioneering work of J. Leray and E. Hopf. see [20, 24], the existence of at least
one weak solution u of (1.1) is well-known. However, the existence of a strong solution u
could be shown up to now at least in a sufficiently small interval [0,7"),0 < T' < oo, and
under additional smoothness conditions on the initial data uy and the external force f.
The first sufficient condition on the initial data for a bounded domain seems to be due to
[22], yielding a solution class of so-called local strong solutions. Since then many results
on sufficient initial value conditions for the existence of local strong solutions have been
developed, see [2, 12, 15, 16, 19, 21, 23, 26, 28, 29|, with weaker and weaker assumptions
on ug, thus making the space of initial values to guarantee the existence of a local strong
solution larger and larger.

The optimal condition, i.e. sufficiency and necessity, was found by Sohr, Varnhorn

and the first author of this article, see [9, 10], and can be written in terms of (solenoidal)

Besov spaces By, ;;H)’/ 1(Q) where Sl + % = 1. This space is defined by real interpolation as
q

_H'% % / ! Tq
B%Sq = (B ) = (D(Aq’) 7L0')

1.3
q',sy 5 (1+25),8q”

where A, denotes the Stokes operator on the space LZ (£2), %—i—i = 1, of solenoidal vector

fields. Note that similar results in the whole space case are well-known.

3



Recently, this result has been generalized by the authors ([5, 6]) to initial values in

143
Bt () = (DAY 1) 1,
3
where 2 —I— 2=1-20,0< < <. An equivalent explicit norm for v € By, i+q () is given

by the Welghted integral

S s 1/s .
([ Gl ar) ™ = e
0

note that this norm is scaling invariant with respect to the scaling properties of the
Navier-Stokes solutions. For further details see [6, §4]. The term || A~ ug||, which usually
appears as an additional term on the left hand side of the norm can be omitted since
the semigroup on a bounded domain decays exponentially. Moreover, we note that the
interval of integration (0,00) may be replaced by any finite interval (0,¢), yielding a
family of equivalent norms. In particular, by choosing ¢ > 0 small, we can achieve that
e Ay L3(0.5:L9(0)) 18 as small as we want. Altogether, we get for s, < s < s, < 00 a
scale of growing Besov spaces

L5,(0,00;L9(2)) < O0;

143 143 3 143 _148

143 + +
Bos, * CByar * CBosa * C Broe ' C Byoo - (1.8)

Here ]Bq 1+3/ () denotes the continuous interpolation space in this scale, also called little
Nikol’skii Space see Amann [4, p. 4, p. 8§].

The space I[Bq Lrs/ 1Q), 1 < q # 3, was used by Amann [2] to construct a global

unique solution in C([0,T); IB%_H?’/Q(Q)) when ||uol[g-143/4 is small; here €2 is a bounded
or exterior domain, the whole or half space, inclucfiﬁg the n-dimensional case with a
suitable modification. Recently, Ri et al. [27] showed for all 3 < ¢ < oo the existence
of a local unique solution u € L*(0,7;BY _(Q)) for initial values ug in BY (); if even

Uy € @27w(9) then u € C°([0,7); B) .(Q2)). Note that B} (R?) is a scaling invariant
space, and that analogous results are obtained for the n-dimensional whole and half space.
Similar results to those of this paper and of [6] are discussed by Haak and Kunstmann
n [18]; the authors consider the whole space R™ in different scaling invariant function
spaces, but bounded domains mainly in L?(Q)-spaces. In these papers the relation to

weak Leray—Hopf solutions is not investigated. For details on the Besov spaces By oo el Q)

and IB%q 1+3/q(§2) we refer to Sect. 5 and particularly to [2, 27].

Whereas the focus of the articles [2, 18, 27] and of numerous articles dealing only with
the whole space case are on solutions with values in a given Besov space, our focus is
on solutions with initial values in L2(Q) intersected with a Besov space such that the
solution is also a weak one. In this setting the main results of [6] for a bounded smooth
domain 2 C R" read as follows:

Theorem 1.2. ([6, Theorems 1.2, 1.3]) Assume ug € L2(Q) and f = div F where F
L*(0,T; LQ(Q)) N LS/Q(O,T; LY2(Q)); here, 2 < s < 00,3 < ¢ < o0 and 0 < a <
satisfying % + 5 =1-2a.

o= M



(i) Then there exists a constant €, = €.(q, s, a, ) > 0 with the following property: If

lle™ ™ ugl < e, (1.9)

L3,(0,T;L9) + HF’ L;f(O,T;Lq/Z)

then the Navier-Stokes system (1.1) has a unique strong L? (L9)-solution with data ug, f
on the interval [0,T).

. » 143 , _ :
(ii) The condition uy € Bqs *(Q) is sufficient and necessary for the existence of a

(unique) local in time strong L3 (L9)-solution of the Navier-Stokes system (1.1).
3

Of course, solutions with initial values in the space By, i+5(Q) larger than the optimal
space studied in [9, 10] are strong solutions in the sense of Serrin on each interval (9, 7]
with 0 < 0 < T', but not on (0,7]. Another disadvantage is related to Serrin’s Uniqueness
Theorem: It cannot be proved that a weak solution satisfying the energy inequality and a
strong L (L?)-solution with the same data ug, f coincide. This problem can be solved for
so-called well-chosen weak solutions constructed by an admissible approximation scheme.
E.g., weak solutions constructed by a semigroup-Yosida approximation procedure are well-
chosen. The same holds under some restrictive conditions for solutions given by Galerkin’s

method. For details we refer to [6] and in particular to [5].
3

-1

The aim of this paper is the study of the limit case s = o0, i.e., uy € Bq,o:q (Q) working

with the largest space in the scale (1.8). The disadvantage of this space is the fact that
it is no longer separable and that the norm ||e="4ug||, will not converge to 0 as 7 — 0.

Now our first main theorem reads as follows:

Theorem 1.3. Let Q C R? be a bounded domain with boundary 092 of class C*', and let
0<T<o0,3<g<o0andl <a< % with 2 = 1—2a be given. Consider the Navier-

Stokes equations (1.1) with initial value uy € L2(Q) N ]Ba;éj?’/q((z) and an external force
f = divF where F € L*(0,T; L*(Q)) N LL(0,T; LY(Y)). Then there exists a constant
€x = €:(q, a, Q) > 0 with the following property: If

”e—TAuO”LgO(O,T;Lq) + ”FHL%(O,T;Lqﬂ) < &, (1'10)

then (1.1) has a strong L (L?)-solution with data ug, f on the interval [0,T).

This solution is unique in the class of all strong L (L?)-solutions on (0,T) with suf-
ficiently small norm in L3°(L9).

The reader is referred to Theorem 5.1 in Sect. 5 below for an explanation of the Besov
space B;éj?’/q(Q) which is equipped with norm [[e™™ - || e(o7;14). This space has the
disadvantage that in general the term 7%||e~"4ug||, does not converge to 0 as 7 — 0. This

drawback is removed in the continuous interpolation space By, 153/4 where the property

lim, o 7¢|le”"ugl|, = 0 is satisfied by definition, see Sect. 5. By analogy, we define the
subspace

zﬁ(O,T; Lq/2<Q)) = {F € LgZ(O,T; Lq/2<Q)) : HFHL%(O’W/Q) —0ast— O}

of LE(0,T; LY2()). In this case, condition (1.10) can be achieved by choosing T suffi-
ciently small, and we get the following variant of Theorem 1.3:
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Corollary 1.4. Under the assumptions of Theorem 1.3 let ug € L2(2) N IB_HB/Q(Q) and

f =div F where F € L*(0,T; L2(Q))ﬂ2§3 (0,T; L9*(Q)). Then the Navier-Stokes system
(1.1) has a unique strong L (L?)-solution with data ug, f on some interval [0,T") C [0,T).

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 are fulfilled.
(i) The condition

—TA

esssup 7%||e” g, < 00 (1.11)

7€(0,00)

is necessary for the existence of a strong L°(L9)-solution uw € L(0,T; L?) of the Navier-
Stokes system (1.1) with data ug, f in some interval [0,T), 0 < T < oo.

(i) If additionally F € Zgg (0,7 L9*(Q)), then the condition

o 1_|_,

Uy € Bgoo () (1.12)

is even necessary and sufficient for the ezistence of a unique strong L°(0,T; L?)-solution
u € ZZO (0,77 L9(2)) of the Navier-Stokes system (1.1).

We note that the solutions constructed in Theorems 1. 2 and 1.3, Corollaries 1.4 and
_ o143
1.5 are continuous in time with values in Bq,iw/q nd By, O: , 1.6,
we C(0,T);B;+*/9(Q)) and u e C ([0, T];féa;;:?’/qm)) ,
respectively. This includes the more classical case uy € By, sj /4 where 2 +q = 1 considered

n [9, 10]. For details of the proof we refer to the forthcoming artlcle [7]. In case that
Uy € IB%;iJS/q(Q) continuity of u(t) holds on (0,77, but cannot be expected at ¢t = 0+.

For the definition of well-chosen weak solutions we need a slight extension of Definition
1.2 in [5] to the case of L*>-type spaces. Because of the bad approximation properties

of the spaces IB%q 0 (Q) and L, (0, T; LY*(Q)) it is convenient to work in this definition

immediately with the smaller spaces ]Bq 153/ and Egg (0,77 L*(Q)). Of course, a version
with the spaces Byo /() and L (0,77 L*(Q)) is possible, but looks awkward.

Definition 1.6. A well-chosen weak solution v is a weak solution of the Navier-Stokes
system (1.1) with v(0) = ug € L2(Q) and force f = div F, F € L*(0,T; L*(Q)), satisfying
the strong energy inequality (1.7), defined by a concrete so-called admissible approxzimation
procedure, and compatible with the notion of L°(L7)-solutions in the following sense:

3

q

1. The initial value ug € IE%;OO is approzimated by a sequence (ug,) C L2(2) N

1 3 3

B;;E(Q) converging to ug in L2(Q) N B;EE(Q) as n — oo.

2. The force F € L? (O,T; LZ(Q)) N Egg (O,T; Lq/Z(Q)) 1 approzimated by a sequence
(Fn) C L2(0,T; L*(2)) N L, (0,T; LY?(Q)) such that F,, — F in both spaces.



3. The approzimation method yields approximate weak solutions (uy,), uniformly bounded
in LHr, and containing a subsequence (uy, ) such that u,, — v in Leray-Hopf’s class
LHr, ie., u, —vin L2(0,T; Hl(Q)) and U, — v in L™ (0, T, Lg(Q)) as k — oo.

4. (uyp) is uniformly bounded in L (0,T'; L) for some T" € (0,T].

Remark 1.7. (1) The crucial part of Definition 1.6 for an admissible approximation
procedure is assumption (4) on (uy,).

(2) The strong convergence up, — ug in L*(2) in Definition 1.6 (1) can be replaced
by the corresponding weak convergence. By analogy, the strong convergence F,, — F'in
L2(0,T; L*(2)) may be replaced by a weak one due to Definition 1.6 (2).

(3) Although the assumptions on F\ F,, do not imply that [|F|[1s 4ze2) converges
to 0 as t — 0 uniformly in n € N, the following smallness condition is satisfied due to
Definition 1.6 (2): For any € > 0 there exists an N. € N and 7" € (0,7 such that

HF”L%(QT’;L‘Z/z) S ¢ for all n > Na- (113)
By analogy, for any € > 0 there exists an N, € N and 7" € (0, 7] such that
sup Ta||e_TAqu0n||q < e for all n > N.. (1.14)
(0,77)

Now our main theorem on uniqueness reads as follows.

Theorem 1.8. Under the assumptions of Theorem 1.8 let ug € L2(2) N ]ﬁ%;gg/q(ﬁ) and
f = divF with F € LQ(O,T; L2(Q)) N Zgg(o,T; Lq/Q(Q)) be given. Furthermore, let

u € Ego (0,75 L)) be the unique strong L (L7)-solution of (1.1) with data uo, F.
(i) The solution u is unique within the class of all well-chosen weak solutions of (1.1)
in the sense of Definition 1.6.

(ii) Assume that each subsequence of (u,) converging weakly in LHr converges weakly
to any weak solution of (1.1). Then the whole sequence (u,) converges to u. Moreover,
for any sequence of initial values (ug,) and external forces (F,) approximating uy and F
in the sense of Definition 1.6 (1), (2), respectively, and generating approximate solutions
(u,) with a subsequence weakly convergent in LHr to any weak solution of (1.1), the whole
sequence (uy,) converges weakly in LHr to u.

The crucial point is to show that an approximation procedure for the construction of
weak solutions is admissible in the sense of Definition 1.6.

Theorem 1.9. Let3 < g< oo, 0 <a< % and 2 =1 —2a. Then the Yosida approzima-
tion scheme and, if 3 < q < 4, the Galerkin approrimation scheme are admissible. To be
more precise, in this context these methods are defined as follows:

(i) (The Yosida approzimation scheme) Let J, = (I + LAY?)7! denote the Yosida
operator, let ug, = Jyug, and assume that F,, — F in L*(0,T; L*(Q)) migg(o, T*; L%(Q))
for some O < T* <T. Then the approximate solution w,, is defined as the solution of the
approximate Navier-Stokes system

Oy, — Auy, + (Jpuy) - Vu, + Vp, = div F,, divu, =0,

(1.15)
Un|8Q = 07 un(()) = Upn-



(11) (The Galerkin approzimation scheme) Let 11, denote the L?-projection onto the
space of the first n eigenfunctions of the Stokes operator As, and suppose that ug, €
I, L2(Q) as well as F, € L*(0,T; L*(Y)) satisfy the assumptions of Definition 1.6 (1),
(2). Then let u,, denote the Galerkin approzimation of (1.1) with data ug,, F,.

(iii) In both cases (i) and (ii) the assumption in Theorem 1.8 (ii) is satisfied. Hence
the whole sequence given by these admissible approximation schemes converges to the well-
chosen weak solution, irrespective of the sequences (ug,) and (F,).

2 Preliminaries

For the reader’s convenience, we first explain some well-known properties of the Stokes
operator. Let 2 C R" be a bounded domain of class C*!, let [0,7),0 < T < oo, be a

time interval, and let 1 < ¢ < oo. Then P, : LY(Q) — L%(2) denotes the Helmholtz

projection, and the Stokes operator A, = —P,A : D(A,) — L(2) is defined with domain
D(A,) = W29(Q) N W, %) N LL(Q) and range R(A,) = LL(Q). Since Pv = Py for
ve LIY(Q)NLY(Q) and Av = Ay for v € D(A;) ND(A,), 1 < v < oo, we sometimes
write A, = A to simplify the notation if there is no misunderstanding. Furthermore,
let Ag @ D(AY) — LI(2), =1 < a < 1, denote the fractional powers of A,. It holds
D(Ag) € D(A?) C LL(Q), R(AY) = LL(Q) if 0 < o < 1. We note that (AZ)~" = (A;*)
and (Aq)/ = A, where % + ? =1.
Now we recall the embedding estimate

o o 3 3
o], < cHA,YUH7 , vED(AT), 1<y<g<oo, 2a+ i ” 0<a<l, (2.1)

and the estimate
o, —tAq —o ,—6t
|AZe v||q <ct e |vll,, velLi(Q), 0<a<l1, t>0, (2.2)

with constants ¢ = ¢(Q,q) > 0, 6 = §(Q2,q) > 0, see [1, 8, 13, 14, 17, 29]. Using (2.1),
(2.2) with 1 < v < ¢ < o0, 26+ % = % and constants ¢, § > 0 not depending on ¢, we
obtain for v € L)(Q2) that APy € L1(Q) and that

||e_tAv||q < ct_ﬂe_‘%HvH77 t>0. (2.3)

Consequently, He_tAuqu with ug € L2(Q) is well-defined at least for ¢ > 0, and there holds
“ugll,) < oo for any § > 0 and a > 0. In particular, the conditions
ug|q) < 00 and supg s (7%]le"ug||,) < oo are equivalent for any & > 0.

eSS SUP(5,0) (77|
SUD (0,00 (7|7

Further note that D(Ay/%) = Wy Q) N LL(Q) and that the norms
40l ~ Vel . ve D).
q q

are equivalent. In particular, if ¢ = 2, then ||A§/2v||2 = || Vv, for v € D(AY2).
Consider any g = divG with G = (G;)},_; € L/(Q). Then a duality argument, see
[16, Lemma 2.1], [28, Lemma 2.6.1], shows that Aq_l/2Pq divG € L1() is well-defined by
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[

the identity (A;%Pq div G, ) = —(G, VA, p) for p € LZ(9Q), and that

14q 2 Py div G|, < || G, (2.4)

holds with ¢ = ¢(£2,q) > 0.

The Yosida approximation operator .J,, defined by J,, = (I + 1AY?)~! n € N, has on
each space L4(2), 1 < g < oo, the following fundamental properties:

1 1
| Jnll 2zay + HEA"’JanLg) < C,<ooforalln €N, (2.5)
Jou — win LI(Q) for each u € LL(2) as n — oc. (2.6)

Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev inequality on
weighted L*-spaces on R, cf. [30, 31],

L® = {ulull, = ([ (rurrar) oo, aem sz,

Lemma 2.1. Let 0 < A < 1, 1<31<32<oo ——<a1<1—— ——<042<1——

s1’ 52

and 4 5 +A+a—a) =1+ 5, as < ay. Then the integral operator

Lf(t) /]t—7| Af(T)

is bounded as operator I : L3} (R) — L32 (R).

3 Proof of Theorem 1.3 and Corollaries 1.4, 1.5

Proof of Theorem 1.3. Let Ey,, denote the solution of the instationary Stokes problem
on Q x (0,7) with data f,uo:

ov—Av+Vp=f, divv=0
vloa =0, v(0) = uy,

1.e.,

t
Efu(t) = e Mg + / A= =nAA2P div F(7) dr
0

= EO,uo (t) + Efp(t) (31)

Evidently, the assumptions ug € LZ(Q) and F € L*(0,7;L*(2)) imply that Ey,, €
C°([0,T]; L*) N L*(0,T; H'), satisfying the energy equality. Moreover,

HVEf,uoHLZ(O,T;LQ) < C(HUDHZ + HF||L2(0,T;L2(Q)))-



By assumption (1.10) there holds Ey,, € L°(L?). Finally, using the estimates (2.1) and

(2.2) with 28+ 2 = 25 for ¢ > 3, ie, f= £ =

62" %

1
2
L AB - 43 p g
[Ero®)ll, <c [ [[A27e (A72Pdiv)F(7)||q dT
0
t
<e / (t— 7)o ()|, dr
0

t
< cesssup |[T**F(7)]| ¢ / (t— ) o2y
(O,t) 2 0

= ct”“ esssup ||720‘F(7')||%.
t
Hence we proved that || Eyollre (0,09 < ¢l Fll 5 (0,4202) and even

—TA

1 Eo.uoll ee 0,20y + 1 Erollee0sny < c(lle” ™ uoll iz 020y + 1 Fll e 0.60/2))

with a constant ¢ > 0 independent of ¢ > 0.
We then set @ = v — Ey,, which solves the (Navier-)Stokes system

tu—Au+u-Vu+Vp=0, diva =0
oo = 0, u(0) =0.

At least formally, we can write
t
u(t) = —/ A=A A2 P div) (u @ u) (1) dT
0
so that we define the nonlinear operator

t
Fla)t) = — /O A2~ -DAAV2P G (0 @ u)(7) AT, 1 = i + By,

With g = 2—3(1 =1 — o we get as in (3.1), (3.2)

t
[F(@)®)lly < C/O (¢ =) (0 full ) dr.
We proceed as in (3.2), (3.3) and conclude that

| Fai]| o 04:L00) = CHUH%gO(O,t;Lq)'
a( )

Since u = @ + Ey,,, we get from (3.3), (3.7) that for any 7> 0

~ ~ _ 2
H‘Fu|’Lg°(O,T;L‘1) < CO(HUHLSO(O,T;L‘I) + HFHng(o,T;Lq/2) + le TAUOHLgO(O,T;L‘I))

where ¢y = ¢9(€2,¢) > 0 is independent of 7" and the data. With the abbreviation

b="bT):= ||F||ng(o,T;Lq/2) + He_TAUOHLgO(O,T;L‘I)
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we obtain from (3.8) the estimate
| Fail| oo o700y + b < o[}l o 0.7:00) + )% + b (3.9)
Assume the smallness condition
4bcy = 4CO(||F||L33(0,T;L<1/2) + ||€_TAUO||L30(O,T;L‘Z)) <L (3.10)

Obviously, the quadratic equation r = cor? + b has a minimal positive root given by
ry = 2b(1 4+ /1T — 4bco) ™! € (b,2b). Note that r; = r1(b,c) is increasing in b as well as
in ¢y and that r; — b = cgr? € (cob?, 4cob?). We conclude that F maps the non-empty
closed ball B = {v € L¥(0,T;L%) : ||v||reeo,rsey < 71 — b} into itself. Moreover, it is
straightforward to modify the above estimates to show that for w,u € B

[ F @ — Fl Lo 07500y < 4beollt — | e 0.1729).

Since 4bcy < 1, Banach’s Fixed Point Theorem proves the existence of a unique fixed
point @ € L(0,T; L) of F in B; this fixed point u solves (3.4). Hence the mild solution
u =10+ Ey,, is contained in L?(0,7"; L?).

Now we will prove that this mild solution u is indeed a weak solution. To this aim,
we need the following lemmata.

Lemma 3.1. The mild solution u constructed in the above procedure satisfies Vu €

L2(0,T; L2(5)).

Proof We use a modification of the proof described in [10]. Since for the moment
differentiability properties of the mild solution u are yet unknown, we apply the Yosida
operator J,, = (I+%A%)*1, n € N, to (3.4) and write J,, P divu®u in the form J, P div(u®
(@+ Efy)), u= (I + %A%)ﬂn, where 4, = J,%. Then we have

1
JoPdivu®u=J,P(u-VE;.)+ JuPu- Vi) + —J,Pdiv(u® A2d,)
n
1 1 1 1
=J,P(u-VE;s,)+ J,P(u-Vi,) + —A2J,(A 2 Pdiv)(u ® A2dy,).
n
By (2.5), (2.6) and Holder’s inequality with % =2+ % we obtain the estimate

1o P div(u @ u)lly < ellullg(IVEfull2 + Vil + A2 ]2)
= cllullg(IVEfuoll2 + 2[ A2t 2).

Applying A2.J, to (3.4) it holds the identity

N

t
A2, (t) = — / Aze(=DA ] P div(u @ u)(7) dr,
0

and by (2.1) with 28 + % = %, e, 8= 23—q = % — «, the estimate

t
Ak, @) < c [ [AFe AP diviu o (o), dr
0

< C/O (t = 7))l (1V Bruo (7|2 + 2] A2t (7)) d7.
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Now let s1 =2, 1 =, 89 =2, 09 =0, A\ =1 — q, Sothat%+(1—a+a—0):1+%.
By Lemma 2.1 we have for any 0 <7} < T

is) 1/2
1 o 1 2
b3 @ omn < o [ (a7 Epagll+ 1438, 1)° dr)
0

1
< arllullLgeome (I VEfuoll20,m:22) + A2 Gl 2200.11522)) -

Next, to achieve for v = Ey,,, + @ the smallness condition

1
cillull zgeo,mysne) < 3 (3.11)
note that, with a constant ¢, = (2, ¢q) > 0,

ClHUHLgO(o,Tl;Lq) < C2(|\€77AU0HL30(0,T1;L‘1) + HFHng(O,Tl;Lq/?) + 71— b)
S Cg(b+T1 — b) S 202[).

Thus, in order to satisfy (3.11) by means of the condition
deb < 1, ¢y :=max(co, 2), (3.12)

it suffices to replace in (3.10) ¢y by ¢o. Then the absorption argument yields the estimate
1.
[A2 |2 0,11:22) < 2¢1]|ull e 010520 [V Efug | 22(0,115L2) < 00

independent of n € N. Consequently, using reflexivity arguments, A2@, Vi € L*(0, Ty; L?)
and Vu € L*(0,Ty; L?). O

Lemma 3.2. Under the assumptions of Lemma 3.1 we have the following results:
(i) we L2(0,T; L%) for all 2+ 2 =3, 2<sy <00, 2< ¢ <6.
(ii) ||a(t)|l, = 0 and u(t) = ug in L*(Q) as t — 0+.
(iii) u € Li/(%&l)(o, T; L*(Q)).
(iv) u satisfies the energy equality on [0,T].

Proof (i) From Lemma 3.1 we know that Vu € L?(0,T; L*). Moreover, by (2.3) with

g = 2% = % — «, Holder’s inequality implies that

a0l < [ ¢ =)ol IVl dr
< C”UHLgo(o,t;Lq)||VU||L2(o,t;L2)§ (3.13)
we note that here o > 0 is necessary. Hence
]| oo 0:22) < Cllullzge 520 VUl 220,22

From the properties u € L*(L?) and Vu € L*(L?) it follows immediately that u €
L*2(L%) as required in (i).
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(ii) From (i), to be more precise from (3.13), we conclude that ||@(t)|s — 0 as t — 0.
Since also e~y — ug in L3(Q) and E;o(t) — 0 in L*(Q2) as t — 0, (ii) is proven.

(iii) Given ¢, @ and 8 = ﬁ we define ¢p,s1 by % =54 1;—16 and % + 32 = %, i.e.,

q
s1 = 4(1 — B). From Holder’s inequality we know that |lul/, < ||u||§||u|];1_6 Hence

T T
4 4(1—
/ermws/Cﬂwmwwgmw
0 0

4 4(1—
< Jlull e g 1l 3502 oy < 00

(iv) From (iii) we know that u € L*(e, T; L*) for all 0 < ¢ < T. So, by [28, IV. Thm.
2.3.1, Lemma 2.4.2] and for a.a. € € (0,T), u is the unique weak solution in L(e, T'; L*)
on the interval (e, T") of the linear Stokes problem

du—Au+Vp=divF, divu=0
ulgn = 0, uli=e = u(e)

with external force div F, F = F —u®u € L2(e, T; L?) and initial value u(e) € L*(Q) C
L?(2). Therefore, u satisfies the energy equality on (¢, 7)), i.e.

1 ! 1 !
Sl + [ I1ulidr = Sul3 ~ [ (. vuyar

for all t € (¢,7) and a.a. € € (0,7). Letting ¢ — 0 we conclude in view of (ii) that u
satisfies the energy equality even on [0,7).

End of Proof of Theorem 1.3. Concerning uniqueness we note that r — b = c,r? €
(cb?, 4c,b?). Hence u coincides with any other strong L°(0, T'; L9(€))-solution v satisfying
0 =v— Ey,, € B; this can be achieved when ||0|| e (0,77;20) < c.b?.

By Lemma 3.2 we obtain that u is a weak solution of (1.1); this completes the proof
of Theorem 1.3. O]

Proof of Corollary 1.4. The proof follows the lines of the proof of Theorem 1.3. However,
by the assumptions on uy and F' conditions (3.10) and (3.12) can be achieved by choosing
T’ > 0 sufficiently small. Given any other strong L3°(0,T"; L?)-solution v we find 7" < T
such that [|0]| e (0,77;00) < ¢b®. Then v coincides with u on (0,7”). O

Proof of Corollary 1.5. (i) Assume that v € L°(0,75 L), 0 < T < oo, is a strong L°(L?)
solution of (1.1). Recall that Ey,, = u — @ — E;o where by (3.7) @ = Fu € LY°(L9), and
by (3.2) Efo € LX(L?). Hence Ey,, € L°(L9) as well, and (1.11) is satisfied.

(ii) By assumption on F and in view of (3.2), we conclude that Ey GEE"(O,T; L9).
Given that u Ezfj’ (0,77 L9), also & = Fu € E;;O (0,7 L9) due to (3.7). Hence we get that

© 143
Ug S Bq,cx_)‘— /q. D

4 Proof of Theorems 1.8 and 1.9

Proof of Theorem 1.8 By Definition 1.6 (3) there exists a sequence of approximate weak
solutions (u,,) bounded in LH 7 such that a subsequence (u,,, ) converges to a weak solution
v € LH7 of (1.1) satisfying the strong energy equality (1.7).
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Since (u,) is uniformly bounded in L2°(0,7"; L?) with 7" from Definition 1.6 (4) we
find a subsequence (u, ) of (un,) converging weakly-+ in Lg°(0,7"; L?) to an element
v e L(0,7"; L9). Now, since u,, — v in LHz, we may conclude that v = v" on (0,7");
in particular, v’ is a weak and even a strong LS°(L?)-solution of (1.1) on (0,7"). Since
strong LS°(L%)-solutions are unique by Theorem 1.3 on some interval (0,7"), v = v =u
on (0,7") € (0,7"). This uniqueness also implies that any other subsequence (u,,, ) of
(u,) converging weakly in LHy to any weak solution actually converges weakly to v’
on (0,7") as k — oo. Hence the whole sequence (u,) converges weakly to v on (0,7").
Moreover, again due to uniqueness, this result will hold for any sequence (ug,) and (F},)
with convergence properties as in Definition 1.6.

If 7" < T, then we find due to (SEI) applied to v some 0 < T* < T” such that
the weak solution v satisfies the energy estimate on [T7,7") with initial time 7. Since
% =1—2a < 1, there exists 2 < s < oo with 2 + % = 1 such that uw € L*(T*,T; L)) is
a ”classical” strong solution, and Serrin’s Uniqueness Theorem implies that u = v even
on [0, 7). O

Proof of Theorem 1.9 (i) Given ug, ug, and F, F, as in Definition 1.6 classical L2-
methods, see [28, Ch. V.2|, prove the existence of a unique approximate solution u, €
LH7 of (1.15) and the convergence of a subsequence of (u,,) to a weak solution u € LHr of
(1.1). Indeed, each u,, satisfies the energy equality, and consequently the energy estimate

t t
H%@%ﬁﬂW%%&SWm%+/MM%ﬂ
0 0

with a right-hand side uniformly bounded with respect to n € N and 0 < ¢t < T due to
the convergence properties of gy, F,, in Definition 1.6, see also Remark 1.7 (2). Finally,
(Qyu,,) is uniformly bounded in L*/3(0,T; Hj ,(€2)'), see [28, Lemma V. 2.6.1, Theorem V.
1.6.2]. Hence, by the Aubin-Lions-Simon compactness theorem for Bochner spaces, there
exists a subsequence (u,, ) of (u,) and v € LHr such that

Up, = v in LHp, U, —v in L*(0,T;L2(Q)) (4.1)
as k — oo. Furthermore,
Uy, (t) = v(t) in L2(Q) for a.a. t € (0,7) (4.2)

as k — oo; this step needs the extraction of a further subsequence, as the case may be.
Now (4.1) allows us to pass to the limit in (1.15) and to show that v is a weak solution
of (1.1) in the sense of Leray-Hopf. In particular, v satisfies the energy inequality (1.4),
and due to (4.2) even the strong energy inequality (1.7).

In the second step of the proof we improve the previous results by exploiting the
properties of ug in I(E)B;iis/q and of F in zgg(o,T; L7?), see Definition 1.6. Since (uo,)

converges strongly to ug in B;ij?’/q we find some 7" € (0,7] and N, € N such that

sup || ugnll, < =
7€(0,77) 2
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for all n > N, where €, > 0 is the absolute constant from (1.10), see also (1.14). Further-
more, since F,, — Fin LY, (O, T; Lq/Q(Q)) we may also assume that

£
||Fn||ng(o,T/;Lq/2) < 5*

for all n > N,, see (1.13). We follow the construction of strong L2°(L?)-solutions in the

proof of Theorem 1.3, decompose the solution w,, of (1.15) into u, = @, + E, where E,
solves the linear nonhomogeneous Stokes problem with data wug,, F},, i.e.,

t
E,(t) = e g, + / A2 =T (A2 P div ) Fy (1) dr. (4.3)

0

Then u, = u, — F, has an integral representation based on the variation of constants
formula and can be considered as solution of the fixed point problem u, = F,u, in
L2 (0,77; L(S2)) where

t

Foii(t) = — / A2 DA AP div ) (o + Bn) © (i + Ey)) (7) dr
0

note that 7, differs from F in (3.5) only by the additional term .J,,. Due to fundamental
properties of the Yosida operators J,, the fixed point of F,, can be constructed by Ba-
nach’s Fixed Point Theorem in the same way as in in the proof of Theorem 1.3. By the
assumptions on u,, F,, and (3.8), (3.9), (3.10), u,, u, satisfy the estimate

|t || oo (0,775 1.9 5 [t || e (0,77 00) < Cles (4.4)

with a constant C' > 0 independent of n > N,. Thus (@,)neny and (u,)nen are bounded
in L2°(0,7"; L9).

(ii) It is well known that the Stokes operator A, on the bounded C*!-domain Q2 C R?
admits an orthonormal basis of eigenfunctions ¢, € D(Ay) with corresponding eigenvalues
Ar monotonically increasing to oo as k — co. For n € N let

I, : L2(Q2) — V,, == span{ty, ... 1, } C LE(9)

denote the corresponding orthogonal projection. Obviously, |IL,| 2y = 1 for all
n € N. In the Galerkin method we are looking for a solution w, : [0,7) — V,, of the
ordinary differential n x n-system

(O, Yr) + (Vg Vi) — (Up @ Uy, Vi) = —(F, Vi)

U, (0) = ugp, € Vi, (4:5)

on (0,T) for each k = 1,...,n. By the L*-assumptions on ug, and F,, we know that there
exists a sequence of unique solutions (u,) to (4.5) bounded in LHy. Moreover, (Oyu,)
is uniformly bounded in L*3(0,T; H} ,(Q2)'). As in the first part of the proof we find a
subsequence (uy, ) of (u,) and a vector field v satisfying (4.1) and (4.2). In particular,
v € LHr is a weak solution to (1.1) satisfying (1.7).
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The crucial question is whether wu,, is also a strong LS°(0,7”; L?)-solution, uniformly
bounded in n. To address this problem we consider arbitrary linear combinations of (4.5);
to see that for all w € D(AY?)

(Optun, I,w) + (Vuy, VIL,w) — (u, @ uy,, VIL,w) = —(F,, VIL,w)

un(0) = ug, € Vi, (4.6)

Since II,, = PII,, P* = P, A commutes with II,,, and (Vu,, VII,w) = (Au,,w), we may
omit the test function w € Hj () and rewrite (4.6) in the form

Oy + Auy, + 1, P div(u, @ u,) =1L, Pdiv F,, u,(0) = ug, € V,. (4.7)

Thus wu,(t) can be considered as a solution in W'4/3(0, T') (with respect to time) of an
abstract Cauchy problem and as a mild solution with integral representation

¢
Uy (1) = e g, — /Al/Qe_(t_T)A (A_l/QHnP div ) (u, @ u, — F,)(7) dr. (4.8)
0

Although [|IL,|z(r2(@) = 1 and A"Y2Pdiv € £(L(Q)) for each 1 < ¢ < oo, similar
estimates will neither hold for I1,, on LZ(£2) nor for the operator A~Y/2IL, P div on L4(2)
uniformly in n € N. Actually, an estimate of the type ||IL,||z(zs()) < c(g) uniformly in
n € N is questionable when ¢ # 2.

Using (2.1), (2.3) and exploiting the uniform boundedness and commutator properties
of IT,, on L%(Q) we get that
| A2 e~ DA ATVRIL, P div) (u, @ uy, — F) g
< || ATt AU P div) (u, © un — )|
< || ATt DA A2 P div) (u, © u, — Fy)|
< et = 7)7F un @ un — Fallgye.

(4.9)

This estimate directly implies that with a constant ¢ > 0 independent of n € N and T'

[un — eftAUOnHLgO(O,T;LQ) < C(HUTLH%gO(O,T;Lq) + HFnHng(o,T;Lq/2))-

Then by standard arguments we find 7" € (0,7 independent of n € N such that (u,) C
L(0,7"; L?) is uniformly bounded.

Now we complete the proof as in the previous case. O

5 Interpretation in Terms of Besov Spaces

For1 <g<oo,1<r<ooandteRlet B, (R3) denote the usual Besov spaces, see
[32, 2.3.1], and deﬁne for the bounded domain Q C R? the space B},.(Q) by restriction of
clements in B} (R?) in the sense of distributions to €; the norm of u € B, ,(Q) is given
by the infimum of norms of all v € B(’;T(R?’) such that vjg = u. Concerning Besov spaces
on () with vanishing trace - if possible -, the definition is modified as follows: Considering
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only vector fields rather than scalar-valued functions and the range ¢ € [—2, 2] we follow
Amann [4], [2] and define

{u € B, (Q)% ~yu =0} 1/g<t<?
B! (Q) {u € B;/Tq(RZB)?»; supp(u) C Q} 1/q¢=t (5.1)
" B, () 0<t<1/q '
(B;fr,(Q))/ (1<r<o0) —2<t<0

where v denotes the trace operator defined by yu = ujpq for continuous functions. For
spaces of solenoidal vector fields on € let

B!, (Q) N LL(Q) 0<t<?2
IB%;T(Q) = cl(cgj;(sz)) in BY () t=0 : (5.2)
(IB%;/?T,(Q))/ (I1<r<oo) —2<t<0

here “cl” denotes the closure. Note that u € B, (€2) with % < t < 2 vanishes on 0}
(yu = 0) by (5.1), but that only the normal component of u vanishes on 02 when
0<t< % since u € L1(€2).

Moreover, we need the spaces
B! () = cl(H\(Q) N LL(Q)) in B, (Q), —2<t<2,

where H/,(Q2) is a Bessel potential space defined by restriction of the usual Bessel potential
space H.(R?)® to vector fields on © (and vanishing on 09 as in (5.1)), cf. [4, pp. 3-4].
For 0 < [t| < 2 these spaces are also called little Nikol'skii space and denoted by n/ , ().
Then, using the notation (-,-)s,, 1 < r < oo, of real interpolation, and (-, -)2700 for the
continuous interpolation functor, Theorem 3.4 in [2] states that

(LE(2),D(Ag))e, =BL.(Q), 0<0<1, (5.3)
(LL(), D(A,)) 0 = B (), 0<6<1. (5.4)

Note that D(A,) is equipped with its graph norm, and that for a bounded domain this
graph norm can be simplified to || A, - ||;- As is well-known ([25, Proposition 6.2, Exercise
6.1.1 (1)], equivalent norms on the spaces (L2(Q2),D(A,))o.r, 1 <7 < 00, are given by

T
_ _ dry\Ur
full, ~ ([ (el 2) "

where T € (0, 00) can be chosen arbitrarily and an additional term ||u||, on the right-hand
side can be omitted since ) is bounded. For r = oo we have

lullize, ~ sup T Age™ el (5.5)

In the case (5.4) IE%?,,BOO(Q) may be equipped with the equivalent norm given in (5.5), but
elements u € ﬁg?oo(ﬁ) enjoy the further property that

li_)l% 70 Ae |, = 0. (5.6)
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The conclusion is that the spaces (L%(Q),D(Ag))g,00 and (LL(2), D(Ag))p o are special
Besov spaces characterized by (5.5) and (5.5)-(5.6), respectively.

The aim is to find similar characterizations of those spaces and norms used in Sections
1-4. Theorem 3.4 in [2] applies to negative exponents of regularity as well. FE.g., for
—1 <60 <0and 1< r < oo, we have by (5.2)

(L8(©), D(A,))_,, = (L1(©).D(4,) ,.) = (B(Q) = BX(9).

—0r q’,r

To deal with the cases r = 1 and r = oo note that A, is an isomorphism from D(A4,) to
L1(€2) and also from LZ(2) to D(A,)". Hence, for 1 <r <ooand —1 <6 <0

(DA, L), = A((LLQ).D(A)),,,.). (5.7)
with a similar result for the continuous interpolation functor (-, -)2’00. Then we get the

following characterizations of real interpolation spaces of D(A,)" and LZ(2) (here —1 <
6 <0):

(D(Ay), LY (Q))HQT =B2X(Q), 1<r<oo (5.8)
(D(Ag), LUD) 4y = BEL(Q) = B2 (2)/(BX (), (5.9)
(D(Ag), LE(D)},, . =B2(Q) = el (H2(Q) in (B,%()’

= cl(L4()) in BY, (). (5.10)

Actually, (5.8) for r =1 and (5.10) follow from |2, Theorem 3.4}, [4, p.4], for —1 < 8 < 0.
Moreover, to prove (5.9) we use the duality theorem of real interpolation to get that
identity (D(Ay), LE(Q)),,,.. = ((LL(Q),D(4y)) _,,) = (B,Y ()" and the definition
B2 (Q) = (IB%;,?IQ(Q))/ in (5.2); this space is called Nikol'skii space N2 ,(Q) in [2]. The
second part of (5.9) is found in the proof of [2, Remark 3.6] and a consequence of the
isomorphism

By () = (B, () = B (Q)/(B,Y ()

here B2 (Q) = ( ))/ by [32, Theorems 4.3.2, 4.8.1], since in our application —26 =
200 > ? — 1 and 29 — i ¢ 7. Recall that the characterization (5.7) also holds when
r = 00.

Thus for any 1 <
(D(Ag)', LE()),,, =

r < ooand =1 < 6 < 0, by (5.7), (5.8), (5.9) and (5.3),
A(BZ?°(Q)) = B2.(Q) and has the equivalent norm

1+6,r
T
! 1/r
ol yquziae, ~ (/ (e tul) ) ci<o<01<r <00, (511)
T 0 T
[wll 4220y ~  sup 7 e ™, —1<6<0. (5.12)
&ee 7€(0,T)

This result was used in [10] when 2 + 2 =1,0=0,2<r<oc.

Let us summarize these results for the case § = —a = %(g — 1) needed in this paper.

Theorem 5.1. Let 3 < ¢ < o0, O<a<% and%zl—Qa such that%(%—i—l):l—a.
Choose any T € (0,00).
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(i) The real interpolation space (D(Aq/)’,Lg(Q))l_aoo coincides with the space of

Besov-type B;gg/q(Q) and has the equivalent norm sup g 7|le”"2ul|,.

(it) The interpolation space (D(Ay ), Lg(Q))O

1—a,00
equipped with the equivalent norm sup gy 7 e~ 4aul|,, such that additionally the property

lim, o 7¢|le="u||, = 0 holds for u € ]]Oi%;ijg/q(fl).

equals the Besov space ]ﬁ%;éjwq(fl),
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