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Abstract

The C∗-algebra S(T(C)) of the finite sections discretization for Toeplitz
operators with continuous generating function is fairly well understood.
Since its description in [3], this algebra had served both as a source of
inspiration and as an archetypal example of an algebra generated by an
discretization procedure. The latter is no accident: it turns out that, after
suitable extension by compact sequences and suitable fractal restriction,
every separable C∗-algebra of approximation sequences has the same struc-
ture as S(T(C)). We explain what this statement means and give a proof.
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1 Introduction

Let H be a Hilbert space and P = (Pn)n≥1 a filtration on H, i.e. a sequence
of orthogonal projections of finite rank that converges strongly to the identity
operator on H. By FP we denote the set of all bounded sequences (An)n≥1 of
operators An ∈ L(imPn), and by GP the set of all sequences (An) ∈ FP with
‖An‖ → 0. Provided with the operations

(An) + (Bn) := (An +Bn), (An)(Bn) := (AnBn), (An)∗ := (A∗n)

and the norm ‖(An)‖ := sup ‖AnPn‖, FP becomes a unital C∗-algebra and GP a
closed ideal of FP . The importance of the quotient algebra FP/GP in numerical
analysis stems from the fact that a coset (An) + GP is invertible in FP/GP if
and only if the An are invertible for all sufficiently large n and if the norms of
the inverses are uniformly bounded, which is equivalent to saying that (An) is a
stable sequence. Note in that connection that

‖(An) + GP‖FP/GP = lim sup ‖An‖. (1)
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With every non-empty subset A of L(H), we associate the smallest closed and
symmetric subalgebra SP(A) of FP that contains all sequences (PnAPn)n≥1 with
A ∈ A. The algebra S(T(C)) of the finite sections discretization for Toeplitz
operators with continuous generating function arises exactly in this way. Here,
H is the Hilbert space l2(Z+), Pn is the projection which sends the sequence
(x0, x1, . . .) to (x0, . . . , xn−1, 0, 0, . . .), and A is the C∗-algebra T(C) generated
by all Toeplitz operators T (a) with a a continuous function on the complex unit
circle T. Recall that T (a) is given by the matrix representation (ai−j)i,j≥0 with
respect to the standard basis of l2(Z+), where ak denotes the kth Fourier coeffi-
cient of a. (We agree to omit the superscript P when the filtration is specified in
this way.)

The sequences in S(T(C)) are completely described in the following theorem,
discovered by A. Böttcher and B. Silbermann and first published in their 1983 pa-
per [3] on the convergence of the finite sections method for quarter plane Toeplitz
operators (see also [4] and [6], Section 1.4.2). Here Rn stands for the operator
(x0, x1, . . .) 7→ (xn−1, . . . , x0, 0, 0, . . .) on l2(Z+). It is not hard to see that for
each sequence A = (An) ∈ S(T(C)), the strong limits W (A) := s-limAnPn and

W̃ (A) := s-limRnAnRnPn exist and that W and W̃ are unital ∗-homomorphisms
from S(T(C)) to L(l2(Z+)) (actually, to T(C)).

Theorem 1 (a) The algebra S(T(C)) consists of all sequences (An)n≥1 of the
form

(An) = (PnT (a)Pn + PnKPn +RnLRn +Gn) (2)

where a ∈ C(T), K and L are compact operators on l2(Z+), and (Gn) ∈ G. The
representation of a sequence (An) ∈ S(T(C)) in this form is unique.

(b) For every sequence A ∈ S(T(C)), the coset A+G is invertible in the quotient
algebra S(T(C))/G (equivalently, in F/G) if and only if the operators W (A) and

W̃ (A) are invertible.

Corollary 2 The quotient algebra S(T(C))/G is ∗-isomorphic to the C∗-algebra
of all pairs

(T (a) +K, T (ã) + L) ∈ L(l2(Z+))× L(l2(Z+)) (3)

with a ∈ C(T) and K, L compact. In particular, the mapping which sends the
sequence (2) to the pair (3) is a ∗-homomorphism from S(T(C)) onto S(T(C))/G
with kernel G.

Now we can give a first idea of what the statement in the abstract that ”an
algebra has the same structure as S(T(C))” means. It is not hard to check
that the set J of all sequences (PnKPn + RnLRn + Gn) with K, L compact
and (Gn) ∈ G forms a closed two-sided ideal of S(T(C)). By Corollary 2, the
quotient J /G is naturally isomorphic to the product K(l2(Z+)) × K(l2(Z+)).
Thus, this quotient has two natural irreducible representations (K, L) 7→ K and
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(K, L) 7→ L which extend uniquely to irreducible representations of S(T(C))/G.
These extensions coincide (up to unitary equivalence) with the quotients W G and

W̃ G of the homomorphisms W and W̃ by G (note that G lies in the kernel of both

W and W̃ ), and these quotients have the property described in assertion (b) of
Theorem 1.

To fix the latter property formally, we introduce the following notions. Given
a unital C∗-algebra A and a family W of unital ∗-homomorphisms from A to
certain unital C∗-algebras, we say that W is strongly spectral for A if an element
a ∈ A is invertible if and only if W (a) is invertible for every W ∈ W . We say
that W is spectral for A if an element a ∈ A is invertible if and only if W (a)
is invertible for every W ∈ W and if supW∈W ‖(W (A))−1‖ < ∞. Clearly, both
notions coincide if W is a finite family.

We recall further that a C∗-algebra A is called elementary if it is isomorphic
to the algebra of the compact operators on some Hilbert space, and that it is
a dual algebra if it is isomorphic to a direct sum of elementary algebras. If J
a closed ideal of A which is elementary (respective dual) when considered as a
C∗-algebra, then we call J an elementary (respective a dual) ideal of A. It is easy
to see that every dual ideal J is generated (as a C∗-algebra) by its elementary
ideals, Kt with t ∈ T , say. Since every closed ideal of J is also a closed ideal
of A, J can be identified with the smallest closed ideal of A which contains all
elementary ideals ideals Kt. See [2] for an overview on dual algebras.

Now we can make the statement that a C∗-subalgebra A of F has the ”same
structure as S(T(C))” more precise: It means thatA contains G, that the quotient
A/G contains an ideal J which is dual, and hat the extensions of the unitary
representations of J /G to A/G form a spectral family for A/G.

The motivation for that paper came from the observation made again and
again over the years since Silbermann’s paper [17] that many concrete algebras
of approximation sequences have ”the same structure as S(T(C))”. This ob-
servation appeared (at least to the author) as a big miracle, since neither were
the discretized operators very close to Toeplitz operators, nor had the used dis-
cretization procedures something in common with the fairly simple idea of taking
finite sections. To get an impression, here is a very incomplete list of papers from
different fields where this phenomenon occurs: [3, 5, 7, 8, 10]. The explanation of
that fact proposed in the present paper is that at least every separable subalgebra
of F has ”the same structure as S(T(C))”, after suitable extension by compact
sequences and suitable fractal restriction.

The paper is organized as follows. The phrases ”fractal restriction” and ”ex-
tension by compact sequences” are explained in the following two sections, fol-
lowed by a section which studies ”fractal algebras of compact sequences”. The
goal of these sections is to introduce the language and to provide some facts for
later reference without proofs. The heart of the paper is Section 5 where two
versions of extension-restriction theorems are derived.
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2 Fractal restriction

The idea behind the notion of a fractal algebra comes from a remarkable property
of the algebra S(T(C))/G: the structure of this algebra is determined by two

representations W and W̃ , and these representations are defined by certain strong
limits. A consequence of this ”limit form” is that the operators W (A) and W̃ (A)
can be determined from each subsequence of the sequence A ∈ S(T(C)). This
observation implies that whenever a subsequence of a sequence A ∈ S(T(C)) is

stable, then the operators W (A) and W̃ (A) are already invertible and, hence,
the full sequence A is stable by Theorem 1.

One can state this observation in a slightly different way: every sequence
in S(T(C)) can be rediscovered from each of its (infinite) subsequences up to a
sequence tending to zero in the norm. In that sense, the essential information on
a sequence in S(T(C)) is stored in each of its subsequences. Subalgebras of F
with this property were called fractal in [16] in order to emphasize exactly this
self-similarity aspect. We will recall some basic properties of fractal algebras that
will be needed in what follows and start with the official definition of a fractal
algebra. (Note that this definition also makes sense in a more general context
when F is the direct product and G the direct sum of a sequence of C∗-algebras.)

Let η : N → N be a strictly increasing sequence. By Fη we denote the set
of all subsequences (Aη(n)) of sequences (An) in F . One can make Fη to a C∗-
algebra in a natural way. The mapping Rη : F → Fη, (An) 7→ (Aη(n)) is called
the restriction of F onto Fη. For every subset S of F , we abbreviate RηS by Sη.
It is easy to see that Gη coincides with the ideal of the sequences in Fη which
tend to zero in the norm.

Let A be a C∗-subalgebra of F . A ∗-homomorphism W from A into a C∗-
algebra B is called fractal if, for every strictly increasing sequence η : N → N,
there is a mapping Wη : Aη → B such that W = WηRη|A. Thus, the image of a
sequence in A under a fractal homomorphism can be reconstructed from each of
its (infinite) subsequences. It is not hard to check that Wη is a ∗-homomorphism

again. The homomorphisms W and W̃ defined in Section 1 are archetypal exam-
ples of a fractal homomorphism.

Definition 3 (a) A C∗-subalgebra A of F is called fractal if the canonical ho-
momorphism π : A → A/(A ∩ G), A 7→ A + (A ∩ G) is fractal.

(b) A sequence A ∈ F is called fractal if the smallest C∗-subalgebra of F which
contains the sequence A and the identity sequence is fractal.

Here are some equivalent characterizations of fractal algebras.

Theorem 4 (a) A C∗-subalgebra A of F is fractal if and only if the implication

Rη(A) ∈ Gη ⇒ A ∈ G (4)
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holds for every sequence A ∈ A and every strictly increasing sequence η.

(b) If A is a fractal C∗-subalgebra of F , then Aη∩Gη = (A∩G)η for every strictly
increasing sequence η.

(c) A C∗-subalgebra A of F is fractal if and only if the algebra A+ G is fractal.

In many instances, the following theorem offers a comfortable way to check the
fractality of a specific subalgebra of F (for example, that of S(T(C))), where the
homomorphism W appearing in the theorem is the product of fractal homomor-
phisms W and W̃ ).

Theorem 5 A unital C∗-subalgebra A of F is fractal if and only if there is a
unital and fractal ∗-homomorphism W from A into a unital C∗-algebra B such
that, for every sequence A ∈ A, the coset A + (A∩G) is invertible in A/(A∩G)
if and only if W (A) is invertible in B.

The following results from [16] give a first impression of the power of fractality.

Proposition 6 Let A be a unital fractal C∗-subalgebra of F and A = (An) ∈ A.
Then,

(a) the sequence A is stable if and only if it possesses a stable subsequence.

(b) the limit limn→∞ ‖An‖ exists and is equal to ‖A + G‖.

Thus, the upper limit in (1) is in fact a limit if the sequence (An) belongs to a
fractal algebra. A similar improvement can be observed for the convergence of
certain spectral quantities. We will need the following notions.

Let (Mn)n∈N be a sequence of non-empty compact subsets of the complex
plane. The upper limit lim supMn (also called the partial limiting set) resp. the
lower limit lim inf Mn (or the uniform limiting set) of the sequence (Mn) consists
of all points x ∈ C which are a partial limit resp. the limit of a sequence (mn) of
points mn ∈ Mn. The upper and lower limit of a sequence (Mn) coincide if and
only if this sequence converges with respect to the Hausdorff metric

h(L, M) := max{max
l∈L

dist (l, M), max
m∈M

dist (m, L)}.

Recall in this connection that non-empty compact subsets of C form a complete
metric space with respect to the Hausdorff distance and that the relatively com-
pact subsets of this space are precisely its bounded subsets.

Assertion (a) of the following result is the analog of the limsup-formula (1)
for norms; assertion (b) its improvement in the presence of fractality.

Proposition 7 (a) If (An) ∈ F is a normal sequence, then

lim supσ(An) = σF/G((An) + G).
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(b) If (An) is a normal sequence in a unital and fractal C∗-subalgebra of F , then

lim supσ(An) = lim inf σ(An). (5)

(c) A normal sequence (An) ∈ F is fractal if and only if (5) holds.

Similar results hold for other spectral quantities, for example for the sequences
of the condition numbers, the sets of the singular values, the ε-pseudospectra,
and the numerical ranges of the An (see Chapter 3 in [6]). These results indicate
that, given an (in general non-fractal) sequence in F , it is of vital importance
to single out (one of) its fractal subsequences. That this is indeed possible is a
consequence of the following fractal restriction theorem first proved in [11]. The
proof given there was based on Proposition 7 (c) and is rather involved. A much
simpler proof employs the converse of Proposition 6 (b), which on its hand follows
easily from Theorem 4 (a).

Theorem 8 Let A be a separable C∗-subalgebra of F . Then there is a strictly
increasing sequence η : N → N such that the restricted algebra Aη is fractal. In
particular, every sequence in F possesses a fractal subsequence.

One cannot expect that Theorem 8 holds for arbitrary C∗-subalgebras of F ; for
example it is certainly not true for the algebra l∞. On the other hand, non-
separable fractal algebras exist: the finite sections algebra for Toeplitz operators
with piecewise continuous generating function can serve as an example.

3 Compactness and essential fractality

The ideal J of the finite sections algebra S(T(C)) is evidently related with com-
pact operators. We will make this relation precise by introducing an ideal K of
F consisting of sequences of compact type. The role of this ideal in numerical
analysis is comparable with the role of the ideal of the compact operators in op-
erator theory. Throughout this section we assume that F is a direct product of
matrix algebras Cδ(n)×δ(n) with dimension function δ : N→ N tending to infinity.

Definition 9 Let K denote the smallest closed ideal of F which contains all
sequences (Kn) ∈ F with rankKn ≤ 1 for every n. We refer to the elements of
K as compact sequences and call a sequence in F a Fredholm sequence if it is
invertible modulo the ideal K.

Thus, a sequence (An) ∈ F belongs to K if and only if, for every ε > 0, there is
a sequence (Kn) ∈ F such that

sup
n
‖An −Kn‖ < ε and sup

n
rankKn <∞. (6)

It is a simple consequence of this fact that G ⊆ K.
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We say that a sequence A ∈ F has finite essential rank if it is the sum of a
sequence in G and a sequence (Kn) ∈ F with supn rankKn <∞. If A is of finite
essential rank, then there is a smallest integer r ≥ 0 such that A can be written
as (Gn) + (Kn) with (Gn) ∈ G and supn rankKn = r. We call this integer the
essential rank of A and write ess rank A = r. If A is not of finite essential rank,
then we put ess rank A =∞. Thus, the sequences of essential rank 0 are just the
sequences in G.

In our running example, the intersection S(T(C))∩K is just the ideal J , and
the essential rank of the sequence (PnKPn+RnLRn+Gn) equals rankK+rankL.

Both the compactness and the Fredholm property of a sequence (An) ∈ F
can be characterized in terms of the asymptotic behavior of the singular values
of the An; see Sections 4.2 and 5.1 in [13] for the following results. We denote
the decreasingly ordered singular values of an n× n matrix A by

‖A‖ = Σ1(A) ≥ Σ2(A) ≥ . . . ≥ Σn(A) ≥ 0 (7)

and set σk(A) := Σn−k+1(A).

Theorem 10 The following conditions are equivalent for a sequence (Kn) ∈ F :

(a) limk→∞ supn≥k Σk(Kn) = 0;

(b) limk→∞ lim supn→∞Σk(Kn) = 0;

(c) (Kn) is compact.

Corollary 11 (a) A sequence (Kn) ∈ F is of essential rank r if and only if

lim sup
n→∞

Σr(Kn) > 0 and lim
n→∞

Σr+1(Kn) = 0.

(b) If (Kn) ∈ K, then limn→∞ σk(Kn) = 0 for every k.

Theorem 12 The following conditions are equivalent for a sequence (An) ∈ F :

(a) (An) is a Fredholm sequence.

(b) There are sequences (Bn) ∈ F and (Jn) ∈ K with supn rank Jn <∞ such that
BnAn = In + Jn for all n ∈ N.

(c) There is a k ∈ N such that lim infn→∞ σk+1(An) > 0.

The smallest non-negative integer k which satisfies condition (c) in the previous
theorem is called the α-number α(A) of the Fredholm sequence A = (An). It
corresponds to the kernel dimension of a Fredholm operator. Equivalently, α(A)
is the smallest non-negative integer k for which there exist a sequence (Bn) ∈ F
and a sequence (Jn) ∈ K of essential rank k such that BnA

∗
nAn = In + Jn for all

n ∈ N.
Next we extend the concept of fractality and define fractality with respect to

the ideal of the compact sequences. For details see [15].

7



Definition 13 A C∗-subalgebra A of F is said to be essentially fractal (or K-
fractal) if the canonical homomorphism πK : A → A/(A ∩ K) is fractal and if
(A ∩K)η = Aη ∩ Kη for each strictly increasing sequence η : N→ N.

In the same way one defines J -fractality with respect to an arbitrary closed ideal
J of F . If J = G, then the second condition in Definition 13 is automatically
satisfied by Theorem 4; thus, G-fractality coincides with fractality in the sense of
Definition 3.

The following result shows that essential fractality implies what one expects.

Theorem 14 Let A be an essentially fractal and unital C∗-subalgebra of F . A
sequence in A is compact (Fredholm) and only if one of its subsequences is com-
pact (Fredholm), respectively.

Corollary 15 Let A be a fractal C∗-subalgebra of F . If (A∩K)η = Aη ∩Kη for
each strictly increasing sequence η : N→ N, then A is essentially fractal.

Essential fractality has striking consequences for the behavior of the smallest
singular values of a Fredholm sequence.

Theorem 16 Let A be an essentially fractal and unital C∗-subalgebra of F . A
sequence (An) ∈ A is Fredholm if and only if there is a k ∈ N such that

lim sup
n→∞

σk(An) > 0. (8)

Consequently, if a sequence (An) in an essentially fractal and unital C∗-subalgebra
of F fails to be Fredholm, then

lim
n→∞

σk(An) = 0 for each k ∈ N. (9)

We call a sequence with that property not normally solvable, in analogy with the
corresponding notion from operator theory.

Corollary 17 Let A be an essentially fractal and unital C∗-subalgebra of F .
Then a sequence in A is either Fredholm or not normally solvable.

Example 18 The finite sections algebra S(T(C)) for Toeplitz operators is es-
sentially fractal, as follows easily from the description of S(T(C)) in Theorem
1 in combination with Corollary 15. The finite sections algebra S(BDO(N)) for
band-dominated operators examined in [13] is an example of an algebra which is
essentially fractal but not fractal. Finally, the sequence (An) where

An :=

{
diag (0, 0, . . . 0, 1) if n is even
diag (0, 1, . . . 1, 1) if n is odd,

is fractal, but not essentially fractal: its subsequence (A2n) is compact, whereas
(A2n+1) is Fredholm.
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As for fractality, there is an essential fractal restriction theorem (see [15]). Its
proof is based on the fact that, for every separable C∗-subalgebra A of F , there
is a sequence η such that not only the sequence of the norms (‖Aη(n)‖)n≥1 =
(Σ1(Aη(n)))n≥1 converges for every (An) ∈ A (which was basic in the proof of
the fractal restriction theorem), but also every sequence (Σk(Aη(n)))n≥1 of the
singular values, for every k ∈ N.

Theorem 19 Let A be a separable C∗-subalgebra of F . Then there is a strictly
increasing sequence η : N → N such that the restricted algebra Aη is essentially
fractal.

4 Fractal algebras of compact sequences

Compact sequences in fractal algebras behave particularly well. To state these
results, we need some more notions.

A non-zero element k of a C∗-algebra A is said to be of algebraic rank one
if, for each a ∈ A, there is a complex number µ such that kak = µk. We let
C(A) stand for the smallest closed subalgebra of A which contains all elements
of algebraic rank one. If such elements do not exist, we set C(A) = {0}. In
any case, C(A) is a closed ideal of A, the elements of which we call compact.
The following theorem summarizes some well-known equivalent descriptions of
C(A) (see Theorem 1.4.5 in [1], and recall the notion of a dual algebra from the
introduction).

Theorem 20 Let A be a unital C∗-algebra and J a closed ideal of A. The
following assertions are equivalent:

(a) J = C(J ).
(b) J is a dual algebra.
(c) The spectrum of every self-adjoint element of J is at most countable and has
0 as only possible accumulation point.

Every dual ideal of a C∗-algebra comes with an associated lifting theorem (see
[17] for a first version of that theorem and [6] for a proof).

Theorem 21 (Lifting theorem for dual ideals) Let A be a unital C∗-alge-
bra. For every element t of a set T , let Jt be an elementary ideal of A such that
JsJt = {0} whenever s 6= t, and let Wt : A → L(Ht) denote the irreducible rep-
resentation of A which extends the (unique up to unitary equivalence) irreducible
representation of Jt. Let further J stand for the smallest closed ideal of A which
contains all ideals Jt.
(a) An element a ∈ A is invertible if and only if the coset a + J is invertible in
A/J and if every operator Wt(a) is invertible in L(Ht).

(b) The separation property holds, i.e. Ws(Jt) = {0} whenever s 6= t.
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(c) If j ∈ J , then Wt(j) is compact for every t ∈ T .

(d) If a+ J is invertible in A/J , then all operators Wt(a) are Fredholm and all
but a finite number of them is invertible.

A basic observation of [12] is that a compact sequence in a fractal algebra has the
spectral property of Theorem 20 (c). The following result is thus an immediate
consequence of that theorem. It implies in particular that every unital and fractal
C∗-subalgebra of F which contains non-trivial compact sequences is subject to
the lifting theorem.

Corollary 22 Let A be a unital and fractal C∗-subalgebra of F which contains
the ideal G. Then the ideal (A ∩K)/G of A/G is a dual algebra.

5 Restriction-extension theorems

5.1 Weights of elementary algebras of sequences

A projection in a C∗-algebra is a self-adjoint element p with p2 = p. A closed
ideal J of a C∗-algebra A lifts projections, if every projection in A/J contains a
representative which is a projection in A. Closed ideals of C∗-algebras do not lift
projections in general (take A = C([0, 1]) and J = {f ∈ A : f(0) = f(1) = 0}).
The following proposition states that elementary ideals of F/G lift projections.
More general, every dual ideal of a C∗-algebra owns the projection lifting property.

Proposition 23 Let J be an elementary C∗-subalgebra of F/G.

(a) Every projection p ∈ J lifts to a sequence (Πn) ∈ F of orthogonal projections,
i.e., (Πn) + G = p.

(b) If p and q are rank one projections in J which lift to projections (Πp
n) and

(Πq
n) in F , respectively, then dim im Πp

n = dim im Πq
n for all sufficiently large n.

Thus, for large n, the numbers dim im Πp
n are uniquely determined by the algebra

J ; they do neither depend on the rank one projection p nor on the choice of its
lifting. For a precise formulation of that property, define an equivalence relation
∼ on the set of all sequences of non-negative integers by calling two sequences
(αn), (βn) equivalent if αn = βn for all sufficiently large n. Then Proposition 23
states that the equivalence class which contains the sequence (dim im Πp

n)n≥1 is
uniquely determined by the algebra J . We denote this equivalence class by αJ

and call it the weight of the elementary algebra J . We say that J is of positive
weight if αJ contains a sequence of positive numbers, and J is of weight one if
αJ contains the constant sequence of ones. Note that the weight is bounded if J
is in K/G; in this case (Πp

n) is a compact sequence of projections and therefore of
finite essential rank.
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5.2 Silbermann pairs and J -Fredholm sequences

Next we are going to examine the consequences of the lifting theorem in the
context of Silbermann pairs.

A Silbermann pair (A, J ) consists of a unital C∗-subalgebra A of F and a
closed ideal J of A which contains G properly and which is contained in K, and
for which J /G is a dual algebra. Every sequence in A which is invertible modulo
J is called an J -Fredholm sequence. Note that every J -Fredholm sequence is a
Fredholm sequence in sense of Definition 9 (but a Fredholm sequence in A need
not be J -Fredholm because J may be properly contained in A ∩K).

Under the hypotheses of Corollary 22, (A,A ∩ K) is a Silbermann pair, and
a sequence in A is (A ∩K)-Fredholm if and only if it is Fredholm. The study of
Silbermann pairs (in the special case when J /G is an elementary subalgebra of
K/G) was initiated by Silbermann in [18].

Let (A, J ) be a Silbermann pair. Being dual by definition, the algebra J /G is
the direct sum of a family (It)t∈T of elementary algebras with associated bijective
representations Wt : It → K(Ht). These representations extent to irreducible
representations A → L(Ht) which we denote by Wt again. In this context, the
Lifting theorem 21 specifies as follows.

Theorem 24 Let (A, J ) be a Silbermann pair.

(a) A sequence A ∈ A is stable if and only if it is J -Fredholm and if the operators
Wt(A) are invertible for each t ∈ T .

(b) Ws(It) = {0} whenever s 6= t.

(c) If J ∈ J , then Wt(J) is a compact operator for every t ∈ T .

(d) If A ∈ A is J -Fredholm, then all operators Wt(A) are Fredholm and all but
a finite number of them is invertible.

For every elementary ideal It, let (αtn) be a representative of the weight αIt .
Assertion (d) of Theorem 24 implies that for every J -Fredholm sequence A ∈ A,
the sum

αn(A) :=
∑
t∈T

αtn dim kerWt(A) (10)

is finite. This definition obviously depends on the choice of the representatives
of the weights. But the equivalence class of the sequence (αn(A)) modulo ∼ is
uniquely determined, since only a finite number of items in the sum (10) is not
zero.

A basic phenomenon of a J -Fredholm sequence (An) is the following splitting
property of the (increasingly ordered) singular values σk(An) of An.

Theorem 25 Let (A, J ) be a Silbermann pair and A = (An) ∈ A a J -Fredholm
sequence. Then A is a Fredholm sequence, and

lim
n→∞

σαn(A)(An) = 0 whereas lim inf
n→∞

σαn(A)+1(An) > 0. (11)
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The proof makes use of results on lifting of families of mutually orthogonal pro-
jections and on generalized (or Moore-Penrose) invertibility. For details see [12].

Theorem 25 has some remarkable consequences. First note that the number

α(A) := lim sup
n→∞

αn(A) (12)

is well defined and finite for every J -Fredholm sequence A ∈ A. Since (αn(A))
is a sequence of non-negative integers, it has a constant subsequence the entries
of which are equal to α(A). Together with (11), this shows that

lim inf
n→∞

σα(A)(An) = 0 and lim inf
n→∞

σα(A)+1(An) > 0. (13)

Corollary 26 Let (A, J ) be a Silbermann pair and A ∈ A a J -Fredholm se-
quence. Then A is a Fredholm sequence, and its α-number is given by (12).

Many subalgebras of F which arise from concrete approximation methods have
the property that every rank one projection in J /G lifts to a sequence of projec-
tions of rank one (equivalently, that every elementary algebra It has weight one).
In this case we call (A, J ) a Silbermann pair of local weight one. For Silbermann
pairs with this property, Theorem 25 and its Corollary 26 specify as follows.

Corollary 27 Let (A, J ) be a Silbermann pair of local weight one and A =
(An) ∈ A a J -Fredholm sequence. Then

α(A) =
∑
t∈T

dim kerWt(A), (14)

and the sequence A has the α(A)-splitting property, i.e., the number of the sin-
gular values of An which tend to zero is α(A).

5.3 Spectral Silbermann pairs

A Silbermann pair (A,J ) is called spectral or strongly spectral if the family
{Wt}t∈T of the lifting homomorphisms of (A,J ) is spectral or strongly spec-
tral for the algebra A/G, respectively. For strongly spectral Silbermann pairs,
the assertions of the lifting theorem can be completed as follows.

Theorem 28 Let (A, J ) be a strongly spectral Silbermann pair and A ∈ A.
Then

(a) A is stable if and only if all operators Wt(A) are invertible;

(b) ‖A + G‖F/G = maxt∈T ‖Wt(A)‖.
(c) A is J -Fredholm if and only if all operators Wt(A) are Fredholm and if there
are only finitely many of them which are not invertible;

(d) A ∈ J if and only if all operators Wt(A) are compact and if, for each ε > 0,
there are only finitely many of them with ‖Wt(A)‖ > ε.

12



Proof. Assertion (a) is a re-formulation of the strong spectral condition. As-
sertion (b) is a consequence of (a) and of general properties of strongly spectral
families of homomorphisms; see Theorem 5.39 in [6] (where strongly spectral fam-
ilies were called sufficient).

(c) The ’only if’ part follows from the Lifting theorem 24 (d). Conversely, let
A ∈ A be a sequence for which all operators Wt(A) are Fredholm and for which
there is a finite subset T0 of T which consists of all t such that Wt(A) is not
invertible. Then all operators Wt(A

∗A) are Fredholm, and they are invertible if
t /∈ T0. Let t ∈ T0. Then Wt(A

∗A) is a Fredholm operator of index 0. Hence,
there is a compact operator Kt such that Wt(A

∗A) +Kt is invertible. Choose a
sequence Kt ∈ J with Wt(Kt) = Kt and Ws(Kt) = 0 for s 6= t (which is possible
by the separation property in Theorem 24). Then the sequence K :=

∑
t∈T0 Kt

belongs to the ideal J , and all operators Wt(A
∗A + K) are invertible. By as-

sertion (a), the sequence A∗A + K is stable. Similarly, one finds a sequence
L ∈ J such that AA∗ + L is stable. Thus, the sequence A is invertible modulo
J , whence its J -Fredholm property.

(d) The ’only if’ part follows again from the Lifting theorem 24 (c). For the ’if’
part, let K ∈ A be a sequence such that, for every ε > 0, there are only finitely
many t ∈ T with ‖Wt(A)‖ > ε. For n ∈ N, let Tn stand for the (finite) subset of
T which collects all t with ‖Wt(K)‖ > 1/n. For each t ∈ Tn, choose a sequence
Kt ∈ J with Wt(K

t) = Wt(K) and Ws(K
t) = 0 for s 6= t (employ the separation

property in Theorem 24 again), and set Kn :=
∑

t∈Tn Kt. Then Wt(K−Kn) = 0
for t ∈ Tn and Wt(Kn) = 0 for t /∈ Tn. Hence, supt∈T ‖Wt(K −Kn)‖ ≤ 1/n for
every n ∈ N. By Theorem 28 (b), the supremum in this estimate coincides with
‖K−Kn+G‖F/G. Thus, K is the norm limit of a sequence in J , whence K ∈ J .

An example for a strongly spectral Silbermann pair is (S(T(C)), J ), with J
specified as in the introduction. A sequence in S(T(C)) is Fredholm if and only
its strong limit is a Fredholm operator (note that T (a) and T (ã) are Fredholm
operators only simultaneously). Equivalently, the sequence A := (PnT (a)Pn +
PnKPn +RnLRn +Gn) with a ∈ C(T), K, L compact and (Gn) ∈ G is Fredholm
if and only if T (a) is a Fredholm operator. In this case,

α(A) = dim ker(T (a) +K) + dim ker(T (ã) + L). (15)

In particular, if K = L = 0 and if a is not the zero function, then

α(A) = dim kerT (a) + dim kerT (ã)

= max{dim kerT (a), dim kerT (ã)}.

The second equality holds by a theorem of Simonenko and Coburn which states
that one of the quantities dim kerT (a) and dim kerT (ã) is zero for each non-zero
Toeplitz operator.
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5.4 Silbermann algebras

We call a unital fractal C∗-subalgebra A of F a Silbermann algebra if (A, A∩K)
is a spectral Silbermann pair; a Silbermann algebra A is called strong if the pair
(A, A ∩ K) is strongly spectral. The following is an immediate consequence of
Theorem 28.

Theorem 29 (a) Let A be a Silbermann algebra. A sequence A ∈ A is compact
if and only if all operators Wt(A) are compact and if, for each ε > 0, only a finite
number of them has a norm greater than ε.

Let A be a strong Silbermann algebra. A sequence A ∈ A is

(b) Fredholm if and only if all operators Wt(A) are Fredholm and if only a finite
number of them is not invertible;

(c) stable if and only if all operators Wt(A) are invertible.

The goal of this section is fractality and essential fractality properties of Silber-
mann algebras, which we prepare by two technical results. The first one describes
the fractal algebras among the elementary subalgebras of K.

Proposition 30 Let J be a C∗-subalgebra of K which contains G properly and
for which the quotient algebra J /G is elementary. Then J is fractal if and only
if J /G is of positive weight.

Proof. First let J /G be of positive weight, and let η : N → N be strictly
increasing. The mapping Wη : J → Fη/Gη, J 7→ RηJ + Gη is a ∗-homomorphism
which has the ideal G in its kernel. Since J /G is elementary (thus, simple), either
kerWη = G or kerWη = J . The latter is impossible: the positivity of the weight
implies that there is a sequence in J which consists of non-zero projections, and
no restriction of that sequence can tend to zero in the norm. Thus, kerWη = G,
and the quotient homomorphism W π

η : J /G → Jη/Gη which sends J+G to Wη(J)
is a ∗-isomorphism between these algebras. Define

πη : Jη → J /G, RηJ 7→ (W π
η )−1(RηJ + Gη).

Then πηRη is the canonical homomorphism from J onto J /G, whence the frac-
tality of J .

Let now J be a fractal algebra and assume that J /G is not of positive weight.
Then the weight (αn) of J /G contains infinitely many zeros, say αη(n) = 0 for a
certain strictly increasing sequence η. Thus, every algebraic rank one projection
p in J /G lifts to a sequence (Πn) of projections with Πη(n) = 0 for all n. Then
(Πn) ∈ G by Theorem 4, i.e., p = 0. This is impossible, since J contains G
properly.

The following lemma is immediate from the definition of a fractal homomorphism.
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Lemma 31 Let A be a C∗-subalgebra of F , J a closed ideal of A with G ⊆ J ,
W : J → L(H) an irreducible representation of J with G ⊆ kerW , and W ′ :
A → L(H) the (unique) irreducible extension of W . If W is fractal, then W ′ is
fractal.

We say that a Silbermann pair (A, J ) has positive or constant local weight if every
elementary component of J /G has a positive or constant weight, respectively. We
call a Silbermann algebra A of positive or constant local weight if the Silbermann
pair (A, A∩K) has the corresponding property. If A is a Silbermann algebra of
constant local weight, then the numbers αn(A) in (10) are independent of n.

Theorem 32 Let (A, J ) be a strongly spectral Silbermann pair of positive local
weight. Then

(a) A is a fractal algebra,

(b) J = A ∩K.

Proof. (a) Let Wt be the lifting of an elementary component Jt of J . We use
the notation Wt also for the extensions of Wt to irreducible representations of J
and A. Since (A, J ) is a strongly spectral Silbermann pair, the family {Wt}t∈T
of the lifting homomorphisms of J /G is strongly spectral for A/G. Moreover,
all homomorphisms Wt are fractal. Indeed, since every elementary component of
J is fractal by Proposition 30 and G ⊆ kerWt, the representations Wt of Jt are
fractal. Lemma 31 implies that the Wt are also fractal as representations of the
algebra A. Now the fractality of A follows from Theorem 5.

(b) A is fractal by assertion (a), so (A∩K)/G is a dual algebra by Corollary 22.
Let {Wt}t∈T refer to the family of the lifting homomorphisms associated with that
algebra. Since J /G is a closed ideal of (A∩K)/G, the lifting homomorphisms of
J /G form a subset {Wt}t∈S of {Wt}t∈T , with S a non-empty subset of T .

Let A ∈ A be invertible modulo A ∩ K. By Theorem 28 (c), all operators
Wt(A) are Fredholm, and only a finite number of them is not invertible. Hence,
all operators Wt(A) with t ∈ S are Fredholm, and all but finitely many of them
are invertible. Again by By Theorem 28 (c), the sequence A is invertible modulo
J . Hence, invertibility modulo A∩K is equivalent to invertibility modulo J for
sequences in A, which implies A ∩K = J .

Corollary 33 If (A, J ) is a strongly spectral Silbermann pair of positive local
weight, then A is a strong Silbermann algebra.

Corollary 34 Let J be a C∗-subalgebra of F with the following properties:

(a) G ⊂ J ⊂ K,

(b) J /G is a dual algebra,

(c) J is of positive local weight, and

(d) at least one elementary components of J /G has infinite dimension.
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Then the minimal unitization CI + J of J is fractal.

Indeed, by Theorem 32, we have to show that (CI +J , J ) is a strongly spectral
Silbermann pair. But this follows easily from the lifting theorem

Next we turn our attention to relations between a strong Silbermann algebra A
and its restriction RηA = Aη.

Theorem 35 Let A be a unital and fractal C∗-subalgebra of F which contains
the ideal G, and let η : N→ N be strictly increasing. Then the following assertions
are equivalent:

(a) A is a strong Silbermann algebra.

(b) (Aη, (A∩K)η) is a strongly spectral Silbermann pair of positive local weight.

Proof. First we show that if A is fractal, then (Aη, (A ∩ K)η) is a Silbermann
pair of positive local weight. If A is fractal, its restriction Aη is fractal. Then,
by Corollary 22, (Aη ∩ Kη)/Gη is a dual algebra. Being a closed ideal of a dual
algebra, the algebra (A∩K)η is dual itself, and this algebra consists of compact
sequences in Fη only. Hence, (Aη, (A ∩K)η) is a Silbermann pair.

Let p be a minimal projection in (A ∩ K)η)/Gη, and let (Pη(n)) be a lifting
of p to a sequence of projections. Since Aη is fractal, this sequence is fractal.
Theorem 4 (a) then implies that Pη(n) 6= 0 for all sufficiently large n. Hence, the
weight of the elementary component containing p is positive.

Next we show that for every fractal algebra A and every strictly increasing
sequence η, there is a natural ∗-isomorphism

ξη : A/G → Aη/Gη, A + G 7→ (RηA) + Gη.

Indeed, ξη is well defined since A−B ∈ G implies that (RηA)− (RηB) ∈ Gη, and
ξη has a trivial kernel since RηA ∈ Gη implies A ∈ G via Theorem 4. The isomor-
phism ξη maps (A∩K)/G onto (A∩K)η/Gη. Hence, both ideals are canonically
isomorphic, which implies that if W is one of the lifting homomorphisms of the
Silbermann pair (A, A ∩ K), then Wξ−1η is a lifting homomorphism of the pair
(Aη, (A∩K)η) and, conversely, if Wη is a lifting homomorphism of (Aη, (A∩K)η),
then Wηξη is a lifting homomorphism of (A, A ∩K).

Now it is easy to see that the strongly spectral hypotheses in (a) and (b) imply
each other. For example, we verify that (b)⇒ (a); the reverse implication follows
similarly. Let the Silbermann pair (Aη, (A ∩ K)η) be strongly spectral, and let
{Wt}t∈T refer to the family of the lifting homomorphisms of the Silbermann pair
(A, A ∩ K). Let A ∈ A be a sequence for which all operators Wt(A + G) are
invertible. Then all operators Wtξ

−1
η ξη(A + G) with t ∈ T are invertible. Since

the Wtξ
−1
η run through the lifting homomorphisms of the pair (Aη, (A ∩ K)η),

and since this pair is strongly spectral, the restricted coset ξη(A+G) is invertible
in Aη/Gη. Then A + G is invertible in A/G, since ξη is an isomorphism.
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Corollary 36 Restrictions of strong Silbermann algebras are strong Silbermann
algebras.

Proof. If A is a strong Silbermann algebra and η a strictly increasing sequence,
then (Aη, (A∩K)η) is a strongly spectral Silbermann pair, and every elementary
component of (A∩K)η)/Gη has positive weight by Theorem 35. By Corollary 33,
Aη is a strong Silbermann algebra.

Corollary 37 Strict Silbermann algebras are essentially fractal.

Indeed, the canonical homomorphism A → A/(A∩K) is fractal since A is fractal
and G is in the kernel of that homomorphism. Further, (A ∩ K)η = Aη ∩ Kη by
Theorem 32 (b).

Corollary 38 Let A be a Fredholm sequence in a strong Silbermann algebra of
constant local weight. Then every restriction Aη of A is Fredholm, and the se-
quences A and Aη have the same α-number.

5.5 Forcing the spectral property

Again, let F := F δ be an algebra of matrix sequences with dimension function δ
and G := Gδ the associated ideal of zero sequences. We say that a C∗-subalgebra
Aext of F is an extension of a C∗-subalgebra A of F by compact sequences if there
is a subset K′ of the ideal K of the compact sequences in F such that Aext is the
smallest C∗-subalgebra of F which contains A and K′. The goal of this section is
to prove the following result, where extension by compact sequences and fractal
restriction are used to force the spectral property.

Theorem 39 Let A be a unital separable C∗-subalgebra of F . Then there are
an extension Aext of A by compact sequences and a strictly increasing sequence
η such that the restriction Aextη is a Silbermann algebra.

In other words, after extending A by a suitable set of compact sequences and
then passing to a suitable restriction, we arrive at a spectral Silbermann pair
(Aextη , Aextη ∩ Kη).

Proof. Let A0 be a countable dense subset of A which contains the identity
sequence. The set A∗0A0 is still countable and dense in A.

For each sequence A = (An) in A0, we write

A∗nAn = E∗ndiag (λ1(An), . . . , λδ(n)(An))En (16)

with a unitary matrix En and increasingly ordered eigenvalues 0 ≤ λ1(An) ≤
. . . ≤ λδ(n)(An) of A∗nAn. For l, r ∈ N, let Kl,r,n be the δ(n) × δ(n)-matrix
which is zero if max{l, r} > δ(n) and which has a 1 at the lrth entry and
zeros at all other entries if max{l, r} ≤ δ(n). The sequence KA,l,r with entries
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KA,l,r
n := E∗nKl,r,nEn (note that En depends on A) is a sequence of matrices of

rank at most 1, hence compact. Let Aext stand for the smallest C∗-subalgebra
of F which contains the algebra A, the ideal G, and all sequences KA,l,r with
A ∈ A0 and l, r ∈ N. This algebra is still separable. Hence, by Theorems 8
and 19, there is a strictly increasing sequence η such that the restriction Aextη is
fractal and essentially fractal. We claim that Aextη is a Silbermann algebra. Note
that the sequences KA,r :=

∑r
l=1 KA,l,l with entries

KA,r
n := E∗ndiag (1, . . . , 1, 0, . . . , 0)En (17)

where r ones followed by δ(n)− r zeros belong to Aext.
To simplify notation, we will assume that η is the identity mapping (otherwise

replace δ by δ◦η in what follows). Let J := Aext∩K. Since A is a C∗-subalgebra
and J is a closed ideal ofAext, the algebraic sumA+J is a C∗-subalgebra ofAext.
This subalgebra contains A, G and all sequences KA,l,r. Thus, Aext = A+ J .

Since Aext is fractal, the ideal J /G is dual by Corollary 22. Let (It)t∈T
denote the set of its elementary components and let Wt : It → L(Ht) stand for
the irreducible representation associated with It. As before, we will denote an
irreducible representation of It and its irreducible extensions to Aext/G and Aext
by the same symbol.

Let A ∈ A0. We claim that the coset KA,1,1 + G = KA,1 + G is an algebraic
rank one projection in (Aext ∩ K)/G. Indeed, the entries KA,1

n are projection
matrices of rank one. Hence, for every positive sequence (B∗nBn) ∈ Aext, there is
a sequence (βn) of complex numbers such that

KA,1
n B∗nBnK

A,1
n = βnK

A,1
n for every n ∈ N.

The sequence (βnK
A,1
n )n∈N is fractal, and βn is the largest singular value of

βnK
A,1
n . By Proposition 6 (b), the sequence (βn) is convergent. Since every

sequence in Aext is a linear combination of four positive sequences, we conclude
that, for every sequence C = (Cn) ∈ Aext, there is a convergent sequence (γn) of
complex numbers such that

KA,1
n CnK

A,1
n = γnK

A,1
n for every n ∈ N.

Put γ := limn→∞ γn. Then KA,1CKA,1 − γKA,1 ∈ G, which proves the claim.
Since the elementary components of J /G are generated by algebraic rank one

projections, there is a t(A) ∈ T such that KA,1 + G ∈ It(A). Since It(A) is an
ideal, the equality

KA,l,r = KA,l,1KA,1,1KA,1,r

implies that KA,l,r + G ∈ It(A) for every pair l, r ∈ N. In particular, all cosets
KA,r + G belong to It(A). Since the cosets KA,l,l + G are linearly independent
algebraic rank one projections and the representation Wt(A) is irreducible, the
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operators Wt(A)(K
A,l,l) form a linearly independent set of projection operators of

rank one. Hence, the Hilbert space Ht(A) has infinite dimension.
Since A0 is dense in A, the sequences A + K with A ∈ A0 and K ∈ Aext ∩K

form a dense subset Aext0 of Aext. Let B := A + K be a sequence of this form, for
which B∗B is not a Fredholm sequence (equivalently, B∗B is not a J -Fredholm
sequence, since J contains all compact sequences in Aext). Then A∗A = (A∗nAn)
is not a Fredholm sequence, hence

lim
n→∞

λr(An) = 0 for every r ∈ N (18)

by (9) (recall (16) and remember that Aext is essentially fractal after restriction).
From (16) – (18) we conclude that A∗AKA,r ∈ G for every r ∈ N, hence

Wt(A)(A
∗A)Wt(A)(K

A,r) = 0 for every r ∈ N. (19)

Since (Wt(A)(K
A,r))r≥1 is an increasing sequence of orthogonal projections on

Ht(A), this sequence converges strongly, and its limit, P , is the orthogonal pro-
jection from Ht(A) onto the closure of the linear span of the union of the ranges
of the Wt(A)(K

A,r) (see, for example, Theorem 4.1.2 in [9]). So we conclude from
(19) that Wt(A)(A

∗A)P = 0. Thus, and by Theorem 24 (c),

Wt(A)(B
∗B)P = Wt(A)(A

∗A)P +Wt(A)(A
∗K + K∗A + K∗K)P

is a compact operator. Then Wt(A)(B
∗B) cannot be invertible: otherwise, the

projection P were compact, but the range of P has infinite dimension, which
follows by the same arguments as the infinite dimensionality of Ht(A).

Thus, whenever B ∈ Aext0 and B∗B is not a Fredholm sequence, then one of
the operators Wt(B

∗B) is not invertible. Conversely, if all operators Wt(B
∗B)

with t ∈ T are invertible, then B∗B is a Fredholm sequence. By Theorem 24 (e)
this implies that, whenever all operators Wt(B

∗B) with t ∈ T are invertible, then
the sequence B∗B is a stable. This fact holds for all sequences B in the dense
subset Aext0 of Aext, from which it is easy to conclude that the family (Wt)t∈T is
spectral for Aext.

It is not clear if one can make Aext to a strong Silbermann algebra by a suitable
restriction. The point is that the implication, obtained at the end of the previous
proof, is verified only for sequences in a dense subset of Aext. Another open
question is if there is a version of Theorem 39 which works without restriction if
one already starts with a fractal and essentially fractal separable subalgebra A
of F .

5.6 Forcing local rank one

Our final goal is forcing the local rank one property by a suitable extension and
restriction. The following result on restrictions of Silbermann pairs has been
already shown as part of the proof of Theorem 35.
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Proposition 40 Let (A, J ) be a Silbermann pair (in F) and η : N→ N strictly
increasing. Then (Aη, Jη) is a Silbermann pair (in Fη).

Let J /G ∼= ⊕t∈TK(Ht) be the representation of the dual algebra J /G as a
direct sum of elementary components. Since these components are simple, every
homomorphic image of K(Ht) is either {0} or isomorphic to K(Ht). Given a
strictly increasing η, let Tη denote the set of all t ∈ T which are not mapped to
the zero ideal under the homomorphism

(An) + G 7→ (Aη(n)) + Gη. (20)

The following lemma says that the weights of J /G behave naturally under the
mapping (20), provided that J is fractal. Recall from Corollary 34 that the latter
condition holds if all elementary components of J /G have positive weight and if
at least one of them has infinite dimension.

Lemma 41 Let J be a fractal algebra and t ∈ Tη. Let Jt,η be the image of the
elementary component Jt ∼= K(Ht) of J /G under the homomorphism (20). Then
Jt,η ∼= K(Ht) is elementary, and the weight of Jt,η is the restriction αη of the
weight α of Jt.

Proof. Let (Aη(n)) + Gη be a projection of algebraic rank one in Jt,η. The
fractality of J ensures that the quotient homomorphism (20) is an isomorphism
from J /G to Jη/Gη and, thus, from Jt to Jt,η. Hence, the pre-image (An)+G ∈ Jt
of (Aη(n)) + Gη is uniquely determined, and it is a projection of algebraic rank
one. It is clear that if (Πn) is a projection which lifts (An) + G, then (Πη(n)) is a
projection which lifts (Aη(n)) + Gη. This is the assertion.

In the next result we will see how to force local constant weight (recall that the
latter means that every elementary component of J /G has constant weight).

Theorem 42 Let (A, J ) be a Silbermann pair and assume that J is separable
and fractal. Then there is a strictly increasing sequence η such that the Silber-
mann pair (Aη, Jη) has constant local weight.

Proof. Since J is separable, the number of the elementary components of J /G
is at most countable. We enumerate these components by J (1), J (2), . . . and
denote the weight of J (i) by α(i). Every weight α(i) is bounded and has, thus, a
constant subsequence. This is used in the following construction.

Starting with the identity mapping η0 on N, there is a subsequence η1 of η0
such that the restriction α

(1)
η1 is a positive constant. We continue in this way and

get, for every k ≥ 1, a subsequence ηk of ηk−1 such that the restriction α
(k)
ηk is

a positive constant. If the number of elementary components of J /G is finite,
we let η be the last of the sequences ηk obtained in this way; otherwise we set
η(n) := ηn(n) for n ∈ N. In each case, every restriction α

(i)
η is a positive constant.
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Then (Aη, Jη) is a Silbermann pair by Proposition 40, and the local weights of
that pair are just the η-restrictions of the weights of (A, J ) by Lemma 41. Thus,
(Aη, Jη) is a Silbermann pair with constant local weight.

Let now A be a separable Silbermann algebra with constant local weight. As
before, we denote the elementary components of (A ∩ K)/G by J (1), J (2), . . .
and write α(i) for the weight of J (i), which now can be thought as a non-negative
integer. For every i, let pi ∈ J (i) be a minimal (hence, algebraic rank one)

projection. Given pi, choose a projection (Π
(i)
n )n≥1 ∈ A which lifts pi and which is

specified such that dim im Π
(i)
n = α(i) for all n, and write Π

(i)
n as a sum

∑α(i)

k=1 Π
(i,k)
n

of projections with dim im Π
(i,k)
n = 1 (for example, choose unitary matrices E

(i)
n

such that
Π(i)
n = E(i)

n diag (1, . . . , 1, 0, . . . , 0)(E(i)
n )∗,

with α(i) ones followed by δ(n)− α(i) zeros; then set

Π(i,k)
n := E(i)

n diag (0, . . . , 0, 1, 0, . . . , 0)(E(i)
n )∗,

with the 1 at the kth position). (Π
(i,k)
n )n≥1 is a sequence of rank one projections

in F . Let Ã be the smallest closed subalgebra of F which contains the algebra A
and all sequences (Π

(i,k)
n )n≥1. Since Ã is again a separable C∗-algebra, the fractal

restriction theorem applies. Let η be a strictly increasing sequence such that Ãη
is fractal.

Theorem 43 Let A be a separable Silbermann algebra. Then the algebra Ãη
obtained in this way is a Silbermann algebras of local weight one.

Proof. For brevity, we write A and Ã for Aη and Ãη, respectively, and set
J := A∩K and J̃ := Ã ∩K. Then Ã is both a fractal algebra and an extension
of A by compact sequences. In particular,

Ã/J̃ = (A+ J̃ )/J̃ ∼= A/(A ∩ J̃ ) = A/(A ∩K) = A/J .

We are going to relate the irreducible representations of A, associated with the
elementary components of J /G, with the irreducible representations of Ã, asso-
ciated with the elementary components of J̃ /G.

Let W : J → L(K) be an irreducible representation of J associated with
an elementary component of J /G. Let x ∈ K by a cyclic vector and extend W
to an irreducible representation W̃ of A by setting W̃ (a)W (j)x := W (aj)x for
a ∈ A and j ∈ J .

Since G is in the kernel of W , the quotient of W̃ by G is well defined; we denote
it by W̃ again. Then there are an irreducible representation π : J̃ → L(H̃), a
closed subspace H of H̃ which is invariant with respect to π(J ), and a unitary
operator U : H → K such that

W (j) = Uπ(j)|HU∗ for j ∈ J . (21)
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Set U∗x =: y ∈ H. Then y 6= 0; hence y is cyclic for π, and we can extend π to
an irreducible representation π̃ : Ã → L(H̃) by

π̃(a)π(j)y := π(aj)y for a ∈ Ã, j ∈ J̃ .

From (21) we conclude that W (aj)x = Uπ(aj)|HU∗x for j ∈ J and a ∈ A; hence,

W̃ (a)W (j)x = W (aj)x

= Uπ(aj)|HU∗x
= Uπ̃(a)π(j)|Hy
= Uπ̃(a)|HU∗Uπ(j)U∗x

= Uπ̃(a)|HU∗W (j)x.

Since the vectors W (j)x lie dense in K, we conclude that H is an invariant
subspace for π̃(A) and W̃ (a) = Uπ̃(a)|HU∗ for a ∈ A. Note that every π̃ obtained
in this way is an irreducible representation of J̃ with G in its kernel; so it is
associated with an elementary component of J̃ /G.

Let (It)t∈T be the elementary components of J /G and Wt : A → L(Kt)
the lifting homomorphism associated with It. For every t ∈ T , we construct
an extension of Wt to an irreducible representation of Ã as above. In general,
this extension will not be unique. For a given irreducible representation π̃ of Ã
coming from an irreducible representation of J̃ /G, we let Tπ̃ denote the set of all
t ∈ T for which the extension of Wt defined as above leads to π̃, i.e., for which
there are a closed subspace Ht of H̃ invariant with respect to π̃(A) and a unitary
operator Ut : Ht → Kt such that

Wt(a) = Utπ̃(a)|HtU
∗
t for a ∈ A. (22)

We claim that the Hilbert spaces Ht with t ∈ Tπ̃ are pairwise orthogonal. Let
s, t ∈ Tπ̃ and s 6= t. Inserting a ∈ Is into (22) we get 0 = Wt(a) = Utπ̃(a)|HtU

∗
t

whence π̃(Is)|Ht = 0. On the other hand, let 0 6= xs ∈ Ks. Since Ws : Is → L(Ks)
is irreducible, xs is algebraically cyclic, i.e. Ws(Is)xs = Ks. With ys := Usxs we
obtain

Hs = U∗sKs = U∗sWs(Is)xs = π̃(Is)Usxs = π̃(Is)ys.

Let now zs ∈ Hs and zt ∈ Ht. By the previous line, there is a js ∈ Is such that
zs = π̃(js)ys. Then

〈zs, zt〉 = 〈π̃(js)ys zt〉 = 〈ys, π̃(js)
∗zt〉 = 〈ys, π̃(j∗s )zt〉 = 0

because of π̃(Is)|Ht = 0 as observed above. This proves the claim.
Now we can finish the proof of the theorem. Let Ã ∈ Ã be a sequence such

that all operators π̃(Ã) are invertible and the norms of their inverses are uniformly
bounded by a constant C, where π̃ runs through the irreducible representations
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of Ã coming from the elementary components of J̃ /G. Write Ã as A + J̃ where
A ∈ A and J̃ ∈ J̃ (recall that Ã is an extension of A by compact sequences).
Since J̃ is dual, there are only finitely many π with ‖π(J̃)‖ ≥ 1/(2C). Thus, all
operators π̃(A) are Fredholm, only a finite number of them is not invertible, and
the norms of their inverses are uniformly bounded.

From (22) we then conclude that all operators Wt(A) are Fredholm, that only
a finite number of them is not invertible, and that the norms of their inverses
are uniformly bounded. Then all operators Wt(A

∗A) are Fredholm with index
0, only a finite number of them is not invertible, and the norms of their inverses
are uniformly bounded. Thus, there is a sequence J ∈ J such that all operators
Wt(A

∗A+J) are invertible and the norms of their inverses is uniformly bounded;
the (finite) sum J of the (compact) orthogonal projections onto the kernels of
Wt(A

∗A) will do the job. Because A is a Silbermann algebra, the sequence
A∗A + J is invertible. In particular, A∗A is a Fredholm sequence. Analogously
one shows that AA∗ is a Fredholm sequence. But then A itself is a Fredholm
sequence in A, which implies that A + J̃ = Ã is a Fredholm sequence in Ã,
hence invertible modulo J̃ . By the lifting theorem, applied to the Silbermann
pair (Ã, J̃ ), the sequence Ã is stable. Thus, Ã is a Silbermann algebra.

If one starts with a strong Silbermann algebra A, then this construction yields a
strong Silbermann algebra Ãη of local weight one.

5.7 A few examples

Block Toeplitz operators. As in the introduction, we consider Toeplitz op-
erators T (a) on l2(Z+) and their finite sections with respect to the filtration
(Pn), but now the Toeplitz operators are generated by matrix-valued continuous
functions a : T → CN×N . We denote the related algebra of the (full) finite sec-
tions discretization for these operators by S(T(CN×N)). It is not hard to derive
the analogues of Theorem 1 and Corollary 2 in this setting, with the sequences
(RnLRn) replaced by the sequences (RnLiRn when n = kN + i with compact

operators Li, and with the homomorphism W̃ replaced by the family of the N
homomorphisms

W̃i(A) := s-limn→∞RnN+iAnN+iRnN+iPnN+i

with i ∈ {0, 1, . . . , N − 1}. In particular, every restriction Sηi(T(CN×N)) with
ηi(n) := nN + i has the same structure as S(T(C)).

One-sided Almost Mathieu operators. These are the operators

Hα, λ, θ := V−1 + V1 + aI : l2(Z+)→ l2(Z+)

where V1 and V−1 stand for the forward and backward shift operator, respectively,
and where a(n) := λ cos 2π(nα + θ) with real parameters α, λ and θ. Further
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we write APα for the smallest closed subalgebra of L(l2(Z+)) which contains
all operators Hα, λ, θ with arbitrary λ and θ (but with fixed α) and all compact
operators. The algebra of the finite sections discretization of APα with respect
to the same filtration (Pn) as before is denoted by S(APα).

We only deal with the non-periodic case when α ∈ (0, 1) is irrational. Then
we write α as a continued fraction with nth approximant pn/qn such that

|α− pn/qn| < q−2n .

It has been shown in [10, Theorem 5.1] that the restriction Sη(APα) with η(n) :=
qn is again an algebra with (exactly) the same structure as S(T(C)).

Operators in Cuntz algebras. For N ≥ 2, let ON denote the smallest C∗-
subalgebra of L(l2(Z+)) which contains the operators

Si : (xk)k≥0 7→ (yk)k≥0 with yk :=

{
xr if k = rN + i
0 else

(23)

with i = 0, . . . , N−1. These operators are isometries, and they satisfy the Cuntz
axiom

S0S
∗
0 + . . .+ SN−1S

∗
N−1 = I. (24)

Since the (abstract) Cuntz algebra ON is simple, ON is ∗-isomorphic to the (con-
crete = represented) algebra ON . We use the same filtration (Pn) as before and
consider the smallest closed subalgebra S(ON) of F = FP which contains all
finite sections sequences (PnAPn) with A ∈ ON . It turns out that the algebra
S(ON) fails to be fractal, and it is a main result of [14] that η(n) := Nn is a right
choice to make the restricted algebra Sη(ON) fractal.
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[3] A. Böttcher, B. Silbermann, The finite section method for Toeplitz
operators on the quarter-plane with piecewise continuous symbols. – Math.
Nachr. 110(1983), 279 – 291.
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