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Abstract

We clarify the notion of well-chosen weak solutions of the instationary
Navier-Stokes system recently introduced by the authors and P.-Y. Hsu
in the article Initial values for the Navier-Stokes equations in spaces with
weights in time, Funkcialaj Ekvacioj (2016). Well-chosen weak solutions
have initial values in L2

σ(Ω) contained also in a quasi-optimal scaling-
invariant space of Besov type such that nevertheless Serrin’s Uniqueness
Theorem cannot be applied. However, we find universal conditions such
that a weak solution given by a concrete approximation method coincides
with the strong solution in a weighted function class of Serrin type.
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1 Introduction

The aim of this article is to clarify the relation between so-called strong Lsα(Lq)-
solutions and well-chosen weak solutions of the instationary Navier-Stokes sys-
tem

ut −∆u+ u · ∇u+∇p = f in Ω× (0, T )

div u = 0 in Ω× (0, T ) (1.1)
u = 0 on ∂Ω× (0, T )

u(0) = u0 at t = 0

on a bounded domain Ω ⊂ R3 with boundary of class C2,1. Given 2 < s < ∞,
3 < q <∞ and 0 < α < 1

2 such that

2

s
+

3

q
= 1− 2α ∈ (0, 1) (1.2)

we consider solutions u ∈ Lsα(0, T ;Lq(Ω)) where Lsα(0, T ;Lq(Ω)) is the Bochner
space with weight τα in time and with norm

‖u‖Lsα(0,T ;Lq) =

(∫ T

0

(
τα‖u(τ)‖q

)s
dτ

)1/s
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and initial values
u0 ∈ L2

σ(Ω) ∩ B
−1+ 3

q
q,s (Ω). (1.3)

Here B−1+3/q
q,s (Ω) is the real interpolation space

B
−1+ 3

q
q,s =

(
Lq
′
σ ,D(Aq′)

)′
α+ 1

s
,s′

=
(
D(Aq′)

′, Lqσ
)

1−α− 1
s
,s
,

and A = Aq is the Stokes operator with domain D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩

Lqσ(Ω) ⊂ Lqσ(Ω). As equivalent norm on B
−1+ 3

q
q,s (Ω) we can use

‖u0‖B−1+3/q
q,s

≈ ‖A−1u0‖q +
(∫ ∞

0

(
τα‖e−τAu0‖q

)sdτ)1/s
.

Since the semigroup e−τA is exponentially decreasing, we may omit the term
‖A−1u0‖q in the last norm above, see [9, Thm. 1.14.5], and take the integral
over an arbitrary interval (0, T ) instead of (0,∞). Hence

‖u0‖B−1+3/q
q,s

≈
(∫ T

0

(
τα‖e−τAu0‖q

)sdτ)1/s
.

For details on these Besov spaces we refer to [2, Chapter 4]. We note that
the spaces Lsα(0, T, Lq(Ω)) and B−1+3/q

q,s (Ω) (with the above norm) are scaling
invariant under the classical scaling u(t, x) 7→ uλ(t, x) = λu(λ2t, λx), λ > 0,
for solutions of the 3D-Navier-Stokes system when modifying the time interval
(0, T ) and the domain Ω correspondingly.

In addition to an initial value in u0 ∈ L2
σ(Ω) ∩ B−1+3/q

q,s (Ω) we consider an
external force f = divF with a matrix-valued function

F ∈ L2
(
0, T ;L2(Ω)

)
∩ L

s
2
2α

(
0, T ;L

q
2 (Ω)

)
. (1.4)

Let us recall the main existence result in this setting.

Theorem 1.1 ([2, Theorem 1.2]) Under the above assumptions on u0 and f
there exists a constant ε∗ = ε∗(q, s, α,Ω) > 0 with the following property: If

‖e−τAu0‖Lsα(0,T ;Lq) + ‖F‖
L
s/2
2α (0,T ;Lq/2)

≤ ε∗, (1.5)

then the Navier-Stokes system (1.1) has a unique strong Lsα(Lq)-solution u with
data u0, f on [0, T ), i.e., u is a weak solution in the sense of Leray-Hopf, con-
tained in the Leray-Hopf class

LHT = L∞
(
0, T ;L2

σ(Ω)
)
∩ L2

(
0, T ;H1

0 (Ω)
)

satisfying the energy inequality (EI)

1

2
‖u(t)‖22 +

t∫
0

‖∇u‖22 dτ ≤ 1

2
‖u0‖22 +

t∫
0

〈f, u〉dτ, (1.6)

and
u ∈ Lsα

(
0, T ;Lq(Ω)

)
.
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Note that 〈f, u〉 = −(F,∇u). Moreover, we recall that the strong Lsα(Lq)-
solution u even satisfies the energy equality (EE) on [0, T ], i.e.,

1

2
‖u(t)‖+

t∫
0

‖∇u‖22 dτ =
1

2
‖u0‖22 −

t∫
0

(F,∇u) dτ (1.7)

for all t ∈ [0, T ]; this result is based on the integrability u ∈ L4
(
ε, T ;L4(Ω)

)
[2,

Lemma 3.3] and the convergence u(t) → u0 in L2(Ω) as t → 0+, see [2, (3.7)]
and subsequent lines. A simple consequence of (1.7) is that u also satisfies the
strong energy inequality (SEI), i.e.

1

2
‖u(t)‖22 +

t∫
t0

‖∇u‖22 dτ ≤ 1

2
‖u(t0)‖22 −

t∫
t0

(F,∇u) dτ (1.8)

for almost all t0 ∈ (0, T ), including t0 = 0. Of course, (1.7) implies (SEI) even
for all t0 ∈ (0, T ).

Actually, the space B−1+3/q
q,s (Ω) of initial values with (1.2) is too large com-

pared to the optimal space of initial values B−1+3/q
q,sq with 2

sq
+ 3

q = 1, cf.
[4, 1, 3, 5]. We also note that the authors of [7] proved the existence and
uniqueness of global strong solutions with values in the critical space B0

3,∞(Ω)

for R3, R3
+ and bounded domains of R3. The drawback of the space B−1+3/q

q,s (Ω)
with (1.2) is the fact that an analogue of the classical Serrin-Masuda Unique-
ness Theorem cannot be proved. For this reason, the authors of [2] introduced
the notion of so-called well-chosen weak solutions. Roughly spoken, for given
data u0, f as above a well-chosen weak solution is the limit of a sequence of
approximate weak and strong Lsα(Lq)-solutions (un) of an approximate Navier-
Stokes system. Then by [2, Theorem 1.4] the unique Lsα(Lq)-strong solution
is unique within the class of all well-chosen weak solutions on some subinter-
val [0, T ′) ⊂ [0, T ). In other words, Serrin’s Uniqueness Theorem holds in this
setting (on a subinterval) provided that the approximation scheme for the con-
struction of the weak solution is known and admissible in the sense that norms
relevant for both a weak L2- and a strong Lsα(Lq)-theory can be controlled.

However, the definition in [2] is too much restricted to the construction
of weak solutions by Yosida approximation operators and analytic semigroup
theory, see Assumptions 5.1 and 5.4 as well as Remarks 5.2 and 5.3 in [2]. The
purpose of this paper is to clarify and weaken the assumptions on well-chosen
weak solutions and to improve or extend the restricted uniqueness theorem of
[2].

For simplicity, in the sequel we always assume that T <∞.

Definition 1.2 A well-chosen weak solution v is a weak solution of the Navier-
Stokes system (1.1) with v(0) = u0 ∈ L2

σ(Ω) satisfying the strong energy inequal-
ity (SEI), see (1.8), and defined by a concrete, so-called admissible approxima-
tion procedure, compatible with the notion of Lsα(Lq)-solutions in the following
sense:
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(1) There are initial data (u0n) ⊂ L2
σ(Ω) ∩ B

−1+ 3
q

q,s (Ω) converging to u0 in

L2
σ(Ω) ∩ B

−1+ 3
q

q,s (Ω) as n→∞

(2) The external force F ∈ L2
(
0, T ;L2(Ω)

)
∩ Ls/22α

(
0, T ;Lq/2(Ω)

)
is aproxi-

mated by a sequence (Fn) ⊂ L2
(
0, T ;L2(Ω)

)
∩Ls/22α

(
0, T ;Lq(Ω)

)
such that

Fn → F in L2
(
0, T ;L2(Ω)

)
∩ Ls/22α

(
0, T ;Lq/2(Ω)

)
.

(3) The admissible approximation method yields approximate weak solutions
un on (0, T ) uniformly bounded in LHT and containing a subsequence
(unk) such that unk ⇀ v in LHT , i.e., unk ⇀ v in L2

(
0, T ;H1(Ω)

)
and

unk
∗
⇀ v in L∞

(
0, T ;L2

σ(Ω)
)
as k →∞

(4) (un) is uniformly bounded in Lsα(0, T ′;Lq) for some T ′ ∈ (0, T ].

Remark 1.3 (1) The crucial part of Definition 1.2 is the assumption (4) on
(un).

(2) The strong convergence u0n → u0 in L2(Ω) in Definition 1.2 (1) can be
replaced by the corresponding weak convergence. By analogy, the strong conver-
gence Fn → F in L2

(
0, T ;H1(Ω)

)
may be replaced by a weak one.

(3) However, the strong convergence u0n → u0 in B−1+3/q
q,s (Ω) is crucial to

find 0 < T ′ ≤ T independent of n ∈ N such that∫ T ′

0

(
τα‖e−τAu0n‖q

)s
dτ ≤ ε∗.

Now our main theorem reads as follows.

Theorem 1.4 Let 2 < s < ∞, 3 < q < ∞, 0 < α < 1
2 with 2

s + 3
q = 1 − 2α

and suppose that u0 ∈ L2
σ(Ω) ∩ B−1+3/q

q,s (Ω) and an external force f = divF

with F ∈ L2
(
0, T ;L2(Ω)

)
∩ Ls/22α

(
0, T ;Lq/2(Ω)

)
are given. Furthermore, let u ∈

Lsα
(
0, T ;Lq(Ω)

)
be the unique strong Lsα(Lq)-solution of (1.1) with data u0, F .

(i) Then u is unique within the class of all well-chosen weak solutions of
(1.1) in the sense of Definition 1.2.

(ii) Given an admissible approximation scheme yielding an approximate se-
quence (un) as in Definition 1.2 assume that each subsequence of (un) converging
weakly in LHT converges weakly to a weak solution of (1.1). Then the whole se-
quence (un) converges to u. Moreover, for any sequence of initial values (u0n)
and external forces (Fn) approximating u0 and F in the sense of Definition 1.2
(1), (2), respectively, and generating approximate solutions with a subsequence
weakly convergent to a weak solution of (1.1) in LHT , the whole sequence of
approximate solutions converges weakly in LHT to u.

The real work is to show that a concrete approximation procedure for the
construction of weak solutions is compatible with the notion of Lsα(Lq)-solutions
as required in Definition 1.2. In the following we need for 1 < q < ∞ the
Helmholtz projection P = Pq : Lp(Ω) → Lqσ(Ω) and the Stokes operator A =

Aq : D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) ⊂ Lqσ(Ω)→ Lqσ(Ω).
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Theorem 1.5 Let 2 < s <∞, 3 < q <∞, 0 < α < 1
2 and 2

s + 3
q = 1− 2α.

(i) The Yosida approximation scheme and, if 3 < q ≤ 4, the Galerkin ap-
proximation scheme are admissible, i.e., they define well-chosen weak solutions
in Lsα(Lq). To be more precise, we consider the following approximation meth-
ods:

Case 1 (Yosida approximation scheme) Let Jn = (I + 1
nA

1/2)−1 denote the
Yosida operator, let u0n = Jnu0, and assume that Fn → F in L2

(
0, T ;L2(Ω)

)
∩

L
s/2
2α

(
0, T ∗;Lq/2(Ω)

)
for some 0 < T ∗ ≤ T . Then the approximate solution un

is defined as the solution of the approximate Navier-Stokes system

∂tun −∆un + (Jnun) · ∇un +∇pn = divFn, div un = 0,

un|∂Ω = 0, un(0) = u0n.
(1.9)

Case 2 (Galerkin approximation scheme) Let Πn denote the L2
σ-projection

onto the space of the first n eigenfunctions of the Stokes operator A2, and suppose
that u0n ∈ ΠnL

2
σ(Ω) as well as Fn ∈ L2(0, T ;L2(Ω)) satisfy the assumptions of

Definition 1.2 (1), (2). Then let un denote the Galerkin approximation of the
Navier-Stokes sytem with data u0n, Fn.

(ii) In both cases the assumption in Theorem 1.4 (ii) is satisfied. Hence
the whole sequence given by the Yosida approximation scheme or the Galerkin
approximation converges to the well-chosen weak solution, irrespective of the
sequences (u0n) and (Fn).

Remark 1.6 (1) The condition u0 ∈ B−1+3/q
q,s (Ω) seems to be quite strong com-

pared to the assumption u0 ∈ L2
σ(Ω) needed in the classical Serrin Uniqueness

Theorem. However, in the classical theorem the existence of the strong solu-
tion u ∈ Lsq

(
0, T ;Lq(Ω)

)
(where 2

s + 3
q = 1) with u(0) = u0 even implies that

u0 ∈ B−1+3/q
q,sq (Ω) ⊂ B−1+3/q

q,s (Ω).
(2) The assumption in Theorem 1.4 (ii) can be weakened to the following

one: Assume that each subsequence (un) converging weakly in LHT contains a
subsubsequence converging weakly to a weak solution of (1.1). This results can
easily be seen from the proofs.

(3) The assumptions for Case 1 in Theorem 1.5 may be generalized to an ar-
bitrary family of operators J̃n ∈ L

(
Lqσ(Ω);D(A

1/2
q )

)
commuting with the Stokes

operator Aq such that the fundamental properties of the Yosida operator‖J̃n‖L(Lqσ) + ‖ 1
nA

1
2
q J̃n‖L(Lqσ) ≤ Cq <∞,

J̃nu→ u in Lqσ(Ω) for each u ∈ Lqσ(Ω) as n→∞
(1.10)

are fulfilled. Then let u0n = J̃nu0 and Fn = YnF where Yn = (I+ 1
n(−∆q)

1/2)−1

is defined by the Dirichlet-Laplacian −∆q on Lq(Ω). In particular, since the
operators J̃n are uniformly bounded in L

(
Lqσ(Ω)

)
and converge strongly to I in

Lqσ(Ω), Lebesgue’s Theorem on Dominated Convergence implies that

T∫
0

‖e−τAqu0n‖sq dτ =

T∫
0

‖J̃ne−τAu0‖sq dτ →
T∫

0

‖e−τAu0‖sq dτ
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as n→∞. By analogy, we argue for the convergence Fn → F in L2(0, T ;L2(Ω))

and in Ls/22α

(
0, T ;Lq/2(Ω)

)
.

(4) To satisfy the assumptions on u0 for Case 2 in Theorem 1.5 let u0 ∈
L2
σ(Ω) ∩ B−1+3/q

q,s (Ω) be given. Then u0δ = e−δAu0 converges in B−1+3/q
q,s (Ω) to

u0 as δ → 0+. Actually,∫ T

0
ταs‖e−τA

(
e−δAu0 − u0

)
‖sq dτ =

∫ T

0
ταs‖

(
e−δA − I

)
e−τAu0‖sq dτ → 0

as δ → 0+ by Lebesgue’s Theorem. Next, due to a semigroup estimate, see
(2.10) below, and by Lebesgue’s Theorem, for fixed δ > 0∫ T

0
ταs‖e−τA(Πk − I)e−δAu0‖sq dτ =

∫ T

0
ταs‖e−δA(Πk − I)e−τAu0‖sq dτ

≤ c
∫ T

0
ταsδ

− 3
2

( 1
2
− 1
q

)‖(Πk − I)e−τAu0‖s2 dτ → 0

as k → ∞. Summarizing these two results with adequate numbers δ = δn > 0
we find a sequence (u0n) satisfying u0n ∈ ΠnL

2
σ(Ω) and converging to u0 in

L2
σ(Ω) ∩ B−1+3/q

q,s (Ω) as n→∞.
(5) The restriction 3 < q ≤ 4 in the case of the Galerkin approximation

method in Theorem 1.5 will become clear from the crucial estimate (2.11) below
which uses the elementary inclusion q

2 ≤ 2 < q ≤ 4.

2 Proofs

Proof of Theorem 1.4 (i) By Definition 1.2 (3) there exists a sequence of ap-
proximate weak solutions (un) bounded in LHT such that a subsequence (unk)
converges to a weak solution v ∈ LHT of (1.1) satisfying (SEI).

Since (un) is uniformly bounded in Lsα(0, T ′;Lq) with T ′ in Definition 1.2 (4)
we find a subsequence (un′k) of (unk) converging weakly in Lsα(0, T ′;Lq) to an
element v′ ∈ Lsα(0, T ′;Lq). Now, since unk ⇀ v in LHT ′ , we may conclude that
v = v′ on (0, T ′); in particular, v′ is a weak and even a strong Lsα(Lq)-solution of
(1.1) on (0, T ′). Since strong Lsα(Lq)-solutions are unique by [2, Theorem 1.2],
v = v′ = u on (0, T ′).

If T ′ < T , then we find due to (SEI) applied to v some 0 < T ′′ ≤ T ′ such
that the weak solution v satisfies the energy estimate on [T ′′, T ) with initial time
T ′′. Since u ∈ Ls(T ′′, T ;Lq(Ω)) with 2

s + 2
q < 1 is a ”classical” strong solution,

Serrin’s Uniqueness Theorem implies that u = v even on [0, T ).
(ii) Consider any subsequence (umk) of (un) converging weakly in LHT . By

the assumption in Theorem 1.4 (ii) this limit is a weak solution v′′ on (0, T ) and
even a well-chosen solution on an interval (0, T ′). Now the assertion on unique-
ness in (i) proves that v′′ = v = u. Then classical arguments imply that the
whole sequence (un) converges weakly to v. Moreover, again due to uniqueness,
this result will hold for any sequence (u0n) and (Fn) with convergence properties
as described in (ii).
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Proof of Theorem 1.5 (i) Case 1: Given u0, u0n and F , Fn as in Definition
1.2 classical L2-methods, see [8, Ch. V.2], prove the existence of a unique
approximate solution un ∈ LHT of (1.9) and the convergence of a subsequence
of (un) to a weak solution u ∈ LHT of (1.1). Indeed, un satisfies the energy
equality (EE), see (1.7), and consequently the energy estimate

‖un(t)‖22 +

t∫
0

‖∇un‖22 dτ ≤ ‖u0n‖22 +

t∫
0

‖Fn‖22 dτ,

where the right-hand side is uniformly bounded with respect to n ∈ N and
0 < t < T due to the weak convergence properties in Definition 1.2. Finally,
(∂tun) is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
, see [8, Lemma V. 2.6.1,

Theorem V. 1.6.2]. Hence, by the Aubin-Lions-Simon compactness theorem for
Bochner spaces, there exists a subsequence (unk) of (un) and v ∈ LHT such
that

unk ⇀ v in LHT , unk → v in L2
(
0, T ;L2

σ(Ω)
)

(2.1)

as k →∞. Furthermore,

unk(t)→ v(t) in L2
σ(Ω) for a.a. t ∈ (0, T ) (2.2)

as k → ∞; this step needs the extraction of a further subsequence, as the case
may be. Now (2.1) allows us to pass to the limit in (1.9) and show that v is
a weak solution of (1.1) in the sense of Leray-Hopf. In particular, v satisfies
the energy inequality (EI), see (1.6), and due to (2.2) even the strong energy
inequality (SEI), see (1.8).

In the second step of the proof we improve the previous results by exploiting
the properties of u0 in B−1+3/q

q,s (Ω) and of F in Ls/22α

(
0, T ;Lq/2(Ω)

)
, see Definition

1.2. Since (u0n) converges strongly to u0 in B−1+3/q
q,s (Ω) we find some T ′ ∈ (0, T ]

such that
‖u0n‖B−1+3/q

q,s,T ′
≤ ε∗

2

for all n ∈ N where ε∗ > 0 is the absolute constant from (1.5). Furthermore,
since Fn → F in Ls/22α

(
0, T ;Lq/2(Ω)

)
we may also assume that

‖Fn‖Ls/22α (0,T ′;Lq/2)
≤ ε∗

2

for all n ∈ N. We follow the construction of strong Lsα(Lq)-solutions in [2],
decompose the solution un of (1.9) into un = ũn+En where En solves the linear
nonhomogeneous Stokes problem with data u0n, Fn, i.e.,

En(t) = e−tAu0n +

t∫
0

A1/2e−(t−τ)
(
A−1/2P div

)
Fn(τ) dτ. (2.3)

We note that the formal operator A−1/2P div can be defined rigorously by
duality arguments as a bounded operator from Lq(Ω) to Lqσ(Ω), 1 < q < ∞,
which goes back to [6].
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As in [4, 2] ũn = un − En has an integral representation based on the
variation of constants formula and can be considered as solution of the fixed
point problem ũn = F ũn in Lsα

(
0, T ′;Lq(Ω)

)
where

Fnũn(t) = −
t∫

0

A1/2e−(t−τ)A
(
A−1/2P div

)(
Jn(ũn + En)⊗ (ũn + En)

)
(τ) dτ ;

note that Fn differs from F in [2, (3.2)] only by the additional term Jn. Due to
fundamental properties of the Yosida operators Jn, cf. (1.10), the fixed point
of Fn can be constructed by Banach’s Fixed Point Theorem in the same way as
in [2]. By the assumptions on un, Fn and [2, (3.5)] (see also [4, (2.45)] for the
case without weights) ũn, un satisfy the estimate

‖ũn‖Lsα(0,T ′;Lq), ‖un‖Lsα(0,T ′;Lq) ≤ Cε∗ (2.4)

with a constant C > 0 independent of n ≥ n0(ε∗, T ′).
Case 2: It is well known that the Stokes operator A2 on the bounded C1,1-

domain Ω ⊂ R3 admits an orthonormal basis of eigenfunctions ψk ∈ D(A2) =
H2(Ω)∩H1

0,σ(Ω) with corresponding eigenvalues λk monotonically increasing to
∞ as k →∞. For n ∈ N let

Πn : L2
σ(Ω)→ Vn := span{ψ1, . . . , ψn} ⊂ L2

σ(Ω)

denote the orthogonal projection. Obviously, ‖Πn‖L(L2
σ(Ω)) = 1 for all n ∈ N.

In the Galerkin method we are looking for a solution un : [0, T ) → Vn of the
ordinary differential n× n-system

(∂tun, ψk) + (∇un,∇ψk)− (un ⊗ un,∇ψk) = −(Fn,∇ψk)
un(0) = u0n ∈ Vn

(2.5)

on (0, T ) for each k = 1, . . . , n. By the L2-assumptions on u0n and Fn we know
that there exists a sequence of unique solutions (un) to (2.5) bounded in LHT .
Moreover, (∂tun) is uniformly bounded in L4/3

(
0, T ;H1

0,σ(Ω)′
)
. As in the first

part of the proof we find a subseqence (unk) of (un) and a vector field v satisfying
(2.1) and (2.2). In particular, v ∈ LHT is a weak solution to (1.1) satisfying
(SEI).

The crucial question is whether un is also a strong Lsα(0, T ′;Lq)-solution,
uniformly bounded in n. To address this problem we consider arbitrary linear
combinations of (2.5)1 to see that for all w ∈ H1

0,σ(Ω)

(∂tun,Πnw) + (∇un,∇Πnw)− (un ⊗ un,∇Πnw) = −(Fn,∇Πnw)

un(0) = u0n ∈ Vn.
(2.6)

Since Πn = PΠn, P ∗ = P , A commutes with Πn, and (∇un,∇Πnw) = (Aun, w),
we may omit the test function w ∈ H1

0,σ(Ω) and rewrite (2.6) in the form

∂tun +Aun + ΠnPdiv (un ⊗ un) = ΠnPdivFn, un(0) = u0n ∈ Vn. (2.7)
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Thus un(t) can be considered as a solution inW 1,4/3(0, T ) (with respect to time)
of an abstract Cauchy problem and as a mild solution with integral representa-
tion

un(t) = e−tAu0n −
∫ t

0
A1/2e−(t−τ)A

(
A−1/2ΠnPdiv

)
(un ⊗ un − Fn)(τ) dτ. (2.8)

Although ‖Πn‖L(L2
σ(Ω)) = 1 and A−1/2Pdiv ∈ L(Lq(Ω)) for each 1 <

q < ∞, similar estimates will not hold for Πn on Lqσ(Ω) and for the opera-
tor A−1/2ΠnPdiv on Lq(Ω) uniformly in n ∈ N. Actually, there seems to exist
no estimate of the type ‖Πn‖L(Lqσ(Ω)) ≤ c(q) uniformly in n ∈ N when q 6= 2; the
reason is the non-uniform distribution of eigenvalues λk as k →∞ compared to a
Fourier series setting. Therefore, the question occurs how to estimate Lq-norms
uniformly in n when Πn is involved.

Let us recall the embedding and semigroup estimates

‖v‖q ≤ c‖A
γ
2v‖2 , v ∈ D(Aγ2), 2γ +

3

q
=

3

2
, 0 ≤ γ ≤ 1, (2.9)

‖e−tAqv‖q ≤ ct
− 3

2
( 1
ρ
− 1
q

)‖v‖ρ , v ∈ Lρσ(Ω), q ≥ ρ > 1, t > 0, (2.10)

with constants c = c(Ω, q, ρ) > 0, see [2, 4]. Applying (2.9) with 3 < q ≤ 4,
exploiting the uniform boundedness and commutator properties of Πn on L2

σ(Ω)
and finally (2.10) with 2, q2 instead of q, ρ we get the estimate

‖A1/2e−(t−τ)A(A−1/2ΠnPdiv )(un ⊗ un − Fn)‖q
≤ c‖Aγ+1/2e−(t−τ)A(A−1/2ΠnPdiv )(un ⊗ un − Fn)‖2
≤ c‖Aγ+1/2e−(t−τ)A(A−1/2Pdiv )(un ⊗ un − Fn)‖2
≤ c(t− τ)−1+α+ 1

s ‖un ⊗ un − Fn‖q/2.

(2.11)

Now the weighted Hardy-Littlewood-Sobolev inequality, cf. [2, Lemma 2.1],
implies that with a constant c > 0 independent of n ∈ N and T

‖un − e−tAu0n‖Lsα(0,T ;Lq) ≤ c
(
‖un‖2Lsα(0,T ;Lq) + ‖Fn‖Ls/22α (0,T ;Lq/2)

)
.

Then by standard arguments we find T ′ ∈ (0, T ) independent of n ∈ N such
that (un) ⊂ Lsα(0, T ′;Lq) is uniformly bounded.

Now we complete the proof as in the previous case.
(ii) It is well-known that each sequence of approximate solutions, (un), given

by the Yosida approximation scheme or the Galerkin method, respectively, al-
lows for a uniform estimate of the time derivative ∂tun. Hence by compactness
arguments (un) ⊂ L2(0, T ;L2(Ω)) is precompact. Consequently, there exists a
subsequence converging strongly in L2(0, T ; Ω) to a limit function which is a
weak solution to (1.1).
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