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Abstract

Every bounded linear operator on a Hilbert space which is invertible
modulo compact operators has a closed range and is, thus, generalized
invertible. We consider the analogue question in general C∗-algebras and
describe the closed ideals (called Moore-Penrose ideals in what follows)
with the property that whenever an element is invertible modulo that ideal,
then it is generalized invertible. In particular, we will see that the class of
Moore-Penrose ideals coincides with the class of the dual ideals. Finally,
we study some questions related with the projection lifting property of
Moore-Penrose ideals.

Keywords: Moore-Penrose invertibility, compact elements, lifting theorems

2010 AMS-MSC: 46L05, 47A05

1 Introduction

The ideal K(H) of the compact operators on a Hilbert space H owns the following
property: Whenever an operator A ∈ L(H), the algebra of the bounded linear
operators on H, is invertible modulo K(H), then its range imA = AH is closed
in H. (Actually, A is even a Fredholm operator, i.e. it has a finite-dimensional
kernel kerA = A−1(0) and a finite-dimensional cokernel H/imA.)

The closedness of the range of A, also termed as the normal solvability of
A, is equivalent to the generalized invertibility of A, i.e. to the existence of an
operator B ∈ L(H) such that ABA = A. In general, the generalized inverse B of
A is not unique; but if A has a generalized inverse, then it also has a generalized
inverse C with the following properties: ACA = A, CAC = C, and AC and CA
are self-adjoint. A generalized inverse with these properties is unique; it is called
the Moore-Penrose inverse of A and denoted by A†. Thus, the terms generalized
invertibility and Moore-Penrose invertibility (MPI for brevity) are synonymous.

These facts hold more general when L(H) is replaced by an arbitrary C∗-
algebra, in which setting generalized or Moore-Penrose invertibility often serves
as a substitute of the closed range property of operators. The aim of this paper
is to characterize closed ideals J of a C∗-algebra A with the following property,
mimicking the property of the ideal of the compact operators observed above:
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whenever a ∈ A is invertible modulo J , then a is Moore-Penrose invertible. In
this case we call J a Moore-Penrose ideal (MP-ideal for short) of A.

To state our results we have to introduce some more notations. A C∗-algebra
A is called elementary if it is isomorphic to the algebra of the compact operators
on some Hilbert space, and a C∗-algebra is dual if it is isomorphic to a direct sum
of elementary algebras. If J a closed ideal of A which is elementary (respective
dual) when considered as a C∗-algebra, then we call J an elementary (respective
a dual) ideal of A. It is easy to see that every dual ideal J is generated (as a
C∗-algebra) by its elementary ideals, Kt with t ∈ T , say. Since every closed ideal
of J is also a closed ideal of A, J can be identified with the smallest closed ideal
of A which contains all elementary ideals ideals Kt. See [3] for an overview on
dual algebras.

Further we say that an ideal J of a unital C∗-algebra has the compact spectral
property if every self-adjoint element of J has 0 as the only possible accumulation
point of its spectrum. Clearly, this notion is motivated by the fact that every
compact operator on a Hilbert space has 0 as only possible accumulation point
of its spectrum.

Finally, we call a non-zero element k of a C∗-algebra A an element of algebraic
rank one if, for every a ∈ A, there is a complex number α such that kak = αk.
The smallest closed ideal of A which contains all elements of algebraic rank one
is denoted by C(A). Its elements are called algebraically compact.

Theorem 1 The following assertions are equivalent for a proper closed ideal J
of a unital C∗-algebra B :

(a) J is a dual ideal.

(b) J is a Moore-Penrose ideal.

(c) J has the compact spectral property.

(d) J is ∗-isomorphic to a C∗-subalgebra of K(H) for a Hilbert space H.

(e) C(J ) = J .

The implications (a) ⇒ (b), (b) ⇒ (c) and (c) ⇒ (e) are shown in Sections
3, 4 and 5, respectively. The remaining implications are subject to Section 6.
Of course, not all of the implications in Theorem 1 are new; for example, the
implication (d)⇒ (a) is Theorem 1.4.5 in [2].

The following theorem summarizes some kown facts on Moore-Penrose invert-
ibility in C∗-algebras for later reference.

Theorem 2 Let B be a C∗-algebra with identity e. The following conditions are
equivalent for an element a of B:

(a) a is generalized invertible.

(b) a is Moore-Penrose invertible.

(c) a∗a is invertible, or 0 is an isolated point of the spectrum σ(a∗a) of a∗a.
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(d) There is a projection p ∈ alg (e, a∗a) such that ap = 0 and a∗a+p is invertible.
(Here, alg (e, a∗a) the smallest closed subalgebra of B which contains e and a∗a,
and p is called a projection if p is self-adjoint and p2 = p.)

(e) There is a projection q ∈ B such that aq = 0 and a∗a+ q is invertible.

If one of these conditions is satisfied, then the projection q is uniquely determined,
q = e− a†a, and a† = (a∗a+ q)−1a∗. Moreover,

‖a†‖2 = sup {1/λ : λ ∈ σ(a∗a) \ {0}}.

(f) If C is a unital C∗-subalgebra of B and c ∈ C is Moore-Penrose invertible in
B, then c† ∈ C (inverse closedness).

2 Dual ideals and lifting theorems

Our study of dual ideals is dominated by a lifting theorem. Lifting theorems
can be used to reduce invertibility problems in a C∗-algebra A to invertibility
problems in a suitable quotient algebra A/J (in some sense, they “measure“ the
difference between invertibility in A and in A/J ). They hold in quite general
contexts (see Section 6.3 in [6] for purely algebraic and Banach algebraic versions
of that theorem), but they work particularly well when J is a dual algebra.

Let A and B be unital C∗-algebras, J a closed ideal of A, and W : A → B
a unital ∗-homomorphism. We say that W lifts the ideal J if the restriction of
W to J is injective. Note that for every closed ideal J there is a canonical
homomorphism which lifts J . Indeed, the annulator

AnnJ := {a ∈ A : aJ ∪ J a ⊆ RadA}

of J is a closed ideal of A, and the canonical homomorphism from A to A/AnnJ
lifts the ideal J .

Here is a general version of the lifting theorem for C∗-algebras (Theorem 6.3.6
in [6]).

Theorem 3 (Lifting theorem) Let A be a C∗-algebra with identity. For every
element t of a certain set T , let Jt be a closed ideal of A which is lifted by a
unital ∗-homomorphism Wt from A into a unital ∗-algebra Bt. Let further J
stand for the smallest closed ideal of A which contains all ideals Jt. Then an
element a ∈ A is invertible if and only if the coset a + J is invertible in A/J
and if all elements Wt(a) are invertible in Bt.

The family (Wt)t∈T of homomorphisms induces a product homomorphism W from
A into the product of the family (Bt)t∈T via

W : a 7→ (t 7→ Wt(a)). (1)
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Thus, the lifting theorem states that the homomorphisms Wt and the ideals Jt

can be glued to a homomorphism W and to an ideal J , respectively, such that
W lifts J .

Now we return to the context of dual ideals. Our next goal is to show that
every dual ideal of a C∗-algebra can be lifted and to specify Theorem 3 to this
context. We start with lifting one elementary ideal.

Proposition 4 Let A be a unital C∗-algebra and J an elementary ideal of A.
Then there is an irreducible representation of A which lifts J . This representation
is unique up to unitary equivalence, and it maps the elements of J to compact
operators.

Proof. Let W be a ∗-isomorphism from J to K(H). Then W is the only
irreducible representation of J up to unitary equivalence, and there is a unique
(again, up to unitary equivalence) extension of W to an irreducible representation
of A. This extension lifts J by its construction, and it is unital since every
irreducible representation of unital algebras is unital.

Theorem 5 (Lifting theorem for dual ideals) Let A be a unital C∗-algebra.
For every element t of a set T , let Jt be an elementary ideal of A such that Js 6= Jt

whenever s 6= t, and let Wt : A → L(Ht) denote the irreducible representation
of A which lifts Jt (which exists and is unique by Proposition 4). Let finally J
stand for the smallest closed ideal of A which contains all ideals Jt. Then J is
a dual ideal of A, and the assertion of the lifting Theorem 3 can be completed as
follows:

(a) If t1, . . . , tm ∈ T and ti 6= tj for i 6= j, then (Jt1 + . . .+ Jtm−1) ∩ Jtm = {0}.
(b) The separation property holds, i.e. Ws(Jt) = {0} whenever s 6= t.

(c) If j ∈ J , then the operator Wt(j) is compact for every t ∈ T , and the set of
all t ∈ T with ‖Wt(j)‖ ≥ ε is finite for every ε > 0.

(d) If a ∈ A and the coset a+J is invertible, then the operator Wt(a) is Fredholm,
and the set of all t ∈ T for which Wt(a) is is not invertible is finite.

(e) The product W := Πt∈TWt : A → Πt∈TL(Ht) is a ∗-isomorphism between J
and the direct sum ⊕t∈TK(Ht).

Proof. (a) First we show that Js ∩Jt = {0} whenever s 6= t. Clearly, Js ∩Jt is
a closed ideal of Js. Since Js is an elementary algebra, its only closed ideals are
{0} and Js. If Js ∩ Jt = Js, then Js ⊆ Jt. Since Js 6= 0 and Jt is elementary,
this implies Js = Jt, a contradiction. Thus, Js ∩ Jt = {0}. This equality also
implies that J is a dual algebra.

Now consider the case when m ≥ 2. Clearly, (Jt1+. . .+Jtm−1)∩Jtm is a closed
ideal of Jtm . Since Jtm is an elementary algebra, its only closed ideals are {0} and
Jtm . Thus, assuming that the assertion is wrong, we get Jtm ⊆ Jt1 + . . .+Jtm−1 .
Let p ∈ Jtm be a non-zero projection (which exists since this ideal isomorphic
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to K(H) for a non-zero Hilbert space H), and write p = kt1 + . . . + ktm−1 with
elements kti ∈ Jti . Multiplying this identity by p yields p = pkt1 + . . . + pktm−1 .
Since p 6= 0, there is an i such that pkti 6= 0. Thus, pkti is a non-zero element of
Jtm ∩ Jti , which is impossible by what we have already shown.

(b) Let s, t ∈ T with s 6= t. Since Js ∩ Jt = {0} by part (a), every element
j ∈ Js + Jt has a unique representation as j = js + jt with js ∈ Js and jt ∈ Jt.
This implies that the mapping

Ŵs : Js + Jt → K(Hs), j = js + jt 7→ Ws(js)

is correctly defined. This mapping is an irreducible representation of Js + Jt

which coincides with Ws on Js. Furthermore, Ŵs(Jt) = {0}.
Since the irreducible extension of Ws from Js onto A is unique up to unitary

equivalence, Ŵs is unitarily equivalent to the restriction to the ideal Js + Jt of
any irreducible extension of Ws. Since equivalent representations have the same
kernels, and since Jt lies in the kernel of Ŵs, we get the assertion.

(c) Let j ∈ J and ε > 0. By the definition of J , there exist a finite subset
{t1, . . . , tn} of T and elements jti ∈ Jti such that

j = jt1 + . . .+ jtn + j′ with j′ ∈ J and ‖j′‖ < ε. (2)

Let t ∈ T . ApplyingWt to both sides of (2) and taking into account the separation
property (b), we get the existence of a compact operator Jt,ε ∈ K(Ht) such that

Wt(j) = Jt,ε +Wt(j
′) with ‖Wt(j

′)‖ < ε.

The compactness of Wt(j) follows since K(Ht) is closed. Moreover, if t ∈ T \
{t1, . . . , tn}, the same reasoning shows that ‖Wt(j)‖ = ‖Wt(j

′)‖ < ε.

(d) If the coset a + J is invertible, then there are elements b ∈ A and j, k ∈ J
such that ab = e + j and ba = e + k. Applying the homomorphism Wt to both
equalities and taking into account assertion (c) we obtain the Fredholm property
of Wt(a) for every t ∈ T . For the second assertion, write j as in (2) with some
ε < 1. Applying Wt for t 6∈ {t1, . . . , tn} to the equation ab = e + j one gets
Wt(a)Wt(b) = It +Wt(j

′) with ‖Wt(j
′)‖ < 1. Similarly, Wt(b)Wt(a) = It +Wt(k

′)
with ‖Wt(k

′)‖ < 1. Hence, Wt(a) is invertible by Neumann series for all but
finitely many t.

(e) The product homomorphism W maps the ideal J to the direct product of
the ideals K(Ht) as we have already seen, and W is injective due to Corollary
6.3.3 in [6]. Hence, J is ∗-isomorphic to W (J ). We show that the image of J
under W is just the direct sum of the ideals K(Ht) and, hence, a dual algebra.
Let r ∈ W (J ), and let j denote the unique element of J with W (j) = r. Given
ε > 0, there is a decomposition of j as in (2). This decomposition immediately
shows that k belongs to the sum of the K(Ht). On the other hand, the separation
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property entails that W (Jt) = K(Ht); hence, W (J ) cannot be smaller than this
sum.

If J is ∗-isomorphic to the sum of its elementary ideals Jt and Wt : Jt → K(Ht)
is the (unique up to unitary equivalence) irreducible representation of Jt, then
Js ∩ Jt = {0} if s 6= t, and J is the smallest closed ideal of A which contains
all ideals Jt. It is also clear that every mapping Wt has a unique (up to unitary
equivalence) extension to an irreducible representation of A on Ht, which lifts
the ideal Jt. Thus, it is exactly the dual ideals which satisfy the assumptions of
Theorem 5.

Our final goal in this section is spectral and strictly spectral families of lifting
homomorphisms. Given a unital C∗-algebra A and a family {Wt}t∈T of unital
homomorphisms Wt from A into unital C∗-algebras Bt, we call this family spectral
if an element a ∈ A is invertible if and only if all elements Wt(a) are invertible
and if the norms of their inverses are uniformly bounded with respect to t ∈ T .
The family {Wt}t∈T is called strictly spectral if a ∈ A is invertible if and only if
every Wt(a) is invertible. A family {Wt}t∈T is spectral if and only if the equality

‖a‖ = sup
t∈T
‖Wt(a)‖ (3)

holds for every a ∈ A; it is strictly spectral if the maximum is attained in (3) for
every a ∈ A. The first assertion is immediate from the fact that every injective
∗-homomorphism is isometric; for the second one see, e.g., Theorem 2.2.11 in [6]
(where strictly spectral families were called sufficient families).

The following theorem states converses of assertions (c) and (d) of the Lifting
theorem 5. This result is then employed to characterize the ideals which can be
lifted by a spectral family of homomorphisms.

Theorem 6 Let the notation and hypotheses be as in Theorem 5. Let a, j ∈ A.

(a) If the family (Wt)t∈T is spectral for A, then j ∈ J if and only if all operators
Wt(j) are compact and, for each ε > 0, the number of t ∈ T with ‖Wt(j)‖ ≥ ε is
finite.

(b) If the family (Wt)t∈T is spectral for A, then the coset a + J is invertible in
A/J if and only if all operators Wt(a) are Fredholm, if all but finitely many of
them are invertible, and if the norms ‖(Wt(a)+K(Ht))

−1‖ are uniformly bounded
with respect to t ∈ T .

(c) If the family (Wt)t∈T is strictly spectral for A, then the coset a+J is invertible
in A/J if and only if all operators Wt(a) are Fredholm and if all but finitely many
of them are invertible.

Proof. (a) Due to Theorem 5 (c), we only have to show the ”if”-part of the
assertion. For n ∈ N, let Tn := {t ∈ T : ‖Wt(j)‖ ≥ 1/n}. The sets Tn are finite
by hypothesis. For each t ∈ Tn, there is a (uniquely determined) element kt ∈ Jt
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such that Wt(kt) = Wt(j). Set jn :=
∑

t∈Tn
kt. Then ‖Wt(j−jn)‖ < 1/n for every

t ∈ T . Since (Wt)t∈T is a spectral family, we conclude via (3) that ‖j−jn‖ ≤ 1/n.
Since jn ∈ J and J is closed, this implies that j ∈ J .

(b) From Theorem 5 (d) we infer that if a + J is invertible then all operators
Wt(a) are Fredholm and only a finite number of them are not invertible. For
the second assertion, write ab = e + j with certain elements b ∈ A and j ∈ J .
This identity implies (Wt(a) + K(Ht))

−1 = Wt(b) + K(Ht) and the estimate
‖Wt(b) +K(Ht)‖ ≤ ‖b‖ for every t ∈ T .

For the reverse implication, let all operators Wt(a) be Fredholm and let S ⊆ T
be a finite set such that Wt(a) be invertible for t ∈ T \ S. Then all operators
Wt(a

∗a) with t ∈ T \ S are invertible, whereas the operators Ws(a
∗a) with s ∈ S

are self-adjoint Fredholm operators with index zero. Hence, there are compact
operators Ks ∈ K(Hs) such that the operators Ws(a

∗a) +Ks are invertible. Let
js ∈ Js such that Ws(js) = Ks and set j :=

∑
s∈S js. Due to the separation

property (b) in Theorem 5, we then have

Wt(a
∗a+ j) =

{
Wt(a

∗a) +Kt for t ∈ S
Wt(a

∗a) for t ∈ T \ S.

Thus, the operators Wt(a
∗a+ j) are invertible for every t ∈ T , and their inverses

are uniformly bounded by assumption. Since the family (Wt)t∈T is spectral, we
get the invertibility of a∗a + j in A. Further, a∗a + j and a∗a belong to the
same coset modulo J , whence the invertibility of a+ J from the left-hand side.
Repeating these arguments with aa∗ in place of a∗a yields the invertibility of
a + J from the right-hand side. The proof of assertion (c) is similar to that of
assertion (a).

Corollary 7 Let the notations and assumptions be as in Theorem 5, and suppose
moreover that (Wt)t∈T is a spectral family for A. Put W := Πt∈TWt and H :=
⊕∈THt. Then a coset a + J is invertible if and only if W (a) is a Fredholm
operator on L(H).

Thus, under the hypotheses of the corollary, to study invertibility in A/J is the
same as to study Fredholm theory on L(H).

Proof. The spectral property of (Wt)t∈T is equivalent to the injectivity of W ,
considered as a mapping from A to the product of the C∗-algebras L(Ht). This
product can be viewed as a C∗-subalgebra of the algebra L(H), and the ideal J
can then be identified with W (A) ∩K(H). Since

(W (A) +K(H))/K(H) ∼= W (A)/(W (A) ∩K(H)) ∼= W (A)/W (J ),

the assertion follows.
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Corollary 8 Let J be a dual algebra constituted by a family (Jt)t∈T of elemen-
tary ideals Jt with associated irreducible representations Wt.

(a) The algebra J is unital if and only if T is finite and each algebra Jt has finite
dimension. In this case, (Wt)t∈T is a strictly spectral family for J .

(b) Let J be not unital and A = Ce+J its minimal unitization. Then the family
(Wt)t∈T is spectral for A, and this family is strictly spectral for A if at least one
of the algebras Jt has infinite dimension.

Note that J cannot be unital if one of the algebras Jt has infinite dimension
(otherwise the identity operator would be compact).

Proof. The proof of assertion (a) is clear. Let J be non-unital, and let a be an
element of A such that all Wt(a) are invertible. The element a can be uniquely
written as a = γe + j with γ ∈ C and j ∈ J . Then Wt(a) = γI + Wt(j)
is invertible for every t ∈ T . If t ∈ T is such that Jt has infinite dimension,
then Wt(j) is a compact operator on an infinite-dimensional Hilbert space, which
implies that γ 6= 0. But then a is invertible modulo J , and the Lifting theorem
5 implies the invertibility of a. Hence, (Wt)t∈T is a strictly spectral for A in this
case.

To prove the first assertion of (b) we can thus assume that all elementary
algebras Jt have finite dimension. Then T must be infinite (otherwise J would
be unital). Let now a = γe + j ∈ A be an element such that all Wt(a) are
invertible and the norms of their inverses are uniformly bounded, say by M . We
claim that γ 6= 0 also in this case. Assume that γ = 0. Then

1 ≤ ‖Wt(γe+ j)‖ ‖Wt(a)−1‖ ≤M ‖Wt(j)‖

for every t ∈ T . Since J is a dual algebra and T is infinite, there is a t ∈ T such
that ‖Wt(j)‖ < M . For this t, the previous estimate yields a contradiction.

3 From dual ideals to Moore-Penrose ideals

Here we prove the implication (a)⇒ (b) in Theorem 1, which we formulate as a
separate result for further reference.

Theorem 9 Every proper dual ideal of a unital C∗-algebra A is a Moore-Penrose
ideal of A.

Proof. Let J be a proper dual ideal of A. We use the notations from the Lifting
theorem 5. Thus, the ideal J is composed by its elementary ideals Jt, and the
homomorphisms Wt : A → L(Ht) lift the ideals Jt.

Let a ∈ A be invertible modulo J . Then Wt(a) is Fredholm for all t ∈ T and
Wt(a) is invertible for all but finitely many t by Theorem 5 (d). Let Pt denote the
orthogonal projection form Ht onto the kernel of Wt(a). These projections are
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compact, even of finite rank, and all but finitely many of them are zero. Thus,
there are (uniquely determined) elements pt ∈ Jt with Wt(pt) = Pt. The sum
p :=

∑
t∈T pt is well defined, since only finitely many of the pt are non-zero, and

p ∈ J is a projection. By the separation property,

Wt(a
∗ap) = Wt(a)∗Wt(a)Wt(pt) = Wt(a)∗Wt(a)Pt = 0

for every t ∈ T . Since a∗ap ∈ J , and since (Wt)t∈T is a spectral family for the
algebra Ce+J by Corollary 8 (b), we conclude from (3) that a∗ap = 0. Further,
due to the choice of Pt, the operator

Wt(a
∗a+ p) = Wt(a)∗Wt(a) +Wt(pt) = Wt(a)∗Wt(a) + Pt

is invertible for every t ∈ T . Since a∗a + p is invertible modulo J , the Lifting
theorem 3 implies the invertibility of a∗a + p. Thus, by Theorem 2, a is Moore-
Penrose invertible in A, and p is the associated Moore-Penrose projection.

It seems to be appropriate to give a more conceptual proof of Theorem 9 which
is based on some auxiliary facts which are of their own interest. The first fact
is a modification of Lemma 6.3.1 in [6] (the N ideals lemma) which holds for
generalized invertibility.

Lemma 10 Let J1, J2 be ideals in a unital algebra A. If a ∈ A is generalized
invertible modulo J1 and one-sided invertible modulo J2, then a is generalized
invertible modulo J1 ∩ J2.

Proof. Let e be the identity element of A, and let b, c ∈ A be such that
aba− a =: j1 ∈ J1 and e− ca =: j2 ∈ J2. Then

j1j2 = (aba− a)(e− ca) = a(b+ c− bac)a− a ∈ J1J2 ⊆ J1 ∩ J2.

Hence, a is generalized invertible modulo J1 ∩ J2. If a is one-sided invertible
modulo J2 from the other side, the proof is analogous.

The next fact settles the simplest case of Theorem 9, when J is elementary.

Proposition 11 Every proper elementary ideal of a unital C∗-algebra A is a
Moore-Penrose ideal of A.

Proof. Let J be a proper elementary ideal of A and W a ∗-isomorphism from J
onto the ideal K(H) of the compact operators on some Hilbert space H. Then
(W, H) is an irreducible representation of J . This representation can be uniquely
(up to unitary equivalence) extended to an irreducible representation of A which
we denote by (W, H) again.

Let a ∈ A be invertible modulo J . Then W (a) is invertible modulo K(H),
hence a Fredholm operator. In particular, W (a) has a closed range and is, thus,
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Moore-Penrose invertible in L(H). Then, by Theorem 2 (f), W (a) is Moore-
Penrose invertible already in W (A). Thus, a is Moore-Penrose invertible in A
modulo kerW . Since a is also invertible modulo J , it is generalized invertible
modulo kerW ∩J by the previous lemma. Moreover, kerW ∩J = {0}, since W
acts as an isometry on J . Hence, a is generalized invertible and , by Theorem 2,
also Moore-Penrose invertible in A.

The final auxiliary fact we need is that a direct sum of Moore-Penrose ideals is a
Moore-Penrose ideal.

Proposition 12 For every element t of a non-empty set T , let Jt be a Moore-
Penrose ideal of a unital C∗-algebra At. Then the direct sum ⊕t∈TJt is a Moore-
Penrose ideal of the direct product Πt∈TAt.

Proof. Let et denote the identity element of At. Let a ∈ Πt∈TAt be invertible
modulo ⊕t∈TJt. Then there are elements b ∈ Πt∈TAt and j, k ∈ ⊕t∈TJt such
that atbt = et − jt and btat = et − kt for every t ∈ T . Since j, k ∈ ⊕t∈TJt,
there is a finite subset S of T such that ‖jt‖ < 1/2 and ‖kt‖ < 1/2 for every
t ∈ T \ S. Thus, by Neumann series, at is invertible in At for t ∈ T \ S, and
supT\S ‖a−1t ‖ <∞.

Let now s ∈ S. Then as is invertible modulo the Moore-Penrose ideal Js;
hence, as is Moore-Penrose invertible in As. Since S is finite,

max {sup
T\S
‖a−1t ‖, max

s∈S
‖a†s‖} <∞.

Thus, the function which sends t ∈ T to a−1t if t ∈ T \S and to a†t if t ∈ S belongs
to Πt∈TAt. This function is the Moore-Penrose inverse of a.

Alternate proof of Theorem 9. Let J be a proper dual ideal of A which is
composed by its elementary ideals Jt. We shall define a set S and for every s ∈ S
a unital C∗-algebra Bs with a dual ideal Is such that I := ⊕s∈SIs is ∗-isomorphic
to J and A is ∗-isomorphic to a C∗-subalgebra of Πs∈SBs which contains I.

Let S := T ∪ {∗}, define Bs := A/AnnJs if s ∈ T and B∗ := A/J , and
let π : A → Πs∈SBs be the product of the canonical homomorphisms πs : A →
A/AnnJs if s ∈ T and of the canonical homomorphism π∗ : A → A/J . Since
kerπ = AnnJ ∩ J = {0}, the mapping π is an isometry (this is essentially the
Lifting theorem 3). Thus, A can be identified with the C∗-subalgebra π(A) of
Πs∈SBs. Moreover, π sends the ideal J ∼= ⊕s∈TJt to

⊕t∈T (J + AnnJt)/AnnJt ⊕ J /J ∼= ⊕t∈TJ /(J ∩ AnnJt)⊕ {0}.

The ideals It := J /(J ∩ AnnJt) are ∗-isomorphic to Jt, hence elementary, and
J is ∗-isomorphic to ⊕t∈TIt ⊕ I∗ with I∗ := {0} via the mapping π.

Now we can argue as follows. The ideals Is are Moore-Penrose ideals by
Proposition 11 for s ∈ T , and I∗ is clearly also a Moore-Penrose ideal. Hence, by
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Proposition 12, π(J ) = ⊕s∈SIs is a Moore-Penrose ideal in Πs∈SBs and, due to
inverse closedness, also in π(A). Since π : A → π(A) is a ∗-isomorphism, J is a
Moore-Penrose ideal in A.

4 From Moore-Penrose ideals to the compact

spectral property

Recall that an ideal J of a unital C∗-algebra has the compact spectral property
if every self-adjoint element of J has 0 as the only possible accumulation point
of its spectrum.

Proposition 13 Every Moore-Penrose ideal in a unital C∗-algebra has the com-
pact spectral property.

Proof. Let a be a self-adjoint element of a Moore-Penrose ideal J , and let
λ ∈ σ(a) \ {0}. Then a−λe is invertible modulo J and thus, by the definition of
a Moore-Penrose ideal, Moore-Penrose invertible. By Theorem 2), 0 is an isolated
point of the spectrum of a− λe, hence, λ is an isolated point of the spectrum of
a. Thus, 0 is the only possible accumulation point in the spectrum of a.

5 From the compact spectral property to com-

pact elements

The aim of this section is to prove the implication (c)⇒ (e) in Theorem 1.

Theorem 14 Let J be a closed ideal of a unital C∗-algebra A. If J has the
compact spectral property, then C(J ) = J .

We split the proof of Theorem 14 into several steps which we formulate as separate
assertions. The idea of the proof is that if a projection q ∈ J is not of finite
algebraic rank, then one can perturb q to obtain a self-adjoint element a ∈ J the
spectrum of which contains a cloud of points with 1 as accumulation point.

Lemma 15 Let A be a C∗-algebra and J a closed ideal of A. If k ∈ J is an
element of algebraic rank one in J , then k is also of algebraic rank one in A.

Proof. Let a ∈ A and k ∈ J an algebraic rank one element in J . Let (et)t∈T be
an approximate identity in J . Then k = limt∈T ket, whence

kak = lim
t∈T

(ket)ak = lim
t∈T

k(eta)k. (4)

Since eta ∈ J , there are complex numbers µt such that k(eta)k = µtk. From (4)
we conclude that the limit limt∈T µtk exists. This limit is necessarily of the form
µk with a complex number µ. Hence, kak = µk.

11



Lemma 16 Let J be a closed ideal of a unital C∗-algebra with compact spectral
property and q a non-zero projection in J . Then every decreasing chain q = q0 >
q1 > q2 > . . . of projections (with proper relations >) is finite.

Proof. Suppose there is a (countably) infinite chain q = q0 > q1 > q2 > . . . of
projections. Then qn = qnqqn; hence qn ∈ J for every n. Let (αn) be an arbitrary
real sequence in l1(N) and put

a := q −
∞∑
n=1

αn(qn − qn+1).

The sequence converges absolutely since ‖qn − qn+1‖ = 1, and it defines a self-
adjoint element a ∈ J . We consider the identity element e of A, the element
a and the projections qn as elements of a commutative C∗-subalgebra of A with
maximal ideal space X. The relation qn > qn+1 implies that if qn+1(x) = 1
for some x ∈ X then qn(x) = 1, and that if qn(x) = 0 for some x ∈ X then
qn+1(x) = 0. Moreover, since qn > qn+1 properly, there is an xn ∈ X such that
qn(xn) = 1 and qn+1(xn) = 0. The equality

a(xi) = q(xi)−
∞∑
n=1

αn(qn(xi)− qn+1(xi)) = q(xi)− αiqi(xi) = 1− αi

shows that 1− αi belongs to the spectrum of a for every i ∈ N. In particular, if
the αi are pairwise distinct, then 1 is an accumulation point of the spectrum of
a, which contradicts the hypothesis that 0 is the only accumulation point of the
spectrum of the self-adjoint element a of J .

Corollary 17 Let J be a closed ideal of a unital C∗-algebra with compact spectral
property and q a non-zero projection in J . Then there is a minimal projection r
with r < q.

Proof. If q is not minimal, there is a non-zero projection q1 with q > q1. If also
q1 is not minimal, there is a projection q2 with q1 > q2. By Lemma 16, the chain
q = q0 > q1 > q2 > . . . is finite. Thus, one of the qi is minimal.

Corollary 18 Let J be a closed ideal of a unital C∗-algebra with compact spectral
property and q a projection in J . Then q is a finite sum of minimal projections
in J .

Proof. If q is already minimal, then there is nothing to prove. If q is not minimal,
then there exists a minimal projection q1 < q by Corollary 17. Then the element
q − q1 is a projection. If q − q1 is minimal, then q = q1 + (q − q1) is a sum of
two minimal projections, and we are done. If q − q1 is not minimal then there
is a minimal projection q2 < q − q1 by Corollary 17 again. If q − q1 − q2 is
minimal, then q = q1 + q2 + (q − q1 − q2) is a sum of three minimal projections.
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Otherwise, we proceed in this way. Since the chain q > q−q1 > q−q1−q2 > . . . is
finite by Lemma 16, this process terminates. Thus, there is a non-trivial minimal
projection q − q1 − . . . − qr. Then q = q1 + . . . + qr + (q − q1 − . . . − qr) is the
sum of r + 1 non-trivial minimal projections.

Proposition 19 Let J be a closed ideal of a unital C∗-algebra with compact
spectral property and j ∈ J \{0}. Then j∗j is a limit of finite linear combinations
of minimal projections in J .

Proof. Since J has the compact spectral property, the spectrum of j∗j is at most
countable and has 0 as only possible accumulation points. Let λ1 > λ2 > . . .
denote the non-zero points in σ(j∗j). Note that this chain is either finite or
converges to 0.

Since λ1 is an isolated point of σ(j∗j), the function p̂1 which is 1 at λ1 and
0 on σ(j∗j) \ {λ1} is continuous on σ(j∗j). Since σ(j∗j) is homeomorphic to the
maximal ideal space of the smallest unital C∗-subalgebra of J which contains j∗j,
the function p̂1 defines an element p1 of that algebra. This element is a non-zero
projection, the so-called spectral projection of j∗j associated with λ1. Note that
p1 ∈ J . By Corollary 18, p1 is a finite sum of minimal projections in J . Thus if
j∗j = λ1p1, then we are already done.

If j∗j 6= λp, then we repeat these arguments, but now for the element j∗j −
λ1p1. Thus, we let p2 be the spectral projection of j∗j − λ1p1 associated with
the largest point λ2 is the spectrum of that element. If j∗j = λ1p1 + λ2p2, then
we are done again. Otherwise we proceed in this way and consider the spectral
projection p3 of j∗j − (λ1p1 + λ2p2) associated with λ3. Since

‖j∗j − (λ1p1 + . . .+ λnpn)‖ = λn+1 → 0 as n→∞,

and since each projection pi is a finite sum of minimal projections in J by Corol-
lary 18, the assertion follows.

Since every element of J is a linear combination of four positive elements, it
follows from Proposition 19 that in fact every element of J is a limit of finite
linear combinations of minimal projections in J . Thus, the proof of Theorem 14
will be complete once we have shown the following. Recall from Lemma 15 that
every element of algebraic rank one in J is also of algebraic rank one in A.

Proposition 20 Let J be a closed ideal of a unital C∗-algebra with compact
spectral property. Then every minimal projection in J is of algebraic rank one
in J .

Proof. Let p be a minimal projection in J and k ∈ J . We have to show
that pkp = αp with a complex number α. Since k can be written as a linear
combination of four non-negative elements, we can suppose without loss that
k = j∗j with j ∈ J . Let C stand for the smallest closed subalgebra of J
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which contains the elements p and pj∗jp. This algebra is commutative and unital
(with p as its identity element), and its maximal ideal space is homeomorphic to
σC(pj

∗jp). Note that σC(pj
∗jp) ⊆ σA(pj∗jp).

Assume that σC(pj
∗jp) contains at least two points. Then one of these points,

λ0 say, is not 0. This point isolated in σA(pj∗jp) by the compact spectral property
of J . Hence, λ0 is also isolated in σC(pj

∗jp). Then the function q̂ which is 1 at λ0
and 0 at all other points of σC(pj

∗jp) is continuous on σC(pj
∗jp). This function

defines an element q, which is a projection in C.
Since p is the identity element of C, one has q ≤ p. But q is neither equal to

0 (since q̂(λ0) = 1) nor equal to p (since σC(pj
∗jp) contains at least two points

and p̂ is equal to one on all of σC(pj
∗jp)). This contradicts the minimality of

p. Hence, the maximal ideal space σC(qb
∗bq) of C consists of exactly one point.

Then every element of C is a multiple of the identity element p. Hence, there is
an α ∈ C such that pj∗jp = αp.

6 From compact elements to dual ideals

In Theorem 3.3 in [5] we showed that every closed ideal generated by an element
of algebraic rank one is elementary. Let k, r be rank one elements and Id (k),
Id (r) the elementary ideals generated by them. Since elementary algebras do not
possess non-trivial ideals, it follows that either Id (k) = Id (r) or Id (k)∩ Id (r) =
{0}. From this property it easily follows that the smallest ideal which contains
all of these elementary ideals id dual.

Theorem 21 Let A be a unital C∗-algebra. Then C(A) is a dual algebra.

In particular, the equality C(J ) = J implies the duality of J , which settles the
implication (e)⇒ (a) in 1.

To finish the proof of that theorem, we still have to show that (a)⇒ (d)⇒ (c).
Let J be a dual ideal. Then J is ∗-isomorphic to a direct sum ⊕t∈TK(Ht)

of ideals of compact operators on certain Hilbert spaces Ht. We let H denote
the orthogonal sum of the Hilbert spaces Ht with t ∈ T and consider Ht as
a closed subspace of H. Let Pt be the orthogonal projection from H to Ht.
Then PtK(H)Pt is ∗-isomorphic to K(Ht), and the family (PtK(H)Pt)t∈T of C∗-
subalgebras of K(H) is separated in the sense that

(PsK(H)Ps)(PtK(H)Pt) = {0} whenever s 6= t

since the Hilbert spaces Ht are pairwise orthogonal. Thus, the smallest closed
C∗-subalgebra of K(H) which contains all algebras PtK(H)Pt

∼= K(Ht) is dual,
and this algebra is C∗-isomorphic to J . This settles the implication (a) ⇒ (d),
and the implication (d)⇒ (c) is clear, since every compact operator on a Hilbert
space has 0 as only possible accumulation point in its spectrum.
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7 Lifting properties of Moore-Penrose ideals

It is immediate from their definition that a Moore-Penrose ideal J of a unital
C∗-algebra A lifts Moore-Penrose invertible elements in the following sense: If
a coset a + J is Moore-Penrose invertible in A/J , then there is a j ∈ J such
that a+ j is Moore-Penrose invertible in A. The following is then an immediate
consequence of Theorem 9.

Corollary 22 Dual ideals of unital C∗-algebras lift Moore-Penrose invertible el-
ements.

Note in that connection that not every ideal that lifts Moore-Penrose invertible
elements is a Moore-Penrose (= dual) ideal. For example, the ideal J := {f ∈
C([0, 2]) : f |[0, 1] = 0} of C([0, 2]) is certainly not dual, but it lifts Moore-Penrose
invertible elements. Indeed, if f + J is Moore-Penrose invertible, then either f
is identically zero on [0, 1], or it is non-zero on all of [0, 1]. In the first case, put
j := −f . Then j ∈ J and a+ j = 0 is a Moore-Penrose invertible lift of f + J .
In the second case, let g be the continuation from f |[0, 1] to a function in C([0, 2])
which is constant on [1, 2]. Then g−f ∈ J ; hence, g is an invertible lift of f+J .

Another feature of dual ideals is that they lift projections in the following
sense: every coset a+ J which is a projection in A/J contains a representative
which is a projection in A. Not every closed ideal of a C∗-algebra has the Moore-
Penrose or the projection lifting property. For example, let a ∈ C([0, 1]) be a
function with a(0) = 0 and a(1) = 1 and put J := {f ∈ C([0, 1]) : f(0) = f(1) =
0}. Then the coset a + J is a projection in C([0, 1])/J , and a + J is Moore-
Penrose invertible (in fact, every projection q is Moore-Penrose invertible, and
q† = q). But a + J can neither be lifted to a Moore-Penrose invertible function
nor to a projection in C([0, 1]).

Theorem 23 Dual ideals of unital C∗-algebras lift projections.

Proof. Let A be a C∗-algebra with identity element e and J a dual ideal of A.
Let a ∈ A be such that a+J is a projection in A/J . Since a+J is self-adjoint,
we have a − a∗ ∈ J , hence a − (a + a∗)/2 = (a − a∗)/2 ∈ J . Thus, the coset
a+ J contains a self-adjoint element. Let a be this element.

Since a+J is an idempotent, the element a−a2 =: j is in J . By Theorem 1,
the point 0 is the only possible accumulation point of the spectrum of j. Hence,
the only possible accumulation points of the spectrum of a are the points 0 and
1. In particular, there are only finitely many points λ in σ(a) with |λ| ≥ 1/2 and
|1−λ| ≥ 1/2, and these points are isolated in σ(a). Let λ be one of these points.
Then the function

r : σ(a)→ C, r(x) :=

{
λ if x = λ
0 if x ∈ σ(a) \ {λ}
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is continuous and, thus, it defines an element of the C∗-subalgebra of A generated
by a and e. We denote this element by r again. Since λ − λ2 6= 0, we conclude
from

r(λ− λ2) = r(a− a2) = rj ∈ J
that r ∈ J . Thus, the self-adjoint elements a and a − r lie in the same coset
modulo J , and σ(a − r) = σ(a) \ {λ}. Repeating these arguments we obtain a
self-adjoint element b with a− b ∈ J such that

σ(b) ⊂ {x ∈ R : |x| < 1/2} ∪ {x ∈ R : |1− x| < 1/2} =: Σ0 ∪ Σ1.

Let B denote the smallest closed subalgebra of A which contains the elements b
and e. Then B is a commutative C∗-algebra with maximal ideal space homeo-
morphic to σ(b). The function p : σ(b) → R which is 0 on σ(b) ∩ Σ0 and 1 on
σ(b) ∩ Σ1 is continuous on σ(b). It defines a projection in B which we denote by
p again. It remains to show that b − p ∈ J . Let c : σ(b) → R be the function
with c(x) = 1/(1 − x) if x ∈ σ(b) ∩ Σ0 and c(x) = −1/x if x ∈ σ(b) ∩ Σ1. This
function is continuous on σ(b), so it defines an element of B, and the equalities

(b− p)(x) =

{
x = 1

1−x(x− x2) = c(x)(b− b2)(x) if x ∈ σ(b) ∩ Σ0

x− 1 = − 1
x
(x− x2) = c(x)(b− b2)(x) if x ∈ σ(b) ∩ Σ1

show that b − p = c(b − b2). Since b − b2 ∈ J we conclude that b − p ∈ J , i.e.,
the projection p is a representative of the coset b+ J = a+ J .

It is interesting to note that the projection lifting property of dual ideals follows
already from their Moore-Penrose lifting property, which we observed in Corollary
22.

Proposition 24 Let J be a closed ideal of a unital C∗-algebra. If J lifts Moore-
Penrose invertible elements, then J lifts projections.

Proof. Let p be an element of A for which p+J is a projection. Then p+J is
Moore-Penrose invertible. Since J lifts Moore-Penrose invertible elements, there
is a Moore-Penrose invertible element p̃ ∈ A such that p+J = p̃+J . Let r ∈ A
be the Moore-Penrose projection of p̃, thus p̃∗p̃+ r is invertible in A and p̃r = 0.
Then

(p̃+ J )∗(p̃+ J ) + (r + J ) = (p+ J )∗(p+ J ) + (r + J ) = p+ r + J

is invertible in A/J , and

(p̃+ J )(r + J ) = (p+ J )(r + J ) = pr + J = 0 + J .

The last identity implies that p+ r+J is a projection in A/J . As we have seen
before, this projection is invertible. Hence, p + r + J = e + J or, equivalently,
p+ J = (e− r) + J . Thus, e− r is a projection which lifts p+ J .

The following example shows that the converse of Proposition 24 is wrong.
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Example 25 Let D := {z ∈ C : |z| ≤ 1} and T := {z ∈ C : |z| = 1}, and put
A := C(D) and J = {f ∈ C(D) : f |T = 0}. The ideal J lifts projections. Indeed,
let p be a function in C(D) such that p+J is a projection. Then p(x)−p(x)2 = 0
on T, whence p(x) ∈ {0, 1} for x ∈ T. Since T is connected and p is continuous,
this implies that either p(x) = 0 for all t ∈ T or p(x) = 1 for all t ∈ T. In the
first case, the function z 7→ 0 on D is a projection in A which lifts p+ J , in the
second case the function z 7→ 1 does the job.

We will now see a function a for which a + J is Moore-Penrose invertible
(in fact, invertible), but the coset a + J contains no Moore-Penrose invertible
representative. Let a : z 7→ z. Then a(x)a(x) − 1 = 0 for x ∈ T. Hence,
aa+J = 1+J , and the coset a+J is invertible modulo J . We show that there
is no Moore-Penrose invertible function ã ∈ A with a + J = ã + J . Suppose
there is such a function. Then, by Theorem 2, either the function ã is invertible,
or 0 is an isolated point of the spectrum of ãa. The latter is impossible since the
spectrum of ãa is the connected set (ãa)(D). Thus, if 0 is a isolated point of this
set, then (ãa)(D) = {0}. This implies that ã is the zero function, which is not a
representative of a+ J . Hence, ã must be invertible on D.

For r ∈ [0, 1] and x ∈ T, put ar(x) = ã(rx). Since ã is invertible on D, the
functions ar do not vanish and have, thus, a well defined winding number. Since
the winding number depends continuously on r, it is independent of r. But the
winding numbers of a0 and a1 are 0 and 1, respectively. This contradiction shows
that J does not lift Moore-Penrose invertible elements.

Applied to the dual ideal K(H) of L(H), the following result states that every op-
erator which is Moore-Penrose invertible modulo K(H) is the sum of an operator
with closed range and a compact operator.

Theorem 26 Let A be a unital C∗-algebra, J a dual ideal of A, and a ∈ A.
The coset a+ J is Moore-Penrose invertible in A/J if and only if a is the sum
of an Moore-Penrose invertible element and an element in J .

Proof. If a ∈ A is the sum of a Moore-Penrose invertible element and an element
in J then the coset a+ J is clearly Moore-Penrose invertible in A/J .

Conversely, let a+ J be Moore-Penrose invertible in A/J . Then a∗a+ J is
Moore-Penrose invertible in A/J by Theorem 2. Let B stand for the smallest
closed subalgebra of A which contains a∗a and the identity element e of A. Then
the coset a∗a + J is Moore-Penrose invertible in (B + J )/J by Theorem 2 (f),
whence the Moore-Penrose invertibility of the coset a∗a+ (B ∩ J ) in B/(B ∩ J )
(the algebras (B+J )/J and B/(B∩J ) are canonically isomorphic). Let π ∈ B be
an element such that π+(B∩J ) is the Moore-Penrose projection of a∗a+(B∩J ).
Thus, a∗a+ π is invertible modulo B ∩ J , and a∗aπ ∈ B ∩ J .

Being a subalgebra of a dual ideal, the algebra A0 ∩ J is dual by Theorem 1
(d), and dual ideals lift projections by Theorem 23. Hence, π = p+ r where p is
a projection in B and r ∈ B ∩ J . Since a∗a + p is invertible modulo B ∩ J and
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a∗ap ∈ B ∩ J , there are elements b ∈ B and k, l ∈ B ∩ J such that

b(a∗a+ p) = (a∗a+ p)b = e+ k and a∗ap = l. (5)

Set q := e− p. Multiplying the first identity in (5) by q from both sides and em-
ploying the fact that all elements under consideration belong to the commutative
algebra B, one easily gets

(qbq) (qa∗aq) = (qa∗aq) (qbq) = q + qkq. (6)

Since k ∈ J , this implies that qa∗aq + p is invertible modulo in B/(B ∩ J ).
Now we move into the context of the Lifting theorem 5, which we apply to the

dual ideal J . With the notation as in the lifting theorem, let t ∈ T . Applying
the homomorphism Wt to both sides of (6) yields

Wt(qbq)Wt(qa
∗aq) = Wt(q) +Wt(qkq) (7)

with a compact operator Wt(qkq) is compact. Let S be the set of all t ∈ T with
‖Wt(qkq)‖ < 1/2. For t ∈ S, the right hand side of (7) is invertible by Neumann
series, and the norm of its inverse is not greater than 2. Hence,

(Wt(q) +Wt(qkq))
−1Wt(qbq)Wt(qa

∗)Wt(aq) = Wt(q)

with ‖(Wt(q) + Wt(qkq))
−1Wt(qbq)Wt(qa

∗)‖ ≤ 2 ‖qbqa∗‖. Since all occurring
operators belong to the commutative algebra Wt(B), one easily concludes that
the operators Wt(aq) are normally solvable and that the norms of their Moore-
Penrose inverses are uniformly bounded with respect to t ∈ S.

Let now t ∈ T \ S. Then (7) implies that Wt(qa
∗aq) is a Fredholm operator.

From Theorem 2 we conclude that Wt(aq) is normally solvable in this case, too.
Since T \S is a finite set, one gets thatWt(aq) is normally solvable for all t ∈ T and
that the norms of their Moore-Penrose inverses are uniformly bounded. In terms
of the product homomorphism W := Πt∈TWt : A → Πt∈TL(Ht), this amounts to
saying that W (aq) is Moore-Penrose invertible in the Πt∈TL(Ht), hence in W (A).
Thus, the coset aq + kerW is Moore-Penrose invertible in the quotient algebra
A/ kerW .

The second equality in (5) implies via the C∗-axiom that ap ∈ J . Thus, since
a + J is Moore-Penrose invertible, the coset aq + J = a − ap + J is Moore-
Penrose invertible, too. Summarizing, we have found that aq is Moore-Penrose
invertible modulo the ideals kerW and J . Then the pair (aq+ kerW, aq+J ) is
Moore-Penrose invertible in (A/ kerW )× (A/J ). The mapping

V : A → (A/ kerW )× (A/J ), a 7→ (a+ kerW, a+ J )

is a C∗-homomorphism. Hence, V (A) is a C∗-subalgebra of (A/ kerW )× (A/J ),
and V (aq) is Moore-Penrose invertible in V (A) by Theorem 2 (f). From Corollary
6.3.3 in [6] we recall that kerW ∩ J = {0}. Hence, V is a ∗-isometry, and the
Moore-Penrose invertibility of V (aq) in V (A) implies that of aq in A. Thus,
a = ap + aq is the sum of an element in J and a Moore-Penrose invertible
element.
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