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Abstract

We investigate the time-periodic Stokes equations with non-homogeneous
divergence data in the whole space, the half space, bent half spaces and
bounded domains. The solutions decompose into a well-studied stationary
part and a purely periodic part, for which we establish LP estimates. For
the whole space and the half space case we use a reduction of the Stokes
equations to (n — 1) heat equations. Perturbation and localisation methods
yield the result on bent half spaces and bounded domains. A one-to-one
correspondence between maximal regularity for the initial value problem
and time periodic maximal regularity is proven, providing a short proof for
the maximal regularity of the Stokes operator avoiding the notion of R-
boundedness. The results are applied to a quasilinear model governing the
flow of nematic liquid crystals.
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1 Introduction

For n > 2 and a domain 2 C R™ we consider the time-periodic Stokes system

ou—Au+Vp =f in R x €,
divu =g in R x Q,
u =0 on R x 01, (1.1)

w(lt+T,) =u(t,-).
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Here, T" > 0 is the length of one period, and the forcing term f and the
function g are also assumed to fulfill the periodicity condition. We are
interested in the following types of domains € C R™:

e the whole space R",
e the (upper) half space R" := {x = (2/,x,) € R" : x, > 0},

e a bent half space R := {x = (2/,x,) € R" : 2, > w(2)}, where the
w : R"! — R is a Lipschitz function in le(;i(R”_l) such that the
gradient V’'w is bounded in R*~!, or

e a bounded domain with boundary of class C:!.

Our aim is to establish maximal LP-Li-regularity estimates for solutions
to (1.1), where p,q € (1,00). For the Cauchy problem the maximal LP
regularity estimates have been studied by many researchers. For example,
for the Stokes operator, such estimates are established by Solonnikov [27]
using potential theory, by Giga and Sohr [18] using Dore and Venii’s theory
[9], and by Shibata and Shimizu [26] based on Weis’ theorem [29]. As for
maximal LP regularity estimates in the case of nonzero divergence as in (1.1),
the reader is referred to the results of Farwig and Sohr [13], Filonov and
Shilkin [15] and Abels [1]. On the other hand, Kyed [20] recently established
maximal LP regularity estimates for the time-periodic problem on ) = R™.
In this paper we generalize the previous results in the following points:

e the results of [1, 15] are extended to the time-periodic problem, and
e the result of [20] is extended to more general domains €.

In order to wove in the periodicity condition already on a functional analytic
level, we consider the locally compact abelian group G := T xR" := R/TZ x
R™. We will fix the Haar measure u defined on G by choosing

1 T
/Gfdu = T/o Rnfd:lcdt, f € Cu(@Q).

Note that the topology and the differentiable structure on G is inherited
from R x R™, see [20] for details. In particular, we may speak about function
spaces like the space of compactly supported smooth functions Cj°(G), the
Schwartz-Bruhat space S(G) and the space of tempered distributions S'(G)
[5, 28]. Introducing the time-periodic domains
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as open subsets of G, we can formulate (1.1) equivalently as

ou—Au+Vp =f in Qp,
divu =g in Qr, (1.2)
u =0 on I,

where we have used the notation 9Qt := T x 012 for the spatial boundary of
Qr. One main advantage of the notion of G is the possibility to introduce a
Fourier transform F¢, which constitutes a homeomorphism from S’'(G) to
S'(G), where G is the Pontryagin dual of G.

In analyzing the time-periodic problem it is useful to introduce a time
averaging projection, as is discussed by Galdi and Kyed [17, 20]:

1 T
Pri=g | fede=1oef ey

where * denotes the convolution on the torus group T and 1 is the constant
function 1. By Young’s inequality we have [P f|lre(.) < IPfllLe(yp)- Here,
LP(Qr) is the anisotropic Lebesgue space with exponents p = (p, ¢) in time
and space, respectively; see Section 2 for details. Clearly, P f is independent
of time and it holds P2 = P. Therefore, P : LP(Q2y) — LP(Qr) and P, :=
id —P are continuous projections and thus induce a decomposition

LP(Qr) = LY(Q) © LY (),

where LY (Qr) := P LP(Qr) and where we have used that P f is independent
of time in order to identify PLP(Q7) with L(Q) in virtue of the isometry
IPfllLa) = IPfllLe(qy)- It should be noted that estimating derivatives of
Pf and P f in a similar way, we obtain likewise a decomposition of higher
order Sobolev spaces and of solenoidal spaces.

As in [20], we will solve problem (1.2) by decomposing it into a stationary
problem and a time-dependent problem. That is, by applying P and P, to
(1.2), respectively, the Stokes problem is decomposed into to the following
two problems.

(I) Stationary problem in L7(2)":

—Au+Vp =7Pf in Q,
divu =7Pg in 2, (1.3)
u =0 on 0f).

The estimates for solutions in the L¢ framework are well known; see e.g.
[12, 14]. For the convenience of the reader the results are summarized in



Section 3. Our major assumption on Pf here is Pf € LI(Q2)" for some
q € (1,00). However, in unbounded domains, the condition Pf € LI(Q)" is
in general too weak to ensure that the solution u satisfies divu = Pg even
when Pg = 0. Therefore, we often need to replace the divergence condition
by Vdivu = VPg, that is,

—Au+Vp =7Pf in Q,
Vdivu = VPg in Q, (1.4)
u =0 on 0f2.

The equation (1.4) can be solved under mild conditions on given data such
as Pf € LY(Q)™ and Pg € Wl’q(Q), g € (1,00). On the other hand, for
example in the application to a Navier-Stokes type system as is discussed
in Section 6, it is sometimes crucial to solve (1.3) exactly rather than (1.4).
Therefore, additional conditions on P f and Pg have to be imposed in these
cases.

(IT) Time-dependent problem in LY (Qr)™:

Oiu—Au+Vp =P f in Qr,
divu =7Pig in Qr, (1.5)
u =0 on 0Q.

The analysis of (1.5) is the main subject of this paper, and is discussed in
Section 4. The main results are stated in three theorems depending on the
type of domains: For the whole and the half space, this is Theorem 4.6, for
bent half spaces Theorem 4.8, for bounded domains Theorem 4.11.

As for the time-dependent (periodic) problem (1.5), we can expect the
existence of solutions which decay at spatial infinity under the mere assump-
tion P, f € LY (Qr)" even for unbounded domains. This remarkable feature
also has an impact on the corresponding initial value problem: it allows us
to give a fast and straightforward proof of the maximal L? regularity for the
Stokes operator on L?(Q) without using the notion of R-boundedness. We
discuss this subject in Section 5. In fact, it follows directly from the abstract
theory on the equivalence between maximal LP regularity (for Cauchy prob-
lems) and time-periodic maximal LP regularity, to which we contribute also
in Section 5. This abstract theory was firstly established by Arendt and Bu
[2] for generators of semigroups which are invertible. In Theorem 5.1 of this
paper we extend their result to possibly non-invertible generators.

This paper is organized as follows: In Section 2, we introduce basic
notation and definitions. We devote Section 3 to collecting the known results



concerning problems (1.3) and (1.4). The treatment of problem (1.5) is
carried out in Section 4. This section is further divided into Section 4.1,
where we introduce a reduction of the Stokes system to n—1 heat equations,
and Sections 4.2 — 4.4, where we treat the whole space, the half space, the
bent half space and bounded domains, respectively. In Section 5 the relation
between maximal LP regularity for abstract Cauchy problems and time-
periodic maximal LP regularity is discussed. Finally, we give an application
to the nonlinear simplified Ericksen-Leslie model governing the dynamics of
nematic liquid crystal flows in Section 6.

2 Preliminaries

Throughout the paper, 7' > 0 denotes the time period and T := R/TZ
the corresponding torus. The locally abelian group G := T x R" is called
periodic whole space. For a domain ) C R™ we introduce Qo := T x {2 and
denote by C™ (1), k € Ny, the space of m-times differentiable functions and
by C§°(€r) the space of smooth and compactly supported functions in time
and space. Furthermore, we introduce the notion C3°(Qr) := {uq, | u €
C&°(G)}. Here, the differentiable structure on €7 is inherited from R x Q.

Let p := (p,q) € (1,00)2. Then we introduce the anisotropic Lebesgue
spaces LP () := LP(T; L9(2)) with norm

1 T
fulhsiany = (7 [ 1Ol o)

Since the topology and differentiable structure of G is inherited from R; x R?
and since we deal with sufficiently smooth domains only, we can also define
the anisotropic mixed-derivative Sobolev spaces

1/p

WP (Or) = C?(Qiqr)u'nwm’p(%u

lullwize@y = Y. 0fullier) + 105ul Lo -
lo|<1,]8]<2

Note that for domains ) satisfying the segment condition we have

WH2P(Qr) = {f € LP(Qr) | || fllwr2p(ay) < 00},

where the derivatives which appear in the norm | f|w1.2p(q.) are to be
understood in the sense of distributions. In the context of Stokes and



Navier-Stokes equations on unbounded domains, the concept of homoge-
neous (mixed-derivative) Sobolev spaces WO1P(Qr) appears naturally. Such
spaces are defined as

IV-llLp (op)

WOLP (@) 1= G () [~

where ~ denotes the equivalence relation
u ~ v if and only if ||Vu — v'U”Lp(QT) =0.

The dual space of Wo’l’p/(QT), where p’ := (p/,¢’) and p’, ¢’ are the respec-
tive Holder conjugates, will be denoted by WO~ LP(Qr) 1= [WOLP' (Qp))*
and is endowed with the norm

— s g, #]

191150, 1.0 o
WERED T e @ IV le 0n)

A subscript L always denotes the projected part with respect to the com-
plement projection P, defined in Section 1. In all cases, we use corre-
sponding notations for function spaces defined on {2 rather than Qr, i.e., for
function spaces corresponding only to the space variable x. Moreover, we
will denote by Lg(Q) the closure of the solenoidal space C§, () := {u €
Coo()™ | dive = 0} in the topology of L4(2)". It is well known that
L3(Q) = {u € LY()" | divu = 0,n - ujpq = 0} for sufficiently smooth do-
mains, see e.g. [16, Theorem I11.2.3]. Furthermore, we introduce the space
LE(Qz) := LP(T; LE(Q)).

Fourier variables of time-periodic functions will be denoted by k € Q%Z,
where T > 0 is the time period. Note that with this notation, k£ is not an
integer in general. Moreover, we introduce the notation Q%Z* = 2%2 \ {0}.

Concerning the boundary of the bent half spaces, we have to make cer-
tain regularity and smallness assumptions. Therefore, we give the following
definition.

Definition 2.1. Let K > 0. We say that w € CO'(R"~1)n Wﬁ)’i(R”*l) is
of type K1, or Ky, respectively, if ||V'w|o < K and if

(K1) n>2and |[V?w|e < K, or
(KQ) n 2 3 and ||V/2w”LTL71,OO(R7L71) < K.

Remark 2.2. If K > 0 and n > 3, then the condition K> is fulfilled
whenever || - |[V2w]|y, 00 gn-1) < K or [|[V2w|[pn-1(gn-1) < K.



3 The Stationary Problem

The stationary problem (1.4) has been solved in [12, 14]. The results can be
summarized as follows.

Proposition 3.1. Let n > 2, ¢ € (1,00) and let & = R™ or Q = R7.
Then for every Pf € LI(Q)", Pg € WH4(Q), there exists a unique solution
(u, p) € W29(Q)" x WH9(Q) to (1.4) satisfying

IV?ullLa) + 1VDllLa) < c(IPfliLae) + IVPYllLa) (3.1)
with ¢ = ¢(n,q) > 0.

Proposition 3.2. Let n > 3, ¢ € (1,n — 1) and assume furthermore
w € COYRY) ﬂWi;i(R”fl) is such that for simplicity w(0') = 0. Then
there exists a constant K = K(n,q) > 0 such that if w is of type Ko, then
for all Pf € LYRY)™ and Pg € \/N\l’q(RZ) there exists a unique solution

(u,p) € W24(R2)" x WH4(R") to (1.4) satisfying the estimate

IV2ulla(er) + IVPla@n) < c(IPfllan) + IV Pllags)) (3.2)

with a constant ¢ = ¢(n,q,w) > 0.
Remark 3.3.

1. The uniqueness assertions in Proposition 3.1 and Proposition 3.2 are
to be understood in the respective homogeneous Sobolev spaces, i.e.,
only up to a constant for the pressure p and up to a linear polynomial
a+ Ax, where a € C" and A € C™", for the velocity field u. However,
in the half space and in bent half spaces, more information can be
obtained due to the boundary condition. To be more precise, the
velocity field u is

e unique up to a linear term bx,, where b € C", if Q = R}, or,
more generally,

e unique up to a linear term Ax, where A € C™»" and A(z,w(z)) =
0, if @ = R’. In particular, if w is nonlinear, the velocity field u
is unique. If however w is a linear transformation, say, w(x’) =
d'T -2’ with d € R"!, then w is unique up to a vector field of the
form Az where A = a,, ® (—d'", 1) with a column vector a,, € C".

Moreover, for any of the domains, we can employ the Sobolev embed-
ding to solve (1.3) exactly if ¢ € (1,n) by singling out a special diver-
cence data with Pg € LY () and a special solution with Vu € LI (),
where ¢* := n"—fq is the Sobolev index corresponding to q.



2. In [14], Proposition 3.2 is not stated with condition Ko, but with the
conditions from Remark 2.2. However, revising the proof, a simple
calculation as in (4.17) below shows that is suffices to assume K.

Note that we assume condition K9 in Proposition 3.2. In particular we are
restricted to n > 3 and ¢ € (1,n — 1). However, the problem

—Au+Vp =Pf in R”
divu ="Pg in R?, (3.3)
u =0 on OR” .

has been solved by [12] for large resolvent parameters |A| under the assump-
tion K7, and therefore they could prove the following on bounded domains.

Proposition 3.4. Let n > 2, ¢ € (1,00) and let Q be a bounded domain
with a CH'-boundary. Then for every Pf € LI(Q)", Pg € Wh4(Q), there
exists a unique solution (u,p) € W24(Q)" x WH4(Q) to (1.3) satisfying

lullw2a)y + VPlla@) < (P fllLa) + IVPYllLaq)) (3.4)

with ¢ = ¢(n,q,) > 0.

4 The Time-Periodic Problem

4.1 Reduction of the Stokes System

In this section we recall the result of [25], which provides a reduction for the
Stokes system based on the isomorphism to the space of solenoidal vector
fields when the fluid domain is the whole space or has a graph boundary.
Here, let us assume that 2 = R"™ or 2 = Rl and introduce the linear
operators W : LI(Q)" — LI(Q)" L and V = (V',V,) : LY(Q)"1 — LI(Q)"
as

Wu = + Su, ,
Vw=w+SUS w, Vow=-US-w, (4.1)
with
Sf =V'(-a)2f,
Ug = (-4 /xn e A g0 ) dy 2



where we extend g by zero to the whole space in the case 2 = R’l. Since
S is a singular integral operator it is classical that .S is bounded in L9 for
q € (1,00) and hence:

1S fllLa@n—1) < CllfllLa@mn—1y- (4.3)

It is also well known that the Poisson semigroup admits the estimate

1Uglla®sma@n-—1)) < CllgllLam, La@n-1)) - (4.4)

In particular, (4.3) and (4.4) imply the boundedness of W and V in L?(Q).
The key properties of W and V are stated as follows.

Lemma 4.1 ([25]). Let Q@ =R" or Q =R%. Then the following statements
hold.
(i) The operator W satisfies

{VpeLY(Q)" | pe LL (), Ap=0in Q} C Kerpq (W),

loc

where Kerpq (W) = {f € LY(Q)" | Wf = 0}.

(ii) Rangq (V) = LEI(Q).

(iii) WV = I on LY(Q)" ! and VW = I on LL(Q). In particular, the
restriction Wlpa : LE(Q) — LIY(Q)""! is an isomorphism and its inverse
is given by V. Moreover, for any m € N the map W|pa : W5"(Q) —
Wm4(Q)"~1 is an isomorphism with its inverse V, and there are positive
constants C' and C" such that

C'IV"™"Wallpa) < IV™ullpa) < ClIVWul Lo (4.5)
for any u € W5 "1(Q).

Remark 4.2. Although the properties of W in the Sobolev space Wy"4(Q)
and (4.5) are not explicitly stated in [25], these are easily obtained from the
results in LE(Q) and the definitions in (4.1) and (4.2).

Moreover, it is clear that the results transfer to the time-dependent case,
if we replace L4(2) by LP(Qr) and similarly for Sobolev and solenoidal
spaces.

4.2 The Whole Space and the Half Space

In this section we consider (1.5) in Qp = G or Qp = T x R’}. We start with
two preparational lemmata, dealing with the problems

Au, =g in Qp,
{ Opug =0 on JQr, (4.6)



and

{@w—Aw =h in Qp, (4.7)

w =0 on Ot .

It should be understood that the boundary conditions are omitted in the
whole space case Qr = G.

Lemma 4.3. Let p € (1,00)? and assume g € Wol’_l’p(ﬁqr). Then there is

a unique ug € W&l’p(ﬂqr) solving (4.6) in a weak sense, and there is ¢ > 0
such that

”vugHLP(QT) < CHQHWO,fl,p(QT) . (4-8)

Moreover, if m € {0,1} and g € W[j_’m’p(QT) in addition, then Vug €
W?_’Hm’p(QT) and

IV ™ ug e n) < CIIV™gllLe () - (4.9)

Proof. By [12], there is for almost all times ¢ € T a unique solution u,(t,-) €
WL4(R™) in the weak sense to

Aug(ta ) =g(t ") in R",

with a corresponding a prior: estimate. Integrating over time yields the
result for O = G. In the half space case, the result follows easily via a
reflection argument. The additional regularity follows by the uniqueness
assertion when solving (4.6) with u, and g replaced by d;uy and 0;g, respec-
tively. ]

Lemma 4.4. Letp € (1,00)? and h € LY (Qr)". Then there exists a unique
solution w € WiQ’p(QT)” to (4.7), and the following estimate holds:

[w, dw, Vwl|re ) < cllhliLe@y) - (4.10)
If additionaly h € L3 ()™ for some s € (1,00)2, then w € WiQ’S(QT)”.

Proof. Assume first Qr = G. Note that it suffices to assume h € P S(G).
Therefore, an application of the Fourier transform yields the representation
formula w := F;'mFgh € P1S'(G), where

0, if k=0,

m<k’§> = { 1 2T 7%
W, k 6 TZ .

10



In [20], the symbols m, ik -m and (i§)* - m, |a| < 2, have been shown to be
LP multipliers for p = (p,p). However, since the prove in [20] rests on the
Marcinkiewicz multiplier theorem, it follows by the work of Besov [4] that
the general case p € (1,00)? is covered as well. Consequently w € Wiz’p(G)
and

||wvatwyv2w||LP(R") < CHhHLP(G)-

Since we have an explicit representation formula for w in terms of an ev-
erywhere defined multiplier, we obtain uniqueness on the level of tempered
distributions. This observation also implies the additional regularity asser-
tion.

In the case Q = T x R, the reflection principle immediately yields
existence and the a priori estimate. For the uniqueness, let w € Wf’p(QT)
be a solution to (4.7) with data f = 0 and let h € Li’_/(QT) be arbitrary. Then

due to the existence part we find v € WiQ’p/ (Qr) such that gv — Av =h
and v|grn = 0. Defining (¢, z) := v(—t,z), we conclude

(W, h)12(0p) = —(w, 00 + AT)12(0) = (Grw — Aw, U)12(0p) =0,

and hence w = 0. The regularity assertion follows now by the reflection
principle and the uniqueness in the whole space. The proof is complete. [J

In order to formulate our main theorem of this section, we introduce the
space

YP(Qr) == {(f,9) € L® (Q1)" x WP(Qp) | 8ig € W) HP(Q0)},

(4.11)
1 D llye e = flee@r) + IIVllLe@r) + 1090100y

Remark 4.5. The assumption dg € W\?_’fl’p (Qr) and the Poincaré inequal-

ity with respect to the time variable imply that g € W%_l’p(QT). Hence,
together with the condition Vg € L% (Qr)" we have g € LY (Qr).

Theorem 4.6. Let p € (1,00) and (PLf,P1g) € YP(Qr). Then there
exists a unique solution (u,p) € Wj_’z’p(QT)" X W?_’l’p(QT) to (1.5) on Qr,
and the following estimate holds.

[, Dy, VP, V| Loy < cll(PLS, Prg)llyr ) - (4.12)

If additionally (PLf,PLg) € YE(Qr)™ for some s € (1,00)?%, then (u,p) €
WS (Qp)™ x WIS (Qr).

11



Proof. Let ug be the solution to (4.6) obtained in Lemma 4.3. From the
assumptions on P, g we can infer V'u, € szp(QT)”*l, where we have
written V' for the gradient with respect to the first n — 1 space variables.
Set v = V. Here, V : LP(Q)"~! — LP(Q) is the isomorphism in Lemma
4.1 and @ := (w + V'ugy) with w being the solution to (4.7) with right-hand
side h = WPPf — (0, — A)V'uy, € LP(Q)" 1. Note that for Qr = G, w0 is
simply the solution to (4.7) with right-hand side h = WPP, f, while in the
half space case this is not true due to possibly non-trivial boundary values
of V'ug.

Let Vp, be the pressure field defined as Vp, = QAwv. Then, arguing as
in [25], we can check that (v, Vp,) solves

ov—Av+Vp, =PP.f in O,
dive =0 in Qr, (4.13)
v = —Vu, on ST .

For the convenience of the reader we give a sketch of the proof here.

Clearly w € W)*P(Qr)*! by Lemma 4.4, whence @ € WP (Qqp)n—1
and sov =Vw € W}T’i_’p(QT) as well as w = Wov by Lemma 4.1. Moreover,
since w solves Jyw —Aw = WPP,f — (0 — A)V'ug in Qr we see that v
solves Oyv — VAWwv = VIWWPP, f in Qr, while

VAWvY = VW Av = VIVPAw,

for W commutes with A by its definition and QAuwv is the harmonic pressure
and therefore WQAv = 0 by Lemma 4.1. Since VW = id on LY(2) we
finally observe that 0;v — Av 4+ Vp, = PP, f in Qp for Vp, = QAw. It is
straightforward from the definition of V that v = @ on 992, which yields v' =
—V'uy on 02 by the Dirichlet condition of w. Moreover, on the one hand
Onug = 0 on 012, since uy solves (4.6), and on the other hand v, =v-n =0
on 99 since v € LY(Qr). Therefore v = —Vu, on 9. That is, (v, Vp,)
solves indeed (4.13).
Furthermore, we have the estimates || Vpyllpe(oy) < ¢l[V0|1p () and

CH’U,at'U,vQUHLp(QT) < c||1ﬂ,8t1D,V2w||Lp(QT)
< c|WPPLf — (0 — A)V'uglLe o
< o([[PLf e + IV PLgllLer) + ”@PLQHW\O,—LP(QT)) :
Here we have used Lemma 4.1 and Lemma 4.4. Now we define (u, Vp) as

u=Vug+v,
Vp=Vp, +QPLf + Vo, —VP.rg,

12



which satisfies (1.5) on Qp with the a priori estimate (4.12).

Next we show the uniqueness. Let (u,p) € Wi’Q’p(QT)” X W%l’p(ﬂqr) be
a solution with homogeneous data (P, f,P1g) = (0,0). Then in particular
u € LY (1) and by applying the Helmholtz projection, we conclude that
Wu = WPu € Wi’2’p(QT)"_1 solves (4.7) with homogeneous data. Hence,
Wu = 0 by Lemma 4.4. Since VW = id on LY(Q1) by Lemma 4.1, it follows
u =V Wu =0 and consequently also p = 0.

Similarly, the regularity assertion of Theorem 4.6 follows from the regu-
larity assertion of Lemma 4.4. The proof is complete. O

4.3 The Bent Half Space

We consider bent periodic half spaces G, := T x R that are merely small
perturbations of the half space G4, i.e., if w is close to the zero function
in a certain sense. Given a Lipschitz continuous function w : Rt — R, we
define the transformation ¢, : G, — G4 defined via

bu(t,x) = (t,2) = (t, 2/, 2, — w(2))).

For a function u defined on G, we introduce a function @ defined on G4 by
setting @(t, 7) 1= u(¢g(t,7)).

Proposition 4.7. Let p € (1,0)?, w € COYR"Y) ﬂleo’i(R”_l) and
K > 0. For m € {0,1,2}, the mapping u — @ is an isomorphism between
WOmP(G ) and WO™P(G) as well as between WOJ’P(GW) and wo’l’p(G+)
and between WO’_I’p(Gw) and WO’_I’p(G+), if w is either of type Ky or of

type Ko when g € (1,n —1).

Proof. It is readily seen that ¢, : G, — G4 is a bijection with Jacobian
equal to 1. If we denote by 0;, V and similar expressions the corresponding
differential operators with respect to the variable & € G, then using d,w =
0 we see

i
&@u(az) = (515] — (&w)éﬁn — (@w) 3 On — (&@w)@n (4.14)
+ (01w)(0)0;)u(%).
Hence, there is C' = C(n) > 0 such that

lullLe(c.) = ll@llLeay) »

- (4.15)
IVulliec,) < CA+ [Vl Ville @,

13



and
IV2ullie(c,) < OO+ [V'wlloo) 2 IVl Lp (6

P (4.16)
+ C[(V*w)onillLe(cy) -

From (4.15) it follows immediately that the mapping v — 4 is an isomor-
phism between WO™P(G,,) and WO™P(G,) for m € {0,1} as well as be-
tween Wo’l’p(Gw) and WO’I’p(G+).

In order to deal with the second derivatives, assume first that we are
in the case K. Then the estimate of the term ]\(V’Qw)énﬂ\\Lp(G+) becomes
non-trivial. Assume for now that 0,@ is smooth and compactly supported
and write Opa(t,-) = ¢ € C(R7) for a fixed but arbitrary ¢ € T. By the
generalized Sobolev embedding theorem there exists a constant ¢ > 0, such
that for all Z,, >0

(s ) lLsia@n-1) < C||@/90('7fn)||Lq(Rn—1),
1

where s > ¢ is defined via ﬁ +
generalized Holder inequality

172l e <c/ / V209 (-, #0)|7 da’ d,

<CHV/2W||Ln 1,00 (Rn— 1)/0 ||¢("jn)”i$!q(R"*1) d.’fn (417)

< K[Vl R?)

Therefore, we obtain by the

Q=

Hence, integrating over time, we obtain
1(V2w)Onil|Le(, ) < K|V Oniille(e,) < KIIVllie,).  (4.18)
If w is of type K7, we can immediately estimate
1(V2w)Onitl|Leay) < Kl Villie,) < Kllalwozee,) (4.19)

Collecting (4.15), (4.18) and (4.19), the mapping v — @ is also an isomor-
phism between W%2P(G,,) and WO2P(G.).

Moreover, let F' € \/N\O’_l’p(Gw) and define F' via [F, @] := [F, ] for all
Q€ W0’17P(G+). Then using (4.15), we get

L E -1 ’[Fa ()5”
c HFHA—L =C sup —
W P(G+) O;AL;BGWLP(GH HVSOHLP(G_‘_) (4 20)
|[F, ¢l '
< s o — = [ Fllgiing,
0£peWLP(GL) IVellLec.,) WP (Gw)
where ¢ = ¢(n,w) > 0. .
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We can now give the main theorem of this section, namely that there is
a unique solution to the Stokes resolvent problem on the bent periodic half
space, given that the bending is small in some sense. The space Yf(Gw) has
been introduced in (4.11).

Theorem 4.8. Let p € (1,00)2 and w € CHL(R" 1) N WIQC;i(R”_l). Then
there is a constant K = K(n,q) > 0 with the following property:

If

e w is either of type K1 or of type Ko when q € (1,n — 1), and if

o (PLf,PLg) € YP(Gu),

then there exists a unique solution (u,p) € Wf’p(Gw)” X W%l’p(Gw) to the
problem (1.5) on G,,. This solution satisfies the a priori estimate

[, O, V2u, Vpllea,) < cll(PLf, Prolyec,): (4.21)

where ¢ = c(n, p,w) > 0 is a constant. If additionally (P f,P1g) € Y (G.)
for some s € (1,00)? and if K < min{K(n,q),K(n,s)}, then (u,p) €
W25 (Go)™ x WHS(Gy).

Proof. Our perturbation argument will be carried out on certain suitable
Banach spaces. Namely, for O = G and Qr = G, we introduce

XP(@r) = (WIPP(@Qn) n WP @) x WO P@r),  (422)
and equip them with the norms
[w, pll x® () = llu, Opu, V2u, Vpllieq)-
Define operators S, : XP(Gy) — YP(G,) and S, : XP(G4) — YP(G4) via

Ou — Au+ Vp
—divu ) ’ (4.23)

Sp(ur) = (

and a similar expression for S,. Observe that S, : XP(G4) — YP(Gy) is
an isomorphism due to Theorem 4.6. In virtue of (4.14) we obtain

Sp(u,p) o ¢;1 = gp(f%ﬁ) + Rp(ﬂvﬁ)7 (424)

where the remainder Rp is given by

S —|V'w|? 820 + 2(0, V'w) - Vi + (A'w)dni — (0, V'w)Onp
Rp(u’p)::< V'w| ( ()ov' )'5( ) ( ) p>.

U
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It is our goal to show that Rp : XP(G4) — YP(G.) is relatively small with
respect to Sp in the operator norm. Note that we can estimate the Yf—norm
of Rp(@,p) by

gl Dz gy <40+ KNP oy + Kl
5~ . .
+ ||(A/ w)anu||LP(G+) + K|‘8tanu||w\o,—1,p(g+)'

The third term is estimated by ||(A’2w)5nfé||Lp(G+) < cK|ltllwo.2p (g, ) in
virtue of (4.18). Taking into account the trivial estimate

”81557172”@0,71@(@” < ||ata”LP(G+)a (4'26)
it finally follows from (4.25), (4.26) and Ehrling’s lemma

|Ro (i Dllyr .,y < CK (1 + K) |, dyit, 920, Vil .
< CK(1+ K) I35 150 7 lgv(cs, .

where C = C(n,p,w) > 0. Hence, if we choose sufficiently small, then
Sp + Rp : XP(G4) — YP(G) is an isomorphism and so is S, : XP(Gy) —
YP(Gy) by (4.24) and Proposition 4.7. In particular, we have the a priori
estimate (4.21). As for the regularity assertion, it suffices to apply the above
argument to the spaces XE NX7 and Yf NY?} instead of XE and Yf, which
gives the existence of the solution (us, ps) in XE NX?F. Then the uniqueness
in X¥ implies (u,p) = (us, ps). The proof is complete. O

4.4 Bounded Domains

For the study of bounded domains Qp = T x €2, we consider again the op-
erator Sp : XV (Qr) — YP(Qr) given by (4.23), where XP'(Qr) and YT (Qr)
are defined as in (4.22) and (4.11), respectively.

Lemma 4.9. Let Q C R" be a bounded domain with boundary of class CH!
and p € (1,00)2. The operator Sp : X¥ (Qr) — YP(Qr) is injective and has
a dense range. Moreover, there exists a constant ¢ = ¢(n,p,Q) > 0 such
that for (u,p) € XY (Qr) and (f,—g) := Sp(u,p) it holds the estimate

[, O, V1, V| Lo ) (4.27)
< c(I(f; Dllyeap + lulle@y) + 10l jwo.rer (on))- .
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Proof. For k € Q%Z*, we denote by f (k) the k-th Fourier mode of a T-time-
periodic function f with respect to the time variable, i.e.,

T
f(k) = ;/ﬂ f(t)e *tdt. (4.28)

If (u,p) € XV (Qr) satisfies Sp(u,p) = (0,0) then (a(k),p(k)) € (WH1(Q) N
Wé’q(Q))n x Whe(Q) solves

iki(k) — Au(k) + Vp(k) = f(k) in Q,
diva(k) = g(k) in Q, (4.29)
u(k) =0 on 012,

A~

with (f(k),g(k)) = (0,0). By [12, Theorem 1.2] we have (u(k),p(k)) =
(0,0). Since k € 2XZ* was arbitrary and since (@(0),(0)) = (0,0) by the
assumption (u,p) € XV (Qr), it follows (u,p) = (0,0). Therefore, Sp is
injective.

Next we show that the range of Sp is dense in Y (Qr). To this end
introduce the notation

fm(t) = Fp x f(t) ) (430)

where F;, is the m-th Fejér kernel with period T. By the vector valued
Fejér theorem, see e.g. [3, Theorem 4.2.19], the trigonometric polynomials
(fm, gm) converge to (f,g) in Y (Qr) for any (f,g) € YP(Qr). On the
other hand, it is known [12, Theorem 1.2] that (4.29) is uniquely solvable
i (W22(Q) N WE(Q))" x Wh(Q) for a given (f(k),§(k)) € LIUQ)" x
(leq(g) N {N\*l’q(Q)). Hence, trigonometric polynomials belong to the
range of Sp, which implies that the range of Sp is dense in Y (Qr).

Finally let us prove (4.27). The proof follows a well-known localisation
method. We choose finitely many balls B; C R", j € {1,...,m}, where (af-
ter a possible rotation and translation that we will suppress in the following)
each j € {1...,m} is of one of the two types:

e type R™: if B; C Q,
e type Rj : if Bj NQ#0.

Moreover, we choose corresponding smooth cut-off functions ¢; € C3°(R")
with suppy; C Bj and Z;nzl ®j = 1 in 2. Note that we can choose the
balls in such a way that the boundary graphs w; fulfill the regularity and
smallness assumption in Theorem 4.8, see [12, 14] for details.

17



Since (f, —g) = Sp(u,p), we obtain for j € {1,...,m}

O (Yju) — A(Yju) + V(Yp) = fj,

4.31
div (1) = g;. (4.31)

where

fi =i = 2(Vj)Vu — (Agj)u + (Viy)p,
g5 =g + (Vi) - w.
Depending on whether j € {1,...,m} is of type R" or ]Rﬁj, we interpret
these equations as problems in G or G,,;, respectively.

Assume j € {1,...,m} is of type RZ]_. We can apply Theorem 4.8 to
problem (4.31) to obtain

(5w, 50w, V2 (1), V(Wip) e G,y < cll(f5 9i)llyp(ca,)-

By the Poincaré inequality, the definition of f; and g; yields

(4.32)

1filleer) < CW) I llLe e, + lullworec,,) + Pllec.,))s
IVgjliLer) < C(W)IVYlec.,) + lullworec,,))-

Hw\gﬁlyp(ij). Let v € C§°(Gy,) and
define vg := v — ﬁ [ vda, where B C R" is a ball containing supp Vip; N
RZJ_. As vg has vanishing mean in B, the Poincaré inequality yields constants
c1, ¢y > 0 such that

We still need to estimate the term ||0,g;

||V(@Z’jUO)HLp’(QT) < CIHV,UHLP/(GWJ,) )
||(v¢j)vo‘|w0,1,p’(gjr) < C2||VUHLp’(ij) :
Note that
[00gj,v] = —[div (¢5u), O] = =[O, V(1hjv0)] + [Oru, (Vbj)vo].
Therefore, we can calculate
Hatngw\O’_Lp(Gw]’) = o#vescli‘l?(f) m
0 \Gu; “j
<o osp 0wVl
0AvEWOLP (Qr) IVollLe @r)

4.33
+ C2H8tuH[WO,1,p/(Q)}/ ( )

= ClHatgHwa_lﬁp(QT) + cQH&tu”[WO,l,p/(Q)]/.
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Finally, if j € {1,...,m} is of type G, the same calculations can be
performed using the periodic whole space result in Theorem 4.6 instead of
the bent periodic half space result in Theorem 4.8. Summing up the finitely
many inequalities obtained for j € {1,...,m} yields estimate (4.27) with the
additional terms [|p|p(0,) and [|[Vu||rp(q,) on the right-hand side. However,
since the pressure is defined only up to a constant, we can assume that the
mean of p vanishes. In virtue of the Poincaré inequality and the existence
of the Helmholtz projection we thus have

I1PllLe () < cllVPller < cll(F,9)llyr - (4.34)

Moreover, the term || Vu||yp(q,) can be absorped by a standard interpolation
argument. The proof is complete. ]

Next we show that the last three terms in (4.27) can be omitted for the
case p € [2,00)% This will show that Sp : XT(Qr) — YP(Qr) yields an

isomorphism at least when p € [2,00)2. The general case p € (1,00)? will

be proved later in Theorem 4.11 by a duality argument.

Lemma 4.10. Let p € [2,00)%. Then, under the assumptions of Lemma
4.9 the following estimate holds.

[, Dy, V2, Vpllie(ar < ell(f:9)lyp(an) - (4.35)

Proof. Firstly we consider the case p = (2,2). By [12, Theorem 1.2] the
solution (a(k),p(k)) € (W22(Q) N Wy*(Q))" x WH2(Q) to (4.29) satisfies
the estimate

k(| 6(k) L2y + 1V @(k) |L2@) + IVB(E) L2
< C(IF (B)llrz(0) + IV (R)lrz() + KGR g -1.2(0) -
By the Plancherel theorem we obtain (4.35). Next we consider the case
p € [2,00)%. First we note that by the result for p = (2,2) and the trivial
embedding, it holds
10¢ulljwo.rer (o < cllOeullizaq) < cll(f, Va)llyzap < cll(f; Vo)llyr@p,
and thus we have from (4.27)

[, Opu, V2u, VpllLe(ap < c(lI(f, Vallyrar + [ullLe@n) -
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Now we will show (4.35) by a contradiction argument. If (4.35) does not
hold then we would find sequences (ug, p) C X7 (Qr), ¢ € N, such that

[ug, O, VPug, Vpyllipayy =1, forall £ € N,

1(Fe: 90)lypoy =0 as £ — oo,

where (fy, —g¢) = Sp(ue,pe). Suppressing the notion of subsequences, we
thus have the weak convergence

wg—u in WP (Qr)" n WP (Qr).

From (4.34) we immediately obtain || Vpl|1p(a,) — 0. Using the convergence
of f and gy we deduce that (u,0) € XT(Qr) solves

8tu —Au =0 in Q’]l' s
Vdivu =0 in Qr,
u =0 on 0.

By the boundary condition we conclude that even divu = 0 and conse-
quently Sp(u,0) = (0,0). By Lemma 4.9, Sy, is injective and consequently
u = 0. Since we are on a bounded domain, the embedding W1%P(Qr) —
WLLP(Qp) <y LP(Qr) is compact, which yields the contradiction

1= lim [ug, dur, Vs, Vel Le(ay)
l—o0
< Jim c([[(fe 9e)llyp(r) + l[ullie o) = 0.

Consequently, estimate (4.35) has to hold. O

We are now in the position to state the main result for the case of
bounded domains.

Theorem 4.11. Let p € (1,00)% and (PLf,Prg) € YP(Qr). Then there
exists a unique solution (u,p) € Wj_’zp(QT)” X W?_’l’p(QT) to (1.5) on Qr,
and the following estimate holds.

[, By, V2u, Vpllie o) < cll(PLE, PLO)lyP(on)- (4.36)

If additionally (P1f,PLg) € Y§(Qr) for some s € (1,00)%, then (u,p) €
W2S(Qp)™ x WS (Qr).
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Proof. Firstly we consider the case p € [2,00)2. By Lemma 4.9, the operator
Sp : XP(Qr) — YP(Qr) is injective and possesses a dense range in Y P (Qr).
Lemma 4.10 shows that the range is closed. Hence, Sy is even surjective
and therefore an isomorphism. This completes the proof for p € [2, 00)?.
Next we consider the case p € (1,2]%. Tt suffices to show the a priori esti-
mate of the form (4.36), for the assertion is then shown by the same argument
as in the case p € [2,00)2. Let (u,p) € XT(Qr) and set (f,—g) = Sp(u,p).
By taking the truncation operator (4.30) if necessary, we may assume that
all data are smooth in the time variable. We use a duality argument. For
any ¢ € LII(QT) set P(t) = @(—t) and set (v,7) = S;,l(—gb, 0), which is
well-defined since p’ € [2,00)2. Then 9(t) = v(—t) and 7(t) = r(—t) satisfy

O+ A0 — V7 =y, divo =0 in Qr,
and 0(t) = 0 on 0. By the integration by parts we have

(Oeu, P)12(0p) = (Oru, 00 + AD — V)20

(
= (Oru — Au, O0)12(04) + (019, T)12(00)
= (f = VD, 00)12(0p) + (019, T)12(00)
= ([, 00)12(0) + (Ok9, T)12(02r)

The result for the case p’ € (2,00)? yields
[(f, 0e0)r2(00) | < (1S e @) 1060 o (0
S CHfHLp(Q’]I‘)”QOHLP/(QT) )
and
\(&g,f)p(mr)] < HatgHWO,—l,p(QT)HV'FHLP’(QT)
< CuatgHWO,—l,p(QT)HSOHLP/(QT) :
Hence we have

0l ) < eI lum@n + 10kl 1) - (4.37)

Then we rewrite the equations Sp(u,p) = (f, —g) as

—Au(t)+ Vp(t) = f(t) — Oru(t) in Q,
divu(t) =g(t) in Q,
u(t) =0 on 00



for each t € T. By [12, Theorem 1.2] again, we have

lut), V2u(t), Vo)) < c(lf (O)lluaw) + [18ru(®)llLaw) + Vg llLa(@)

for each ¢, which implies (4.36) by taking the L? norm in the time variable
and taking into account estimate (4.37).

The general result for p € (1,00)? follows by interpolation of LS and L*
with s = (s,2) and r = (2,7) for suitable s,r € (1, 00).

Since Qr is bounded, the regularity assertion follows from the existence
result for p = (p, q) and s = (s,t) and the uniqueness result for the exponent
r = (r,r) with 7 := min{p, ¢, s, t}. The proof is complete. O

5 The initial-value problem

In this section, we demonstrate the impact of the time-periodic problem
on the initial value problem by giving a short and direct argument which
shows that the Stokes operator A, admits maximal L? regularity on L ()
for 2 = R", 0 = R} and sufficiently smooth bounded domains 2 C R".
Recall that a generator —A of a C; semigroup on a Banach space X is said
to admit mazimal LP regularity on (0,T), if for every f € LP(0,7T; X) the
unique solution to the abstract Cauchy problem dyu + Au = f, u(0) = 0
satisfies u € LP(0,T; D(A)) N WLP(0,T; X) := Er(A). Weis’ theorem [29]
states that maximal LP regularity is equivalent to R-boundedness of the
resolvent family {t(it + A)~! | t € R}. This characterization has been used
extensively to show maximal regularity of various differential operators, in
particular for the Stokes operator A, : D(A,) C LI(2) — LL(Q), where
A, = —PA and D(A,) :== W9(Q)" N Wy9(Q)" N LL(Q).

We shall show that the notion of R-boundedness can be avoided com-
pletely in the case of the Stokes operator, by extending the abstract result
of Arendt and Bu [2]. For convenience let us introduce the notion of the
abstract maximal [Pregularity for the time-periodic problem as follows. We
say that A admits time-periodic maximal LP regularity on (0,T), if for every
felr(0,T; X) with fOT f dt = 0 the abstract time-periodic problem

ou+ Au=f in (0,7), u(0) =u(T) (5.1)

is uniquely solvable in LP(0, T; D(A)/Ker A)NW1P(0,T; X). We note that,
in the above definition, the condition f(;f f dt =0 is added in order to cover
the case when A is not invertible.
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Recall the notation i28Z* := 257 \ {0}. Then we have the following
abstract result on the equivalence between maximal L? regularity and time-
periodic maximal LP regularity.

Theorem 5.1. Let —A be a generator of Cy-semigroup on a Banach space
X. Then the following assertions are equivalent.

(i) The operator A admits mazimal LP regularity on (0,T) for all T > 0.
(ii) For any T > 0 satisfying iQ%Z* No(A) = 0 the operator A admits
time-periodic mazimal LP regularity on (0,T).

(iii) The operator A admits time-periodic mazimal LP regularity on (0,T})
for some T1 > 0.

Remark 5.2. The above equivalence is proved in [2, Theorem 5.1] in the
case of an invertible generator —A. Theorem 5.1 of the present paper seems
to be new for generators which are not necessarily invertible. This case
is important for applications since elliptic operators such as the Laplace
operator and the Stokes operators are not invertible in general if the domain
is unbounded.

Proof of Theorem 5.1. We may assume that —A generates a Cj-analytic
semigroup on X. In fact, it is well-known that maximal LP regularity implies
the analyticity of the semigroup, see e.g. [8]. On the other hand, if A admits
time-periodic maximal LP regularity, then {ik(ik + A)~! | k € ZXZ*} is
easily seen to be a Fourier multiplier and is hence bounded, yielding again
the analyticity of the semigroup. The assertion (ii) — (iii) is easy, for —A
is the generator of Cj-analytic semigroup, and thus, i%Z* No(A) = 0 holds
for sufficiently small 77 > 0. The result (iii) — (i) follows from [21, Remark
3.2], where it is applied to the Dirichlet Laplacian. For the convenience of
the reader, we give a proof here. Recall that for analytic semi-groups e *4
on a Banach space X, we have the following characterization of the trace
space at t = 0:

(X, D(A)1-1/pp = {z € X | Ae 72 € LP(0,T; X)} = {u(0) | u € Er(A)},

see [24, Corollary 1.14, Proposition 6.2]. Let now f € LP(0,77; X) and write
f=Pf+Pif € XL (0,T1;X). By assumption, there is a solution
veErn(A) on (0,77) to dw + Av = P, f. The characterization of the
trace space shows e *4v(0) € Eg,(A). Define w € LP(0,Ty; X) via w(t) :=
fg e~ (t=5)APfds. Since Pf € X does not depend on time, it follows that
w € Ep (A). Thus,

uwi=v4w—e “4(0) € Ep, (A)
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is a solution to dyu + Au = f, u(0) = 0, on (0,71). Therefore, A admits
maximal LP regularity on (0,7}), and thus, by [8], on (0,7") for any 7" > 0.

Finally we prove (i) — (ii). Let 7> 0 be such that i2XZ* N o(A) = 0.
We note that there is A > 0 such that A + A + ip is invertible on X for
any p € R. In particular 1 € p(e=T(A+N) see e.g. [10, Corollary 1V.3.12].
Therefore [2, Theorem 5.1] implies that A+ X admits time-periodic maximal
L? regularity on (0,7"). Let f € LP(0,T; X) with fOT fdt = 0. By the choice
of T, for any k € 257, there exist unique solutions a(k), (k) € D(A) to
the problems

(ik + A) a(k) = f(k), (ik+A+N)0k) = f(k),

respectively. Here, the Fourier modes f(k) are defined as in (4.28), and we
will set 4(0) := ©(0) := 0. Then the Fourier inverses u and v are well-
defined at least as X-valued tempered distributions. By the time-periodic
maximal LP regularity of A + A\ we immediately obtain v € Ep(A). Hence,
U := Fpy xv — v in Ep(A) by [3, Theorem 4.2.19], where F,, is the m-
th Fejér kernel with period T. Using this fact, we shall show that also
U, := Fyy % u converges in Ep(A). For this purpose we observe that

U (t) = Vi (t) + Fiy % (u — v)(t)

s 3 ST (kA= (kA0 e
Jj=1keM;

= o (t) — A i D (ik + A+ X7 ik + A)T (k)™

m +
Jj=1keM;

—_

where M; = {k € 2ZZ* | |k| < 2%7} Since —A generates an analytic
semigroup, we have the estimate

Gk + A+ XN~ ik + A7 f(R)|x < I

~ XN +ik| - k|

IN

c 27,
%EHfHmeJﬁX)akje i:Z .

Therefore, the Fourier series of u—v converges in BC([0, T; X ), and its limit
is u —v. Consequently, the same is true for its arithmetic mean F, * (u —v).
In conclusion, u,, = vy, + Fpy * (u —v) — w in BC([0,T]; X) as m — oo
Since the problem

w+ (A4+Nw = Auin (0,7), w(0) =w(T)
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is uniquely solvable in Ep(A), and since each Fourier mode of w — (u — v)
vanishes, we finally obtain v := v +w € Ep(A). Thus, the function v is
a solution to (5.1) as desired. If /' € Ep(A) is another solution to (5.1),
then (k) := a(k) — @/ (k) solves (ik + A)o(k) = 0 for all k € 257Z. Hence
9(0) € Ker A and (k) = 0 for k # 0 due to i22Z* N o(A) = §. This shows
u=1'in LP(0,T; D(A)/Ker A). The proof is complete. O

In view of the preceeding sections, Theorem 5.1 implies the maximal L?
regularity of the Stokes operator on the whole space, the half space and on
sufficiently smooth bounded domains. We emphasize again that while the
result itself is well-known, it is the simplicity of its proof that is striking.

Corollary 5.3. Let p,q € (1,00), T' > 0 and assume that Q = R", Q = R"}
or Q C R" is a bounded domain with a CY'-smooth boundary. Then the
Stokes operator Ay on LE(Q)) admits mazimal LP regularity on (0,T).

Proof. Tt is well-known that —A, generates an analytic semi-group. By The-
orem 4.6 and Theorem 4.11, respectively, A, admits time-periodic maximal
L? regularity. Hence, Theorem 5.1 applies. 0

6 Nematic Liquid Crystal Flow

In this section, we apply the linear theory to a time-periodic nonlinear model.
Given an exterior force f = (fy, f4) € LP(Q21)?", consider the time-periodic
problem
ou —vAu+u-Vu+ Vp = f, — ndiv([Vd]T[Vd]), in Qr,
od —oAd+u-Vd= f;+o|Vd*(d+do), inQr,
divu =0 s in QT )
(u,d) =0, on 0Qr,

(LCD)

where v,0,k > 0, dy € R™ with |dg| = 1. The domain  is assumed to be
the whole space R", the half space R’} or a bounded domain of class chl.
System (LCD) is a modified version of the so-called simplified Ericksen-
Leslie model describing a nematic liquid crystal flow. Here, the function u
denotes the velocity of the flow, p the pressure and d the deviation of the
macroscopic molecular orientation dg. The constants v, ¢ and k represent
viscosity, the competition between kinetic energy and potential energy and
the microscopic elastic relaxation time for the molecular orientation field,
respectively. Note that one usually includes the condition that the molecu-
lar orientation is a vector field of constant norm 1. Since we will allow for
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general, small time-periodic forces f € LP(Qr)?", one cannot expect such a
condition to be fulfilled in our case. However, due to the smallness of the
forcing terms, it is always guaranteed that the solution stays in a neigh-
bourhood of dy. The model itself bases on the continuum theory of liquid
crystals developed by Ericksen and Leslie, see for example the survey article
[11], and has been considered for the first time by [22] and [23]. In [19],
the simplified Ericksen-Leslie model was treated on bounded domains using
quasilinear theory based upon the maximal LP-regularity of the Stokes oper-
ator. In a similar manner, with the linear theory developed in the previous
sections, we shall prove the following result in the time-periodic case.

Theorem 6.1. Let n > 2 and suppose that Q C R™ is a bounded do-
main of class Ct. Suppose T > 0 and let p = (p,q) € (1,00)? satisfy
2/p+n/q < 1. Then there is e > 0 such that for all f = (fu, f1) € LP(Q)?"
with || fllLeop) < € the problem (LCD) admits a solution

(u, d,p) € WH2P(Qr)?" x WOHP(Qr).

Moreover, the molecular orientation ﬁijg‘ is well-defined on Q.

A particular problem arises in the case of the unbounded domains, where
we will be restricted to dimensions n > 4 due to the regularity loss in the
steady-state part. In order to deal with unbounded domains at all, we
use again the projection P to split LP(Qr) = L4(Q) & LK (Qr). Then, we
introduce for ¢ € (1,00) and r € (1,n/2) the domains

nr

D(Arg) = W29(Q)" N W2 (Q)" N W, ™ ()" N L (Q),

D(A ) 1= WH(Q)" N W27 (9)" 0 Wy ™ (@) N L Q)"
DPA(0) = D) DI ).
Moreover, for s, p € (1,00)? we introduce the intersection spaces
LSP(Qr) := L3(Q7) N LP(Qr),
W1,2,S,p(QT) — W1,2,S(QT) A W1,2,p(QT),

Theorem 6.2. Let T > 0 and let s = (s,r), p = (p,q) satisfy s,r € (1,00),
p,q € (1,00). Assume furthermore r <n/3 and 2/p+n/q < 1. Then there
is € > 0 such that for all f = (fu, f4) € L3P(Q1)?" with [ flltsm () < € the
problem (LCD) admits a solution (u,d,p) € LL .(Qr) with Vp € LSP(Qr)"

(1) =7 () +7 (5) < [oroemawizerian).
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Moreover, the molecular orientation % is well-defined on Q.

We need some preparations for the proof. We will use the notation

(WP (@) A WEP Q)" N LB ()|

E:=D"(Q)®
@ X [wf’S»P(QT)n N Wg’l’p(qu)”}

Moreover, let us write z := (u,d) € E and

(VA 0
L= ( 0 —UAW> )

By Proposition 3.1 and Theorem 4.6 (or Proposition 3.4 and Theorem 4.11

in the case of a bounded domain) there is a unique solution z = (a,d) € E
to the problem

Oz+ Lz = (Pf“> (6.1)
fd

with [|z[le < CullfllLer(@ry < Cume. Consider now F : E — L3P(Qr)?"
defined via
P(u - Vu + rdiv ([Vd]T[Vd]))
F(Z) = . - 2
u-Vd—o|Vd|*(d+ do)

We shall show that indeed F(E) C L$P(Qr)?".

Lemma 6.3. Under the assumptions of Theorem 6.2 let z = Pz+P,z € E.

Then for all o € [T, 00] and 8 € [, 00] we have

[Pzl|Le() + VP25 ) < cllPzllprag), (6.2)
[P Lz|lwo.te0 () < cllPL2llwr2e -

Proof. Recall the estimate for {2 = R"™ and 2 = R’}

[vllLee (@) < e(IVollLa) + l[vliLv@), (6.4)
which holds true if v € (1,00) and g € (n,00), see [16, I1.9.7]. Setting
v:=VPz, 3:= " and using interpolation, we obtain

nr
VPl < elPelloray, @€ o (65)
Another application of (6.4) with v := Pz and v := ™5 yields the full

estimate (6.2). Estimate (6.3) is well known, see e.g. [7, Lemma 4.4]. O
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Lemma 6.4. Under the assumptions of Theorem 6.2 it holds the inclusion
F(E) C L8P(Qr)?" and there is Cp, > 0 such that for z € E with ||z||g < p,
p € (0,1] we have

1F(2)[[Lsw ) < CLp’. (6.6)

Proof. We shall show a more precise statement. Assume z; = (u;,d;) € E,
i € {1,2}. Let us write v; := Pu; and w; := P, u; for convenience. Then

[Puy - VPuslly < [[Pur||_nc_[[VPuzz < cl|z1]le22]e,
[Pur - VPusllq < [[Puillo|[VPuzllg < cflz1lell22]&;
[Prut - VPusllsp < |Pruillspl[ VPuzlloo < cllz1]ell22]le, (6.7)

[Puy - VP Luz|lsp < [|[Putllocl| VP Luzllsp < cll21]Ell22]|E,
[PLur - VPLugllsp < [[Prutlleol|VPLuzllsp < cfl21]|| 22(E-

This shows u - Vu € L¥P(Qr)", and similarly u - Vd € L3P(Qr)". For the
term |Vd|*(d 4 do) we notice 2¢ > 2r > - and hence with (6.2)

n—r’

11V da[*(dz + do)ls,p
< (IVPdu|2r + [VPdllzq + [VPLd1]l25,20)(I|22]]o0 + 1)
< c(|Pz1llprag) + IVPLdillsp + [IVPLA1]loo) (| 22]l00 + 1),
< cllz1l&(lz2lle +1)

Finally,
[div (V] " [Vda)) Lo (o) < IVdi]lLes ) V2 dlLsp oy
+ (| Vel (p) VA1 150 ()
< dlzl|ellz2 |
Since all estimates are at least quadradic, this concludes the proof. ]

We are now in the position to prove Theorems 6.1 and 6.2.

Proof of Theorems 6.1 and 6.2. Let us concentrate on Theorem 6.2, since
the proof of Theorem 6.1 is similar and in fact easier. We will apply the
contraction mapping principle on the set B, C E,

Byi={z€E: |z~ e < p},
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to the mapping S : E — E which assigns to y € E the unique solution
z = Sy € E to the problem

Oz + Lz = (Pf“) — F(y).
Ja

By the linear theory, ||z — Z|lg < Cup||F(2)|Lsp(0r)- Due to estimate (6.6)
it holds S(B,) C B, for p € (0,[CypCr] ™).
Similarly, for y; = (u;,d;) € B,, i € {1,2}, the term ||Sy; — Sya||g can
be estimated by four summands. With (6.7) we can calculate
||u1 -Vuy —uy - VUQHLs,p(QT) < ||U1 . V(u1 — U2) + (U1 — UQ) . VUQHLS,p(QT)
< cllylle + lv2lle)llyr — v2lle < clp+e)llyr — v2lle,
and
IVdi[*dy — |Vda*dz + ([Vdi[* — [Vda|*)dollrs o)
= [[IVdi|*(dy — d2) + (|Vd1]* — [Vda|*)(d2 + do)|[1sp (00n)

< c(llnlgllyr = v2lle + llyr — v2lle(lylle + lly2lle) (lyzlle + 1))
<clp+e)p+e+ 1)y — valle,

as well as

|div ([Vd1]"[Vdi]) — div ([Vda]" [Vda])|l1se )
< c(llyrlle + ly2lle)llyr — v2lle < clp +&)llyr — v2llE-

Therefore, the contraction mapping principle yields a unique fixed point
z = (u,d) € B, such that S(z) = z.
If we additionally assume p,e > 0 to be sufficiently small such that

This yields [|Sy1 — Syallg < i[ly1 — yo|lg for sufficiently small p,e > 0.

ldloo < cllzlle < clp+e) <1,

then also d 4 dy # 0 on Qr. O
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