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Abstract

In this paper a linearly implicit peer method is combined with a multilevel finite
element method for the discretization of parabolic partial differential equations.
Following the Rothe method it is first discretized in time and then in space. A
spatial error estimator based on the hierarchical basis approach is derived. It is
shown to be a reliable and efficient estimator up to some small perturbations.
The efficiency index of the estimator is shown to be close to the ideal value one
for some one-dimensional test problems. Finally we compare the performance
of the overall method, based on second, third, and fourth order peer methods
with that of some Rosenbrock methods. We conclude that the presented peer
methods offer an attractive alternative to Rosenbrock methods in this context.
Keywords: finite elements, linearly implicit peer methods, adaptivity, Rothe
method

1. Introduction/Motivation

In [1] linearly implicit peer methods were introduced for the numerical so-
lution of time-dependent PDEs. The authors followed the Rothe approach,
discretizing first in time with a linearly implicit peer method and then solv-
ing the arising linear elliptic problems with the finite element method. This
approach was already shown to be efficient for Rosenbrock methods [2]. The
combination of peer methods with finite elements was implemented and tested
within the software package KARDOS [3].

The main advantage of peer methods is that they do not show order reduction
when applied to stiff ODEs or PDEs [4], as it is the case for Rosenbrock methods
[5]. Furthermore, peer methods have good stability properties in comparison
with other multistep methods. There are A(α)-stable methods available with
an α almost equal 90 degrees.

However, the presented method in [1] is only adaptive in time and fixed
spatial grids are used for the whole integration. Many problems like the prop-
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agation of a flame front are solved more efficiently using also adaptive spatial
grids. In this paper we want to fill this gap.

We combine the linearly implicit peer method within the Rothe approach
with a multilevel finite element method. Thus we do not use a fixed spatial grid
but we build a sequence of nested finite element spaces at every time step. The
nested spaces are constructed adaptively with respect to a local spatial error
estimation based on a hierarchical basis.

The paper is organized as follows. In section 2 we specify the problem set-
ting. Then we give a short overview to linearly implicit peer methods and the
used time error estimation. In section 4 we present the finite element solution of
the arising linear elliptic equations and derive the spatial error estimator. The
error estimator is then proven to be efficient and robust up to some small per-
turbations. In section 5 we present some numerical experiments in one spatial
dimension concerning the efficiency of the spatial error estimation. The perfor-
mance of the presented method is then compared to Rosenbrock methods for
some test problems in two spatial dimensions in section 6. Finally our results
are summarized.

2. Parabolic Partial Differential Equations

We consider the nonlinear initial boundary value problem

∂ty(x, t) = f(x, t, y(x, t)) in Ω× (0, T ],
B(x, t, y(x, t))y(x, t) = g(x, t, y(x, t)) on ∂Ω× (0, T ],

y(x, 0) = y0(x) on Ω̄.
(1)

in the same setting as in [6] and [2]. Ω ⊂ Rd, d = 1, 2 or 3, denotes a bounded
domain with sufficiently smooth boundary ∂Ω. f is a partial differential op-
erator. The boundary operator B stands for a system of boundary conditions
interpreted in the sense of traces. g is a given function and y0 is the initial
condition.

We consider a Gelfand triple of separable Hilbert spaces V , H and V ′ with
V ds
↪→ H ds

↪→ V ′ . We denote the norm on H induced by the scalar product (·, ·)
with | · |, the norm on V induced by the scalar product ((·, ·)) with || · ||, and
the dual norm on V ′ by || · ||∗. The anti duality between V and V ′ is denoted
by 〈·, ·〉.

With the operator F : (0, T ]×V → V ′ we rewrite (1) as an abstract Cauchy
problem of the form

∂ty(t) = F (t, y(t)), 0 < t ≤ T, y(0) = y0. (2)

We assume that (2) has a unique, temporally smooth solution y(t).
We suppose that F is sufficiently differentiable. We set

A(t, w) := −Fy(t, w). (3)

We assume that A(t, w) : V → V ′ is a sectorial operator for t ∈ (0, T ] and
w ∈ W ⊂ V . The operator A(t, w) is associated with a sesquilinear form

a(t, w; v1, v2) = 〈A(t, w)v1, v2〉, v1, v2 ∈ V . (4)
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We assume that for all w ∈ W and t ∈ [0, T ] the sesquilinear form a(t, w; v1, v2)
is continuous

|a(t, w; v1, v2)| ≤Ma||v1||||v2|| ∀v1, v2 ∈ V (5)

and V -elliptic
a(t, w; v1, v1) ≥ µa||v1||2, ∀v1 ∈ V , (6)

with constants Ma and µa independent of t ≥ 0, w, v1 and v2. Furthermore, we
require Lipschitz continuity of t 7→ A(t, w(t)) in the L(V ,V ′)-norm, i.e.

||A(t2, w(t2))−A(t1, w(t1))||L(V ,V′ ) ≤ L|t2 − t1|, ∀t1, t2 ∈ [0, T ]. (7)

Also we assume for the regularity of the second derivatives of F :

||Fty(t, v)v1||∗ ≤ C1||v1|| ∀v1 ∈ V , (8)
||Fyy(t, v)[v1, v2]||∗ ≤ C2||v1||||v2|| ∀v1, v2 ∈ V , (9)

with C1, C2 independent of v varying in bounded subsets of V and t ∈ [0, T ].
By setting Q(t, v) = F (t, v) + A(t, v)v for all v ∈ V , we can rewrite (2) in

the form of a quasilinear Cauchy problem

∂ty +A(t, y)y = Q(t, y), 0 < t ≤ T, y(0) = y0. (10)

From continuity (5) we deduce that A(t, v) is uniformly bounded and has a
uniformly bounded inverse A−1 [2]. Furthermore, V -ellipticity (6) implies the
existence of constants M > 0 and angle φ < π

2 such that the resolvent bound

||(λI +A(t, w))−1||L(V ) ≤
M

1 + |λ|

holds for all w ∈ W and for all λ ∈ C with | arg(λ)| ≤ π − φ [2]. This setting
is the usual one for differential equations of parabolic type and includes the
case of semilinear and quasilinear parabolic equations in two and three space
dimensions [6].

3. Linearly Implicit Peer Methods

Let τn be the step size at time step n ≥ 1. An s-stage linearly implicit peer
method [1] computes approximations Yni ∈ V , i = 1, . . . , s, to the exact solution
of (2) at time points t = tni, i.e., Yni ≈ y(tni), by

(I − τnγJn) (Yni − Y 0
ni) = τnγF (tni, Y 0

ni) + wni − Y 0
ni, (11a)

Y 0
ni =

i−1∑
j=1

1
γ
a0
ij(Ynj − wnj) +

s∑
j=1

u0
ij(σn)Yn−1,j , (11b)

wni =
i−1∑
j=1

1
γ
aij(Ynj − wnj) +

s∑
j=1

uij(σn)Yn−1,j . (11c)

The predictor values Y 0
ni are also approximations to the exact solution of (2) at

time points tni. The step size ratio is denoted by σn := τn/τn−1. The coefficients
of the method are collected in the full matrix U(σ) = (uij(σ))si,j=1 ∈ Rs×s and
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the lower triangular matrix A = (aij)si,j=1 ∈ Rs×s. Since we consider only singly
implicit methods, we have aii = γ for all i = 1, . . . , s for some γ ∈ R.

The matrices A0 = (a0
ij) and U0 = (u0

ij) are s×s real-coefficient matrices for
the predictor Y 0

ni. A0 is strictly lower triangular and U0 depends again on the
step size ratio σn. For details on their construction, we refer to [1]. The vector
c = (ci) ∈ Rs denotes the vector of pairwise distinct abscissae of the method.
We set cs = 1. The time points tni are then defined by tni := tn + ciτn for
n = 1, 2, . . ., and i = 1, . . . , s and especially tn := tn−1,s. There are no further
restrictions on the values ci. The matrix Jn is an approximation to the Jacobian
of F at (tn, Yn−1,s). We only assume that there is a ωn ∈ W such that

Jn = Fy(tn, ωn).
Note that Jn is constant for each time step.

Different choices of the ci have been considered in the literature. In [1] and
[7] the values are chosen as the stretched Chebychev nodes

ci := −
cos((i− 1

2 )πs )
cos( π2s ) , i = 1, 2, . . . , s,

lying in the interval [−1, 1]. The reason of this choice is the small condition
number of the corresponding Vandermonde matrix, which avoids inaccuracies
in the computation of the method coefficients. In [8] the abscissae are restricted
to the interval (0, 1], which corresponds to the range used in classical methods
of advancing forward in time and makes a dense output available.

In this paper we will use a second, third, and fourth order method with
strictly positive nodes ci, based on the coefficients presented in [8], which we
will refer to as peer3pos, peer4pos, and peer5pos, respectively. Since strictly
positive nodes allow for a dense output, they are advantageous in the context
of optimal control. The overall performance is similar to other peer methods
presented in [1] and [7]. Therefore, we decided to only present numerical results
for the peer methods with positive nodes.
Remark 3.1. In [1] it is remarked, that by solving the recursions (11b) and (11c)
for Y 0

ni and wni, we get the following equivalent computation formula

wni =
i−1∑
j=1

āijYnj +
s∑
j=1

ūij(σn)Yn−1,j , (12)

Y 0
ni =

i−1∑
j=1

ā0
ijYnj +

s∑
j=1

ū0
ij(σn)Yn−1,j , (13)

with coefficients Ā := I − γA−1, Ū(σn) := γA−1U(σn), Ā0 := I − γ(A0)−1 and
Ū0(σn) := γ(A0)−1U0(σn). In this form only the approximations Yn,j , Yn−1,j ,
j = 1, . . . , s, and the value wni of the current stage need to be stored within
time step n. �

If the predictor has order p = s − 1 and the coefficients U and A fulfill the
order conditions for an implicit peer method [8] of order p = s − 1, then the
resulting linearly implicit peer method has also order p = s−1 [1]. Furthermore,
since the linearly implicit peer method is equivalent to the implicit peer method
for linear problems, both have the same linear stability properties [1].

The starting values Y0i ≈ y(t1 + (ci − 1)τ0) are computed by a Rosenbrock
method of corresponding order, cf. [1].
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4. Solving the spatial problems

To solve the PDE system (2), we follow the Rothe approach, that is, we first
discretize in time and then in space. Discretizing in time with a linearly implicit
peer method (11) leads to the following system:

Yni − Y 0
ni − τnγJn(Yni − Y 0

ni) = τnγF (tni, Y 0
ni) + wni − Y 0

ni, 1 ≤ i ≤ s. (14)

Equation (14) is a system of linear elliptic equations. The linearity of the
resulting elliptic systems is in fact the major motivation to use linearly implicit
integration schemes. To solve the linear elliptic problems, we use a multilevel
finite element method [2].

Following the Galerkin approach, the weak formulation of (14) is given by

∀ϕ ∈ V : 〈Yni − Y 0
ni, ϕ〉 − τnγ〈Jn(Yni − Y 0

ni), ϕ〉 =
〈τnγF (tni, Y 0

ni) + wni − Y 0
ni, ϕ〉, 1 ≤ i ≤ s.

(15)

Here, ϕ are the test functions taken from V . Note that since V is continuously
embedded in its dual space V ′ , we can identify v ∈ V as an element in V ′ . We
introduce the stage update Y Uni = Yni − Y 0

ni and the sesquilinear form

bn(v1, v2) := 〈v1, v2〉+ τnγa(tn, ωn; v1, v2), v1, v2 ∈ V .

Then we rewrite the weak formulation (15) in the following way:

∀ϕ ∈ V : bn(Y Uni , ϕ) =〈τnγF (tni, Y 0
ni) + wni − Y 0

ni, ϕ〉,
Yni =Y 0

ni + Y Uni , 1 ≤ i ≤ s.
(16)

For the following analysis, we introduce a τ -dependent error norm defined by

||v||2τ := τ ||v||2 + |v|2, v ∈ V (17)

and the associated sesquilinear form

aτ (v1, v2) = τ((v1, v2)) + (v1, v2), v1, v2 ∈ V . (18)

The system (16) is uniquely solvable by the Lax-Milgram Lemma, if the
sesquilinear form bn(·, ·) is bounded and elliptic. These conditions are satis-
fied according to the following Lemma cited from [2].

Lemma 4.1. Assume that the sesquilinear form a(·, ·), defined in (4), satisfies
(5) and (6) with constants Ma and µa, respectively. Then there exist positive
constants Mb and µb independent of τn such that for all functions v1, v2 ∈ V :

|bn(v1, v2)| ≤Mb||v1||τ ||v2||τ , (19)
bn(v1, v1) ≥ µb||v1||2τ . (20)

The constants are given by Mb = max(1, γMa) and µa = min(1, γµa).

The idea of finite elements is to approximate the infinite dimensional solution
space V by a finite dimensional subspace Vh. Multilevel finite elements provide
a sequence of nested finite element spaces

V(0)
h ⊂ V(1)

h ⊂ · · · ⊂ V(m)
h
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based on a sequence of increasingly adapted spatial meshes

T(0) ⊂ T(1) ⊂ · · · ⊂ T(m).

We only consider triangulations of Ω as meshes. In our case the multilevel
process stops if a scalar estimate εhns of the error Yns − Y h,(m)

ns , where Y h,(m)
ns

solves (21), see below, with Vh = V(m)
h , is smaller than a given tolerance TOLx,

i.e.,
εhns ≤ TOLx.

Remark 4.1. Note that we apply the multilevel process to the whole system
(15) at once and not individually for each Yni, i.e., all stages in one time step
are computed on the same mesh. Hence, at every time step we have to manage
only two different meshes: the actual one and the mesh of the previous time
step. �

4.1. Discretization of the stage problems
Given a mesh T and the approximations of the previous time step, Yn−1,i ∈

Vh,prev, i = 1, . . . , s, on the mesh Tprev, we want to solve (16) on a finite
dimensional subspace Vh(T) of V . Replacing V by the FE space Vh in (16) gives
the following finite dimensional system to compute Y h,Uni ∈ Vh:

∀ϕ ∈ Vh : bn(Y h,Uni , ϕ) =〈τnγF (tni, Y h,0ni ) + whni − Y
h,0
ni , ϕ〉,

whni =
i−1∑
j=1

āijY
h
nj +

s∑
j=1

ūij(σn)Y hn−1,j ,

Y h,0ni =
i−1∑
j=1

ā0
ijY

h
nj +

s∑
j=1

ū0
ij(σn)Y hn−1,j ,

Y hni =Y h,0ni + Y h,Uni , 1 ≤ i ≤ s.

(21)

To compute the predictor Y h,0ni and whni, the old stage values Yn−1,i ∈ Vh,prev,
i = 1, . . . , s, on the previous mesh Tprev have to be projected to Y hn−1,i ∈ Vh
on the current mesh T. For this projection we use a C1 interpolation based on
the idea of Lawson [9]. The C1 interpolation gives smoother numerical solutions
than for example an L2-projection and improves the performance of our adaptive
solution process. It was already observed in the context of BDF methods in [10]
that smoother numerical solutions benefit multistep methods.

We choose the ansatz space Vh(T) as the space of continuous, piecewise linear
functions,

Vh(T) = {v ∈ C(Ω) : v|T ∈ P1 ∀T ∈ T} ⊂ V .

Let {ψj(x) : j ∈ J } be a set of corresponding finite element basis functions on
the mesh T with the corresponding index set J . The finite element solution Y hni
can then be written as

Y hni(x) =
∑
j∈J

yh,jni ψj(x).

We collect the coefficients yh,jni into the vector Yh
ni. Similarly we introduce Yh,0

ni ,
Yh,U
ni , and Wh

ni for the predictor Y h,0ni , the update Y h,Uni , and whni, respectively.
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Finally the coefficients of the projected old stage value Y hn−1,i are denoted by
Yh
n−1,i.

Inserting the finite element representations in (21), using linearity, and com-
bining the equations for all basis functions ψl, l ∈ J , yields the following linear
system

(M+ τnγS) Yh,U
ni =τnγFi +M(Wh

ni −Yh,0
ni ),

Wh
ni =

i−1∑
j=1

āijYh
nj +

s∑
j=1

ūij(σn)Yh
n−1,j ,

Yh,0
ni =

i−1∑
j=1

ā0
ijYh

nj +
s∑
j=1

ū0
ij(σn)Yh

n−1,j ,

Yh
ni =Yh,0

ni + Yh,U
ni , 1 ≤ i ≤ s,

(22)

with

Mij = 〈ϕi, ϕj〉, Sij = a(ϕi, ϕj) and Fi,j = 〈F (tni, Y h,0ni ), ϕj〉, 1 ≤ i, j ≤ s.

The matrix M is the mass matrix, the matrix S is the stiffness matrix and Fi
is the load vector of the finite element approximation. The mass matrix and
the stiffness matrix are assembled only once per mesh. If using direct methods
to solve the linear system in (22), the matrix factorization of the left hand side
has to be computed only once and then can be used for all stages. The load
vector changes in every stage and thus has to be computed for each i.

Finally the coefficients of the predictor are updated with the computed co-
efficients of the stage update to yield coefficients of the approximation Y hni on
the finite element mesh T, that is, Yh

ni = Yh,0
ni + Yh,U

ni . This is equivalent to
Y hni(x) = Y h,0ni (x) + Y h,Uni (x) for all x ∈ Ω.

4.2. Estimating the spatial error
To estimate the error of our FE solution Y hni, we use the hierarchical basis

technique presented for elliptic problems in [11]. The technique was used for
the arising linear elliptic systems within a Rothe approach using Rosenbrock
methods in [2]. In this section, we will adapt the results for Rosenbrock methods
to linearly implicit peer methods.

To this aim, we consider the hierarchical composition

V+
h = Vh ⊕ V⊕h ⊂ V .

The extension space V⊕h is built by all basis function which are needed to enrich
our base space Vh to the extended space V+

h of higher order. We can compute
a solution Y h,+ni ∈ V

+
h by solving

∀ϕ ∈ V+
h : bn(Y h,U,+ni , ϕ) =〈τnγF (tni, Y h,0,+ni ) + wh,+ni − Y

h,0,+
ni , ϕ〉,

wh,+ni =
i−1∑
j=1

āijY
h,+
nj +

s∑
j=1

ūij(σn)Y h,+n−1,j ,

Y h,0,+ni =
i−1∑
j=1

ā0
ijY

h,+
nj +

s∑
j=1

ū0
ij(σn)Y h,+n−1,j ,

Y h,+ni =Y h,0,+ni + Y h,U,+ni , 1 ≤ i ≤ s.

(23)
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Here, Y h,+n−1,i denotes the projection of the old stage value Yn−1,i ∈ Vh,prev to
the extended space V+

h for i = 1, . . . , s.
We define the error Ehni ∈ V of the finite element solution at time point tni as

Ehni = Yni−Y hni. Furthermore, we denote the difference between the solution in
the base space to the solution in the extended space by Eh,+ni = Y h,+ni −Y hni ∈ V

+
h .

In order to show that Eh,+ni is an efficient and reliable approximation to Ehni,
we make use of the saturation assumption.

Assumption 4.1 (Saturation Assumption). There exists a constant β < 1,
such that

||Yni − Y h,+ni ||τ ≤ β||Yni − Y
h
ni||τ .

The saturation assumption is not valid in all cases. Just think of a right-
hand side F , such that Y h,+ni = Y hni. However, for fixed and sufficiently smooth
right hand sides the saturation assumption is fulfilled for sufficiently fine meshes
[12]. Furthermore, the saturation assumption holds for the extension of linear
elements with quadratic elements, if the data oscillation of F is small [13].

The saturation assumption and the triangle inequality imply

1
1 + β

||Eh,+ni ||τ ≤ ||E
h
ni||τ ≤

1
1− β ||E

h,+
ni ||τ , (24)

i.e., ||Eh,+ni ||τ is an efficient and reliable error estimator.

4.2.1. Approximation of the spatial error estimator
For ease of notation, we define for vectors y = (y1, . . . , ys)T and z =

(z1, . . . , zs)T the function

rni(y, z) =τnγF

tni, s∑
j=1

ū0
ij(σn)yj +

i−1∑
j=1

ā0
ijzj


+

s∑
j=1

(ūij(σn)− ū0
ij(σn))yj +

i−1∑
j=1

(āij − ā0
ij)zj .

(25)

Also we denote, for example, the collection of all stage values in one big vector
by

Y hn :=
(
Y hn1, . . . , Y

h
ns

)T ∈ (Vh)s.

With these definitions, applying the sesquilinear form bn(·, ·) to Eh,+ni gives
the following system for the spatial error estimator:

∀ϕ ∈ V+
h :

bn(Eh,+ni , ϕ) =bn(Y h,0,+ni − Y h,0ni , ϕ) + bn(Y h,U,+ni − Y h,Uni , ϕ)

=
s∑
j=1

ū0
ij(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ) +

i−1∑
j=1

ā0
ijbn(Eh,+nj , ϕ)

+ 〈rni(Y h,+n−1, Y
h
n + Eh,+n )− rni(Y hn−1, Y

h
n ), ϕ〉.

(26)
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Note that rni(Y h,+n−1, Y
h
n +Eh,+n ) only depends on the first i− 1 entries of Y hn +

Eh,+n . Especially it does not depend on Eh,+ni .
Solving (26) for Eh,+ni on the whole space V+

h is very expensive. To be more
efficient, we only compute an error approximation Eh,⊕ni on V⊕h by solving

∀ϕ ∈ V⊕h :

bn(Eh,⊕ni , ϕ) =
s∑
j=1

ū0
ij(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ) +

i−1∑
j=1

ā0
ijbn(Eh,⊕nj , ϕ)

+ 〈rni(Y h,+n−1, Y
h
n + Eh,⊕n )− rni(Y hn−1, Y

h
n ), ϕ〉.

(27)

One can ask now, whether the approximation Eh,⊕ni is reliable and efficient. We
answer this question in the following Theorem 4.4. To this end, we further make
the assumption that the strengthened Cauchy-Schwarz inequality holds.

Assumption 4.2 (Strengthened Cauchy-Schwarz Inequality). There exists a
constant δ ∈ [0, 1) independent of the finite element mesh T and the time step
size τ such that for the sesquilinear form (18) holds

|aτ (v, w)| ≤ δ||v||τ ||w||τ v ∈ Vh, w ∈ V⊕h .

Then we cite the following Lemma from [2].

Lemma 4.2. Let V+
h = Vh ⊕ V

⊕
h and v̄ = v̂ + v̆, where v̂ ∈ Vh and v̆ ∈ V⊕h .

Then the strengthened Cauchy-Schwarz inequality implies

||v̆||τ ≤
1√

1− δ2
||v̄ − v||τ ∀v ∈ Vh.

Furthermore, we have the following relation between Eh,+ni and Eh,⊕ni .

Lemma 4.3. It holds for all ϕ ∈ V⊕h that

bn(Eh,⊕ni , ϕ) = bn(Eh,+ni , ϕ) + 〈Dni, ϕ〉 for i = 1, . . . , s, (28)

with Dni defined by

Dni =
i∑

j=1
ã0
ij

(
rnj(Y h,+n−1, Y

h
n + Eh,⊕n )− rnj(Y h,+n−1, Y

h
n + Eh,+n )

)
,

where ã0
ij =


0 if i = 1,∑i−1
l=j ā

0
ilã

0
lj if j < i,

1 if j = i and i > 1,
0 if j > i.

.

Proof. Note that rn1(Y h,+n−1, Y
h
n +Eh,+n ) and rn1(Y h,+n−1, Y

h
n +Eh,⊕n ) do not depend

on any current stage values, hence we have

rn1(Y h,+n−1, Y
h
n + Eh,+n ) = rn1(Y h,+n−1, Y

h
n + Eh,⊕n ).
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We prove the Lemma by induction. Let i = 1. Then ∀ϕ ∈ V⊕h it holds

bn(Eh,⊕n1 , ϕ) =
s∑
j=1

ū0
1j(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ)

+ 〈rn1(Y h,+n−1, Y
h
n + Eh,⊕n )− rn1(Y hn−1, Y

h
n ), ϕ〉

=
s∑
j=1

ū0
1j(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ)

+ 〈rn1(Y h,+n−1, Y
h
n + Eh,+n )− rn1(Y hn−1, Y

h
n ), ϕ〉

=bn(Eh,+n1 , ϕ).

Therefore Dn1 = 0 for i = 1.
Now assume that the Lemma holds for some k. Then ∀ϕ ∈ V⊕h we have

bn(Eh,⊕n,k+1, ϕ) =
s∑
j=1

ū0
k+1,j(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ) +

k∑
j=1

ā0
k+1,jbn(Eh,⊕nj , ϕ)

+ 〈rn,k+1(Y h,+n−1, Y
h
n + Eh,⊕n )− rn,k+1(Y hn−1, Y

h
n ), ϕ〉

=
s∑
j=1

ū0
k+1,j(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ) +

k∑
j=1

ā0
k+1,jbn(Eh,+nj , ϕ)

+ 〈rn,k+1(Y h,+n−1, Y
h
n + Eh,+n )− rn,k+1(Y hn−1, Y

h
n ), ϕ〉

+
k∑
j=1

ā0
k+1,j

〈
j∑
l=1

ã0
jl

(
rnl(Y h,+n−1, Y

h
n + Eh,⊕n )−

rnl(Y h,+n−1, Y
h
n + Eh,+n )

)
, ϕ

〉
+ 〈rn,k+1(Y h,+n−1, Y

h
n + Eh,⊕n )− rn,k+1(Y h,+n−1, Y

h
n + Eh,+n ), ϕ〉.

Hence we get ∀ϕ ∈ V⊕h
bn(Eh,⊕n,k+1, ϕ) =bn(Eh,+n,k+1, ϕ)

+
k+1∑
j=1

ãk+1,j〈rnj(Y h,+n−1, Y
h
n + Eh,⊕n )− rnj(Y h,+n−1, Y

h
n + Eh,+n ), ϕ〉

=bn(Eh,+n,k+1, ϕ) + 〈Dn,k+1, ϕ〉.

We conclude that the Lemma holds also for k + 1.

Using definition (25), we have the following splitting

Dni = τnD
1
ni +D2

ni (29)

with

D1
ni =γ

i∑
k=1

ã0
ik

(
F
(
tnk,

s∑
j=1

ū0
kj(σn)Y h,+n−1,j +

k−1∑
j=1

ā0
kj(Y hnj + Eh,⊕nj )

)

− F
(
tnk,

s∑
j=1

ū0
kj(σn)Y h,+n−1,j +

k−1∑
j=1

ā0
kj(Y hnj + Eh,+nj )

))
.

(30)

10



and

D2
ni =

i∑
k=1

ã0
ik

k−1∑
j=1

(ākj − ā0
kj)(E

h,⊕
nj − E

h,+
nj ). (31)

The following theorem states that the error estimates Eh,⊕ni are reliable and
efficient up to some small perturbations.

Theorem 4.4. Let Eh,+ni = Ēhni + Ēh,⊕ni where Ēhni ∈ Vh and Ēh,⊕ni ∈ V
⊕
h . D1

ni

and D2
ni are given by equations (30) and (31), respectively. Then we have

µb
Mb
||Eh,⊕ni ||τ ≤ (1 + β)||Ehni||τ + 1

Mb
(
√
τn||D1

ni||∗ + |D2
ni|) (32)

and
(1− β)µb||Ehni||τ ≤

Mb√
1− δ2

||Eh,⊕ni ||τ +Mb||Ēhni||τ

+ 1√
1− δ2

(
√
τn||D1

ni||∗ + |D2
ni|).

(33)

Proof. Using Lemma 4.3 for ϕ = Eh,⊕ni and the ellipticity of the sesquilinear
form bn(·, ·) gives

µb||Eh,⊕ni ||
2
τ ≤ bn(Eh,⊕ni , E

h,⊕
ni ) = bn(Eh,+ni , E

h,⊕
ni ) + 〈Dni, E

h,⊕
ni 〉.

It follows with the continuity of bn(·, ·) and (29),

µb||Eh,⊕ni ||
2
τ ≤Mb||Eh,+ni ||τ ||E

h,⊕
ni ||τ + (

√
τn||D1

ni||∗ + |D2
ni|)||E

h,⊕
ni ||τ .

Then the first inequality follows with (24).
To prove the second inequality we use the splitting Eh,+ni = Ēhni + Ēh,⊕ni . We

get, again using the ellipticity of bn(·, ·), Lemma 4.3, and (29),

µb||Eh,+ni ||
2
τ ≤ bn(Eh,+ni , E

h,+
ni )

=bn(Eh,+ni , Ē
h
ni) + bn(Eh,+ni , Ē

h,⊕
ni )

=bn(Eh,+ni , Ē
h
ni) + bn(Eh,⊕ni , Ē

h,⊕
ni )− 〈Dni, Ē

h,⊕
ni 〉

≤Mb

(
||Eh,+ni ||τ ||Ē

h
ni||τ + ||Eh,⊕ni ||τ ||Ē

h,⊕
ni ||τ

)
+ (
√
τn||D1

ni||∗ + |D2
ni|)||Ē

h,⊕
ni ||τ .

Applying Lemma 4.2 with v = 0 gives

||Ēh,⊕ni ||τ ≤
1√

1− δ2
||Eh,+ni ||τ .

Hence

µb||Eh,+ni ||τ ≤
Mb√
1− δ2

||Eh,⊕ni ||τ +Mb||Ēhni||τ + 1√
1− δ2

(
√
τn||D1

ni||∗ + |D2
ni|).

Finally (24) gives the second inequality.
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Remark 4.2. Let us briefly discuss the size of the perturbations on the right
hand sides of the inequalities (32) and (33). Using Taylor expansion, condition
(9), and the uniform boundedness of the operator A, we get √τn||D1

ni||∗ +
|D2

ni| ≤ C∗
∑i−1
j=1 ||E

h,+
nj − Eh,⊕nj ||τ . Hence, the perturbations depend on the

differences Eh,+nj −E
h,⊕
nj and Eh,+nj − Ēhnj , which are in general of moderate size

compared to the errors Eh,+nj and Eh,⊕nj themselves. Alternatively, making use of
D1
n1 = D2

n1 = 0, one could explore the estimator Eh,⊕n1 to design a spatial mesh
for all stage values and hope that it is especially a good choice for Yns. �

To make the computation of the error estimation even more computationally
efficient, we can replace bn(·, ·) by an approximation b̃n(·, ·) in (27). Then we
get an approximation Ẽh,⊕ni to Eh,⊕ni by solving for all ϕ ∈ V⊕h :

b̃n(Ẽh,⊕ni , ϕ) =
s∑
j=1

ū0
ij(σn)bn(Y h,+n−1,j − Y

h
n−1,j , ϕ) +

i−1∑
j=1

ā0
ij b̃n(Ẽh,⊕nj , ϕ)

+ 〈rni(Y h,+n−1, Y
h
n + Ẽh,⊕n )− rni(Y hn−1, Y

h
n ), ϕ〉.

(34)

Similar to Lemma 4.3 we have for all ϕ ∈ V⊕h that

b̃n(Ẽh,⊕ni , ϕ) = bn(Eh,⊕ni , ϕ)

+
〈

i∑
j=1

ã0
ij

(
rnj(Y h,+n−1, Y

h
n + Ẽh,⊕n )− rnj(Y h,+n−1, Y

h
n + Eh,⊕n )

)
, ϕ

〉
(35)

with the same coefficients ã0
ij , i, j = 1, . . . , s, as in Lemma 4.3. We get the

following result concerning the relation between Ẽh,⊕ni and Eh,⊕ni .

Theorem 4.5. Assume that there are positive constants M̃b and µ̃b such that
the sesquilinear form b̃n(·, ·) satisfies for all v1, v2 ∈ V⊕h

|b̃n(v1, v2)| ≤ M̃b||v1||τ ||v2||τ , (36)
b̃n(v1, v1) ≥ µ̃b||v1||2τ . (37)

Then
µ̃b
Mb
||Ẽh,⊕ni ||τ ≤ ||E

h,⊕
ni ||τ +

√
τn||D̃1

ni||∗ + |D̃2
ni|

Mb
, (38)

||Eh,⊕ni ||τ ≤
M̃b

µb
||Ẽh,⊕ni ||τ +

√
τn||D̃1

ni||∗ + |D̃2
ni|

µb
, (39)

with

D̃1
ni =γ

i∑
k=1

ã0
ik

(
F
(
tnk,

s∑
j=1

ū0
kj(σn)Y h,+n−1,j +

k−1∑
j=1

ā0
kj(Y hnj + Ẽh,⊕nj )

)

− F
(
tnk,

s∑
j=1

ū0
kj(σn)Y h,+n−1,j +

k−1∑
j=1

ā0
kj(Y hnj + Eh,⊕nj )

))
.

and

D̃2
ni =

i∑
k=1

ã0
ik

k−1∑
j=1

(ākj − ā0
kj)(Ẽ

h,⊕
nj − E

h,⊕
nj ).
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Proof. The inequalities follow similar to the proof of Theorem 4.4 using the
relation (35) and the conditions (19), (20), and (36), (37).

Remark 4.3. To approximate the sesquilinear form we use a diagonalization over
V⊕h . Instead of one big global computation for Eh,⊕ni we then can compute Ẽh,⊕ni
element-wise. For details we refer to [2, 11]. �

4.2.2. Implementation of the error estimator and mesh adaption
We have implemented the above described estimation process in KARDOS

[3]. The error estimator Ẽh,⊕ns for the last stage value Y hns ≈ y(tns) is used to
drive the mesh adaptive approach along the main principle Solve - Estimate
- Refine - Solve. After each succesfull timestep the mesh is coarsened before
starting the next refinement, see [2] for details.

5. Time step control

When the multilevel finite element method successfully solved the spatial
problem (14), the error in time has to be estimated and the time step size
adapted. Following [1] and similar to Runge-Kutta methods we estimate the
local error in time by comparing the computed solution approximation Y hns at
tn+1 to one of lower order. All considered linearly implicit peer methods have
order p = s− 1 for variable step sizes. We compute an additional solution Ỹns
at time point tn+1 of order p̃ = s − 2 as a combination of the approximations
Y hni, i = 1, . . . , s− 1. Hence we compute

Ỹns =
s−1∑
i=1

αiY
h
ni. (40)

For details on the computation of the coefficients αi, i = 1, . . . , s − 1, we refer
to [1]. An approximation of the local error in time is given by

εn = Y hns − Ỹns. (41)

With m denoting the number of components of the PDE system (1) and the
computed local temporal error approximation εn we define the following scaled
scalar local error estimate

Eτn :=
(

1
m

m∑
i=1

||(εn)i||2L2

(ScalRi · ||(Y hns)i||L2 + ScalAi ·
√
|Ω|)2

) 1
2

with user-prescribed relative and absolute scaling factors ScalRi and ScalAi,
respectively, for each component of the PDE system (1). If the computed Eτn is
less than a tolerance TOLt given by the user, the current step is accepted and
otherwise rejected and repeated. In both cases, the step size for the next time
step is defined as

τnew = min
{
τmax,min

{
αmax,max

{
αmin, (TOLt/Eτn)1/(p̃+1)

}}
· αsafe · τn

}
.

For the parameters we set, c.f. [1],

αmin = 0.2, αmax = 2, αsafe = 0.9.
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The maximal step size τmax is problem dependent.
To avoid unreasonable small last time steps, we follow the approach in [14].

Assume that the proposed step size is τnew. To guarantee that we reach the
endpoint T with a so-called averaged normal step length, we adjust τnew to

τnew ←
(T − tn)

b(1 + (T − tn)/τnew)c .

6. Efficiency of the spatial error estimator

A measure for the efficiency of the spatial error estimation at time point tns
is the efficiency index

EffSpacen := ||Ẽh,⊕ns ||τ
||Yns − Y hns||τ

. (42)

In order to approximate the efficiency index, we perform one time step with the
peer method on a fixed mesh and given exact initial values. The time step τ
should not be too large, such that the time error does not dominate the spatial
error. But it should also not be too small, such that the interpolation error of
the initial values does not dominate. We compare then the computed solution
with the exact solution. Since we only compute one time step, the global error
is the same as the local error and the local spatial error estimation should be the
same as the global error. Hence the efficiency index should be approximately
one.

To demonstrate the quality of the hierarchical error estimator, we present
the efficiency index for three test problems in 1D. In all computations we use a
uniform mesh with n denoting the number of linear finite elements on the mesh.

1. Linear problem. This test problem is a heat equation with a linear source
term. The domain is the unit interval Ω = (0, 1) and the equations are

∂tu− ∂xxu = u,

u(0, t) = u(1, t) = 0,
u(x, 0) = sin(πx).

(43)

For this problem we have the following analytic solution:

u(x, t) = exp((1− π2)t) sin(πx).

2. Ostermann’s problem. The following problem is taken from [5]. It is a
heat equation with time-dependent source term on Ω = (0, 1) and reads

∂tu− ∂xxu = x exp(−t),
u(0, t) = u(1, t) = 0,

u(x, 0) = 1
6x(1− x2).

(44)

With the given initial condition, we have the following analytic solution:

u(x, t) =
(

sin(x)
sin(1) − x

)
exp(−t).
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n/τ 5.0000e−3 2.5000e−3 1.2500e−3 6.2500e−4
20 6.8326e−1 5.1968e−1 3.5143e−1 2.1334e−1
40 9.0108e−1 8.2037e−1 6.9575e−1 5.3364e−1
80 9.7399e−1 9.4937e−1 9.0373e−1 8.2447e−1
160 9.9348e−1 9.8702e−1 9.7438e−1 9.5007e−1

(a) Efficiency Index for the linear problem
n/τ 5.0000e−3 2.5000e−3 1.2500e−3 6.2500e−4
20 6.8485e−1 5.2084e−1 3.5217e−1 2.1374e−1
40 9.0156e−1 8.2081e−1 6.9613e−1 5.3391e−1
80 9.7408e−1 9.4949e−1 9.0385e−1 8.2458e−1
160 9.9347e−1 9.8704e−1 9.7441e−1 9.5010e−1

(b) Efficiency Index for Ostermann’s problem
n/τ 1.2500e−3 6.2500e−4 3.1250e−4 1.5625e−4
160 5.1261e−1 3.4542e−1 2.0903e−1 1.1678e−1
320 8.0885e−1 6.7979e−1 5.1532e−1 3.4727e−1
640 9.4434e−1 8.9492e−1 8.1008e−1 6.8096e−1
1280 9.8543e−1 9.7152e−1 9.4471e−1 8.9529e−1

(c) Efficiency Index for the tanh problem

Table 1: Efficiency of the spatial error estimator

3. Tanh problem. This test problem is a heat equation on the domain Ω =
(−3, 3) with nonlinear source term and no-flux boundary conditions given by

∂tu− ∂xxu = p3(1− u2) + 2p2
2(u− u3),

∂nu(−3, t) = ∂nu(3, t) = 0,
u(x, 0) = tanh(p2(x− p1)).

(45)

The problem is taken from [2] and was originally published in [15] to study
moving-mesh strategies. The analytic solution is given by

u(x, t) = tanh(p2(x− p1) + p3t).

We set p1 = 0.05 and p2 = p3 = 6.0. Here, homogeneous Neumann boundary
conditions are justified for small t.

In Table 1, the results for all test problems are shown. Starting at time point
t0 = 0.01 one time step with peer4pos for different mesh sizes n and different
step sizes τ is computed. For fixed τ and increasing mesh size n, i.e. better
spatial resolution, the efficiency index converges for all problems to the desired
value one.

Note that the error estimator always underestimates the true global error.
This stands in contrast to Rosenbrock solvers where it was observed, that the
spatial error estimator tends to overestimate the spatial error [2].

7. Comparison of Peer-FE Methods with Rosenbrock-FE Methods

In this section we present a comparison of some Rosenbrock schemes and
linearly implicit peer methods for two different test problems in 2D, see Sections
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7.1 and 7.2. The Rosenbrock schemes used are the second order method ros2
[16], the third order method ros3pl [17], and the fourth order method rodas4p
[18]. As stated in Section 3, the linearly implicit peer methods used are based
on the coefficients of the singly implicit peer methods presented in [8]. These
are the second order method peer3pos, the third order method peer4pos, and
the fourth order method peer5pos.

The computations are all performed fully adaptive in time and space. The
spatial tolerance TOLx is always chosen equal to the time tolerance TOLt, i.e.
TOLx = TOLt = TOL. Several tests showed that this is usually a good choice
with respect to accuracy and stability of the whole method.

7.1. Burgers problem
Our first test problem is the two dimensional Burgers equation [1],

∂ty1 −∇ · (D∇u) = −a(y1
∂y1

∂x1
+ y2

∂y1

∂x2
), in I × Ω, (46)

∂ty2 −∇ · (D∇v) = −a(y1
∂y2

∂x1
+ y2

∂y2

∂x2
), in I × Ω. (47)

Dirichlet and initial conditions are taken from the exact solution (48). The
parameters are D = 0.01 and a = 1. The spatial domain is the unit square
Ω = (0, 1)× (0, 1) and the time interval is I = [0, 2]. The exact solution is given
by

y1(x1, x2, t) = 3
4 −

1
4a

(
1 + exp −4x1 + 4x2 − t

32D

)−1
,

y2(x1, x2, t) = 3
4 + 1

4a

(
1 + exp −4x1 + 4x2 − t

32D

)−1
.

(48)

The exact solution depends in space only on the difference x1−x2. Hence it
is a wave starting at the diagonal x1 = x2 of the domain, and moving with a
constant speed towards its north-west corner.

We approximate the exact L2(L2) error in time and space by

||yh − y||L2(L2) ≈

(
N∑
n=1

τn||Y hns(·)− y(·, tns)||L2

) 1
2

. (49)

We have performed several runs with decreasing tolerance TOL = 0.5n ×
10−3, n = 0, . . . , 8. In Figure 1 we see the L2(L2) error of the computed
approximation plotted over the computing time. The second order method ros2
is the least effective method with respect to achieved error versus computing
time. The other methods tested are very similar in their performance. The
fourth order methods rodas4p and peer5pos are slightly better than the third
order methods ros3pl and peer4pos. As the wave moves with constant speed
the time steps used are constant after a short initial phase. Since peer3pos is
a third order method for constant time steps, it is no surprise that it shows a
similar performance to ros3pl.

In Table 2a we give the number of time steps required for the different
tolerance values. While the required number of time steps increases by a factor
17 for the finest tolerance compared to the coarsest tolerance for ros2, it only
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Figure 1: The L2(L2)-error plotted against the computing time for Burgers problem.

n/Method ros2 ros3pl rodas4p peer3pos peer4pos peer5pos
0 37 20 17 18 17 15
1 53 23 18 22 21 20
2 76 28 20 26 24 21
3 108 34 23 33 27 24
4 155 41 25 42 30 25
5 218 51 28 54 35 27
6 309 63 31 71 41 29
7 436 81 35 94 47 32
8 615 104 39 127 56 34

(a) Number of time steps for a given local tolerance
n/Method ros2 ros3pl rodas4p peer3pos peer4pos peer5pos
0 729 968 1088 729 729 729
1 754 1391 2398 1230 1249 1279
2 1201 2782 3709 1477 1536 1600
3 1456 4184 8592 3650 3666 3905
4 3634 11625 13973 4785 5091 5385
5 4876 16782 35826 13802 13157 14792
6 13644 46353 58730 17938 18996 20316
7 18524 70160 119783 51242 50484 58499
8 52705 147994 136896 70430 72998 78243

(b) Maximal number of spatial mesh points for a given local tolerance

Table 2: Number of time steps and maximal number of spatial mesh points for Burgers
problem and tolerances T OL = (0.5)n × 10−3.

doubles for rodas4p and peer5pos. For peer4pos it increases by a factor three,
for ros3pl by a factor four, and for peer3pos by a factor five, respectively.

Finally in Table 2b we see the maximal number of spatial mesh points used
for the given tolerance. During the integration with ros2 the number of spatial
nodes is much smaller than for the other methods. The integration with rodas4p
uses the finest meshes. While the mesh sizes for the same spatial tolerance are
similar for peer methods, they differ drastically for Rosenbrock methods.
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7.2. Flame Problem
For the second test problem, we consider the propagation of a flame front

through a cooled channel. This problem was published in [2] as a test problem
for fully adaptive Rosenbrock-FE methods.

With a dimensionless temperature T , species concentration Y , and constant
diffusion coefficients we look at the following system of equations

∂tT −∆T = ω(T, Y ), in Ω× (0, 60],

∂tY −
1
Le

∆Y = −ω(T, Y ), in Ω× (0, 60],

T (·, 0) = T0(·) on Ω,
Y (·, 0) = Y0(·) on Ω.

(50)

The Lewis number Le is the ratio of heat and mass diffusivity. The reaction is
described by an Arrhenius law giving the following one-species reaction mecha-
nism

ω(T, Y ) = β2

2LeY exp
(
−β(1− T )

1− α(1− T )

)
. (51)

The computational domain is a channel with width H = 16 and length
L = 60. An obstacle with half of the width and length L/4 is positioned at
L/4. The freely propagating laminar flame described by (50) is cooled at the
obstacle. The heat absorption is modeled by a Robin boundary condition on
∂ΩR. On the left boundary of the domain, we prescribe Dirichlet conditions.
The remaining boundary conditions are of homogeneous Neumann type. All
this is represented by the following boundary conditions:

T = 1 on ∂ΩD × I, ∂nT = 0 on ∂ΩN × I, ∂nT = −κT on ∂ΩR × I, (52)
Y = 0 on ∂ΩD × I, ∂nY = 0 on ∂ΩN × I, ∂nY = 0 on ∂ΩR × I. (53)

As initial condition we set

T0(x) =
{

1 for x1 ≤ x0

exp(−(x− x0)) for x1 > x0
, (54)

Y0(x) =
{

0 for x1 ≤ x0

1− exp(−Le(x− x0)) for x1 > x0
. (55)

The remaining parameters are chosen as

Le = 1, α = 0.8, κ = 0.1, β = 10, x0 = 9.

In Figure 2 the spatial meshes at time points t = 20 and t = 40 are shown for
an integration with peer4pos and TOL = 2.0× 10−4. The plots illustrate well
the importance of spatial adaptivity for the flame problem. At t = 20 the flame
is inside the channel and that is where most of the mesh refinement takes place.
At t = 40 the flame has left the channel and now the mesh needs to be refined
outside the channel, while inside the channel a coarser mesh is sufficient.

For this problem, we do not have an analytical solution. We computed a
reference solution ŷ at the time point T with TOL = 10−5 using ros3pl and
take the L2-norm ||Y hNs(·)− ŷ(·)||L2 at time point tend = 60 as numerical error.
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(a) Flame at time point t = 20.
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(b) Flame at time point t = 40.

Figure 2: Spatial meshes for the Flame problem within a integration with peer4pos and
T OL = 2.0× 10−4. Above at time point t = 20 the flame is inside the channel and in the
figure below the flame already left the channel at time point t = 40.
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Figure 3: The numerical error ||Y h
Ns(·) − ŷ(·)||L2 at the final time point tend = 60 plotted

against the computing time for the flame problem.

We ran computations with different tolerances TOL = 0.5n × 10−3, n =
0, . . . , 5. For the coarsest tolerance TOL = 10−3 the peer methods could not
successfully compute a solution. For stricter tolerance values there were no dif-
ficulties. The performance of the methods is shown in Figure 3. With respect to
the achieved error versus computing time peer5pos shows the best performance.
The other methods, except ros2, have a similar performance, while ros2 is again
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n/Method ros2 ros3pl rodas4p peer3pos peer4pos peer5pos
0 283 211 276 - - -
1 423 262 309 198 249 282
2 641 330 350 254 279 287
3 987 426 398 343 287 268
4 1501 551 456 472 360 282
5 2315 716 524 653 425 284

(a) Number of time steps for a given local tolerance
n/Method ros2 ros3pl rodas4p peer3pos peer4pos peer5pos
0 546 1601 2516 - - -
1 932 3078 5514 2116 2281 2142
2 1815 6707 10962 3605 3658 3595
3 3357 12926 23836 7072 7204 7204
4 6959 28223 45196 13000 13377 13512
5 13370 52585 89514 27292 27397 27355

(b) Maximal number of spatial mesh points for a given local tolerance

Table 3: Number of time steps and maximal number of spatial mesh points for the flame
problem and tolerances T OL = 0.5n × 10−3.

the worst method.
In Table 3a the number of time steps used is shown. peer5pos needs the

smallest number of time steps to satisfy the given error tolerance. Even for
tighter tolerances the number of time steps used is only increasing a little.
rodas4p and peer4pos need almost the same number of time steps for the same
tolerance, while ros3pl needs the same number of time steps as peer3pos. This
demonstrates the advantage of using time integrators not suffering from order
reduction.

Again the maximal number of spatial mesh points needed differs a lot for
Rosenbrock methods for a tolerance, while the peer methods require almost the
same number of mesh points to fulfill a given tolerance, as can be seen in Table
3b.

8. Conclusion

In this paper we presented and analyzed a combination of linearly-implicit
peer methods and multilevel finite element methods within a Rothe approach
for parabolic problems. A spatial error estimator, based on the hierarchical
basis approach, was derived and proven to be efficient and robust up to some
small perturbations. These results for peer methods are similar to those for
Rosenbrock methods employed in the same context. This led to a fully adaptive
method for time-dependent PDEs.

In numerical experiments we could show the efficiency of the spatial error
estimators for test problems in one spatial dimension. Furthermore we com-
pared the performance of the fully adaptive linearly-implicit peer method to
Rosenbrock methods for two test problems in two spatial dimensions. It could
be seen that the linearly implicit peer methods based on coefficients taken from
[8] are at least competitive with Rosenbrock methods for the test problems.
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