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1 Introduction

The purpose of this paper is to introduce a generic method that establishes Lp estimates
for time-periodic solutions to a large class of linear, partial differential equations. The
method works particularly well for parabolic problems. To emphasize the strength and
simplicity of the method in the parabolic case, we demonstrate it on the time-periodic
heat equation: 

∂tu−∆u = f in R× Ω,

u = 0 on R× ∂Ω,

u(t+ T, x) = u(t, x),

(1.1)

where Ω ⊂ Rn (n ≥ 2) is a domain, u : R × Ω → R the unknown function dependent
on a time variable t and a spatial variable x with (t, x) ∈ R× Ω, T > 0 a fixed positive
time-period, and f : R× Ω→ R the data, which is also assumed to be T -time-periodic.
The method to be introduced enables us to identify a Banach space Xp of T -time-
periodic functions vanishing on the boundary ∂Ω with the property that the differential
operator ∂t−∆ maps Xp homeomorphically onto Lp

(
(0, T )×Ω

)
for any p ∈ (1,∞). As

a consequence, we obtain the Lp estimate

‖u‖Xp ≤ c‖f‖Lp((0,T )×Ω) (1.2)

for a solution to (1.1). Observe that Lp
(
(0, T )×Ω

)
is the “natural” Lp space for T -time-

periodic data, whence Xp can be described as the maximal regularity space in the Lp

setting for the T -time-periodic problem (1.1). The Banach spaceXp will be characterized
as a Sobolev-type space. A proper identification of Xp and in particular the Lp estimate
(1.2) is crucial in many applications; not only the analysis of corresponding non-linear
problems, but also the investigation of Hopf bifurcations and other phenomena.

We shall first treat the whole-space case Ω = Rn, then the half-space case Ω = Rn+ and
finally the case of a sufficiently smooth bounded domain. In the first case we establish
a direct representation formula for the solution u in terms of Fourier multipliers. The
estimate (1.1) is then shown using classical tools from harmonic analysis. In the half
space case the reflection principle applies. For the case of bounded domains we employ
localization techniques. One may recognize these steps as the standard procedure for
analyzing elliptic problems. In fact, we consider it a novelty of our method that it enables
us to treat time-periodic parabolic problems with the same approach and tools used for
the corresponding elliptic problem. This is by no means a trivial approach. In fact, the
vast literature on time-periodic problems is almost solely based on the idea of treating
first the corresponding initial value problem and then subsequently showing, employing
for example a Poincaré map, existence of at least one initial value that produces a
time-periodic solution. In comparison, our method is much more direct. Moreover, no
maximal regularity results for the initial-value problem are needed. In fact, we shall
show that maximal Lp regularity for the corresponding initial-value problem follows
effortlessly and without employing the notion of R-boundedness from our method. This
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suggests that in the investigation of classical Cauchy problems, one should treat the
time-periodic problem before the initial-value problem.

We start by briefly explaining the method in the whole-space case Ω = Rn. The
main idea is to reformulate the time-periodic problem as a PDE on the locally compact
abelian group G := T × Rn, where T denotes the torus R/TZ. As both the data f
and the solution u are T -periodic in the t variable, they can naturally be interpreted as
functions on G. Moreover, a differentiable structure on G is canonically inherited from
R×Rn via the quotient mapping π : R×Rn → T×Rn in such a way that (1.1) can be
equivalently reformulated as a partial differential equation

∂tu−∆u = f in G (1.3)

in a setting of functions u : G→ R and f : G→ R. Note that the periodicity conditions
become superfluous in this setting. The main advantage of the G setting, however, is
the availability of the Fourier transform FG in combination with the space of tempered
distributions S ′(G), the dual of the Schwartz-Bruhat space S (G). With these tools at
our disposal, we derive from (1.3) the representation formula

u = F−1
G

[
1

−ik + |ξ|2
FG

[
f
]]

(1.4)

for data f ∈ S (G). Here, (k, ξ) denote points in the dual group Ĝ := 2π
T Z × Rn. The

representation formula is key to the Lp estimates. We further let δZ denote the Dirac
mass on 2π

T Z and split the right-hand side in (1.4) into two parts:

u = F−1
Rn

[
1

|ξ|2
FRn

[
1T ∗T f

]]
+ F−1

G

[(
1− δZ(k)

)
−ik + |ξ|2

FG

[
f
]]

=: u1 + u2, (1.5)

where 1T ∗T f denotes convolution on the torus T with the constant function 1. The
technical advantage of decomposing u as in (1.5) is immediately clear. The first part u1

is namely expressed in terms of a classical Fourier multiplier in the Rn setting for which
we can use standard tools from harmonic analysis to show Lp estimates. In the simple
case of the heat equation under investigation here, we recognize the Fourier multiplier
to be the symbol of the Laplacian. The second part u2 is expressed in terms of a Fourier
multiplier with no singularities. As a consequence, we are able to establish very strong Lp

estimates for u2. In contrast to the Rn case, however, there is no comprehensive theory
available in the abstract G setting to establish such estimates via Fourier multipliers.
To overcome this challenge, we employ a transference principle for group multipliers, see
Theorem 5.1. The transference principle allows us to “transfer” the multiplier into an
Rn+1 setting and then use the classical tools. The principle was originally established
by de Leeuw [6] and later generalized by Edwards and Gaudry in [7]. Combining the
estimates of u1 and u2, we obtain the desired estimate (1.2) of u and an identification
of the space Xp.

Another advantage of the reformulation (1.3) in the group setting is the ability to
express the solution u as a convolution of a “fundamental solution” with the data
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f . One can derive directly from the representation (1.4) that u = Γ ∗G f , where
Γ = F−1

G

[
1

−ik+|ξ|2
]

and ∗G denotes convolution on the group G. In fact, from (1.5)

we see that Γ = 1T ⊗ ΓL + Γ⊥, where ΓL denotes the well-known fundamental solution

to the Laplace equation and Γ⊥ = F−1
G

[(
1−δZ(k)

)
−ik+|ξ|2

]
. Provided we can obtain pointwise

estimates of Γ⊥, this observation can be used to extract pointwise information from u.
In particular, the asymptotic structure of u as |x| → ∞ can be analyzed in this way. In
Section 6 such pointwise estimates of Γ⊥ are established.

2 Statement of the main result

Although our aim is to introduce a generic method, we shall nevertheless state as our
main theorem the result obtained by applying the method to the specific case of the
time-periodic heat equation (1.1). The details of the method are then revealed in the
proof of the theorem.

We state the main theorem in a context of classical Sobolev spaces of time-periodic
functions. Let Ω ⊂ Rn be a domain. We first introduce the space

C∞0,per(R× Ω) := {f ∈ C∞(R× Ω) | f(t+ T, x) = f(t, x) ∧ f ∈ C∞0
(
[0, T ]× Ω

)
},

of smooth time-period functions with compact support in the spatial variable. Clearly,

‖f‖p :=

(
1

T

∫ T

0

∫
Ω
|f(t, x)|p dxdt

) 1
p

,

‖f‖1,2,p :=

( ∑
|α|≤1

‖∂αt f‖pp +
∑
|β|≤2

‖∂βxf‖pp
) 1
p

are norms on C∞0,per(R × Ω), and we can thus define the Lebesgue and (anisotropic)
Sobolev spaces

Lpper(R× Ω) := C∞0,per(R× Ω)
‖·‖p

, W 1,2,p
per

(
R× Ω

)
:= C∞0,per(R× Ω)

‖·‖1,2,p

of time-periodic functions. Note that for domains Ω satisfying the segment condition we
have

W 1,2,p
per (R× Ω) = {f ∈ Lpper(R× Ω) | ‖f‖1,2,p <∞},

where the derivatives which appear in the norm ‖f‖1,2,p are to be understood in the
sense of distributions. We introduce the operators

P,P⊥ : C∞0,per(R× Ω)→ C∞0,per(R× Ω), Pf :=
1

T

∫ T

0
f(t, x) dt, P⊥ := Id−P,

which are clearly complementary projections. By continuity, P and P⊥ extend to
bounded operators on Lpper(R × Ω) and W 1,2,p

per

(
R × Ω

)
. Of course, Pf is independent

of the time variable t ∈ R and can be considered as a function in the space variable
x ∈ Ω only. Finally we denote by Ẇ 2,p(Ω) the classical homogeneous Sobolev spaces
with semi-norm |·|2,p. We can now formulate the main theorem:
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Theorem 2.1. Assume that either Ω = Rn, Ω = Rn+, or Ω ⊂ Rn is a bounded domain
with a C1,1-smooth boundary. Let p ∈ (1,∞). For any f ∈ Lpper(R × Ω) there is a
solution u to (1.1) with

u(t, x) = us(x) + up(t, x) ∈ Ẇ 2,p(Ω)⊕ P⊥W 1,2,p
per

(
R× Ω

)
(2.1)

satisfying

|us|2,p ≤ c1 ‖Pf‖p, (2.2)

‖up‖1,2,p ≤ c2 ‖P⊥f‖p, (2.3)

where c1 = c1(n, p,Ω) > 0 and c2 = c2(n, p,Ω, T ) > 0. If v = vs + vp is another solution

with vs ∈ Ẇ 2,r1(Ω) and vp ∈ P⊥W 1,2,r2
per

(
R × Ω

)
, r1, r2 ∈ (1,∞), then us − vs is a

polynomial of order 1 and up = vp.

Remark 2.2. Observe that the constant c1 in (2.2) is independent of the time period T ,
whereas the constant c2 in (2.3) depends on T and in fact, as will become clear in the
proof, tends to infinity as T → ∞. If one is not interested in the dependency of the
constants on T , it may be more convenient to combine (2.2)–(2.3) into the estimate

|us|2,p + ‖up‖1,2,p ≤ c‖f‖p, (2.4)

where c = c(n, p,Ω, T ) > 0.

Remark 2.3. The statement in Theorem 2.1 concerning uniqueness can be improved
considerably for the purely periodic part up of the solution. In the whole-space case
Ω = Rn, for example, it will follow directly from the proof that if u and v are two
solutions to (1.1) with P⊥u,P⊥v ∈ S ′

per(R×Rn), then P⊥u = P⊥v. Here, S ′
per(R×Rn)

denotes the space of tempered distributions that are T -periodic in the t variable.

Remark 2.4. The Lebesgue space Lpper(R× Ω) can be identified with Lpper(R;Lp(Ω)). It
is natural to ask whether Theorem 2.1 can be extended to mixed-norm spaces of the
form Lpper(R;Lq(Ω)). The proof of (2.2)-(2.3) in this paper relies on the Marcinkiewicz
multiplier theorem, which requires p = q. In order to extend the result to the case p 6= q,
one can use a result of Besov [4] on a mixed-norm Littlewood-Paley theorem, upon which
the classical theorems of Fourier multipliers are based.

Observe that the projections P and P⊥ decompose a time-periodic solution u into
a stationary part us = Pu and a purely periodic part up = P⊥u. From Theorem 2.1
we learn that the two parts must be treated separately in order to identify the Banach
space of “maximal regularity” for problem (1.1), that is, a Banach space Xp(R × Ω)
of T -time-periodic functions vanishing on the boundary R× ∂Ω with the property that
∂t−∆ : Xp(R×Ω)→ Lpper(R×Ω) is a homeomorphism. As a corollary to Theorem 2.1
we directly obtain:

Corollary 2.5. With the same assumptions as in Theorem 2.1, let

Xp
⊥(R× Ω) := {u ∈ P⊥W 1,2,p

per

(
R× Ω

)
| u|∂Ω = 0}.
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Then

∂t −∆ : Xp
⊥(R× Ω)→ P⊥Lpper(R× Ω)

is a homeomorphism.

Remark 2.6. In Corollary 2.5 we only identify the maximal regularity space Xp
⊥(R×Ω)

for the purely periodic part P⊥u of a solution to (1.1). In order to identify the full
maximal regularity space of the problem, we would need to also address the stationary
part Pu. More specifically, we would need to identify a Banach space Xp

s (Ω) of functions
that vanish at the boundary ∂Ω with the property that −∆ : Xp

s (Ω) → Lp(Ω) is a
homeomorphism. Since Lpper(R×Ω) = Lp(Ω)⊕P⊥Lpper(R×Ω), we could then conclude
that

∂t −∆ : Xp
s (Ω)⊕Xp

⊥(R× Ω)→ Lpper(R× Ω)

is a homeomorphism. Since the identification of Xp
s (Ω) is a well-known problem in the

context of elliptic equations and completely decoupled from the time-periodic nature
of (1.1), we shall not address it here. Of course, in certain cases, for example when
Ω is bounded, the homogeneous Sobolev space

(
Ẇ 2,p(Ω), |·|2,p

)
is a Banach space, in

which case the identification of Xp
s (Ω) follows directly from Corollary 2.5. Note that

Corollary 2.5 makes it possible to construct hybrid Lp-type Banach spaces of maximal
regularity for (1.1). If for example Xp

s (Ω) and Y p
s (Ω) are Banach spaces such that

−∆ : Xp
s (Ω)→ Y p

s (Ω) is a homeomorphism, then

∂t −∆ : Xp
s (Ω)⊕Xp

⊥(R× Ω)→ Y p
s (Ω)⊕ P⊥Lpper(R× Ω)

is a homeomorphism. Such constructions may be useful in applications where for example
weak Lebesgue or Besov spaces are better suited to capture the properties of solutions
to the elliptic problem satisfied by Pu, in our case −∆Pu = Pf .

3 Impact on the initial-value problem

A remarkable consequence of Corollary 2.5 concerns initial value problems. Recall that a
generator −A of a C0 semi-group on a Banach space X is said to admit maximal Lp reg-
ularity on (0, T ), if for every f ∈ Lp(0, T ;X) the unique solution to the abstract Cauchy
problem ∂tu+ Au = f , u(0) = 0 satisfies u ∈ Lp(0, T ;D(A)) ∩W 1,p(0, T ;X) =: ET (A).
It is well-known that maximal Lp regularity is equivalent to R-boundedness of the resol-
vent family {t(it+A)−1 | t ∈ R}, see [11]. This characterization has been used extensively
to show maximal regularity for various differential operators, in particular for the Dirich-
let Laplacian. Using Corollary 2.5, we are able to establish maximal Lp regularity for
the Dirichlet Laplacian while completely circumventing the notion of R-boundedness.

Recall that the Dirichlet Laplacian ∆p : D(∆p) ⊂ Lp(Ω) → Lp(Ω) with domain

D(∆p) := W 2,p(Ω) ∩W 1,p
0 (Ω), defined via ∆pu := ∆u for u ∈ D(∆p), is a generator of

an analytic C0 semi-group et∆p .
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Theorem 3.1. Let p ∈ (1,∞), T > 0 and assume that Ω = Rn, Ω = Rn+ or Ω is
a bounded domain with a C1,1-smooth boundary. The Dirichlet Laplacian −∆p admits
maximal Lp regularity on (0, T ).

Proof. Recall for an analytic semi-group e−tA on a Banach space X the following char-
acterization of the trace space at t = 0:

(X,D(A))1−1/p,p =
{
x ∈ X | Ae−tAx ∈ Lp(0, T ;X)

}
=
{
u(0) | u ∈ ET (A)

}
, (3.1)

see for example [9, Corollary 1.14, Proposition 6.2]. Let f ∈ Lp(0, T ;Lp(Ω)). Canon-
ically, we can interpret f as a periodic function in Lpper(R × Ω) and write f = Pf +
P⊥f ∈ Lp(Ω) ⊕ P⊥Lpper(R × Ω). Corollary 2.5 gives a solution v ∈ ET (∆p) on (0, T ) to
∂tv−∆pv = P⊥f . Since et∆p is analytic, also et∆pv(0) ∈ ET (∆p) by (3.1). Furthermore,

we define w(t) :=
∫ t

0 e
(t−s)∆pPf ds. Since Pf ∈ Lp(Ω) does not depend on time, it is

easy to verify that w ∈ ET (∆p). Thus, a solution u ∈ ET (∆p) to ut−∆pu = f , u(0) = 0
is given by u := v + w − et∆pv(0).

Remark 3.2. The argument above is based on one given by Arendt and Bu in [3]. Observe
that the proof of Theorem 3.1 yields maximal regularity for any generator −A of an
analytic semi-group for which a result corresponding to Corollary 2.5 can be established.

4 Preliminaries

In the following, we let G denote the group

G := T× Rn := R/TZ× Rn (4.1)

with addition as the group operation. We shall reformulate (1.1) and the main theorem
in a setting of functions defined on G. For this purpose, we must first introduce a
topology and an appropriate differentiable structure on G. Both will be inherited from
R×Rn. More precisely, we equip G with the quotient topology induced by the canonical
quotient mapping

π : R× Rn → T× Rn, π(t, x) := ([t], x). (4.2)

Equipped with the quotient topology, G becomes a locally compact abelian group. The
restriction Π := π|[0,T )×Rn is used to identify G with the domain [0, T )×Rn; Π is clearly
a (continuous) bijection. Via Π, one can identify the Haar measure dg on G as the
product of the Lebesgue measure on [0, T ) and the Lebesgue measure on Rn. The Haar
measure is unique up to a normalization factor, which we choose such that∫

G
u(g) dg =

1

T

∫ T

0

∫
Rn
u ◦Π(t, x) dxdt.

For the sake of convenience, we will omit the Π in integrals of G-defined functions with
respect to dxdt. Next, we define by

C∞(G) := {u : G→ R | u ◦ π ∈ C∞(R× Rn)} (4.3)
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the space of smooth functions on G. For u ∈ C∞(G) we define derivatives

∀(α, β) ∈ Nn0 × N0 : ∂βt ∂
α
xu :=

[
∂βt ∂

α
x (u ◦ π)

]
◦Π−1. (4.4)

It is easy to verify for u ∈ C∞(G) that also ∂βt ∂
α
xu ∈ C∞(G). We further introduce the

subspace

C∞0 (G) := {u ∈ C∞(G) | suppu is compact}

of compactly supported smooth functions. If Ω ⊂ Rn is a domain, then the spaces
C∞(T× Ω) and C∞0 (T× Ω) are defined analogously.

With a differentiable structure defined on G, we can introduce the space of tempered
distributions on G. For this purpose, we first recall the Schwartz-Bruhat space of gen-
eralized Schwartz functions; see for example [5]. More precisely, we define

S (G) := {u ∈ C∞(G) | ∀(α, β, γ) ∈ Nn0 × Nn0 × N0 : ρα,β,γ(u) <∞},
ρα,β,γ(u) := sup

(t,x)∈G
|xα∂βx∂

γ
t u(t, x)|.

Equipped with the semi-norm topology of the family
{
ρα,β,γ | (α, β, γ) ∈ Nn0 ×Nn0 ×N0

}
,

S (G) becomes a topological vector space. The dual space S ′(G) equipped with the
weak* topology is referred to as the space of tempered distributions onG. For a tempered
distribution u ∈ S ′(G), distributional derivatives ∂βt ∂

α
xu ∈ S ′(G) are defined by duality

as in the classical case.

We shall also introduce tempered distributions on G’s dual group Ĝ. We associate
each (k, ξ) ∈ 2π

T Z × Rn with the character χ : G → C, χ(t, x) := eix·ξ+ikt on G. In
particular, we stress the fact that k is not an integer, but k ∈ 2π

T Z. It is standard to

verify that all characters are of this form, and we can thus identify Ĝ = 2π
T Z × Rn.

By default, Ĝ is equipped with the compact-open topology, which in this case coincides
with the product of the discrete topology on 2π

T Z and the Euclidean topology on Rn.

The Haar measure on Ĝ is simply the product of the counting measure on 2π
T Z and the

Lebesgue measure on Rn. By

C∞(Ĝ) := {w ∈ C (Ĝ) | ∀k ∈ 2π

T
Z : w(k, ·) ∈ C∞(Rn)}

the space of smooth functions on Ĝ is introduced. The Schwartz-Bruhat space on the
dual group Ĝ is defined by

S (Ĝ) := {w ∈ C∞(Ĝ) | ∀(α, β, γ) ∈ Nn0 × Nn0 × N0 : ρ̂α,β,γ(w) <∞},

ρ̂α,β,γ(w) := sup
(k,ξ)∈Ĝ

|ξα∂βξ k
γw(k, ξ)|,

and equipped with the canonical semi-norm topology.
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We denote by FG the Fourier transform associated to the locally compact abelian
group G. It is explicitly given by

FG : L1(G)→ C (Ĝ), FG(u)(k, ξ) :=
1

T

∫ T

0

∫
Rn
u(t, x) e−ix·ξ−ikt dxdt.

The inverse Fourier transform is formally defined by

F−1
G : L1(Ĝ)→ C (G), F−1

G (w)(t, x) :=
∑
k∈ 2π

T
Z

∫
Rn
w(k, ξ) eix·ξ+ikt dξ.

It is standard to verify that FG : S (G) → S (Ĝ) is a homeomorphism with F−1
G as

the actual inverse, provided the Lebesgue measure dξ is normalized appropriately. By
duality, FG extends to a homeomorphism S ′(G)→ S ′(Ĝ).

Let Ω ⊂ Rn be a domain. In analogy to the spaces Lpper(R × Ω) and W 1,2,p
per (R × Ω),

we define by

Lp(T× Ω) := C∞0 (T× Ω)
‖·‖p

, W 1,2,p(T× Ω) := C∞0 (T× Ω)
‖·‖1,2,p

the corresponding Lebesgue and Sobolev spaces, where ‖·‖p is the Lp-norm with respect
to the Haar measure dg. Again, we have the equality

W 1,2,p(T× Ω) = {f ∈ Lp(T× Ω) | ‖f‖1,2,p <∞}

if the domain Ω satisfies the segment condition.
As in Section 2, we define the time-averaging projection P and its complement P⊥.

Observe that P can also be expressed as the convolution over the torus T with the
constant function 1T, that is, Pf = 1T∗Tf . Hence, by Young’s inequality P is continuous
both in Lp(T× Ω) and W 1,2,p(T× Ω). Therefore, we may define the Banach space

Xp
⊥(T× Ω) := {u ∈ P⊥W 1,2,p

(
T× Ω

)
| u|T×∂Ω = 0}.

5 Proof of the main result

With the terminology introduced in the previous section, we are now able to disclose the
details of our method and in doing so prove the main theorem.

We start by recalling a theorem on transference of Fourier multipliers, which enables us
to “transfer” multipliers from one group setting into another. The theorem is originally
due to de Leeuw [6], who established the transference principle between the torus group
and R. The more general version below is due to Edwards and Gaudry [7, Theorem
B.2.1].

Theorem 5.1. Let G and H be locally compact abelian groups. Moreover, let Φ : Ĝ→ Ĥ
be a continuous homomorphism and p ∈ [1,∞]. Assume that m ∈ L∞(Ĥ;C) is a
continuous Lp-multiplier, that is, there is a constant B > 0 such that

∀f ∈ L2(H) ∩ Lp(H) : ‖F−1
H

[
m ·FH(f)

]
‖p ≤ B‖f‖p.
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Then m ◦ Φ ∈ L∞(Ĝ;C) is also an Lp-multiplier with

∀f ∈ L2(G) ∩ Lp(G) : ‖F−1
G

[
m ◦ Φ ·FG(f)

]
‖p ≤ B‖f‖p.

5.1 The Whole Space

With the theorem above on transference of Fourier multipliers, we are able to establish
the essential part of the main theorem in the whole-space case.

Lemma 5.2. Let p ∈ (1,∞). For any f ∈ P⊥Lp(G) there exists a solution u ∈
P⊥W 1,2,p(G) to

∂tu−∆u = f in G (5.1)

that satisfies

‖u‖1,2,p ≤ c ‖f‖p, (5.2)

where c = c(n, p, T ) > 0. If v ∈ P⊥S ′(G) is another solution, then u = v.

Proof. It clearly suffices to assume f ∈ P⊥S (G). Observe that f = P⊥f . Recalling
that FG

[
P⊥f

]
= (1 − δZ)FG

[
f
]
, we can apply the Fourier transform FG in (5.1) to

deduce that

u := F−1
G

[
1− δZ(k)

−ik + |ξ|2
FG

[
f
]]

(5.3)

is a solution. Since the Fourier multiplier

M : Ĝ→ C, M(k, ξ) :=
1− δZ(k)

−ik + |ξ|2

is bounded, that is, M ∈ L∞(Ĝ), it is clear that u given by the formula above is well-
defined as an element in S ′(G). To analyze u further, we wish to apply Theorem 5.1.
For this purpose, let χ be a “cut-off” function with

χ ∈ C∞(R;R), χ(η) = 0 for |η| ≤ π

T
, χ(η) = 1 for |η| ≥ 2π

T
.

We then define

m : R× Rn → C, m(η, ξ) :=
χ(η)

−iη + |ξ|2
. (5.4)

We let H := R×Rn and consider H to be a locally compact group in the canonical way.
The dual group Ĥ can then also be identified with R × Rn and we can thus consider
m as mapping m : Ĥ → C. In order to employ Theorem 5.1, we define Φ : Ĝ → Ĥ,
Φ(k, ξ) := (k, ξ). Clearly, Φ is a continuous homomorphism. Moreover, M = m ◦ Φ.
Consequently, if we can show that m is a continuous Lp(H)-multiplier, we may conclude
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from Theorem 5.1 that M is an Lp(G)-multiplier. Since the only zero of the denominator
−iη+ |ξ|2 in definition (5.4) of m is (η, ξ) = (0, 0), and since the numerator χ

(
η
)

in (5.4)
vanishes in a neighborhood of (0, 0), we see that m is continuous; in fact m is smooth.
We shall now apply Marcinkiewicz’s multiplier theorem, see for example [8, Corollary
5.2.5] or [10, Chapter IV, §6], to show that m is an Lp(R × Rn)-multiplier. Note that
classical harmonic analysis can be employed at this point since m is a Fourier multiplier
in the Euclidean R× Rn setting. We must verify that

sup
ε∈{0,1}n+1

sup
(η,ξ)∈R×Rn

∣∣ξε11 · · · ξ
εn
n η

εn+1∂ε11 · · · ∂
εn
n ∂

εn+1
η m(η, ξ)

∣∣ ≤ c. (5.5)

Since m is smooth, (5.5) follows if we can show that all functions of type

(η, ξ)→ ξε11 · · · ξ
εn
n η

εn+1∂ε11 · · · ∂
εn
n ∂

εn+1
η m(η, ξ)

stay bounded as |(η, ξ)| → ∞. Since m is a rational function with non-vanishing denom-
inator away from (0, 0), this is easy to verify. Consequently, we conclude (5.5) and by
Marcinkiewicz’s multiplier theorem that m is an Lp(H)-multiplier. As mentioned above,
it follows that M is an Lp(G)-multiplier and thus the estimate ‖u‖p ≤ c‖f‖p holds. Note
that the neighbourhood in which m is vanishing becomes small as T →∞, and hence also
the corresponding bound in (5.5) grows for large periods T . We can repeat the argument
above for ∂tu and ∂αxu, |α| ≤ 2 and obtain the estimates ‖∂tu‖p ≤ c(n, p, T )‖f‖p and
‖∂αxu‖p ≤ c(n, p, T )‖f‖p. We have thus shown (5.2). It is clear from the representation
formula (5.3) that P⊥u = u, whence we have u ∈ P⊥W 1,2,p(G).

It remains to show uniqueness. Assume that v ∈ P⊥S ′(G) is another solution. Ap-
plying the Fourier transform FG, it then follows (−ik + |ξ|2)FG

[
u − v

]
= 0 and thus

supp FG

[
u − v

]
⊂ {(0, 0)}. However, since 0 = FG

[
P(u − v)

]
= δZ · FG

[
u − v

]
, we

must have (0, 0) /∈ supp FG

[
u− v

]
. We conclude supp FG

[
u− v

]
= ∅ and consequently

u = v.

5.2 The Half Space

In this section we consider the half-space case T× Rn+.

Lemma 5.3. Let p ∈ (1,∞). For any f ∈ P⊥Lp(T×Rn+) there exists a unique solution
u ∈ P⊥W 1,2,p(T× Rn+) to {

∂tu−∆u = f in T× Rn+ ,
u = 0 on T× ∂Rn+ ,

(5.6)

and there is a constant c = c(n, p, T ) > 0 such that the following estimate holds:

‖u‖1,2,p ≤ c‖f‖p . (5.7)

If additionally f ∈ P⊥Ls(T×Rn+) for some s ∈ (1,∞), then also u ∈ P⊥W 1,2,s(T×Rn+).
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Proof. The existence of the solution u ∈ P⊥W 1,2,p(T × Rn+) to (5.6) satisfying (5.7)
follows easily from the reflection principle in combination with Lemma 5.2. For the
uniqueness, let u ∈ P⊥W 1,2,p(T × Rn+) be a solution to (5.6) with data f = 0 and let

h ∈ P⊥Lp
′
(T × Rn+). Then by the above we find v ∈ P⊥W 1,2,p′(T × Rn+) such that

∂tv −∆v = h and v|T×∂Rn+ = 0. Defining w(t, x) := v(−t, x), we conclude∫
T

∫
Rn+
uhdx dt = −

∫
T

∫
Rn+
u(∂tw + ∆w) dx dt =

∫
T

∫
Rn+

(∂tu−∆u)w dx dt = 0.

Since h is arbitrary, it follows u = 0. The regularity assertion follows by the reflection
principle and the uniqueness in P⊥S ′(G) stated in Lemma 5.2.

5.3 The Bent Half Space

In this section we consider bent half spaces T × Rnω, where Rnω is merely a small per-
turbation of the half space Rn+. More specifically, we consider a Lipschitz continu-
ous function ω : Rn−1 → R, close to the zero function in a certain sense, and define
Rnω := {(x′, xn) ∈ Rn | xn > ω(x′)}.

We introduce the transformation φω : Rnω → Rn+ via φω(x) := x̃ := (x′, xn − ω(x′)).
For a function u defined on T × Rnω we set Φ[u](t, x̃) := ũ(t, x̃) := u(t, φ−1

ω (x̃)), where
(t, x̃) ∈ T× Rn+. It should be understood that ‖u‖p and ‖u‖1,2,p denote norms over the
space-time domain T × Rnω, while ‖ũ‖p and ‖ũ‖1,2,p denote norms over the space-time
domain T× Rn+.

Proposition 5.4. Let p ∈ (1,∞) and assume that ω ∈ C0,1(Rn−1) ∩ W 2,1
loc (Rn−1) is

such that ‖∇′ω‖∞, ‖∇′2ω‖∞ < ∞. Then Φ : P⊥Lp(T × Rnω) → P⊥Lp(T × Rn+) and
Φ : P⊥W 1,2,p(T× Rnω)→ P⊥W 1,2,p(T× Rn+) yield homeomorphisms.

Proof. It is readily seen that φω : Rnω → Rn+ is a bijection with Jacobian equal to 1.

We denote by ∂̃i, ∇̃ the corresponding differential operators with respect to the variable
x̃ ∈ Rn+. Formally setting ∂nω = 0, we see

∂iu(t, x) = (∂̃i − (∂iω)∂̃n)ũ(t, x̃),

∂i∂ju(t, x) =
[
∂̃i∂̃j − (∂iω)∂̃j ∂̃n − (∂jω)∂̃i∂̃n − (∂i∂jω)∂̃n + (∂iω)(∂jω)∂̃2

n

]
ũ(t, x̃).

(5.8)

Hence, there is C = C(n) > 0 such that

‖u‖p = ‖ũ‖p ,
‖∇u‖p ≤ C

(
1 + ‖∇′ω‖∞

)
‖∇̃ũ‖p ,

‖∇2u‖p ≤ C
[(

1 + ‖∇′ω‖∞
)2‖∇̃2ũ‖p + ‖∇′2ω‖∞‖∂̃nũ‖p

]
,

(5.9)

which proves the claim.
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Lemma 5.5. Let p ∈ (1,∞) and ω ∈ C0,1(Rn−1)∩W 2,1
loc (Rn−1). Then there is a constant

K = K(n, p) > 0 with the following property: If ‖∇′ω‖∞, ‖∇′2ω‖∞ < K, then for any
f ∈ P⊥Lp(T× Rnω) there exists a unique solution u ∈ P⊥W 1,2,p(T× Rnω) to{

∂tu−∆u = f in T× Rnω ,
u = 0 on T× ∂Rnω ,

(5.10)

and there is a constant c = c(n, p, ω, T ) > 0 such that the following estimate holds:

‖u‖1,2,p ≤ c‖f‖p. (5.11)

If additionally ‖∇′ω‖∞, ‖∇′2ω‖∞ ≤ min{K(n, p),K(n, s)} and f ∈ P⊥Ls(T × Rnω) for
some s ∈ (1,∞), then u ∈ P⊥W 1,2,s(T× Rnω).

Proof. Observe that ∂t − ∆̃ : Xp
⊥(T × Rn+) → P⊥Lp(T × Rn+) is an isomorphism due to

Lemma 5.3. In virtue of (5.8) we obtain

(∂t −∆)u ◦ φ−1
ω = (∂t − ∆̃ + R̃)ũ, (5.12)

where R̃ : Xp
⊥(T× Rn+)→ P⊥Lp(T× Rn+) is given by

R̃ũ := −|∇′ω|2∂̃2
nũ+ 2(∇′ω, 0) · ∇̃∂̃nũ+ (∆′ω)∂̃nũ.

We have

‖R̃ũ‖p ≤ 4K(1 +K)‖ũ‖1,2,p ≤ 4K(1 +K)|||(∂t − ∆̃)−1|||‖(∂t − ∆̃)ũ‖p.

Thus for sufficiently small K > 0, ∂t − ∆̃ + R̃ is an isomorphism and so is ∂t − ∆ in
virtue of (5.12) and Proposition 5.4. In particular, we have the a priori estimate (5.11).
The regularity assertion follows if we consider intersection spaces, e.g. Xp

⊥ ∩X
s
⊥ instead

of Xp
⊥.

5.4 Bounded Domains

The key lemma for bounded domains Ω ⊂ Rn with a boundary of class C1,1 reads as
follows.

Lemma 5.6. Let Ω ⊂ Rn be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). The operator ∂t − ∆ : Xp

⊥(T × Ω) → P⊥Lp(T × Ω) is injective and has a
dense range. Moreover, there exists a constant c = c(n, p,Ω, T ) > 0 such that for all
u ∈ Xp

⊥(T× Ω) we have the estimate

‖u‖1,2,p ≤ c
(
‖(∂t −∆)u‖p + ‖u‖p

)
. (5.13)

Proof. Let us consider for k ∈ 2π
T Z \ {0} the Helmholtz equation{
ikv −∆v = h in Ω ,

v = 0 on ∂Ω .
(5.14)
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Standard elliptic theory yields for every h ∈ Lp(Ω) a unique solution v ∈W 2,p(Ω) to
(5.14). If u ∈ Xp

⊥(T× Ω) satisfies (∂t−∆)u = 0, then FTu(k, ·) ∈W 2,p(Ω) solves (5.14)
with a homogeneous right-hand side, where FT denotes the Fourier transform on the
torus. Consequently FTu(k, ·) = 0. Since k ∈ 2π

T Z\{0} was arbitrary and FTu(0, ·) = 0
by the assumption Pu = 0, it follows u = 0. Therefore, ∂t −∆ is injective.

Next we show that the range of ∂t −∆ is dense in P⊥Lp(T×Ω). Since trigonometric
polynomials with coefficients in E are dense in Lp(T;E) for any Banach space E, see for
example [2, Theorem 4.2.19], it suffices to find u ∈ Xp

⊥(T×Ω) satisfying (∂t−∆)u = eikth
for h ∈ Lp(Ω). Solving (5.14), we directly find that such u is given by u := eiktv.

Finally let us prove (5.13). The proof follows a well-known localization method. We
choose finitely many balls Bj ⊂ Rn, j ∈ {1, . . . ,m} covering Ω, where (after a possible
rotation and translation, which we will suppress in the following) each j ∈ {1 . . . ,m} is
of one of the two types:

• type Rn: if Bj ⊂ Ω,

• type Rnωj : if Bj ∩ ∂Ω 6= ∅.

In the latter case, ωj : Rn−1 → R denote Lipschitz functions with Bj ∩ ∂Ω ⊂ graphωj
in the respective local coordinates. Note that if we choose the balls sufficiently small,
the functions ωj meet the regularity and smallness assumption in Lemma 5.5 due to the
boundary regularity of Ω. Moreover, we choose corresponding smooth cut-off functions
ψj ∈ C∞0 (Rn) satisfying suppψj ⊂ Bj and

∑m
j=1 ψj = 1 in Ω.

Let us write f = (∂t −∆)u. We obtain for j ∈ {1, . . . ,m}

∂t(ψju)−∆(ψju) = fj , (5.15)

where fj := ψjf−2(∇ψj)∇u− (∆ψj)u. Depending on whether j ∈ {1, . . . ,m} is of type
Rn or Rnωj , we interpret (5.15) as a problem in T× Rn or T× Rnωj , and obtain

‖ψju‖1,2,p ≤ ‖fj‖p ≤ C(ψj)(‖f‖p + ‖∇u‖p + ‖u‖p)

in virtue of Lemma 5.2 and 5.5, respectively. Summing up the finitely many inequalities
obtained for j ∈ {1, . . . ,m} and absorbing the term ‖∇u‖p on the right-hand side by a
standard interpolation argument, we conclude the estimate (5.13).

Next we show that the last term in (5.13) can be omitted.

Lemma 5.7. Let Ω ⊂ Rn be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). There exists a constant c = c(n, p,Ω, T ) > 0 such that for all u ∈ Xp

⊥(T×Ω)
the following estimate holds:

‖u‖1,2,p ≤ c‖(∂t −∆)u‖p . (5.16)

Proof. We will show (5.16) by a contradiction argument. If (5.16) does not hold, then
we find a sequence (um)m∈N ⊂ Xp

⊥(T × Ω) such that ‖um‖1,2,p = 1 for all m ∈ N and
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‖(∂t −∆)um‖p → 0 as m → ∞. Suppressing the notion of subsequences, we thus have
the weak convergence um ⇀ u in Xp

⊥(T× Ω), and u solves{
∂tu−∆u = 0 in T× Ω ,

u = 0 on T× ∂Ω .

By Lemma 5.6 we conclude u = 0. Since the domain Ω is bounded, the embedding
W 1,2,p(T × Ω) ↪→ W 1,1,p(T × Ω) ↪→↪→ Lp(T × Ω) is compact, whence ‖um‖p → 0 as
m→∞. This yields the contradiction

1 = lim
m→∞

‖um‖1,2,p ≤ lim
m→∞

c
(
‖(∂t −∆)um‖p + ‖um‖p

)
= 0.

Therefore, estimate (5.16) has to hold.

Lemma 5.8. Let Ω ⊂ Rn be a bounded domain with boundary of class C1,1 and let
p ∈ (1,∞). For any f ∈ P⊥Lp(T×Ω) there exists a unique solution u ∈ P⊥W 1,2,p(T×Ω)
to {

∂tu−∆u = f in T× Ω ,

u = 0 on T× ∂Ω ,
(5.17)

and there is a constant c = c(n, p,Ω, T ) > 0 such that the following estimate holds:

‖u‖1,2,p ≤ c‖f‖p . (5.18)

If additionally f ∈ P⊥Ls(T× Ω) for some s ∈ (1,∞), then also u ∈ P⊥W 1,2,s(T× Ω).

Proof. The operator ∂t −∆ : Xp
⊥(T × Ω) → P⊥Lp(T × Ω) is injective and has a dense

range by Lemma 5.6. By Lemma 5.7, the range is also closed. Hence, ∂t − ∆ is an
isomorphism, which gives the unique solvability of (5.17) as well as the estimate (5.18).
The regularity assertion follows immediately from the unique solvability of (5.17) in
W 1,2,min{s,p}(T× Ω).

5.5 Proof of the main theorem

Proof of Theorem 2.1. Existence of a solution us ∈ Ẇ 2,p(Ω) to{
−∆us = Pf in Ω,

us = 0 on ∂Ω
(5.19)

that satisfies (2.2) is well-known from standard theory on elliptic partial differential
equations. Via the canonical quotient map, the spaces C∞0,per(R × Ω) and C∞0 (T × Ω)
are isometrically isomorphic in the norms ‖·‖p and ‖·‖1,2,p. By construction, also the

Sobolev spaces W 1,2,p
per (R × Ω) and W 1,2,p(T × Ω) are isometrically isomorphic. Hence

15



Lemma 5.2 in the case Ω = Rn, Lemma 5.3 in the case Ω = Rn+, and Lemma 5.8 in the

case of a bounded domain, provide a solution up ∈ P⊥W 1,2,p
per (R× Ω) to

∂tup −∆up = P⊥f in R× Ω,

up = 0 on R× ∂Ω,

up(t+ T, x) = up(t, x)

(5.20)

that satisfies (2.3). Setting u := us + up, we thus obtain the desired solution to
(1.1). Assume v = vs + vp is another solution to (1.1) with vs ∈ Ẇ 2,r1(Ω) and

vp ∈ P⊥W 1,2,r2
per

(
R × Ω

)
. Since up and vp both solve (5.20), the uniqueness statements

of Lemma 5.2, Lemma 5.3 or Lemma 5.8 yield up = vp. Similarly, both us and vs solve
(5.19), whence us − vs is a polynomial of order 1 by standard elliptic theory.

6 Fundamental Solution

The introduction of distributions on the group G enables us to define in a natural manner
a fundamental solution to (1.3) as a solution Γ ∈ S ′(G) to

∂tΓ −∆Γ = δG, (6.1)

where δG denotes the Dirac delta distribution on G. Employing the Fourier transform
FG and the decomposing as in (1.5), we immediately obtain the expression

Γ = 1T ⊗ ΓL + Γ⊥, (6.2)

where 1T is the constant function 1 on the torus T, ΓL denotes the well-known funda-
mental solution to the Laplace equation

ΓL : Rn \ {0} → C, ΓL :=


− 1

2π
log |x| (n = 2),

1

(n− 2)ωn
|x|2−n (n > 2)

and

Γ⊥ ∈ S ′(G), Γ⊥ := F−1
G

[(
1− δZ(k)

)
−ik + |ξ|2

]
. (6.3)

At the outset, Γ⊥ is defined as a tempered distribution. The following theorem asserts
that Γ⊥ has a realization which can be estimated pointwise.

Theorem 6.1. The distribution Γ⊥ ∈ S ′(G) defined in (6.3) satisfies for r ∈ [2,∞):

‖Γ⊥(·, x)‖Lr(T) ≤ c|x|−(n−2+
2(r−1)
r

) e−
1
2

√
π
T
|x| . (6.4)

Moreover

sup
t∈T
|Γ⊥(t, x)| ≤ c|x|−n e−

1
2

√
π
T
|x| . (6.5)
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Proof. The Fourier transform

FT
[
Γ⊥
]

= F−1
Rn

[(
1− δZ(k)

)
−ik + |ξ|2

]
∈ S ′

(
2π

T
Z× Rn

)

is the function FT
[
Γ⊥
]

: 2π
T Z×

(
Rn \ {0}

)
→ C given by

FT
[
Γ⊥
]
(k, x) =

(
1− δZ(k)

) i
4

(√
−ik

2π|x|

)n−2
2

H
(1)
n
2
−1

(√
−ik · |x|

)
, (6.6)

where H
(1)
ν denotes the Hankel function of the first kind, and

√
z the square root of

z with positive imaginary part. One may verify the identity (6.6) either directly or by
recalling that for all k ∈ 2π

T Z\{0} both expressions are fundamental solutions in S ′(Rn)

to the Helmholtz equation. It is well known that H
(1)
ν (z) : C \ {0} → C is analytic and

behaves asymptotically as H
(1)
ν (z) ∼ |z|−

1
2 e− Im z as |z| → ∞; see for example [1, 9.2.3].

Provided ν ∈ R+, one has H
(1)
ν (z) ∼ |z|−ν as |z| → 0; see [1, 9.1.9]. Combining (6.6)

with the asymptotic behaviour of H
(1)
ν in both 0 and ∞, we let r′ = r

r−1 and estimate
in the case n > 2:

‖FT
[
Γ⊥
]
(·, x)‖r′

`r′ ( 2π
T

Z)
≤ c

∑
k∈ 2π

T
Z\{0}

(
|k|

n−2
4 |x|

2−n
2

∣∣∣H(1)
n
2
−1

(√
−ik · |x|

)∣∣∣)r′

≤ c
( ∑

0<|k|< 1
2
|x|−2

|x|r
′(2−n) +

∑
1
2
|x|−2≤|k|

|k|
n−3
4
r′ |x|

1−n
2
r′ e
− r′√

2
|k|

1
2 |x|
)

≤ c
(
|x|r

′(2−n)−2χ[
0,
√

T
4π

)(|x|) +
∑
0<|k|

|k|
n−3
4 |x|

1−n
2
r′ e
− r′√

2
|k|

1
2 |x|

χ(√
T
4π
,∞
)(|x|)).

An elementary computation yields
∑∞

j=1 j
n−3
4 qj

1
2 ≤ cq for 0 ≤ q ≤ α < 1, which

employed above implies

‖FT
[
Γ⊥
]
(·, x)‖r′

`r′ ( 2π
T

Z)

≤ c
(
|x|r

′(2−n)−2χ[
0,
√

T
4π

)(|x|) + |x|
1−n
2
r′ e−r

′√ π
T
|x| χ(√

T
4π
,∞
)(|x|))

≤ c|x|r
′(2−n)−2 e−r

′ 1
2

√
π
T
|x| .

By Hausdorff-Young’s inequality, we thus obtain in the case n > 2:

‖Γ⊥(·, x)‖Lr(T) ≤ c‖FT
[
Γ⊥
]
(·, x)‖`r′ ( 2π

T
Z) ≤ c|x|

−(n−2+
2(r−1)
r

) e−
1
2

√
π
T
|x| .
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To obtain a similar estimate in the case n = 2, we first recall that H
(1)
0 (z) ∼ log |z| as

|z| → 0 (see [1, 9.1.8]) and estimate:

∑
0<|k|< 1

2
|x|−2

(
|k|

n−2
4 |x|

2−n
2

∣∣∣H(1)
0

(√
−ik · |x|

)∣∣∣)r′

≤ c
∑

0<|k|< 1
2
|x|−2

∣∣log
(
|k|

1
2 |x|

)∣∣r′

≤ c
∫ T

4π
|x|−2

0

∣∣log
(
t
1
2 |x|

)∣∣r′ dt · χ[
0,
√

T
4π

)(|x|)
≤ c|x|−2

∫ √
T
4π

0
|log s|r

′
sds · χ[

0,
√

T
4π

)(|x|) ≤ c|x|−2 · χ[
0,
√

T
4π

)(|x|).
We can now proceed just as in the case n > 2 and conclude (6.1) also in the case n = 2.
The pointwise estimate (6.5) follows by the same argument with r =∞ and r′ = 1.

Remark 6.2. As an immediate, but non-trivial, consequence of Theorem 6.1 and the
structure (6.2) of the fundamental solution Γ , we can identify the leading term in
the asymptotic expansion as |x| → ∞ of a solution to (1.1) in the case Ω = Rn. If
f is sufficiently regular, say f ∈ C∞0,per(R × Rn), a solution u to (1.1) that satisfies
lim|x|→∞ u(t, x) = 0 coincides with the convolution of Γ with f :

u = Γ ∗ f = (1T ⊗ ΓL) ∗ f + Γ⊥ ∗ f
= ΓL ∗Rn

(
1T ∗T f

)
+ Γ⊥ ∗ f.

An asymptotic expansion of the convolution of ΓL with 1T∗Tf ∈ C∞0 (Rn) is well-known:

ΓL ∗Rn
(
1T ∗T f

)
(x) = ΓL(x) ·

∫
Rn

(
1T ∗T f

)
(y) dy +O(|x|1−n). (6.7)

From (6.4) we deduce for sufficiently large values of |x| that

|Γ⊥ ∗ f(t, x)| ≤
∫
Rn
‖Γ⊥(·, x− y)‖L2(T)‖f(·, y)‖L2(T) dy ≤ c|x|−(n−1) e−

1
4

√
π
T
|x|

and observe that the asymptotic expansion of Γ⊥ ∗ f adds only terms of higher order to
(6.7). More precisely, we find that

u = Γ ∗ f = ΓL(x) ·
(∫

Rn

1

T

∫ T

0
f(t, y) dtdy

)
+O(|x|1−n),

which means that a solution to the time-periodic heat equation has the same behaviour
at spatial infinity as a solution to the stationary Poisson equation. We emphasize that
this insight follows naturally from our method, but is by no means clear in the more
traditional approaches to time-periodic equations.
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