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Abstract

A power partial isometry (PPI) is an element v of a C∗-algebra with
the property that every power vn is a partial isometry. The goal of this
paper is to identify the universal C∗-algebra generated by a PPI with
(a slight modification of) the algebra of the finite sections method for
Toeplitz operators with continuous generating function, as first described
by Albrecht Böttcher and Bernd Silbermann in [1].
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1 Introduction

Let A be a C∗-algebra. An element V of A is called a partial isometry if vv∗v = v.
Simple examples show that a power of a partial isometry needs not to be a partial
isometry again. One therefore calls v a power partial isometry (PPI) if every
power of v is a partial isometry again.

Examples. (a) In a C∗-algebra with identity element e, every unitary element
u (i.e. u∗u = uu∗ = e) is a PPI. In particular, the function u : t 7→ t is a
unitary element of the algebra C(T) of the continuous functions on the complex
unit circle T, and the operator U of multiplication by the function u is a unitary
operator on the Hilbert space L2(T) of the squared integrable functions on T.

(b) In a C∗-algebra with identity element e, every isometry v (i.e. v∗v = e)
and every co-isometry v (i.e. vv∗ = e) is a PPI. In particular, the operators
V : (x0, x1, . . .) 7→ (0, x0, x1, . . .) and V ∗ : (x0, x1, x2, . . .) 7→ (x1, x2, . . .) of
forward and backward shift, respectively, are PPIs on the Hilbert space l2(Z+)
of the squared summable sequences on the non-negative integers.

(c) The matrix Vn := (aij) with ai+1,i = 1 and aij = 0 if i 6= j + 1, considered as
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an element of the algebra Cn×n of the complex n× n matrices, is a PPI.

(d) If vi is a PPI in a C∗-algebra Ai for every i in an index set I, then (vi)i∈I is a
PPI in the direct product

∏
i∈I Ai. In particular, the operator (V, V ∗), considered

as an element of L(l2(Z+))× L(l2(Z+)), is a PPI.

Note that the PPI Vn in (c) and (V, V ∗) in (d) are neither isometric nor co-
isometric.

The goal of the present paper is to describe the universal C∗-algebra generated
by a PPI. Recall that a C∗-algebra A generated by a PPI v is universal if, for
every other C∗-algebra B generated by a PPI w, there is a ∗-homomorphism from
A to B which sends v to w. The universal algebra generated by a unitary resp.
isometric element is defined in an analogous way. The existence of a universal
algebra generated by a PPI is basically a consequence of Example (d).

It follows from the Gelfand-Naimark theorem that the universal algebra gen-
erated by a unitary element is ∗-isomorphic to the algebra C(T), generated by
the unitary function u. Coburn [5] identified the universal algebra generated by
an isometry as the Toeplitz algebra T(C) which is the smallest C∗-subalgebra of
L(l2(Z+)) which contains the isometry V , the shift operator. This algebra bears
its name since it can be described as the smallest C∗-subalgebra of L(l2(Z+))
which contains all Toeplitz operators T (a) with generating function a ∈ C(T).
Recall that the Toeplitz operator with generating function a ∈ L1(T) is given
the matrix (ai−j)

∞
i,j=0 where ak stands for the kth Fourier coefficient of a. This

operator is bounded on l2(Z+) if and only if a ∈ L∞(T) (see [2, 3]).
We will see that the universal algebra of a PPI is also related with Toeplitz

operators, via the finite sections discretization with respect to the sequence of
the projections Pn : (x0, x1, . . .) 7→ (x0, . . . , xn−1, 0, 0, . . .) on l2(Z+). Write F
for the set of all bounded sequences (An)n≥1 of operators An ∈ L(imPn) and G
for the set of all sequences (An) ∈ F with ‖An‖ → 0. Provided with entry-wise
defined operations and the supremum norm, F becomes a C∗-algebra and G a
closed ideal of F . Since L(imPn) is isomorphic to Cn×n, we can identify F with
the direct product and G with the direct sum of the algebras Cn×n for n ≥ 1. Now
consider the smallest C∗-subalgebra S(T(C)) of F which contains all sequences
(PnT (a)Pn) with a ∈ C(T) and its C∗-subalgebra S≥2(T(C)) which is generated
by the sequence (PnV Pn) (note that V is the Toeplitz operator with generating
function t 7→ t). With these notations, the main result of the present paper can
be formulated as follows.

Theorem 1 The universal algebra generated by a PPI is ∗-isomorphic to the
C∗-algebra S≥2(T(C)) generated by the PPI (PnV Pn).

For a general account on C∗-algebras generated by partial isometries, with special
emphasis on their relation to graph theory, see [4].

Before going into the details of the proof of Theorem 1, we provide some
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basic (and well known) facts on the algebras S(T(C)) and S≥2(T(C)). Since the
first entry of the sequence (PnV Pn) is zero, the first entry of every sequence in
S≥2(T(C)) is zero. So we can omit the first entry and consider the elements of
S≥2(T(C)) as sequences labeled by n ≥ 2 (whence the notation). In fact this is
the only difference between the algebras S(T(C)) and S≥2(T(C)).

Proposition 2 S≥2(T(C)) consists of all sequences (An)n≥2 where (An)n≥1 is a
sequence in S(T(C)).

The sequences in S(T(C)) are completely described in the following theorem,
where we let Rn denote the operator (x0, x1, . . .) 7→ (xn−1, . . . , x0, 0, 0, . . .) on
l2(Z+). Further we set ã(t) := a(t−1) for every function a on T. This descrip-
tion was found by A. Böttcher and B. Silbermann and first published in their
1983 paper [1] on the convergence of the finite sections method for quarter plane
Toeplitz operators (see also [6], Section 1.4.2).

Proposition 3 The algebra S(T(C)) consists of all sequences (An)n≥1 of the
form

(An) = (PnT (a)Pn + PnKPn +RnLRn +Gn) (1)

where a ∈ C(T), K and L are compact operators, and (Gn) ∈ G. The represen-
tation of a sequence (An) ∈ S(T(C)) in this form is unique.

Corollary 4 G is a closed ideal of S(T(C)), and the quotient algebra S(T(C))/G
is ∗-isomorphic to the C∗-algebra of all pairs

(T (a) +K, T (ã) + L) ∈ L(l2(Z+))× L(l2(Z+)) (2)

with a ∈ C(T) and K, L compact. In particular, the mapping which sends the
sequence (1) to the pair (2) is a ∗-homomorphism from S(T(C)) onto S(T(C))/G
with kernel G.

It is not hard to see that the algebra of all pairs (2) is just the smallest C∗-
subalgebra of L(l2(Z+))× L(l2(Z+)) that contains the PPI (V, V ∗).

Corollary 5 The set J of all pairs (K, L) of compact operators K, L is a closed
ideal of S(T(C))/G. The quotient algebra (S(T(C))/G)/J is ∗-isomorphic to
C(T). In particular, the mapping which sends the pair (2) to the function a is a
∗-homomorphism from S(T(C))/G onto C(T) with kernel J .

Observe that all of the above examples (a) - (d) appear somewhere in the algebra
S(T(C)) and its quotients.
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2 Elementary properties of PPI

Our first goal is a condition ensuring that the product of two partial isometries
is a partial isometry again.

Proposition 6 Let u, v be partial isometries. Then uv is a partial isometry if
and only if

u∗uvv∗ = vv∗u∗u, (3)

i.e. if the initial projection u∗u of u and the range projection vv∗ of v commute.

Proof. Condition (3) implies that

(uv)(uv)∗(uv) = uvv∗u∗uv = (uu∗u)(vv∗v) = uv;

hence, uv is a partial isometry. Conversely, if uv is a partial isometry, then a
simple calculation gives

v∗(vv∗u∗u− u∗uvv∗)(u∗uvv∗ − vv∗u∗u)v = 0.

With the C∗-axiom we conclude that v∗(vv∗u∗u−u∗uvv∗) = 0, hence vv∗(vv∗u∗u−
u∗uvv∗) = 0, which finally gives

vv∗u∗u = vv∗u∗uvv∗.

The right-hand side of this equality is selfadjoint; so must be the left-hand side.
Thus, vv∗u∗u = (vv∗u∗u)∗ = u∗uvv∗, which is condition (3).

In particular, if v is a partial isometry, then v2 is a partial isometry if and only if

v∗vvv∗ = vv∗v∗v. (4)

Proposition 7 Let v be a partial isometry with property (4) (e.g. a PPI). Then

e := v∗v + vv∗ − v∗vvv∗ = v∗v + vv∗ − vv∗v∗v

is the identity element of the C∗-algebra generated by v. Moreover,

p := vv∗ − vv∗v∗v = e− v∗v and p̃ := v∗v − v∗vvv∗ = e− vv∗

are mutually orthogonal projections (meaning that pp̃ = p̃p = 0).

Proof. Condition (4) implies that e is selfadjoint. Further,

ve = vv∗v + vvv∗ − vv∗vvv∗ = v + vvv∗ − vvv∗ = v

and, similarly, v∗e = v∗. Taking adjoints it follows that ev∗ = v∗ and ev = v, and
e is the identity element. The remaining assertions are also easy to check.

We will often use the notation v∗n instead of (v∗)n.
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Proposition 8 (a) If v is a PPI, then

v∗kvkvnv∗n = vnv∗nv∗kvk for all k, n ≥ 1. (5)

(b) If v is a partial isometry and if (5) holds for k = 1 and for every n ≥ 1, then
v is a PPI.

Proof. Assertion (a) is a consequence of Proposition 6 (the partial isometry vn+k

is the product of the partial isometries vk and vn). Assertion (b) follows easily
by induction. For k = 1, condition (5) reduces to

(v∗v)(vnv∗n) = (vnv∗n)(v∗v).

Thus if v and vn are partial isometries, then vn+1 is a partial isometry by Propo-
sition 6.

Lemma 9 If v is a PPI, then (vnv∗n)n≥0 and (v∗nvn)n≥0 are decreasing sequences
of pairwise commuting projections.

Proof. The PPI property implies that the vnv∗n are projections and that

vnv∗nnn+k(v∗)n+k = (vnv∗nvn)vk(v∗)n+k = vnvk(v∗)n+k = nn+k(v∗)n+k

for k, n ≥ 0. The assertions for the second sequence follow similarly.

3 A distinguished ideal

Let A be a C∗-algebra generated by a PPI v. By alg (v, v∗) we denote the
smallest (symmetric, not necessarily closed) subalgebra of A which contains v
and v∗. Further we write Nv for the set of all non-negative integers such that
pvnp̃ 6= 0. From Proposition 7 we know that 0 6∈ Nv. Finally, we set

πn := pvnp̃v∗np and π̃n := p̃v∗npvnp̃.

Proposition 10 (a) The element pvnp̃ is a partial isometry with initial projec-
tion π̃n and range projection πn. Thus, the projections πn and π̃n are Murray-von
Neumann equivalent in A, and they generate the same ideal of A.

(b) πmπn = 0 and π̃mπ̃n = 0 whenever m 6= n.

Proof. (a) By definition,

πn = pvnp̃v∗np = pvn(e− vv∗)v∗np = p(vnv∗n − vn+1(v∗)n+1)p.

Since p = e− vv∗ and vnv∗n commute by Proposition 8,

πn = p(vnv∗n − vn+1(v∗)n+1) = (vnv∗n − vn+1(v∗)n+1)p.
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Being a product of commuting projections (Lemma 9), πn is itself a projection.
Analogously, π̃n is a projection. Thus, pvnp̃ is a partial isometry, and πn and π̃n
are Murray-von Neumann equivalent. Finally, the equality

πn = π2
n = (pvnp̃v∗np)2 = pvnπ̃nv

∗np

shows that πn belongs to the ideal generated by π̃n. The reverse inclusion follows
analogously. Assertion (b) is again a simple consequence of Lemma 9.

Let Cn denote the smallest closed ideal ofA which contains the projection πn (like-
wise, the projection π̃n). We want to show that Cn is isomorphic to C(n+1)×(n+1)

whenever n ∈ Nv (Proposition 17 below). For we need to establish a couple of
facts on (finite) words in alg (v, v∗).

Lemma 11 Let a, b, c be non-negative integers. Then

v∗avbv∗c =


(v∗)a−b+c if min{a, c} ≥ b,
vb−av∗c if a ≤ b ≤ c,
v∗avb−c if a ≥ b ≥ c

and

vav∗bvc =


va−b+c if min{a, c} ≥ b,
va(v∗)b−c if a ≥ b ≥ c,
(v∗)b−avc if a ≤ b ≤ c.

Proof. Let min{a, c} ≥ b. Then

v∗avbv∗c = (v∗)a−bv∗bvbv∗b(v∗)c−b = (v∗)a−bv∗b(v∗)c−b = (v∗)a−b+c,

where we used that v∗b is a partial isometry. If a ≤ b ≤ c, then

v∗avbv∗c = v∗avavb−a(v∗)b−a(v∗)c−b+a = vb−a(v∗)b−av∗ava(v∗)c−b+a

by Proposition 8 (a). Thus,

v∗avbv∗c = vb−a(v∗)b−av∗avav∗a(v∗)c−b = vb−a(v∗)b−av∗a(v∗)c−b = vb−av∗c.

Similarly, v∗avbv∗c = v∗avb−c if a ≥ b ≥ c. The second assertion of the lemma
follows by taking adjoints.

Every word in alg (v, v∗) is a product of powers vn and v∗m. Every product
vav∗bvc and v∗avbv∗c of three powers can be written as a product of at most two
powers if one of the conditions

min{a, c} ≥ b or a ≤ b ≤ c or a ≥ b ≥ c (6)

in Lemma 11 is satisfied. Since (6) is equivalent to max{a, c} ≥ b, such a product
can not be written as a product of less than three powers by means of Lemma 11 if
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max{a, c} < b. Since it is not possible in a product vav∗bvcv∗d or v∗avbv∗cvd of four
powers that max{a, c} < b and max{b, d} < c, one can shorten every product of
powers vn and v∗m to a product of at most three powers. Summarizing we get
the following lemma.

Lemma 12 Every finite word in alg (v, v∗) is of the form vav∗b or v∗bva with
a, b ≥ 0 or of the form vav∗bvc or v∗avbv∗c with 0 < min{a, c} ≤ max{a, c} < b.

Corollary 13 Let w be a word in alg (v, v∗).

(a) If pwp 6= 0, then w = vav∗a for some a ≥ 0.
(b) If p̃ww̃ 6= 0, then w = v∗ava with some a ≥ 0.

Proof. We only check assertion (a). By the preceding lemma, w is a product of at
most three powers vav∗bvc or v∗avbv∗c. First let w = vav∗bvc. Since vp = pv∗ = 0,
we conclude that c = 0 if pwp 6= 0. Writing

pwp =

{
pvav∗a(v∗)b−ap = vav∗ap(v∗)b−ap if a ≤ b,
pva−bvbv∗bp = pva−bpvbv∗b if a ≥ b,

we obtain by the same argument that a = b if pwp 6= 0. Thus, w = vav∗a. The
case when w = v∗avbv∗c can be treated analogously.

An element k of a C∗-algebra A is called an element of algebraic rank one if, for
every a ∈ A, there is a complex number α such that kak = αk.

Proposition 14 Let m, n ∈ Nv. Then

(a) πn is a projection of algebraic rank one in A.
(b) πm and πn are Murray-von Neumann equivalent if and only if m = n.

Analogous assertions hold for π̃n in place of πn.

Proof. (a) Every element of A is a limit of linear combinations of words in v and
v∗. It is thus sufficient to show that, for every word w, there is an α ∈ C such that
πnwπn = απn. If πnwπn = 0, this holds with α = 0. If πnwπn = πnpwpπn 6= 0,
then w = vav∗a for some a ≥ 0 by Corollary 13. In this case,

πnwπn = πnv
av∗aπn = p(vnv∗n − vn+1(v∗)n+1)vav∗a(vnv∗n − vn+1(v∗)n+1)p.

From Lemma 9 we infer that

(vnv∗n − vn+1(v∗)n+1)vav∗a =

{
vnv∗n − vn+1(v∗)n+1 if a ≤ n,
vav∗a − vav∗a = 0 if a ≥ n+ 1.

Thus,

πnwπn =

{
p(vnv∗n − vn+1(v∗)n+1)2p = πn if a ≤ n,
0 if a ≥ n+ 1,
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i.e. α = 1 if a ≤ n and α = 0 in all other cases.

(b) The projections πm and πn are Murray-von Neumann equivalent if and only
if πmAπn 6= {0}. So we have to show that πmAπn = {0} whenever m 6= n. Again
it is sufficient to show that πmwπn = 0 for every word w.

Suppose there is a word w such that πmwπn = πmpwpπn 6= 0. Then w = vav∗a

for some a ≥ 0 by Corollary 13. The terms in parentheses in

πmwπn = πmv
av∗aπn = p(vmv∗m − vm+1(v∗)m+1)(vav∗a)(vnv∗n − vn+1(v∗)n+1)p

commute by Lemma 9. Since

(vmv∗m − vm+1(v∗)m+1)(vnv∗n − vn+1(v∗)n+1) = 0

for m 6= n we conclude that πmwπn = 0, a contradiction.

Lemma 15 (a) If a > n or b > a, then vbv∗aπn = 0.
(b) If b ≤ a ≤ n, then vbv∗aπn = (v∗)a−bπn.

Proof. (a) One easily checks that (v∗)n+1p = 0, which gives the first assertion.
Let b > a. Then, since p commutes with vkv∗k and vp = 0,

vbv∗aπn = vb−avav∗a(vnv∗n − vn+1(v∗)n+1)p

= vb−apvav∗a(vnv∗n − vn+1(v∗)n+1) = 0.

(b) Applying Lemma 11 to the terms in inner parentheses in

vbv∗aπn = ((vbv∗avn)v∗n − (vbv∗avn+1)(v∗)n+1)p,

one can simplify this expression to

((v∗)a−bvnv∗n − (v∗)a−bvn+1)(v∗)n+1)p = (v∗)a−bπn.

Corollary 16 (a) If w is a word in v, v∗, then wπn ∈ {0, πn, v∗πn, . . . , v∗nπn}.
(b) For every w ∈ A, wπn is a linear combination of elements v∗iπn with i ∈
{0, 1, . . . , n}.
(c) Every element of the ideal Cn generated by πn is a linear combination of
elements v∗iπnv

j with i, j ∈ {0, 1, . . . n}.

In particular, Cn is a finite-dimensional C∗-algebra. We are now in a position to
describe this algebra exactly.

Proposition 17 (a) For n ∈ Nv, the algebra Cn is ∗-isomorphic to C(n+1)×(n+1).

(b) CmCn = {0} whenever m 6= n.
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Proof. (a) The elements e
(n)
ij := v∗iπnv

j with i, j ∈ {0, 1, . . . n} span the algebra
Cn by Corollary 16 (c). Thus, the assertion will follow once we have shown that
these elements form a system of (n+ 1)× (n+ 1) matrix units in the sense that

(e
(n)
ij )∗ = e

(n)
ji and

e
(n)
ij e

(n)
kl = δjke

(n)
il for all i, j, k, l ∈ {0, 1, . . . n}, (7)

with δjk the standard Kronecker delta. The symmetry property is clear. To check
(7), first let j = k. Then

e
(n)
ij e

(n)
jl = v∗iπn(vjv∗jπn)vl = v∗iπ2

nv
l = e

(n)
il

by Lemma 15 (b). If j > k, then

e
(n)
ij e

(n)
kl = v∗iπn(vjv∗kπn)vl = 0

by Lemma 15 (a). Finally, if j < k, then

e
(n)
ij e

(n)
kl = v∗i(πnv

jv∗k)πnv
l = v∗i(vkv∗jπn)∗πnv

l = 0,

again by Lemma 15 (a). This proves (a). Assertion (b) follows from Proposition
14 (b).

Given a PPI v, we let Gv stand for the smallest closed ideal which contains all
projections πn. If Nv is empty, then Gv is the zero ideal. Let Nv 6= ∅. The
ideal generated by a projection πn with n ∈ Nv is isomorphic to C(n+1)×(n+1) by
Proposition 17, and if u, w are elements of A which belong to ideals generated by
two different projections πm and πn, then uw = 0 by Proposition 14 (b). Hence,
Gv is then isomorphic to the direct sum of all matrix algebras C(n+1)×(n+1) with
n ∈ Nv.

If A is the universal C∗-algebra generated by a PPI v, then Nv is the set of all
positive integers. Indeed, the algebra S≥2(T(C)) introduced in the introduction
is generated by the PPI v := (PnV Pn), and Nv = N in this concrete setting.

Corollary 18 If A is the universal C∗-algebra generated by a PPI v, then Nv =
N, and Gv is isomorphic to the ideal G≥2 := S≥2(T(C)) ∩ G.

4 PPI with Nv = ∅
Our next goal is to describe the C∗-algebra A which is generated by a PPI v with
Nv = ∅. This condition is evidently satisfied if one of the projections p = e− v∗v
and p̃ = e− vv∗ is zero, in which cases the algebra generated by the PPI v is well
known:
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• If p = 0 and p̃ = 0, then v is unitary, and A is ∗-isomorphic to C(X) where
X ⊆ T is the spectrum of v by the Gelfand-Naimark theorem.

• If p = 0 and p̃ 6= 0, then v is a non-unitary isometry, A is ∗-isomorphic
to the Toeplitz algebra T(C) by Coburn’s theorem, and the isomorphism
sends v to the forward shift V .

• If p 6= 0 and p̃ = 0, then v is a non-unitary co-isometry, again A is ∗-
isomorphic to the Toeplitz algebra T(C) by Coburn’s theorem, and the
isomorphism sends v to the backward shift V ∗.

Thus the only interesting case is when Nv = ∅, but p 6= 0 and p̃ 6= 0. Let C and
C̃ denote the smallest closed ideals of A which contain the projections p and p̃,
respectively. For i, j ≥ 0, set

fij := v∗ipvj and f̃ij := vip̃v∗j.

Lemma 19 If v is a PPI with Nv = ∅, then (fij)i, j≥0 is a (countable) system of
matrix units, i.e. f ∗ij = fji and

fijfkl = δjkfil for all i, j, k, l ≥ 0. (8)

If one of the fij is non-zero (e.g. if f00 = p 6= 0), then all fij are non-zero.

An analogous assertion holds for the family of the f̃ij.

Proof. The symmetry condition is evident, and if fij = 0 then fkl = fkifijfjl = 0
for all k, l by (8). Property (8) on its hand will follow once we have shown that

pvjv∗kp = δjkp for all j, k ≥ 0. (9)

The assertion is evident if j = k = 0. If j > 0 and k = 0, then

pvjp = (e− v∗v)vj(e− v∗v)

= vj − v∗vj+1 − vj−1(vv∗v) + v∗vj(vv∗v)

= vj − v∗vj+1 − vj−1v + v∗vjv = 0,

and (9) holds. Analogously, (9) holds if j = 0 and k > 0. Finally, let j, k > 0.
The assumption Nv = ∅ ensures that

pvj−1p̃ = (e− v∗v)vj−1(e− vv∗) = vj−1 − v∗vj − vjv∗ + v∗vj+1v∗ = 0 (10)

for all j ≥ 1. Employing this identity we find

pvjv∗kp = (e− v∗v) vjv∗kp = vjv∗kp− (v∗vj+1v∗) (v∗)k−1p

= vjv∗kp− (vj−1 − v∗vj − vjv∗)(v∗)k−1p
= (e− v∗v)vj−1(v∗)k−1p.

Thus, pvjv∗kp = pvj−1(v∗)k−1p for j, k ≥ 1. Repeated application of this identity
finally leads to one of the cases considered before.
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Proposition 20 Let Nv = ∅ and p 6= 0.

(a) The ideal C of A generated by p coincides with the smallest closed subalgebra
of A which contains all fij with i, j ≥ 0.

(b) C is ∗-isomorphic to the ideal of the compact operators on a separable infinite-
dimensional Hilbert space.

Analogous assertions hold for the projection p̃, the algebra C̃, and the f̃ij.

Proof. For a moment, write C ′ for the smallest closed subalgebra of A which
contains all fij with i, j ≥ 0. The identities

fijv = v∗ipvjv = fi,j+1, vf0j = vpvj = v(e− v∗v)vj = 0

and, for i ≥ 1,

vfij = vv∗i(e− v∗v)vj = vv∗ivj − (v(v∗)i+1v)vj

= vv∗ivj + ((v∗)i−1 − (v∗)iv − vv∗i)vj

= (v∗)i−1vj − (v∗)ivvj = (v∗)i−1(e− v∗v)vj = fi−1,j

(where we used the adjoint of (10)) and their adjoints show that C ′ is a closed ideal
ofA. Since p = f00 we conclude that C ⊆ C ′. Conversely, we have fij = v∗ipvj ∈ C
for all i, j ≥ 0 whence the reverse inclusion C ′ ⊆ C. This settles assertion (a).

For assertion (b), note that every C∗-algebra generated by a (countable) sys-
tem of matrix units (in particular, the algebra C ′) is naturally ∗-isomorphic to
the algebra of the compact operators on a separable infinite-dimensional Hilbert
space (see, e.g., Corollary A.9 in Appendix A2 in [7]).

Lemma 21 If Nv = ∅, then C ∩ C̃ = {0}.

Proof. C and C̃ are closed ideals. Thus, C ∩ C̃ = CC̃, and we have to show that
fij f̃kl = 0 for all i, j, k, l ≥ 0. Since

fij f̃kl = (v∗ipvj) (vkp̃v∗l) = v∗i (pvj+kp̃) v∗l,

this is a consequence of Nv = ∅.

Remember that p 6= 0 and p̃ 6= 0. From the preceding lemma we conclude that
the mapping

A → A/C × A/C̃, w 7→ (w + C, w + C̃)

is an injective ∗-homomorphism; thus A is ∗-isomorphic to the C∗-subalgebra of
A/C × A/C̃ generated by (v + C, v + C̃). The element v + C is an isometry in
A/C (since e − v∗v ∈ C), but it is not unitary (otherwise e − vv∗ ∈ C̃ would be

a non-zero element of C, in contradiction with Lemma 21). Analogously, v + C̃
is a non-unitary co-isometry. By Coburn’s Theorem, there are ∗-isomorphisms
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µ : A/C → T(C) and µ̃ : A/C̃ → T(C) which map v + C 7→ V and v + C̃ 7→ V ∗,
respectively. But then

µ× µ̃ : A/C × A/C̃ → T(C)× T(C), (a, ã) 7→ (µ(a), µ̃(ã))

is a ∗-isomorphism which maps the C∗-subalgebra of A/C × A/C̃ generated by

(v+C, v+ C̃) to the C∗-subalgebra of T(C)×T(C) generated by the pair (V, V ∗).
The latter algebra has been identified in Corollary 4. Summarizing we get:

Proposition 22 Let the C∗-algebra A be generated by a PPI v with Nv = ∅ and
p 6= 0 and p̃ 6= 0. Then A is ∗-isomorphic to the algebra S(T(C))/G (likewise, to
S≥2(T(C))/G≥2), and the isomorphism sends v to (PnV PN)n≥1 + G (likewise, to
(PnV PN)n≥2 + G≥2).

5 The general case

We are now going to finish the proof of Theorem 1. For we think of A as being
faithfully represented as a C∗-algebra of bounded linear operators on a separable
infinite-dimensional Hilbert space H (note that A is finitely generated, hence

separable). As follows easily from (7), zn :=
∑n

i=0 e
(n)
ii is the identity element of

Cn. So we can think of the zn as orthogonal projections on H. Moreover, these
projections are pairwise orthogonal by Proposition 17 (b). Thus, the operators
Pn :=

∑n
i=1 zn form an increasing sequence of orthogonal projections on H. Let

P ∈ L(H) denote the least upper bound of that sequence (which then is the limit
of the Pn in the strong operator topology). Clearly, P is an orthogonal projection
again (but note that P does not belong to A in general).

Lemma 23 (a) Every zn is a central projection of A.

(b) P commutes with every element of A.

Proof. Assertion (b) is a consequence of (a). We show that

zn =
n∑

i=0

v∗iπnv
i =

n∑
i=0

v∗ip(vnv∗n − vn+1(v∗)n+1)vi

=
n∑

i=0

v∗i(e− v∗v)(vnv∗n − vn+1(v∗)n+1)vi

commutes with v. Indeed,

vzn = v(e− v∗v)(vnv∗n − vn+1(v∗)n+1)

+
n∑

i=1

vv∗i(e− v∗v)(vnv∗n − vn+1(v∗)n+1)vi
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=
n∑

i=1

vv∗i(e− v∗v)vn(v∗n − v(v∗)n+1)vi

=
n∑

i=1

(vv∗ivn − v(v∗)i+1vn+1)(v∗n − v(v∗)n+1)vi

=
n∑

i=1

((v∗)i−1vn − (v∗)ivn+1)(v∗n − v(v∗)n+1)vi (by Lemma 11)

=
n∑

i=1

(v∗)i−1(e− v∗v)(vnv∗n − vn+1(v∗)n+1)vi

=
n−1∑
i=0

v∗i(e− v∗v)(vnv∗n − vn+1(v∗)n+1)viv

=
n∑

i=0

v∗i(e− v∗v)(vnv∗n − vn+1(v∗)n+1)viv

−(v∗)n(e− v∗v)(vnv∗n − vn+1(v∗)n+1)vn+1

=
n∑

i=0

v∗i(e− v∗v)(vnv∗n − vn+1(v∗)n+1)viv = znv

again by Lemma 11. Thus, vzn = znv. Since zn = z∗n, this implies that zn also
commutes with v∗ and, hence, with every element of A.

Consequently, A = PAP ⊕ (I − P )A(I − P ) where I stands for the identity
operator on H. We consider the summands of this decomposition separately.
The part (I − P )A(I − P ) is generated by the PPI v′ := (I − P )v(I − P ). Since

(I − P )pvnp̃v∗np(I − P ) = (I − P )πn(I − P )

= (I − P )zne
(n)
00 πn(I − P ) = 0,

we conclude that Nv′ = ∅. Thus, this part of A is described by Proposition 22.
The part PAP is generated by the PPI PvP . It follows from the definition

of P that NPvP = Nv and that GPvP = PGvP = Gv. We let
∏

n∈Nv
Cn stand for

the direct product of the algebras Cn and consider the mapping

PAP →
∏
n∈Nv

Cn, PAP 7→ (znPAPzn)n∈Nv = (znAzn)n∈Nv . (11)

If znAzn = 0 for every n ∈ Nv, then

PAP =
∑

m,n∈Nv

zmPAPzn =
∑
n∈Nv

znAzn = 0.

Thus, the mapping (11) is injective, and the algebra PAP is ∗-isomorphic to the
C∗-subalgebra of

∏
n∈Nv
Cn generated by the sequence (znvzn)n∈Nv . Further we
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infer from Proposition 17 (a) that Cn is isomorphic to C(n+1)×(n+1) if n ∈ Nv. We
are going to make the latter isomorphism explicit. For we note that

e
(n)
ii ve

(n)
jj = v∗iπnv

i+1v∗jπnv
j

=

{
v∗iπnv

i+1(v∗)i+1πnv
i+1 if i+ 1 = j,

0 if i+ 1 6= j
(by Corollary 13)

=

{
v∗iπnv

i+1 if i+ 1 = j,
0 if i+ 1 6= j

(by Lemma 15)

=

{
e
(n)
i,i+1 if i+ 1 = j,

0 if i+ 1 6= j.

We choose a unit vector e
(n)
i in the range of e

(n)
ii (recall Proposition 14 (a)), and let

f
(n)
i stand for the n+1-tuple (0, . . . , 0, 1, 0, . . . , 0) with the 1 at the ith position.

Then (e
(n)
i )ni=0 forms an orthonormal basis of im zn, (f

(n)
i )ni=0 forms an orthonormal

basis of Cn+1, the mapping e
(n)
i 7→ f

(n)
n−i extends to a linear bijection from im zn

onto Cn+1, which finally induces a ∗-isomorphism ξn from Cn ∼= L(im zn) onto
C(n+1)×(n+1) ∼= L(Cn+1). Then

ξ :
∏
n∈Nv

Cn →
∏
n∈Nv

C(n+1)×(n+1), (An) 7→ (ξn(An))

is a ∗-isomorphism which maps the C∗-subalgebra of
∏

n∈Nv
Cn generated by the

sequence (znvzn)n∈Nv to the C∗-subalgebra of
∏

n∈Nv
C(n+1)×(n+1) generated by

the sequence (Vn+1)n∈Nv , where Vn is the matrix described in Example (c). Note
that Vn is just the n× nth finite section PnV Pn of the forward shift operator.

If now A is the universal algebra generated by a PPI v, then Nv = N, as we
observed in Corollary 18. Thus, in this case, the algebra PAP is ∗-isomorphic
to the smallest C∗-subalgebra of F =

∏
n≥1Cn×n generated by the sequence

(PnV Pn), i.e. to the C∗-algebra S≥2(T(C)).
It remains to explain what happens with the part (I−P )A(I−P ) of A. The

point is that the quotient PAP/PGvP is generated by a PPI u for which Nu is
empty. We have seen in Proposition 22 that both this quotient and the algebra
(I − P )A(I − P ) are canonically ∗-isomorphic to S≥2(T(C))/G≥2. Thus, there is
a ∗-homomorphism from PAP onto (I −P )A(I −P ) which maps the generating
PPI PvP of PAP to the generating PPI (I − P )v(I − P ) of (I − P )A(I − P ).
Hence, if A is the universal C∗-algebra generated by a PPI, then already PAP
has the universal property, and A ∼= PAP ∼= S≥2(T(C)).
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[1] A. Böttcher, B. Silbermann, The finite section method for Toeplitz
operators on the quarter-plane with piecewise continuous symbols. – Math.
Nachr. 110(1983), 279 – 291.

14
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