The universal algebra generated by a power partial isometry

Steffen Roch

Dedicated to Albrecht Böttcher on the occassion of his 60th birthday.

Abstract

A power partial isometry (PPI) is an element v of a C^* -algebra with the property that every power v^n is a partial isometry. The goal of this paper is to identify the universal C^* -algebra generated by a PPI with (a slight modification of) the algebra of the finite sections method for Toeplitz operators with continuous generating function, as first described by Albrecht Böttcher and Bernd Silbermann in [1].

Keywords: power partial isometry, universal algebra, finite sections algebra **2010 AMS-MSC:** 46L05, 47B35, 65R20

1 Introduction

Let \mathcal{A} be a C^* -algebra. An element V of \mathcal{A} is called a partial isometry if $vv^*v = v$. Simple examples show that a power of a partial isometry needs not to be a partial isometry again. One therefore calls v a *power partial isometry* (PPI) if every power of v is a partial isometry again.

Examples. (a) In a C^* -algebra with identity element e, every unitary element u (i.e. $u^*u = uu^* = e$) is a PPI. In particular, the function $u : t \mapsto t$ is a unitary element of the algebra $C(\mathbb{T})$ of the continuous functions on the complex unit circle \mathbb{T} , and the operator U of multiplication by the function u is a unitary operator on the Hilbert space $L^2(\mathbb{T})$ of the squared integrable functions on \mathbb{T} .

(b) In a C^* -algebra with identity element e, every isometry v (i.e. $v^*v = e$) and every co-isometry v (i.e. $vv^* = e$) is a PPI. In particular, the operators $V : (x_0, x_1, \ldots) \mapsto (0, x_0, x_1, \ldots)$ and $V^* : (x_0, x_1, x_2, \ldots) \mapsto (x_1, x_2, \ldots)$ of forward and backward shift, respectively, are PPIs on the Hilbert space $l^2(\mathbb{Z}^+)$ of the squared summable sequences on the non-negative integers.

(c) The matrix $V_n := (a_{ij})$ with $a_{i+1,i} = 1$ and $a_{ij} = 0$ if $i \neq j+1$, considered as

an element of the algebra $\mathbb{C}^{n \times n}$ of the complex $n \times n$ matrices, is a PPI.

(d) If v_i is a PPI in a C^* -algebra \mathcal{A}_i for every i in an index set I, then $(v_i)_{i \in I}$ is a PPI in the direct product $\prod_{i \in I} \mathcal{A}_i$. In particular, the operator (V, V^*) , considered as an element of $L(l^2(\mathbb{Z}^+)) \times L(l^2(\mathbb{Z}^+))$, is a PPI.

Note that the PPI V_n in (c) and (V, V^*) in (d) are neither isometric nor co-isometric.

The goal of the present paper is to describe the universal C^* -algebra generated by a PPI. Recall that a C^* -algebra \mathcal{A} generated by a PPI v is *universal* if, for every other C^* -algebra \mathcal{B} generated by a PPI w, there is a *-homomorphism from \mathcal{A} to \mathcal{B} which sends v to w. The universal algebra generated by a unitary resp. isometric element is defined in an analogous way. The existence of a universal algebra generated by a PPI is basically a consequence of Example (d).

It follows from the Gelfand-Naimark theorem that the universal algebra generated by a unitary element is *-isomorphic to the algebra $C(\mathbb{T})$, generated by the unitary function u. Coburn [5] identified the universal algebra generated by an isometry as the Toeplitz algebra $\mathsf{T}(C)$ which is the smallest C^* -subalgebra of $L(l^2(\mathbb{Z}^+))$ which contains the isometry V, the shift operator. This algebra bears its name since it can be described as the smallest C^* -subalgebra of $L(l^2(\mathbb{Z}^+))$ which contains all Toeplitz operators T(a) with generating function $a \in C(\mathbb{T})$. Recall that the Toeplitz operator with generating function $a \in L^1(\mathbb{T})$ is given the matrix $(a_{i-j})_{i,j=0}^{\infty}$ where a_k stands for the kth Fourier coefficient of a. This operator is bounded on $l^2(\mathbb{Z}^+)$ if and only if $a \in L^{\infty}(\mathbb{T})$ (see [2, 3]).

We will see that the universal algebra of a PPI is also related with Toeplitz operators, via the finite sections discretization with respect to the sequence of the projections $P_n : (x_0, x_1, \ldots) \mapsto (x_0, \ldots, x_{n-1}, 0, 0, \ldots)$ on $l^2(\mathbb{Z}^+)$. Write \mathcal{F} for the set of all bounded sequences $(A_n)_{n\geq 1}$ of operators $A_n \in L(\operatorname{im} P_n)$ and \mathcal{G} for the set of all sequences $(A_n) \in \mathcal{F}$ with $||A_n|| \to 0$. Provided with entry-wise defined operations and the supremum norm, \mathcal{F} becomes a C^* -algebra and \mathcal{G} a closed ideal of \mathcal{F} . Since $L(\operatorname{im} P_n)$ is isomorphic to $\mathbb{C}^{n\times n}$, we can identify \mathcal{F} with the direct product and \mathcal{G} with the direct sum of the algebras $\mathbb{C}^{n\times n}$ for $n \geq 1$. Now consider the smallest C^* -subalgebra $\mathcal{S}(\mathsf{T}(C))$ of \mathcal{F} which contains all sequences $(P_nT(a)P_n)$ with $a \in C(\mathbb{T})$ and its C^* -subalgebra $\mathcal{S}_{\geq 2}(\mathsf{T}(C))$ which is generated by the sequence (P_nVP_n) (note that V is the Toeplitz operator with generating function $t \mapsto t$). With these notations, the main result of the present paper can be formulated as follows.

Theorem 1 The universal algebra generated by a PPI is *-isomorphic to the C^* -algebra $S_{\geq 2}(\mathsf{T}(C))$ generated by the PPI $(P_n V P_n)$.

For a general account on C^* -algebras generated by partial isometries, with special emphasis on their relation to graph theory, see [4].

Before going into the details of the proof of Theorem 1, we provide some

basic (and well known) facts on the algebras $S(\mathsf{T}(C))$ and $S_{\geq 2}(\mathsf{T}(C))$. Since the first entry of the sequence $(P_n V P_n)$ is zero, the first entry of every sequence in $S_{\geq 2}(\mathsf{T}(C))$ is zero. So we can omit the first entry and consider the elements of $S_{\geq 2}(\mathsf{T}(C))$ as sequences labeled by $n \geq 2$ (whence the notation). In fact this is the only difference between the algebras $S(\mathsf{T}(C))$ and $S_{\geq 2}(\mathsf{T}(C))$.

Proposition 2 $S_{\geq 2}(\mathsf{T}(C))$ consists of all sequences $(A_n)_{n\geq 2}$ where $(A_n)_{n\geq 1}$ is a sequence in $S(\mathsf{T}(C))$.

The sequences in $\mathcal{S}(\mathsf{T}(C))$ are completely described in the following theorem, where we let R_n denote the operator $(x_0, x_1, \ldots) \mapsto (x_{n-1}, \ldots, x_0, 0, 0, \ldots)$ on $l^2(\mathbb{Z}^+)$. Further we set $\tilde{a}(t) := a(t^{-1})$ for every function a on \mathbb{T} . This description was found by A. Böttcher and B. Silbermann and first published in their 1983 paper [1] on the convergence of the finite sections method for quarter plane Toeplitz operators (see also [6], Section 1.4.2).

Proposition 3 The algebra $\mathcal{S}(\mathsf{T}(C))$ consists of all sequences $(A_n)_{n\geq 1}$ of the form

$$(A_n) = (P_n T(a)P_n + P_n K P_n + R_n L R_n + G_n)$$

$$\tag{1}$$

where $a \in C(\mathbb{T})$, K and L are compact operators, and $(G_n) \in \mathcal{G}$. The representation of a sequence $(A_n) \in \mathcal{S}(\mathsf{T}(C))$ in this form is unique.

Corollary 4 \mathcal{G} is a closed ideal of $\mathcal{S}(\mathsf{T}(C))$, and the quotient algebra $\mathcal{S}(\mathsf{T}(C))/\mathcal{G}$ is *-isomorphic to the C*-algebra of all pairs

$$(T(a) + K, T(\tilde{a}) + L) \in L(l^2(\mathbb{Z}^+)) \times L(l^2(\mathbb{Z}^+))$$
 (2)

with $a \in C(\mathbb{T})$ and K, L compact. In particular, the mapping which sends the sequence (1) to the pair (2) is a *-homomorphism from $\mathcal{S}(\mathsf{T}(C))$ onto $\mathcal{S}(\mathsf{T}(C))/\mathcal{G}$ with kernel \mathcal{G} .

It is not hard to see that the algebra of all pairs (2) is just the smallest C^* subalgebra of $L(l^2(\mathbb{Z}^+)) \times L(l^2(\mathbb{Z}^+))$ that contains the PPI (V, V^*) .

Corollary 5 The set \mathcal{J} of all pairs (K, L) of compact operators K, L is a closed ideal of $\mathcal{S}(\mathsf{T}(C))/\mathcal{G}$. The quotient algebra $(\mathcal{S}(\mathsf{T}(C))/\mathcal{G})/\mathcal{J}$ is *-isomorphic to $C(\mathbb{T})$. In particular, the mapping which sends the pair (2) to the function a is a *-homomorphism from $\mathcal{S}(\mathsf{T}(C))/\mathcal{G}$ onto $C(\mathbb{T})$ with kernel \mathcal{J} .

Observe that all of the above examples (a) - (d) appear somewhere in the algebra $\mathcal{S}(\mathsf{T}(C))$ and its quotients.

2 Elementary properties of PPI

Our first goal is a condition ensuring that the product of two partial isometries is a partial isometry again.

Proposition 6 Let u, v be partial isometries. Then uv is a partial isometry if and only if

$$u^*uvv^* = vv^*u^*u,\tag{3}$$

i.e. if the initial projection u^*u of u and the range projection vv^* of v commute.

Proof. Condition (3) implies that

$$(uv)(uv)^{*}(uv) = uvv^{*}u^{*}uv = (uu^{*}u)(vv^{*}v) = uv;$$

hence, uv is a partial isometry. Conversely, if uv is a partial isometry, then a simple calculation gives

$$v^*(vv^*u^*u - u^*uvv^*)(u^*uvv^* - vv^*u^*u)v = 0.$$

With the C^* -axiom we conclude that $v^*(vv^*u^*u-u^*uvv^*) = 0$, hence $vv^*(vv^*u^*u-u^*uvv^*) = 0$, which finally gives

$$vv^*u^*u = vv^*u^*uvv^*.$$

The right-hand side of this equality is selfadjoint; so must be the left-hand side. Thus, $vv^*u^*u = (vv^*u^*u)^* = u^*uvv^*$, which is condition (3).

In particular, if v is a partial isometry, then v^2 is a partial isometry if and only if

$$v^*vvv^* = vv^*v^*v. \tag{4}$$

Proposition 7 Let v be a partial isometry with property (4) (e.g. a PPI). Then

 $e := v^*v + vv^* - v^*vvv^* = v^*v + vv^* - vv^*v^*v$

is the identity element of the C^* -algebra generated by v. Moreover,

$$p := vv^* - vv^*v^*v = e - v^*v$$
 and $\tilde{p} := v^*v - v^*vvv^* = e - vv^*vvv^*$

are mutually orthogonal projections (meaning that $p\tilde{p} = \tilde{p}p = 0$).

Proof. Condition (4) implies that e is selfadjoint. Further,

$$ve = vv^*v + vvv^* - vv^*vvv^* = v + vvv^* - vvv^* = v$$

and, similarly, $v^*e = v^*$. Taking adjoints it follows that $ev^* = v^*$ and ev = v, and e is the identity element. The remaining assertions are also easy to check.

We will often use the notation v^{*n} instead of $(v^*)^n$.

Proposition 8 (a) If v is a PPI, then

$$v^{*k}v^{k}v^{n}v^{*n} = v^{n}v^{*n}v^{*k}v^{k} \quad \text{for all } k, n \ge 1.$$
(5)

(b) If v is a partial isometry and if (5) holds for k = 1 and for every $n \ge 1$, then v is a PPI.

Proof. Assertion (a) is a consequence of Proposition 6 (the partial isometry v^{n+k} is the product of the partial isometries v^k and v^n). Assertion (b) follows easily by induction. For k = 1, condition (5) reduces to

$$(v^*v)(v^nv^{*n}) = (v^nv^{*n})(v^*v).$$

Thus if v and v^n are partial isometries, then v^{n+1} is a partial isometry by Proposition 6.

Lemma 9 If v is a PPI, then $(v^n v^{*n})_{n\geq 0}$ and $(v^{*n} v^n)_{n\geq 0}$ are decreasing sequences of pairwise commuting projections.

Proof. The PPI property implies that the $v^n v^{*n}$ are projections and that

$$v^{n}v^{*n}n^{n+k}(v^{*})^{n+k} = (v^{n}v^{*n}v^{n})v^{k}(v^{*})^{n+k} = v^{n}v^{k}(v^{*})^{n+k} = n^{n+k}(v^{*})^{n+k}$$

for $k, n \ge 0$. The assertions for the second sequence follow similarly.

3 A distinguished ideal

Let \mathcal{A} be a C^* -algebra generated by a PPI v. By $\operatorname{alg}(v, v^*)$ we denote the smallest (symmetric, not necessarily closed) subalgebra of \mathcal{A} which contains v and v^* . Further we write \mathbb{N}_v for the set of all non-negative integers such that $pv^n \tilde{p} \neq 0$. From Proposition 7 we know that $0 \notin \mathbb{N}_v$. Finally, we set

$$\pi_n := pv^n \tilde{p}v^{*n} p \quad \text{and} \quad \tilde{\pi}_n := \tilde{p}v^{*n} pv^n \tilde{p}.$$

Proposition 10 (a) The element $pv^n \tilde{p}$ is a partial isometry with initial projection $\tilde{\pi}_n$ and range projection π_n . Thus, the projections π_n and $\tilde{\pi}_n$ are Murray-von Neumann equivalent in \mathcal{A} , and they generate the same ideal of \mathcal{A} .

(b) $\pi_m \pi_n = 0$ and $\tilde{\pi}_m \tilde{\pi}_n = 0$ whenever $m \neq n$.

Proof. (a) By definition,

$$\pi_n = pv^n \tilde{p}v^{*n} p = pv^n (e - vv^*)v^{*n} p = p(v^n v^{*n} - v^{n+1}(v^*)^{n+1})p.$$

Since $p = e - vv^*$ and $v^n v^{*n}$ commute by Proposition 8,

$$\pi_n = p(v^n v^{*n} - v^{n+1} (v^*)^{n+1}) = (v^n v^{*n} - v^{n+1} (v^*)^{n+1})p.$$

Being a product of commuting projections (Lemma 9), π_n is itself a projection. Analogously, $\tilde{\pi}_n$ is a projection. Thus, $pv^n \tilde{p}$ is a partial isometry, and π_n and $\tilde{\pi}_n$ are Murray-von Neumann equivalent. Finally, the equality

$$\pi_n = \pi_n^2 = (pv^n \tilde{p}v^{*n}p)^2 = pv^n \tilde{\pi}_n v^{*n}p$$

shows that π_n belongs to the ideal generated by $\tilde{\pi}_n$. The reverse inclusion follows analogously. Assertion (b) is again a simple consequence of Lemma 9.

Let C_n denote the smallest closed ideal of \mathcal{A} which contains the projection π_n (likewise, the projection $\tilde{\pi}_n$). We want to show that C_n is isomorphic to $\mathbb{C}^{(n+1)\times(n+1)}$ whenever $n \in \mathbb{N}_v$ (Proposition 17 below). For we need to establish a couple of facts on (finite) words in alg (v, v^*) .

Lemma 11 Let a, b, c be non-negative integers. Then

$$v^{*a}v^{b}v^{*c} = \begin{cases} (v^{*})^{a-b+c} & if \min\{a, c\} \ge b, \\ v^{b-a}v^{*c} & if a \le b \le c, \\ v^{*a}v^{b-c} & if a \ge b \ge c \end{cases}$$

and

$$v^{a}v^{*b}v^{c} = \begin{cases} v^{a-b+c} & \text{if } \min\{a, c\} \ge b \\ v^{a}(v^{*})^{b-c} & \text{if } a \ge b \ge c, \\ (v^{*})^{b-a}v^{c} & \text{if } a \le b \le c. \end{cases}$$

Proof. Let $\min\{a, c\} \ge b$. Then

$$v^{*a}v^{b}v^{*c} = (v^{*})^{a-b}v^{*b}v^{b}v^{*b}(v^{*})^{c-b} = (v^{*})^{a-b}v^{*b}(v^{*})^{c-b} = (v^{*})^{a-b+c},$$

where we used that v^{*b} is a partial isometry. If $a \leq b \leq c$, then

$$v^{*a}v^{b}v^{*c} = v^{*a}v^{a}v^{b-a}(v^{*})^{b-a}(v^{*})^{c-b+a} = v^{b-a}(v^{*})^{b-a}v^{*a}v^{a}(v^{*})^{c-b+a}$$

by Proposition 8(a). Thus,

$$v^{*a}v^{b}v^{*c} = v^{b-a}(v^{*})^{b-a}v^{*a}v^{a}v^{*a}(v^{*})^{c-b} = v^{b-a}(v^{*})^{b-a}v^{*a}(v^{*})^{c-b} = v^{b-a}v^{*c}.$$

Similarly, $v^{*a}v^{b}v^{*c} = v^{*a}v^{b-c}$ if $a \ge b \ge c$. The second assertion of the lemma follows by taking adjoints.

Every word in $\operatorname{alg}(v, v^*)$ is a product of powers v^n and v^{*m} . Every product $v^a v^{*b} v^c$ and $v^{*a} v^b v^{*c}$ of three powers can be written as a product of at most two powers if one of the conditions

$$\min\{a, c\} \ge b \quad \text{or} \quad a \le b \le c \quad \text{or} \quad a \ge b \ge c \tag{6}$$

in Lemma 11 is satisfied. Since (6) is equivalent to $\max\{a, c\} \ge b$, such a product can not be written as a product of less than three powers by means of Lemma 11 if

 $\max\{a, c\} < b$. Since it is not possible in a product $v^a v^{*b} v^c v^{*d}$ or $v^{*a} v^b v^{*c} v^d$ of four powers that $\max\{a, c\} < b$ and $\max\{b, d\} < c$, one can shorten every product of powers v^n and v^{*m} to a product of at most three powers. Summarizing we get the following lemma.

Lemma 12 Every finite word in $\operatorname{alg}(v, v^*)$ is of the form $v^a v^{*b}$ or $v^{*b} v^a$ with $a, b \ge 0$ or of the form $v^a v^{*b} v^c$ or $v^{*a} v^b v^{*c}$ with $0 < \min\{a, c\} \le \max\{a, c\} < b$.

Corollary 13 Let w be a word in $alg(v, v^*)$. (a) If $pwp \neq 0$, then $w = v^a v^{*a}$ for some $a \ge 0$.

(b) If $\tilde{p}w\tilde{w} \neq 0$, then $w = v^{*a}v^a$ with some $a \ge 0$.

Proof. We only check assertion (a). By the preceding lemma, w is a product of at most three powers $v^a v^{*b} v^c$ or $v^{*a} v^b v^{*c}$. First let $w = v^a v^{*b} v^c$. Since $vp = pv^* = 0$, we conclude that c = 0 if $pwp \neq 0$. Writing

$$pwp = \begin{cases} pv^{a}v^{*a}(v^{*})^{b-a}p = v^{a}v^{*a}p(v^{*})^{b-a}p & \text{if } a \leq b, \\ pv^{a-b}v^{b}v^{*b}p = pv^{a-b}pv^{b}v^{*b} & \text{if } a \geq b, \end{cases}$$

we obtain by the same argument that a = b if $pwp \neq 0$. Thus, $w = v^a v^{*a}$. The case when $w = v^{*a}v^b v^{*c}$ can be treated analogously.

An element k of a C^* -algebra \mathcal{A} is called an *element of algebraic rank one* if, for every $a \in \mathcal{A}$, there is a complex number α such that $kak = \alpha k$.

Proposition 14 Let $m, n \in \mathbb{N}_v$. Then

(a) π_n is a projection of algebraic rank one in \mathcal{A} .

(b) π_m and π_n are Murray-von Neumann equivalent if and only if m = n.

Analogous assertions hold for $\tilde{\pi}_n$ in place of π_n .

Proof. (a) Every element of \mathcal{A} is a limit of linear combinations of words in v and v^* . It is thus sufficient to show that, for every word w, there is an $\alpha \in \mathbb{C}$ such that $\pi_n w \pi_n = \alpha \pi_n$. If $\pi_n w \pi_n = 0$, this holds with $\alpha = 0$. If $\pi_n w \pi_n = \pi_n p w p \pi_n \neq 0$, then $w = v^a v^{*a}$ for some $a \ge 0$ by Corollary 13. In this case,

$$\pi_n w \pi_n = \pi_n v^a v^{*a} \pi_n = p(v^n v^{*n} - v^{n+1} (v^*)^{n+1}) v^a v^{*a} (v^n v^{*n} - v^{n+1} (v^*)^{n+1}) p.$$

From Lemma 9 we infer that

$$(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{a}v^{*a} = \begin{cases} v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1} & \text{if } a \le n, \\ v^{a}v^{*a} - v^{a}v^{*a} = 0 & \text{if } a \ge n+1. \end{cases}$$

Thus,

$$\pi_n w \pi_n = \begin{cases} p (v^n v^{*n} - v^{n+1} (v^*)^{n+1})^2 p = \pi_n & \text{if } a \le n, \\ 0 & \text{if } a \ge n+1, \end{cases}$$

i.e. $\alpha = 1$ if $a \leq n$ and $\alpha = 0$ in all other cases.

(b) The projections π_m and π_n are Murray-von Neumann equivalent if and only if $\pi_m \mathcal{A} \pi_n \neq \{0\}$. So we have to show that $\pi_m \mathcal{A} \pi_n = \{0\}$ whenever $m \neq n$. Again it is sufficient to show that $\pi_m w \pi_n = 0$ for every word w.

Suppose there is a word w such that $\pi_m w \pi_n = \pi_m p w p \pi_n \neq 0$. Then $w = v^a v^{*a}$ for some $a \geq 0$ by Corollary 13. The terms in parentheses in

$$\pi_m w \pi_n = \pi_m v^a v^{*a} \pi_n = p(v^m v^{*m} - v^{m+1}(v^*)^{m+1})(v^a v^{*a})(v^n v^{*n} - v^{n+1}(v^*)^{n+1})p$$

commute by Lemma 9. Since

$$(v^{m}v^{*m} - v^{m+1}(v^{*})^{m+1})(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1}) = 0$$

for $m \neq n$ we conclude that $\pi_m w \pi_n = 0$, a contradiction.

Lemma 15 (a) If
$$a > n$$
 or $b > a$, then $v^b v^{*a} \pi_n = 0$.
(b) If $b \le a \le n$, then $v^b v^{*a} \pi_n = (v^*)^{a-b} \pi_n$.

Proof. (a) One easily checks that $(v^*)^{n+1}p = 0$, which gives the first assertion. Let b > a. Then, since p commutes with $v^k v^{*k}$ and vp = 0,

$$v^{b}v^{*a}\pi_{n} = v^{b-a}v^{a}v^{*a}(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})p$$

= $v^{b-a}pv^{a}v^{*a}(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1}) = 0.$

(b) Applying Lemma 11 to the terms in inner parentheses in

$$v^{b}v^{*a}\pi_{n} = ((v^{b}v^{*a}v^{n})v^{*n} - (v^{b}v^{*a}v^{n+1})(v^{*})^{n+1})p,$$

one can simplify this expression to

$$((v^*)^{a-b}v^nv^{*n} - (v^*)^{a-b}v^{n+1})(v^*)^{n+1})p = (v^*)^{a-b}\pi_n.$$

Corollary 16 (a) If w is a word in v, v^* , then $w\pi_n \in \{0, \pi_n, v^*\pi_n, \ldots, v^{*n}\pi_n\}$. (b) For every $w \in \mathcal{A}$, $w\pi_n$ is a linear combination of elements $v^{*i}\pi_n$ with $i \in \{0, 1, \ldots, n\}$.

(c) Every element of the ideal C_n generated by π_n is a linear combination of elements $v^{*i}\pi_n v^j$ with $i, j \in \{0, 1, ..., n\}$.

In particular, C_n is a finite-dimensional C^* -algebra. We are now in a position to describe this algebra exactly.

Proposition 17 (a) For $n \in \mathbb{N}_v$, the algebra \mathcal{C}_n is *-isomorphic to $\mathbb{C}^{(n+1)\times(n+1)}$. (b) $\mathcal{C}_m\mathcal{C}_n = \{0\}$ whenever $m \neq n$. **Proof.** (a) The elements $e_{ij}^{(n)} := v^{*i}\pi_n v^j$ with $i, j \in \{0, 1, \ldots, n\}$ span the algebra \mathcal{C}_n by Corollary 16 (c). Thus, the assertion will follow once we have shown that these elements form a system of $(n+1) \times (n+1)$ matrix units in the sense that $(e_{ij}^{(n)})^* = e_{ji}^{(n)}$ and

$$e_{ij}^{(n)}e_{kl}^{(n)} = \delta_{jk}e_{il}^{(n)} \quad \text{for all } i, j, k, l \in \{0, 1, \dots n\},$$
(7)

with δ_{jk} the standard Kronecker delta. The symmetry property is clear. To check (7), first let j = k. Then

$$e_{ij}^{(n)}e_{jl}^{(n)} = v^{*i}\pi_n(v^jv^{*j}\pi_n)v^l = v^{*i}\pi_n^2v^l = e_{il}^{(n)}$$

by Lemma 15 (b). If j > k, then

$$e_{ij}^{(n)}e_{kl}^{(n)} = v^{*i}\pi_n(v^jv^{*k}\pi_n)v^l = 0$$

by Lemma 15 (a). Finally, if j < k, then

$$e_{ij}^{(n)}e_{kl}^{(n)} = v^{*i}(\pi_n v^j v^{*k})\pi_n v^l = v^{*i}(v^k v^{*j}\pi_n)^*\pi_n v^l = 0,$$

again by Lemma 15 (a). This proves (a). Assertion (b) follows from Proposition 14 (b). \blacksquare

Given a PPI v, we let \mathcal{G}_v stand for the smallest closed ideal which contains all projections π_n . If \mathbb{N}_v is empty, then \mathcal{G}_v is the zero ideal. Let $\mathbb{N}_v \neq \emptyset$. The ideal generated by a projection π_n with $n \in \mathbb{N}_v$ is isomorphic to $\mathbb{C}^{(n+1)\times(n+1)}$ by Proposition 17, and if u, w are elements of \mathcal{A} which belong to ideals generated by two different projections π_m and π_n , then uw = 0 by Proposition 14 (b). Hence, \mathcal{G}_v is then isomorphic to the direct sum of all matrix algebras $\mathbb{C}^{(n+1)\times(n+1)}$ with $n \in \mathbb{N}_v$.

If \mathcal{A} is the universal C^* -algebra generated by a PPI v, then \mathbb{N}_v is the set of all positive integers. Indeed, the algebra $\mathcal{S}_{\geq 2}(\mathsf{T}(C))$ introduced in the introduction is generated by the PPI $v := (P_n V P_n)$, and $\mathbb{N}_v = \mathbb{N}$ in this concrete setting.

Corollary 18 If \mathcal{A} is the universal C^* -algebra generated by a PPI v, then $\mathbb{N}_v = \mathbb{N}$, and \mathcal{G}_v is isomorphic to the ideal $\mathcal{G}_{\geq 2} := \mathcal{S}_{\geq 2}(\mathsf{T}(C)) \cap \mathcal{G}$.

4 **PPI with** $\mathbb{N}_v = \emptyset$

Our next goal is to describe the C^* -algebra \mathcal{A} which is generated by a PPI v with $\mathbb{N}_v = \emptyset$. This condition is evidently satisfied if one of the projections $p = e - v^* v$ and $\tilde{p} = e - vv^*$ is zero, in which cases the algebra generated by the PPI v is well known:

- If p = 0 and $\tilde{p} = 0$, then v is unitary, and \mathcal{A} is *-isomorphic to C(X) where $X \subseteq \mathbb{T}$ is the spectrum of v by the Gelfand-Naimark theorem.
- If p = 0 and $\tilde{p} \neq 0$, then v is a non-unitary isometry, \mathcal{A} is *-isomorphic to the Toeplitz algebra $\mathsf{T}(C)$ by Coburn's theorem, and the isomorphism sends v to the forward shift V.
- If $p \neq 0$ and $\tilde{p} = 0$, then v is a non-unitary co-isometry, again \mathcal{A} is *isomorphic to the Toeplitz algebra $\mathsf{T}(C)$ by Coburn's theorem, and the isomorphism sends v to the backward shift V*.

Thus the only interesting case is when $\mathbb{N}_v = \emptyset$, but $p \neq 0$ and $\tilde{p} \neq 0$. Let \mathcal{C} and $\tilde{\mathcal{C}}$ denote the smallest closed ideals of \mathcal{A} which contain the projections p and \tilde{p} , respectively. For $i, j \geq 0$, set

$$f_{ij} := v^{*i} p v^j$$
 and $\tilde{f}_{ij} := v^i \tilde{p} v^{*j}$.

Lemma 19 If v is a PPI with $\mathbb{N}_v = \emptyset$, then $(f_{ij})_{i,j\geq 0}$ is a (countable) system of matrix units, i.e. $f_{ij}^* = f_{ji}$ and

$$f_{ij}f_{kl} = \delta_{jk}f_{il} \qquad for \ all \ i, \ j, \ k, \ l \ge 0.$$
(8)

If one of the f_{ij} is non-zero (e.g. if $f_{00} = p \neq 0$), then all f_{ij} are non-zero.

An analogous assertion holds for the family of the f_{ij} .

Proof. The symmetry condition is evident, and if $f_{ij} = 0$ then $f_{kl} = f_{ki}f_{ij}f_{jl} = 0$ for all k, l by (8). Property (8) on its hand will follow once we have shown that

$$pv^{j}v^{*k}p = \delta_{jk}p \qquad \text{for all } j, k \ge 0.$$
(9)

The assertion is evident if j = k = 0. If j > 0 and k = 0, then

$$pv^{j}p = (e - v^{*}v)v^{j}(e - v^{*}v)$$

= $v^{j} - v^{*}v^{j+1} - v^{j-1}(vv^{*}v) + v^{*}v^{j}(vv^{*}v)$
= $v^{j} - v^{*}v^{j+1} - v^{j-1}v + v^{*}v^{j}v = 0,$

and (9) holds. Analogously, (9) holds if j = 0 and k > 0. Finally, let j, k > 0. The assumption $\mathbb{N}_v = \emptyset$ ensures that

$$pv^{j-1}\tilde{p} = (e - v^*v)v^{j-1}(e - vv^*) = v^{j-1} - v^*v^j - v^jv^* + v^*v^{j+1}v^* = 0$$
(10)

for all $j \ge 1$. Employing this identity we find

$$pv^{j}v^{*k}p = (e - v^{*}v)v^{j}v^{*k}p = v^{j}v^{*k}p - (v^{*}v^{j+1}v^{*})(v^{*})^{k-1}p$$

$$= v^{j}v^{*k}p - (v^{j-1} - v^{*}v^{j} - v^{j}v^{*})(v^{*})^{k-1}p$$

$$= (e - v^{*}v)v^{j-1}(v^{*})^{k-1}p.$$

Thus, $pv^jv^{*k}p = pv^{j-1}(v^*)^{k-1}p$ for $j, k \ge 1$. Repeated application of this identity finally leads to one of the cases considered before.

Proposition 20 Let $\mathbb{N}_v = \emptyset$ and $p \neq 0$.

(a) The ideal C of A generated by p coincides with the smallest closed subalgebra of A which contains all f_{ij} with $i, j \ge 0$.

(b) C is *-isomorphic to the ideal of the compact operators on a separable infinitedimensional Hilbert space.

Analogous assertions hold for the projection \tilde{p} , the algebra \widetilde{C} , and the \tilde{f}_{ij} .

Proof. For a moment, write \mathcal{C}' for the smallest closed subalgebra of \mathcal{A} which contains all f_{ij} with $i, j \geq 0$. The identities

$$f_{ij}v = v^{*i}pv^jv = f_{i,j+1}, \qquad vf_{0j} = vpv^j = v(e - v^*v)v^j = 0$$

and, for $i \ge 1$,

$$vf_{ij} = vv^{*i}(e - v^*v)v^j = vv^{*i}v^j - (v(v^*)^{i+1}v)v^j$$

= $vv^{*i}v^j + ((v^*)^{i-1} - (v^*)^iv - vv^{*i})v^j$
= $(v^*)^{i-1}v^j - (v^*)^ivv^j = (v^*)^{i-1}(e - v^*v)v^j = f_{i-1,j}$

(where we used the adjoint of (10)) and their adjoints show that \mathcal{C}' is a closed ideal of \mathcal{A} . Since $p = f_{00}$ we conclude that $\mathcal{C} \subseteq \mathcal{C}'$. Conversely, we have $f_{ij} = v^{*i}pv^j \in \mathcal{C}$ for all $i, j \geq 0$ whence the reverse inclusion $\mathcal{C}' \subseteq \mathcal{C}$. This settles assertion (a).

For assertion (b), note that every C^* -algebra generated by a (countable) system of matrix units (in particular, the algebra C') is naturally *-isomorphic to the algebra of the compact operators on a separable infinite-dimensional Hilbert space (see, e.g., Corollary A.9 in Appendix A2 in [7]).

Lemma 21 If $\mathbb{N}_v = \emptyset$, then $\mathcal{C} \cap \widetilde{\mathcal{C}} = \{0\}$.

Proof. C and \widetilde{C} are closed ideals. Thus, $C \cap \widetilde{C} = C\widetilde{C}$, and we have to show that $f_{ij}\widetilde{f}_{kl} = 0$ for all $i, j, k, l \ge 0$. Since

$$f_{ij}\tilde{f}_{kl} = (v^{*i}pv^j)\left(v^k\tilde{p}v^{*l}\right) = v^{*i}\left(pv^{j+k}\tilde{p}\right)v^{*l},$$

this is a consequence of $\mathbb{N}_v = \emptyset$.

Remember that $p \neq 0$ and $\tilde{p} \neq 0$. From the preceding lemma we conclude that the mapping

$$\mathcal{A} \to \mathcal{A}/\mathcal{C} \times \mathcal{A}/\widetilde{\mathcal{C}}, \quad w \mapsto (w + \mathcal{C}, w + \widetilde{\mathcal{C}})$$

is an injective *-homomorphism; thus \mathcal{A} is *-isomorphic to the C^* -subalgebra of $\mathcal{A}/\mathcal{C} \times \mathcal{A}/\widetilde{\mathcal{C}}$ generated by $(v + \mathcal{C}, v + \widetilde{\mathcal{C}})$. The element $v + \mathcal{C}$ is an isometry in \mathcal{A}/\mathcal{C} (since $e - v^* v \in \mathcal{C}$), but it is not unitary (otherwise $e - vv^* \in \widetilde{\mathcal{C}}$ would be a non-zero element of \mathcal{C} , in contradiction with Lemma 21). Analogously, $v + \widetilde{\mathcal{C}}$ is a non-unitary co-isometry. By Coburn's Theorem, there are *-isomorphisms

 $\mu : \mathcal{A}/\mathcal{C} \to \mathsf{T}(C) \text{ and } \tilde{\mu} : \mathcal{A}/\tilde{\mathcal{C}} \to \mathsf{T}(C) \text{ which map } v + \mathcal{C} \mapsto V \text{ and } v + \tilde{\mathcal{C}} \mapsto V^*,$ respectively. But then

$$\mu \times \tilde{\mu} : \mathcal{A}/\mathcal{C} \times \mathcal{A}/\widetilde{\mathcal{C}} \to \mathsf{T}(C) \times \mathsf{T}(C), \quad (a, \tilde{a}) \mapsto (\mu(a), \tilde{\mu}(\tilde{a}))$$

is a *-isomorphism which maps the C*-subalgebra of $\mathcal{A}/\mathcal{C} \times \mathcal{A}/\widetilde{\mathcal{C}}$ generated by $(v+\mathcal{C}, v+\widetilde{\mathcal{C}})$ to the C*-subalgebra of $\mathsf{T}(C) \times \mathsf{T}(C)$ generated by the pair (V, V^*) . The latter algebra has been identified in Corollary 4. Summarizing we get:

Proposition 22 Let the C^{*}-algebra \mathcal{A} be generated by a PPI v with $\mathbb{N}_v = \emptyset$ and $p \neq 0$ and $\tilde{p} \neq 0$. Then \mathcal{A} is *-isomorphic to the algebra $\mathcal{S}(\mathsf{T}(C))/\mathcal{G}$ (likewise, to $\mathcal{S}_{\geq 2}(\mathsf{T}(C))/\mathcal{G}_{\geq 2}$), and the isomorphism sends v to $(P_n V P_N)_{n\geq 1} + \mathcal{G}$ (likewise, to $(P_n V P_N)_{n\geq 2} + \mathcal{G}_{\geq 2}$).

5 The general case

We are now going to finish the proof of Theorem 1. For we think of \mathcal{A} as being faithfully represented as a C^* -algebra of bounded linear operators on a separable infinite-dimensional Hilbert space H (note that \mathcal{A} is finitely generated, hence separable). As follows easily from (7), $z_n := \sum_{i=0}^n e_{ii}^{(n)}$ is the identity element of \mathcal{C}_n . So we can think of the z_n as orthogonal projections on H. Moreover, these projections are pairwise orthogonal by Proposition 17 (b). Thus, the operators $P_n := \sum_{i=1}^n z_n$ form an increasing sequence of orthogonal projections on H. Let $P \in L(H)$ denote the least upper bound of that sequence (which then is the limit of the P_n in the strong operator topology). Clearly, P is an orthogonal projection again (but note that P does not belong to \mathcal{A} in general).

Lemma 23 (a) Every z_n is a central projection of \mathcal{A} . (b) P commutes with every element of \mathcal{A} .

Proof. Assertion (b) is a consequence of (a). We show that

$$z_n = \sum_{i=0}^n v^{*i} \pi_n v^i = \sum_{i=0}^n v^{*i} p (v^n v^{*n} - v^{n+1} (v^*)^{n+1}) v^i$$
$$= \sum_{i=0}^n v^{*i} (e - v^* v) (v^n v^{*n} - v^{n+1} (v^*)^{n+1}) v^i$$

commutes with v. Indeed,

$$vz_n = v(e - v^*v)(v^n v^{*n} - v^{n+1}(v^*)^{n+1}) + \sum_{i=1}^n vv^{*i}(e - v^*v)(v^n v^{*n} - v^{n+1}(v^*)^{n+1})v^i$$

$$= \sum_{i=1}^{n} vv^{*i}(e - v^{*}v)v^{n}(v^{*n} - v(v^{*})^{n+1})v^{i}$$

$$= \sum_{i=1}^{n} (vv^{*i}v^{n} - v(v^{*})^{i+1}v^{n+1})(v^{*n} - v(v^{*})^{n+1})v^{i}$$

$$= \sum_{i=1}^{n} ((v^{*})^{i-1}v^{n} - (v^{*})^{i}v^{n+1})(v^{*n} - v(v^{*})^{n+1})v^{i} \quad \text{(by Lemma 11)}$$

$$= \sum_{i=1}^{n} (v^{*})^{i-1}(e - v^{*}v)(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{i}$$

$$= \sum_{i=0}^{n-1} v^{*i}(e - v^{*}v)(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{i}v$$

$$= \sum_{i=0}^{n} v^{*i}(e - v^{*}v)(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{i}v$$

$$= \sum_{i=0}^{n} v^{*i}(e - v^{*}v)(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{i}v$$

$$= \sum_{i=0}^{n} v^{*i}(e - v^{*}v)(v^{n}v^{*n} - v^{n+1}(v^{*})^{n+1})v^{i}v$$

again by Lemma 11. Thus, $vz_n = z_n v$. Since $z_n = z_n^*$, this implies that z_n also commutes with v^* and, hence, with every element of \mathcal{A} .

Consequently, $\mathcal{A} = P\mathcal{A}P \oplus (I - P)\mathcal{A}(I - P)$ where *I* stands for the identity operator on *H*. We consider the summands of this decomposition separately. The part $(I - P)\mathcal{A}(I - P)$ is generated by the PPI v' := (I - P)v(I - P). Since

$$(I-P)pv^{n}\tilde{p}v^{*n}p(I-P) = (I-P)\pi_{n}(I-P) = (I-P)z_{n}e_{00}^{(n)}\pi_{n}(I-P) = 0,$$

we conclude that $\mathbb{N}_{v'} = \emptyset$. Thus, this part of \mathcal{A} is described by Proposition 22.

The part $P\mathcal{A}P$ is generated by the PPI PvP. It follows from the definition of P that $\mathbb{N}_{PvP} = \mathbb{N}_v$ and that $\mathcal{G}_{PvP} = P\mathcal{G}_vP = \mathcal{G}_v$. We let $\prod_{n \in \mathbb{N}_v} \mathcal{C}_n$ stand for the direct product of the algebras \mathcal{C}_n and consider the mapping

$$P\mathcal{A}P \to \prod_{n \in \mathbb{N}_v} \mathcal{C}_n, \quad PAP \mapsto (z_n PAP z_n)_{n \in \mathbb{N}_v} = (z_n A z_n)_{n \in \mathbb{N}_v}.$$
 (11)

If $z_n A z_n = 0$ for every $n \in \mathbb{N}_v$, then

$$PAP = \sum_{m,n \in \mathbb{N}_v} z_m PAP z_n = \sum_{n \in \mathbb{N}_v} z_n A z_n = 0.$$

Thus, the mapping (11) is injective, and the algebra $P\mathcal{A}P$ is *-isomorphic to the C^* -subalgebra of $\prod_{n\in\mathbb{N}_v} C_n$ generated by the sequence $(z_nvz_n)_{n\in\mathbb{N}_v}$. Further we

infer from Proposition 17 (a) that C_n is isomorphic to $\mathbb{C}^{(n+1)\times(n+1)}$ if $n \in \mathbb{N}_v$. We are going to make the latter isomorphism explicit. For we note that

$$\begin{aligned} e_{ii}^{(n)}ve_{jj}^{(n)} &= v^{*i}\pi_{n}v^{i+1}v^{*j}\pi_{n}v^{j} \\ &= \begin{cases} v^{*i}\pi_{n}v^{i+1}(v^{*})^{i+1}\pi_{n}v^{i+1} & \text{if } i+1=j, \\ 0 & \text{if } i+1\neq j \end{cases} & \text{(by Corollary 13)} \\ &= \begin{cases} v^{*i}\pi_{n}v^{i+1} & \text{if } i+1=j, \\ 0 & \text{if } i+1\neq j \end{cases} & \text{(by Lemma 15)} \\ &= \begin{cases} e_{i,i+1}^{(n)} & \text{if } i+1=j, \\ 0 & \text{if } i+1\neq j. \end{cases} \end{aligned}$$

We choose a unit vector $e_i^{(n)}$ in the range of $e_{ii}^{(n)}$ (recall Proposition 14 (a)), and let $f_i^{(n)}$ stand for the n+1-tuple $(0,\ldots,0,1,0,\ldots,0)$ with the 1 at the *i*th position. Then $(e_i^{(n)})_{i=0}^n$ forms an orthonormal basis of im z_n , $(f_i^{(n)})_{i=0}^n$ forms an orthonormal basis of \mathbb{C}^{n+1} , the mapping $e_i^{(n)} \mapsto f_{n-i}^{(n)}$ extends to a linear bijection from im z_n onto \mathbb{C}^{n+1} , which finally induces a *-isomorphism ξ_n from $\mathcal{C}_n \cong L(\operatorname{im} z_n)$ onto $\mathbb{C}^{(n+1)\times(n+1)} \cong L(\mathbb{C}^{n+1})$. Then

$$\xi: \prod_{n \in \mathbb{N}_v} \mathcal{C}_n \to \prod_{n \in \mathbb{N}_v} \mathbb{C}^{(n+1) \times (n+1)}, \quad (A_n) \mapsto (\xi_n(A_n))$$

is a *-isomorphism which maps the C^* -subalgebra of $\prod_{n \in \mathbb{N}_v} C_n$ generated by the sequence $(z_n v z_n)_{n \in \mathbb{N}_v}$ to the C^* -subalgebra of $\prod_{n \in \mathbb{N}_v} \mathbb{C}^{(n+1) \times (n+1)}$ generated by the sequence $(V_{n+1})_{n \in \mathbb{N}_v}$, where V_n is the matrix described in Example (c). Note that V_n is just the $n \times n$ th finite section $P_n V P_n$ of the forward shift operator.

If now \mathcal{A} is the universal algebra generated by a PPI v, then $\mathbb{N}_v = \mathbb{N}$, as we observed in Corollary 18. Thus, in this case, the algebra $P\mathcal{A}P$ is *-isomorphic to the smallest C^* -subalgebra of $\mathcal{F} = \prod_{n\geq 1} \mathbb{C}^{n\times n}$ generated by the sequence $(P_n V P_n)$, i.e. to the C^* -algebra $\mathcal{S}_{\geq 2}(\mathsf{T}(C))$.

It remains to explain what happens with the part $(I - P)\mathcal{A}(I - P)$ of \mathcal{A} . The point is that the quotient $P\mathcal{A}P/P\mathcal{G}_vP$ is generated by a PPI u for which \mathbb{N}_u is empty. We have seen in Proposition 22 that both this quotient and the algebra $(I - P)\mathcal{A}(I - P)$ are canonically *-isomorphic to $\mathcal{S}_{\geq 2}(\mathsf{T}(C))/\mathcal{G}_{\geq 2}$. Thus, there is a *-homomorphism from $P\mathcal{A}P$ onto $(I - P)\mathcal{A}(I - P)$ which maps the generating PPI PvP of $P\mathcal{A}P$ to the generating PPI (I - P)v(I - P) of $(I - P)\mathcal{A}(I - P)$. Hence, if \mathcal{A} is the universal C^* -algebra generated by a PPI, then already $P\mathcal{A}P$ has the universal property, and $\mathcal{A} \cong P\mathcal{A}P \cong \mathcal{S}_{\geq 2}(\mathsf{T}(C))$.

References

 A. BÖTTCHER, B. SILBERMANN, The finite section method for Toeplitz operators on the quarter-plane with piecewise continuous symbols. – Math. Nachr. 110(1983), 279 – 291.

- [2] A. BÖTTCHER, B. SILBERMANN, Analysis of Toeplitz Operators. Akademie-Verlag, Berlin 1989 and Springer-Verlag, Berlin, Heidelberg, New York 1990.
- [3] A. BÖTTCHER, B. SILBERMANN, Introduction to Large Truncated Toeplitz Matrices. – Springer-Verlag, Berlin, Heidelberg 1999.
- [4] I. CHO, P. JORGENSEN, C*-Algebras generated by partial isometries. J. Appl. Math. Comp. 26(2008), 1-2, 1 – 48.
- [5] L. A. COBURN, The C*-algebra generated by an isometry. Bull. Am. Math. Soc. 73(1967), 722 – 726.
- [6] R. HAGEN, S. ROCH, B. SILBERMANN, C*-Algebras and Numerical Analysis. – Marcel Dekker, Inc., New York, Basel 2001.
- [7] I. RAEBURN, Graph algebras. CMBS 103, Amer. Math. Soc., Providence, R.I., 2005.

Author's address:

Steffen Roch, Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstrasse 7, 64289 Darmstadt, Germany. E-mail: roch@mathematik.tu-darmstadt.de