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Abstract

The derivation of the Allen-Cahn and Cahn-Hilliard equations is based on the
Clausius-Duhem inequality. This is not a derivation in the strict sense of the word,
since other phase field equations can be fomulated satisfying this inequality. Mo-
tivated by the form of sharp interface problems, we formulate such an alternative
equation and compare the properties of the models for the evolution of phase inter-
faces in solids, which consist of the elasticity equations and the Allen-Cahn equation
or the alternative equation. We find that numerical simulations of phase interfaces
with small interface energy based on the alternative model are more effective then
simulations based on the Allen-Cahn model.

Dedicated to the memory of Krzysztof Wilmański

1 Introduction

The phase field approach is used to model the evolution of phase interfaces in many
different materials and accordingly the resulting models differ widely. However, in spite
of all the differences the evolution equations for the order parameter S in the models
is almost always formulated by the standard approach to set the time derivative of the
order parameter equal to a suitable function of the functional derivative of the Ginzburg-
Landau free energy with respect to S, which leads to an Allen-Cahn type equation, or
equal to the divergence of a suitable function of the gradient of this functional derivative,
which leads to a Cahn-Hilliard type equation. Often this function is chosen to be linear.
For a thorough discussion of this approach to formulate material models with the Allen-
Cahn und Cahn-Hilliard equation we refer to [8].

The leading idea behind these approaches to formulate the evolution equation is that
in both cases for the resulting model the Clausius-Duhem inequality is guaranteed to
hold. Yet, there are other possibilities to choose the evolution equation such that this
inequality holds. Therefore the question arises whether the standard approach is always
the best or whether there are situations where other choices of the evolution equation for
the order parameter lead to better results.

Of course, this question can only be discussed at a concrete example of an alternative
phase field equation in a concrete mathematical material model. We consider here the
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prototypic model for the evolution of phase interfaces in solids, neglecting temperature
effects, which consists of the elasticity equations coupled to an evolution equation for S.
For this evolution equation one usually inserts the Allen-Cahn equation. We formulate
here an alternative phase field equation and compare the mathematical properties of the
two different models, which are obtained when we use the Allen-Cahn equation or the
alternative equation as the evolution equation. Our main result is that simulations of
phase interfaces in solids, which have small or vanishing interface energy density, are
numerically more effective when the alternative equation is used instead of the Allen-
Cahn equation.

We stress that the alternative phase field equation can replace the Allen-Cahn equa-
tion in other models. The properties of the resulting models have as yet to be investigated.

This paper is based on our investigations of phase field equations in the articles [1]
– [7]. It summarizes in particular the results obtained in [6] and [7], but adds also some
new considerations.

2 The Clausius-Duhem inequality and the Allen-Cahn equation

To formulate the alternative phase field equation, we must know the form of the Ginzburg-
Landau free energy, which appears in the Clausius-Duhem inequality. Therefore we first
introduce the physical situation and the elasticity equations, from which the form of the
Ginzburg-Landau free energy results.

Let Ω ⊆ R3 be an open bounded set, which represents a solid body. We assume
that the atoms of the material can be arranged in crystal lattices of two different types.
The crystal type present at a material point x ∈ Ω at time t is indicated by the order
parameter. The value S(t, x) = 0 means that type one is present, S(t, x) = 1 indicates
that type two is present. The sets of points

γ(t) = {x ∈ Ω | S(t, x) = 0}, γ′(t) = {x ∈ Ω | S(t, x) = 1},

where crystal type one or crystal type two is present, respectively, are called phase 1 or
phase 2 of the material at time t, respectively. Let u(t, x) ∈ R3 denote the displacement
of the material point x at time t and let

ε(∇xu) =
1

2

(
∇xu+ (∇xu)T

)
∈ S3

be the linear strain tensor, where S3 denotes the set of symmetric 3 × 3–matrices. We
assume that only small displacements occur and we consider a quasistatic model. This
means that for every given time t the displacement x 7→ u(t, x) and the Cauchy stress
tensor x 7→ T (t, x) ∈ S3 must solve the boundary value problem of linear elasticity posed
in the domain Ω, which is given by

−divx T = b, (2.1)

T = D
(
ε(∇xu)− εS

)
, (2.2)

u(t, x) = U(t, x), x ∈ ∂Ω, (2.3)

where ε ∈ S3 is the given transformation strain, where D : S → S is the elasticity
tensor, a linear, symmetric, positive definite mapping, and where b(t, x),U(t, x) ∈ R3
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denote the given volume force and boundary displacement. By (2.2), the material is
stree free in phase one if ε(∇xu) is equal to zero, and in phase two if ε(∇xu) is equal to
the transformation strain ε.

To close the system of model equations, we need an evolution equation for S. To
formulate it, note that according to (2.2), the stored elastic energy is

W
(
ε(∇xu), S

)
=

1

2

(
D
(
ε(∇xu)− εS

))
:
(
ε(∇xu)− εS

)
, (2.4)

which leads to the Ginzburg-Landau free energy

ψ∗
(
ε(∇xu), S,∇xS

)
= W

(
ε(∇xu), S

)
+ ψ̂(S) +

1

2
|∇xS|2. (2.5)

where ψ̂ : R→ R is a double well potential satisfying

ψ̂(0) = ψ̂(1) = 0, ψ̂(r) > 0, for 0 < r < 1. (2.6)

The second law of thermodynamics requires that there is a flow of the free energy
q
(
u, ut, ε(∇xu), S, St,∇xS

)
, such that the Clausius-Duhem inequality

∂

∂t
ψ∗ + divxq ≤ b · ut (2.7)

holds for all solutions (u, T, S) of the model equations. We use the flow

q = −Tut − St∇xS. (2.8)

If we insert (2.5) and (2.8) into (2.7) and note (2.1) and the equation ∂(∇xu)W = T ,
which follows from (2.4), (2.2), then we obtain by a short computation that

0 ≥ ∂

∂t
ψ∗ + divxq − b · ut = ∂(∇xu)W : ∇xut +

(
∂SW + ψ̂′(S)

)
St +∇xS · ∇xSt

− divx(Tut)− divx(St∇xS)− b · ut = (∂SW + ψ̂′(S)−∆xS)St . (2.9)

The Clausius-Duhem inequality (2.7) is therefore satisfied, if the evolution equation for
S guarantees that the right hand side of (2.9) is non-positive. The simplest possibility
to obtain this is to set

∂tS = −f
(
∂SW

(
ε(∇xu), S

)
+ ψ̂′(S)−∆xS

)
, (2.10)

with a function f : R → R satisfying r · f(r) ≥ 0. If for f the linear function f(r) = cr
is chosen with a positive constant c, then the Allen-Cahn equation results.

(2.1), (2.2), (2.10) form a closed system of partial differential equations. The standard
phase field model for the evolution of phase interfaces consists of this system, combined
with the boundary condition (2.3) and an initial condition for S.
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3 Formulation of an alternative phase field equation

By the inequality (2.9), the expression

F = ∂SW + ψ̂′(S)−∆xS (3.1)

and the time derivative St must have opposite signs, which means that the value of St
at (t, x) cannot be independent of the value F(t, x). Instead, there must be a functional
relation between both values. Of course, this does not mean that St must depend on F
alone as in the ansatz (2.10), it can depend on additional variables as well. The question
arises, on which other variables St should depend.

To discuss this question we start from the usual physical interpretation of the obser-
vation, that there must be a functional relation between St and F . The interpretation is
that F is a configurational force, which drives the time evolution of the order parameter
S. This interpretation is used as an additional justification for the equation (2.10), which
we write in the short form

St(t, x) = −f
(
F(t, x)

)
. (3.2)

What one wants to have is that the variation of the order parameter S is confined to
a narrow diffuse interface, which moves with a propagation speed, which is a linear or
nonlinear function of the configurational force F . In fact, standard sharp interface models
contain an equation, which prescribes the propagation speed of the interface as a function
of the configurational driving force. This equation is called kinetic relation. We extend
the meaning of this notation also to phase field models.

In a standard sharp interface model the kinetic relation can therefore be explicitly
read off from the model equations. It would be of interest to have a phase field model,
where the kinetic relation can also be read off directly from the form of the model
equations. For the phase field equation (3.2) this is not possible. Instead, the kinetic
relation is a hidden property of this equation, which must be determined by a very
technical asymptotic analysis of this equation.

Our goal is therefore to formulate a phase field equation, for which the Clausisus-
Duhem inequality (2.7) is satisfied, and which allows to read off the kinetic relation
directly from the form of the equation. To formulate such an equation, assume that
S is an order parameter, whose transition from 0 to 1 defines a diffuse phase interface
moving in time. We say that the speed of the diffuse interface at (t, x0) is equal to the
normal speed s(t, x0) of the level set Γc(t) = {x ∈ Ω | S(t, x) = c}, which contains x0.
The normal speed of Γc(t) at x ∈ Γc(t) can be defined as follows: If t̃ 7→ x(t̃) ∈ R3 is
a function defined for all t̃ from a neighborhood of t and if x(t̃) ∈ Γc(t̃) holds for all
t̃, then the normal speed s(t, x) of Γc(t) at x = x(t) ∈ Γc(t) is the component of the
velocoity x′(t) in the direction of the unit normal vector n(t, x) to Γc(t) at x. Since

n(t, x) = ∇xS(t,x)
|∇xS(t,x)| , we obtain

s(t, x(t)) =
dx(t)

dt
· ∇xS(t, x(t))

|∇xS(t, x(t))|
. (3.3)

The function t 7→ x(t) satisfies x(t) ∈ Γc(t) if and only if t 7→ S
(
t, x(t)

)
= c holds, and

this last equation holds if and only if for a fixed time t0 the function x(t) satisfies the
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initial value problem

0 =
d

dt
S
(
t, x(t)

)
= St

(
t, x(t)

)
+
dx(t)

dt
· ∇xS

(
t, x(t)

)
= St

(
t, x(t)

)
+ s
(
t, x(t)

)
|∇xS

(
t, x(t)

)
|, x(t0) ∈ Γc(t0),

with s defined by (3.3). From this we conclude that if t1 < t2 are given times and if
s : [t1, t2]× Ω→ R is a given function, then S satisfies the partial differential equation

St + s|∇xS| = 0 (3.4)

in the domain [t1, t2] × Ω, if and only if every level set Γc(t) moves with normal speed
s(t, x) at x ∈ Γc(t).

This suggests to combine the equations (2.1) – (2.3) with the evolution equation

St(t, x) = −f
(
F(t, x)

)
|∇xS(t, x)|, (3.5)

with the driving force F defined by (3.1) and with a given linear or nonlinear function
f : R → R. The propagation speed of the diffuse interface defined by (3.5) is equal
to f

(
F(t, x)

)
, whence the kinetic relation is given by f and can be read off directly

from the evolution equation (3.5). From (2.9) we immediately see that every solution
(u, T, S) of the equations (2.1), (2.2), (3.5) satisfies the Clausius-Duhem inequality (2.7)
if f satisfies r · f(r) ≥ 0 for all r ∈ R. The evolution equation (3.5) has therefore the
desired properties.

(3.5) has the form of a Hamilton-Jacobi equation. However, if one inserts the defini-
tion (3.1) of F into (3.5), one obtains the phase field equation

St = −f
(
∂SW + ψ̂′(S)−∆xS

)
|∇xS|, (3.6)

which is degenerate parabolic. (3.6) has therefore mixed hyperbolic–parabolic properties.
This is why we call (3.6) hybrid phase field equation.

4 The Allen-Cahn and the hybrid models

We have now two different phase field models for the evolution of phase interfaces in
solids: If we combine the equations (2.1), (2.2) with the phase field equation (2.10) of
Allen-Cahn type we obtain the system

−divx T = b, (4.1)

T = D
(
ε(∇xu)− εS

)
, (4.2)

∂tS = − c

(µλ)1/2

(
∂SW

(
ε(∇xu), S

)
+

1

µ1/2
ψ̂′(S)− µ1/2λ∆xS

)
, (4.3)

which must be solved in the domain [0,∞) × Ω. As boundary and initial conditions we
choose, for example,

u(t, x) = U(t, x), (t, x) ∈ [0,∞)× ∂Ω, (4.4)

∂n∂Ω
S(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω, (4.5)

S(0, x) = S(x), x ∈ Ω. (4.6)
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To obtain (4.3) from (2.10) we specialized the function f in (2.10) to be f(r) = cr with
a positive constant c and we introduced two scaling parameters µ > 0 and λ > 0, whose
meaning will become clear later. To have a short name, we call the system (4.1) – (4.3)
the Allen-Cahn phase field model.

The second model is obtained by combination of (2.1), (2.2) with the hybrid phase
field equation (3.6). If we specialize the function f in (3.6) to be f(r) = cr with a
constant c > 0 and introduce a scaling parameter ν > 0, the resulting system is

−divx T = b, (4.7)

T = D
(
ε(∇xu)− εS

)
, (4.8)

∂tS = −c
(
∂SW

(
ε(∇xu), S

)
+ ψ̂′(S)− ν∆xS

)
|∇xS|. (4.9)

These equations must be solved in the domain [0,∞)× Ω. For the boundary and initial
conditions we can again take (4.4) – (4.6). We call the system (4.7) – (4.9) the hybrid
phase field model.

Several questions arise immediately. (4.9) is a quasilinear, degenerate parabolic equa-
tion. Little is known about equations of the form (4.9). The first question therefore
concerns existence and uniqueness of solutions to the system (4.7) – (4.9). Moreover, if
solutions (u, T, S) exist, does the function S have the properties required from an order
parameter? If both questions can be answered positively, what is then the difference
between the Allen-Cahn model and the hybrid model? We have studied these questions
in recent years. To the first two questions only partial answers can be given, whereas the
answer to the third question is quite well known.

In [3] it is proved that weak solutions of the hybrid model (4.7) – (4.9), (4.4) – (4.6)
exist in the case of one space dimension. The proof is based on the observation that the
one-dimensional version of the evolution equation (4.9) has some monotonicity properties.
In higher space dimensions no rigorous existence proof is available. We must therefore
rely on extensive numerical tests and on formal asymptotic analysis. The numerical test
computations seem to indicate quite clearly, that solutions (u, T, S) exist and that the
function S in these solutions has the properties required from an order parameter. In
fact, the test computations converge in higher space dimensions better then in one space
dimension. A part of the test computations is documented in [6].

The last question on the difference of the models is answered in the remainder of
this paper. Of course, to answer the question we need to have more information on the
properties of the models. This information is collected in Sections 5 and 6. The infor-
mation is obtained by asymptotic analysis of the models, more precisely by construction
of approximate solutions to the Allen-Cahn and the hybrid models. The answer to the
comparison question is finally given in Section 7.

5 Model error and asymptotics

To compare the models we need to define what we understand under the model error. In
this section we first give this definition and subsequently state in Theorems 5.2 and 5.3
some results on approximate solutions, which have been obtained in [6] and [7].

To define the model error we must first specify the type of material interfaces, which
we want to model. Of great current interest are phase interfaces in functional materials.
Very often such interfaces are thin and consist only of a few atomic layers. A large
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number of phase field models to simulate the time evolution of such interfaces have been
devised and more are developed. It is therefore of interest to study how well the Allen-
Cahn and the hybrid models are adapted to the simulation of thin interfaces in solids.
More precisely, it is of interest to study how large the difference between the propagation
speed of a thin phase interface in the real material and of the interface in the respective
phase field model is. This difference is the model error.

To give a precise definition of the model error, we must approximately know the prop-
agation speed of the real phase interface. For very thin interfaces mathematical models
with sharp interface are appropriate. We therefore base the following considerations on
the hypothesis that the propagation speed of the interface in the sharp interface model
is a good approximation to the propagation speed of the interface in the real material.
The model error of a phase field model is then the difference of the propagation speed of
the sharp interface and the propagation speed of the diffuse interface in the phase field
model.

To formulate the sharp interface model to be used we must introduce some notations.
The asymptotic solution is constructed in the bounded domain

Q = [t1, t2]× Ω,

where 0 ≤ t1 < t2 < ∞ are given times. Γ(t) denotes the sharp interface at time t. We
assume that the phase sets γ(t), γ′(t) introduced in Section 2 are open, disjoint subsets
of Ω, whose common boundary is Γ(t), such that Ω = γ(t) ∪ γ′(t) ∪ Γ(t). We set

Γ = {(t, x) ∈ Q | x ∈ Γ(t), t1 ≤ t ≤ t2},
γ = {(t, x) ∈ Q | x ∈ γ(t), t1 ≤ t ≤ t2},
γ′ = {(t, x) ∈ Q | x ∈ γ′(t), t1 ≤ t ≤ t2}.

Let
n : Γ→ R3

be the continuous vector field, for which n(t, x) is the unit normal vector to Γ(t) at
x ∈ Γ(t), which points into the domain γ′(t). For a function w defined in a neighborhood
of Γ and (t, x) ∈ Γ we set

w(±)(t, x) = lim
ξ↘0

w
(
t, x± n(t, x)ξ

)
,

[w](t, x) = w(+)(t, x)− w(−)(t, x),

〈w〉(t, x) =
1

2

(
w(+)(t, x) + w(−)(t, x)

)
.

Now we can formulate the sharp interface model. Let Ŝ : Q → {0, 1} be a piecewise
constant function, which only takes the values 0 and 1 with a jump across Γ, such that

γ(t) = {x ∈ Ω | Ŝ(t, x) = 0}, γ′(t) = {x ∈ Ω | Ŝ(t, x) = 1}.

The sharp interface model consists of a transmission problem for the elasticity equations
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and of a kinetic relation. The transmission problem is given by

−divxT̂ = b, (5.1)

T̂ = D
(
ε(∇xû)− εŜ

)
, (5.2)

[û] = 0, (5.3)

[T̂ ]n = 0, (5.4)

û(t)|∂Ω
= U(t). (5.5)

To determine the kinetic relation we proceed as in Section 2. We use the Clausius-Duhem
inequality

∂tψsharp + divx qsharp ≤ ût · b, (5.6)

with the free enery and the flux

ψsharp

(
ε(∇xû), Ŝ

)
= W

(
ε(∇xû), Ŝ

)
+ λ1/2c1

∫
Γ(t)

dσ, (5.7)

qsharp(T̂ , Ŝ) = −T̂ · ût ,

where c1 ≥ 0 is an arbitrarily chosen constant. The last term on the right hand side
of (5.7) is the interface energy, hence λ1/2c1 is the interface energy density. It is well
known that if (û, T̂ ) is a solution of the transmission problem (5.1) – (5.5) and if the
interface Γ(t) in this problem moves with the normal speed ssharp(t, x) at x ∈ Γ(t), then
the Clausius-Duhem inequality (5.6) holds if and only if the inequality

ssharp(t, x) ·
(
− ε : 〈T̂ 〉(t, x) + λ1/2c1κΓ(t, x)

)
≥ 0 (5.8)

is satisfied at every point x ∈ Γ(t). Here κΓ(t, x) denotes twice the mean curvature of
the surface Γ(t) at x ∈ Γ(t).

A proof of this well known result is given in [1], however only for the case where
c1 = 0 in (5.7). The proof can be readily generalized to the case c1 > 0.

A simple linear kinetic relation, for which (5.8) obviously holds, is

ssharp = ĉ
(
− ε : 〈T̂ 〉+ λ1/2c1κΓ

)
, (5.9)

with a positive constant ĉ. The sharp interface problem thus consists of the transmission
problem (5.1) – (5.5) combined with the kinetic relation (5.9).

We can now define the model error. To this end note that solutions of the Allen-Cahn
model depend on the parameters µ and λ, whereas solutions of the hybrid model depend
on the parameter ν. Therefore we record these parameters in the notation. For a solution

(u
(µλ)
AC , T

(µλ)
AC , S

(µλ)
AC ) of the Allen-Cahn model and for a solution (u

(ν)
hyb, T

(ν)
hyb, S

(ν)
hyb) of the

hybrid model consider the level sets

Γ
(µλ)
AC =

{
(t, x) ∈ Q

∣∣∣ S(µλ)
AC (t, x) =

1

2

}
, Γ

(ν)
hyb =

{
(t, x) ∈ Q

∣∣∣ S(ν)
hyb(t, x) =

1

2

}
,

Let s
(µλ)
AC (t, x) denote the normal speed of Γ

(µλ)
AC (t) at x ∈ Γ

(µλ)
AC (t), and let s

(ν)
hyb(t, x) denote

the normal speed of Γ
(ν)
hyb(t) at x ∈ Γ

(ν)
hyb(t). These normal speeds are approximately equal

to the propagation speeds of the diffuse phase interfaces defined by the solutions of the
Allen-Cahn and hybrid models.

8



Let t ∈ [t1, t2] be a given, fixed number. As initial conditions for the sharp interface
problem we can choose

Γ(t) = Γ
(µλ)
AC (t), or Γ(t) = Γ

(ν)
hyb(t).

Definition 5.1 We call the functions E(µλ)(t) : Γ(t) → R and E(ν)(t) : Γ(t) → R,
respectively, which are defined by

E(µλ)(t) = s
(µλ)
AC (t)− ssharp(t), if Γ(t) = Γ

(µλ)
AC (t), (5.10)

E(ν)(t) = s
(ν)
hyb(t)− ssharp(t), if Γ(t) = Γ

(ν)
hyb(t), (5.11)

the error of the Allen-Cahn model or the error of the hybrid model at time t, respectively.

We next state some results for the Allen-Cahn and hybrid models obtained by asymptotic
analysis.

By B
(µλ)
AC > 0 and B

(ν)
hyb > 0 we denote the widths of the diffuse interfaces defined by

the order parameter in solutions of the Allen-Cahn model and by solutions of the hybrid
model. Here we do not define the interface width precisely. If S is an order parameter,
one could define the interface width to be the maximal distance between the level surfaces
{x ∈ Ω | S(t, x) = 0.1} and {x ∈ Ω | S(t, x) = 0.9}, for example. We are interested in the
limits µ→ 0, λ→ 0, ν → 0 and assume therefore that µ ∈ (0, µ0], λ ∈ (0, λ0], ν ∈ (0, ν0],
with suitably chosen fixed constants µ0, λ0, ν0 > 0.

Theorem 5.2 Let (u
(µλ)
AC , T

(µλ)
AC , S

(µλ)
AC ) be a solution of the Allen-Cahn model (4.1) –

(4.5), let t ∈ [t1, t2] be a given time, and let (û(t), T̂ (t)) be the solution of the transmission

problem (5.1) – (5.5) with the interface given by Γ(t) = Γ
(µλ)
AC (t). Then

s
(µλ)
AC (t, x) = s0(t, x) + µ1/2

(
s10(t, x) + λ1/2s11(t, x)

)
+ µ1/2RAC(µ, λ, t, x), (5.12)

where s0 = s0

(
Γ

(µλ)
AC (t)

)
, s10 = s10

(
Γ

(µλ)
AC (t)

)
and s11

(
Γ

(µλ)
AC (t)

)
are nonlocal functions of

Γ
(µλ)
AC (t). In particular, we have

s0(t, x) =
c

c1

(
− ε : 〈T̂ 〉(t, x) + λ1/2c1κΓ(t, x)

)
, (5.13)

with the constant

c1 =

∫ 1

0

√
2ψ̂(r)dr. (5.14)

For the remainder term RAC(µ, λ, t, x) there is a function µ→ CE(µ) with limµ→0 CE(µ) =

0 such that for all 0 < µ ≤ µ0, 0 < λ ≤ λ0 and all (t, x) ∈ Γ
(µλ)
AC the inequality

|RAC(µ, λ, t, x)| ≤ CE(µ) (5.15)

holds. Moreover, there is a constant C1 > 0 such that for all 0 < µ ≤ µ0, 0 < λ ≤ λ0

B
(µλ)
AC ≤ C1(µλ)1/2. (5.16)
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These results are contained in [7]. We stress here the fact, that the results are obtained
by formal asymptotic analysis. No rigorous mathematical proof of these statements is
given in [7]. The asymptotic analysis with respect to µ→ 0 uses mathematical methods,
which are standard in the analysis of phase field models. This is different for the estimate
(5.15), which says that the remainder term RAC tends to zero for µ→ 0, uniformly with
respect to λ. This uniformity estimate is obtained by a second asymptotic analysis with
respect to λ→ 0. The formal derivation of this estimate is a novelty introduced in [7].

Theorem 5.3 Let (u
(ν)
hyb, T

(ν)
hyb, S

(ν)
hyb) be a solution of the hybrid model (4.7) – (4.9), (4.4),

(4.5), let t ∈ [t1, t2] be a given time, and let (û(t), T̂ (t)) be the solution of the transmission

problem (5.1) – (5.5) with the interface given by Γ(t) = Γ
(ν)
hyb(t). Then

s
(ν)
hyb(t, x) = c

(
− ε : 〈T̂ 〉(t, x) + ν1/2Rhyb(ν, t, x)

)
, (5.17)

where c > 0 is the constant from (4.9). For the remainder term Rhyb(ν, t, x) there is a

constant C2 such that for all 0 < ν ≤ ν0 and all (t, x) ∈ Γ
(ν)
hyb the inequality

|Rhyb(ν, t, x)| ≤ C2 (5.18)

holds. Moreover, there is a constant C3 > 0 such that for all 0 < ν ≤ ν0

B
(ν)
hyb ≤ C3ν

1/2. (5.19)

These results are obtained in [6], again by formal asymptotic analysis.

6 Characteristic equations

From the results on the asymptotic behavior of the models stated in Theorems 5.2 and
5.3 we derive in this section for both models some relations between parameters of the
models. We call these relations the characteristic relations of the models. The comparison
of the models in Section 7 is based on these relations.

We first consider the Allen-Cahn model. For c1 in the free energy (5.7) we choose
the value given by (5.14), With this value we adapt the interface energy density λ1/2c1

to the value in the real material by varying λ. In (4.3) we choose c = ĉc1. By (5.9) and
(5.13) we then have

s0 = ssharp ,

hence (5.10) and (5.12) together imply

E(µλ) = s
(µλ)
AC − s0 = µ1/2(s10 + λ1/2s11) + µ1/2RAC . (6.1)

This equation and (5.15) together yield

|E(µλ)| ≤ Cµ1/2, (6.2)

with a constant C, which can be chosen independently of λ. By this inequality, µ1/2

controls the model error. Therefore we write F = µ1/2 and call F the error parameter.
Moreover, since λ1/2c1 is the interface energy density, we call E = λ1/2 the interface
energy parameter. Also, since by (5.16) the interface width is bounded by a constant,
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which is proportional to (µλ)1/2, we call W = (µλ)1/2 the interface width parameter.

These three parameters and the propagation speed sAC = s
(µλ)
AC are connected by the

fundamental relations

W = EF, (6.3)

sAC = ĉ (−ε : 〈T̂ 〉+ c1κΓE) + E [E,F ], (6.4)

|E [E,F ]| ≤ CF, (6.5)

where we use the notation E [E,F ] = E(µλ). The first equation is an immediate conse-
quence of the definition of the parameters, the second is obtained by insertion of (5.9)
into (5.10), and the last inequality is just a restatement of (6.2).

Now assume that we want to use a phase field model to numerically simulate the
propagation of a phase interface. In such a simulation the numerical effort is proportional
to h−p, where h denotes the grid spacing and where the power p > 1 depends on whether
we want to simulate a problem in 2–d or in 3–d and it depends on the numerical scheme
we use. In order for the simulation to be precise, we must guarantee that the model error
and the numerical error are small. To make the numerical error small, we must choose
the grid spacing h small enough to resolve the transition of the order parameter across
the interface, which means that we must choose h < W, hence we have h−p > W−p.
Therefore we see that the numerical effort of a simulation based on a phase field model
is measured by the number W−p. We call the number

enum =W−p

the parameter of numerical effort. For a simulation based on the Allen-Cahn model we
see from (6.3) that the numerical effort is

enum = (EF )−p. (6.6)

We call the relations (6.3) – (6.6) characteristic relations for the Allen-Cahn model.

Next we derive the characteristic relations for the hybrid model. In the free energy (5.7)
we choose c1 = 0, and in (4.9) we set c = ĉ. By (5.9) and (5.17) we then have

s
(ν)
hyb = ssharp + ν1/2ĉ Rhyb. (6.7)

We insert this equation into (5.11) and obtain for the model error

E(ν) = ĉRhyb ν
1/2. (6.8)

From this equation and from (5.18) to infer that

|E(ν)| = ĉ|Rhyb|ν1/2 ≤ Cν1/2. (6.9)

By this equation, ν1/2 controls the model error. In the case of the hybrid model we there-
fore choose F = ν1/2 as the error parameter. By (5.19), the interface width is bounded
by a constant, which is proportional to ν1/2, whence the interface width parameter is
W = ν1/2. For the hybrid model we therefore have the characteristic relations

W = F, (6.10)

shyb = −ĉ ε : 〈T̂ 〉+ E [F ], (6.11)

|E [F ]| ≤ CF, (6.12)

enum = F−p, (6.13)
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where we used the notations shyb = s
(ν)
hyb and E [F ] = E(ν). The first of these relations

follows from the definitions of F and W, the second one is obtained by combination of
(6.7) and (6.8), noting (5.9), the third one is just a restatement of (6.9), and the last one
follows from the definition enum = W−p of the parameter of numerical effort and from
(6.10).

7 Comparison of the models, numerical efficiency

From (6.4) we see that the Allen-Cahn model can describe the evolution of a phase
interface with propagation speed ĉ (−ε : 〈T̂ 〉+ c1κΓE), which by (5.9) is the propagation
speed of an interface with interface energy density c1λ

1/2 = c1E. The interface energy
density is always positive, since we cannot set λ = 0 in the Allen-Cahn equation (4.3).
Varying of the parameter E to adjust the interface energy density does not change the
model error; this error can be adjusted to a desired value by choosing the parameter
F = µ1/2 suitably. Varying of F does not change the interface energy density. From
(6.6) we see that if the interface energy density parameter E is fixed, then the effort of a
numerical simulation grows with F−p, where the power p > 1 depends on the numerical
method employed and on the space dimension of the problem, which we want to simulate.

From (6.11) we see that the hybrid model, on the other hand, can describe the
evolution of a phase interface with propagation speed −ĉ ε : 〈T̂ 〉, which by (5.9) is the
propagation speed of an interface with interface energy density c1λ

1/2 = 0. The model
error can be adjusted to a desired value by choosing the parameter F = ν1/2 suitably.
By (6.13), also for this model the effort of a numerical simulation grows with F−p, where
the power p > 1 depends on the numerical method employed and on the space dimension
of the problem, which we want to simulate.

These observations suggest the following rule:

Simulations of phase interfaces with positive interface energy density should be based
on the Allen-Cahn model, simulations of interfaces with zero or small interface energy
density should be based on the hybrid model.

One can object to this rule by arguing that the Allen-Cahn model can also be used to
simulate interfaces with zero interface energy density by choosing the interface energy
density parameter positive, but very small. However, because of the presence of the
factor E−p in the formula (6.6) the numerical effort will become very large.

To be more specific, we consider an interface with vanishing interface energy density,
hence c1λ

1/2 = 0, which by (5.9) means that the propagation speed of the sharp interface
is

ssharp = −ĉ ε : 〈T̂ 〉.

For the Allen-Cahn model it follows from this equation and from (6.4) that in this case
the total model error, which we denote by Etotal, is

Etotal = sAC − ssharp = ĉc1κΓE + E [E,F ].

This means that the term ĉc1κΓE is now part of the total model error.
If we prescribe the maximal value Emax of the total model error |Etotal|, we must
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therefore choose the parameters E and F such that

ĉc1(max
Γ
|κΓ|)E + max

Γ
|E [E,F ]| ≤ Emax, (7.1)

EF
!

= max, (7.2)

where the second condition is imposed by the requirement to make the numerical effort
enum = (EF )−p as small as possible. To discuss this optimization problem, we assume

first that the term s10 in the asymptotic expansion (5.12) of the propagation speed s
(µλ)
AC

is not identically equal to zero. In this case we conclude from (6.1) and (5.15) that for
sufficiently small λ1/2 = E and for sufficiently small µ1/2 = F the error E [E,F ] = E(µλ)

satisfies

max
Γ
|E [E,F ]| ≥ 1

2
(max

Γ
|s10|)µ1/2 =

1

2
(max

Γ
|s10|)F.

This inequality and (7.1) imply that the solution (E,F ) of the optimization problem
(7.1), (7.2) satisfies

F ≤ 2

max
Γ
|s10|

max
Γ
|E [E,F ]| ≤ 2

max
Γ
|s10|

Emax and E ≤ 1

ĉc1 max
Γ
|κΓ|
Emax.

From this result we obtain

Corollary 7.1 Let Emax denote the total model error of the Allen-Cahn model in the
simulation of an interface without interface energy. If the term s10 in the asymptotic

expansion (5.12) of the propagation speed s
(µλ)
AC is not identically equal to zero, then the

interface width BAC satisfies

BAC ≤ C1EF ≤
2C1

ĉc1(max
Γ
|s10|)(max

Γ
|κΓ|)

E2
max . (7.3)

In a numerical simulation of an interface without interface energy based on the Allen-
Cahn model the parameter of numerical effort satisfies

enum ≥

(
ĉc1(max

Γ
|s10|)(max

Γ
|κΓ|)

2 E2
max

)p
, (7.4)

with a power p > 1 depending on the space dimension and the numerical method used.

For the hybrid model we have by (6.11) and (6.12) that Emax = maxΓ |E [F ]| ≤ CF . From
(6.13) and from (7.4) we thus see that in a simulation of an interface without interface
energy or with small interface energy the numerical efforts behave like

ehyb
num ≤ CE−pmax , eAC

num ≥ CE−2p
max . (7.5)

Since the time step in a simulation must be decreased when the grid spacing h in x–
direction is decreased, the number p can be larger than 4 in a three dimensional simula-
tion. From (7.5) we thus see that the numerical effort for the Allen-Cahn model grows
much faster for the Allen-Cahn model than for the hybrid model when the required ac-
curacy is increased. This confirms the rule stated above for the usage of both models in
simulations.
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This picture does not change essentially when the term s10 vanishes identically. In
this case the same considerations show that instead of (7.3) and (7.4) we would have

BAC = O(E3/2
max) and eAC

num ≥ CE
− 3

2
p

max , hence the numerical effort for the Allen-Cahn model
would still grow faster than for the hybrid model. However, a close investigation of
the terms, which constitute s10 and which are computed in [7], shows that only in very
exceptional situations one can expect that s10 vanishes identically.
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