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Abstract

Non-linear Rd-valued curve subdivision has a high potential of generating limit
curves sensitive to the geometry of initial points. A natural condition character-
izing geometric subdivision schemes is the commutation of the refinement rules
with similarities. In this paper, we introduce this class of geometric subdivision
schemes and address the question of convergence. We prove that uniform decay
of the edge lengths is necessary and uniform summability thereof is sufficient for
convergence. For a special subclass the necessary condition is also sufficient and
thus fully characterizes convergence.
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1 Introduction

For univariate linear subdivision schemes there exists a general framework concerning
convergence and smoothness of the limit, see [8] for a survey. When dealing with ge-
ometric subdivision, newly generated points on the finer level depend on points of the
coarser level in a non-linear way. Even in a simplified setting regarding only uniform and
stationary subdivision (the same non-linear rules are used in each part of the sequence
and every refinement step) the question of convergence to a continuous limit curve and
smoothness thereof is a complicated one. This is why analysis of such schemes is typically
specialized to a concrete algorithm, e.g. see the schemes analyzed in [5, 6, 15, 17, 13],
or a certain regularity of the limit is only motivated by numerical experiments, like the
κ-scheme in [1]. However, a general framework for manifold-valued subdivision is de-
veloped in [9, 16, 11, 12] focusing on adaption of linear schemes to non-linear geometry.
For non-linear schemes in a linear space, there are at least two contributions aiming at
general results, namely [7] and [10].

In the first one, [7], Dyn and Hormann present necessary and sufficient conditions for
convergence based on piecewise linear parameterizations as well as sufficient conditions
for continuously varying tangents by a purely geometric approach. During their analysis,

1



they focus on the special class of interpolatory schemes in the plane. In this setting,
they show that the sequence of largest edge lengths has to be a null sequence for all
convergent schemes, while summability of maximal edge lengths implies convergence.

In the second one, [10], a broad class of subdivision schemes, called GLUE-schemes,
is introduced. These schemes have to be geometric (i.e., commute with similarities),
local (i.e., new points depend only on a fixed number of old points), uniform (i.e., the
same rules are applied everywhere) and equilinear (i.e., linear polygons are mapped to
linear polygons with half spacing), which is abbreviated in the acronym GLUE. Further,
an analysis for Hölder regularity up to C1,α (and for a subclass even C2,α) using a newly
introduced quantity named relative distortion is presented. Many schemes belong to this
class. For instance [1, 6, 13, 17] and especially [5] fit into this framework. For the last
one, an application of the presented theory yields C1,1-smoothness for all initial data
with relative distortion smaller than 0.08. However, the equilinear condition is quite
restrictive. For example, the treatment of corner cutting schemes with arbitrary ratio
[4] is not possible except for Chaikin’s algorithm [3].

In this paper, we investigate convergence of a broader class than GLUE-schemes and
will see that the sequence of maximal edge lengths has to be a null sequence for all
convergent schemes, while summability is a sufficient condition. For a special subclass
the property of being a null sequence is even sufficient and therefore fully characterizes
convergence.

This paper can be seen as a continuation of both, [7] and [10]: On one hand, we take
the class of GLUE-schemes and skip equilinearity to obtain a broader set of schemes
called GLU-schemes. In particular, dropping equilinearity is a substantial generalization
as it allows to treat some uncovered schemes as GLU-schemes, like Example 2.3. On
the other hand, we follow the structure of the part of [7] about convergence and prove
analogous results in the setting of GLU-schemes. This includes going from the plane to
arbitrary space dimensions. Also the restrictive choice of interpolatory rules is replaced
by a next general property, namely continuity of one refinement rule at the origin. This
allows to choose a whole variety of functions for both refinement rules, what is at the
same time the reason why proofs have to be significantly generalized.

The paper is organized as follows: In Section 2 after introducing some notations
needed to formulate the setting, the class of GLU-schemes is presented and a non-
interpolatory and non-equilinear example is given. The question of convergence is ad-
dressed in Section 3 by stating a necessary and proving a sufficient condition while
another example shows that in general the necessary one is not enough to guarantee
convergence. The Section is concluded by introducing a subclass of GLU-scheme for
which a characterization of convergence holds. Some more technical proofs are collected
in Section 4 while a conclusion of this paper is given in Section 5.

2



2 Setup

Because the analysis presented here can be regarded as a generalization of [10], we adapt
the setting and repeat the notation used there. Our analysis applies not only to the
plane as in [7] but to arbitrary dimensions. For this, let us denote Euclidean d-space
by E := R

d with space dimension d ∈ N fixed. We will investigate subdivision of finite
sequences of points in E, called chains. To this end, we denote the space of chains with
N ∈ N points by E

N . When starting with a short initial chain, further subdivision could
be undefined due to a collaps of number of points, see Definition 2.1. This results in a
need of chains with sufficiently many points, say E

≥n :=
⋃

N≥n E
N for the set of chains

with at least n points. Chains are always denoted by upper case bold face letters, e.g.
P ∈ E

N , and the corresponding standard lower case letters, tagged with a subscript,
are used for the points, e.g. pi ∈ E, where indices always start from 0. Points are
understood as row vectors, which will be seperated by semicolons, while columns of
points yield chains. The length of a chain P = [p0; . . . ; pN−1] ∈ E

≥n is the number of
its points and is denoted by #P := N . We can extract subchains out of longer chains
P ∈ E

≥n by means of truncation operators,

T n
i P := [pi; . . . ; pi+n−1] ∈ E

n, 0 ≤ i ≤ #P− n.

Two more terminologies are needed to formulate the class of subdivision schemes we
are interested in.

A similarity, denoted by S = (̺,Q, s) : E → E, is characterized by a scalar scaling
factor ̺ > 0 , an orthogonal transformation matrix Q ∈ R

d×d and a shift vector s ∈ E

acting on points by S(p) = ̺pQ + s. Application of S to a chain P is understood
pointwise, i.e. p′i = S(pi) where p′i is the i-th point of S(P ). The group of similarities
in E is denoted by S(E).

An important chain will be the constant null chain

nN := [n; . . . ;n] ∈ E
N

formed by repeating the point n := 0 ∈ E.

Definition 2.1. Given m ∈ N, let n := 2m + 1. The map G : E≥n → E
≥n defines a

geometric, local, uniform subdivision scheme (or briefly GLU-scheme) in E with spread
n if #G(P) = 2#P− n+ 1 and if it satisfies the following properties:

(G) G commutes with similarities, i.e, G ◦ S = S ◦G, S ∈ S(E).

(L) The points p′2i and p′2i+1 of the chain P′ := G(P) depend only on finitely many
points, namely pi, . . . , pi+m.

(U) There exist functions g0, g1 : E
m+1 → E independent of i such that

p′2i+λ = gλ(pi, . . . , pi+m), λ ∈ {0, 1}, 0 ≤ i < #P−m,

while one of these functions, say g0, is continuous in nm+1.
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Figure 1: Definition of the scheme 2.3.

Remark 2.2. The following analysis only uses the property of commutation with scaling
and translation. Hence, commutation with rotations is not needed and the class of
schemes for which the convergence analysis applies is even larger. But for consistency to
[10] and because commutation with rotations is anyway a natural property for geometric
subdivision, we stay with this definition. We also note that continuity in nm+1 is only
demanded for g0. Besides commutation with similarities, no further conditions are
imposed on g1.

The class of GLUE-schemes considered in [10] differs in two aspects:
First, both refinement rules g0 and g1 of a GLUE-scheme have to be continuously

differentiable in another special chain, while this property is replaced here by continuity
only of g0 in nm+1.

Second, the equilinear condition (E) is obviously dropped, what is a significant gener-
alization. For example, de Rham’s scheme with arbitrary cutting ratio [4] or generalized
Lane-Riesenfeld algorithms1 [1] fail to meet condition (E). Thus, they are no GLUE-
schemes, but GLU-schemes as long as continuity of g0 in nm+1 is satisfied.

The class of schemes addressed in [7], namely interpolatory planar subdivision, is
also a subset of GLU-schemes, if g1 fulfills condition (G): When choosing d = 2 and g0
to be interpolatory, this function is continuous in nm+1 and commutes with similarities.
As long as g1 commutes, too, these schemes are GLU-schemes. For example, both newly
introduced schemes in [7] are GLU-schemes.

1Some refinement rules allow to view generalized Lane-Riesenfeld algorithms as GLUE-schemes, but
for the whole variety of rules, condition (E) is violated.
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Example 2.3. We introduce a 1-parameter family of GLU-schemes that we will analyze
in Section 3. Because these schemes use three points pi, pi+1, pi+2 to generate the new
ones, it is m = 2. Let M = M(T 3

i p) be the incenter of the triangle formed by the three
points, see Figure 1. It is given by

M =
‖pi+2 − pi+1‖pi + ‖pi+2 − pi‖pi+1 + ‖pi+1 − pi‖pi+2

‖pi+2 − pi+1‖+ ‖pi+2 − pi‖+ ‖pi+1 − pi‖
,

where ‖ · ‖ denotes the Euclidean norm on E. For a given parameter α ∈ [0, 1] we define
the refinement rules as

p′2i+λ = gλ(pi, pi+1, pi+2) := αpi+λ + (1− α)M, λ ∈ {0, 1}.

Clearly by construction, this scheme fulfills condition (L). To varify property (G) let
S = (̺,Q, s) be a similarity and observe using ‖S(q)−S(p)‖ = ̺‖(q− p)Q‖ = ̺‖q− p‖
for q, p ∈ E,

M(S(T 3
i p)) =

̺
(

‖pi+2 − pi+1‖Spi + ‖pi+2 − pi‖Spi+1 + ‖pi+1 − pi‖Spi+2

)

̺‖pi+2 − pi+1‖+ ̺‖pi+2 − pi‖+ ̺‖pi+1 − pi‖

= ̺
‖pi+2 − pi+1‖pi + ‖pi+2 − pi‖pi+1 + ‖pi+1 − pi‖pi+2

‖pi+2 − pi+1‖+ ‖pi+2 − pi‖+ ‖pi+1 − pi‖
Q+ s

= S(M(T 3
i p)).

So the refinement rules also commute with similarities,

gλ(S(pi), S(pi+1), S(pi+2)) = αS(pi+λ) + (1− α)M(S(T 3
i p))

= ̺
(

αpi+λ + (1− α)M(T 3
i p)

)

Q+ s

= S(gλ(pi, pi+1, pi+2)),

and thus condition (G) holds. The check of condition (U) is performed after the charac-
terization of continuity given in Lemma 2.5 below. To formulate this result some more
notation and the reproduction of constant chains is needed.

With the Euclidean norm on E denoted by ‖ · ‖, we can equip the spaces of chains
with a norm | · |0 defined by

|P|0 := max
i=0,...,#P−1

‖pi‖

for P ∈ E
≥n, recalling that indices always starts from 0 and that #P is the number of

points in P. Based on this, we will also use a semi-norm

|P|1 := max
i=1,...,#P−1

‖pi − pi−1‖

on P ∈ E
≥n, which is just the maximal edge length occuring in P. Repeated subdivision

of the initial chain P ∈ E
≥n yields the chains Pℓ := Gℓ(P), ℓ ∈ N. Throughout, the

points of Pℓ are denoted by pℓi .
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Lemma 2.4. A GLU-scheme G reproduces constant chains, i.e. for all s ∈ E

gλ(s, . . . , s) = s, λ ∈ {0, 1}.

Proof. Property (G) implies commutation of the functions g0 and g1 according to gλ(S(p)) =
S(gλ(p)), S ∈ S(E). The similarity S := (1/2, Id, s/2) satisfies S(s) = s. Hence,
gλ(s, . . . , s) = S(gλ(s, . . . , s)) = gλ(s, . . . , s)/2 + s/2, and by solving for gλ(s, . . . , s)
showing the reproduction

gλ(s, . . . , s) = s.

The reason why we demand continuity of g0 in nm+1 is given in the following Lemma.
Essentially, it guarantees that bounded data remain bounded under g0. Additionally,
continuity and Lipschitz continuity coincides for GLU-schemes.

Lemma 2.5. For a GLU-scheme G, the following statements are equivalent:

i) g0 : E
m+1 → E is continuous in nm+1.

ii) g0 is bounded, i.e. there exists C > 0 such that ‖g0(p)‖ ≤ C for all p ∈ B1.

iii) g0 is Lipschitz continuous in nm+1, i.e. there exists C > 0 such that ‖g0(p)‖ ≤ Cr
for all r > 0 and p ∈ Br.

Here, Br := {p ∈ E
m+1 : |p|0 ≤ r} is the closed | · |0-ball in E

m+1 with radius r centered
at the origin.

Proof. i) ⇒ ii): By continuity of g0, there exists δ > 0 with

‖g0(p)‖ = ‖g0(p)− n‖ = ‖g0(p)− g0(nm+1)‖ ≤ 1

for p ∈ Bδ, where we also used the reproduction of constants, g0(nm+1) = n. Let q ∈ B1

and hence δq ∈ Bδ. Then we have by commutation with scaling

‖g0(q)‖ =
1

δ
‖g0(δq)‖ ≤

1

δ
=: C, q ∈ B1.

ii) ⇒ iii): For all p ∈ Br we have p/r ∈ B1. Using scaling commutation again

‖g0(p)‖ = r‖g0(p/r)‖ ≤ Cr.

iii) ⇒ i): We have to show that for all ǫ > 0 there exists δ > 0 with ‖g0(p)‖ ≤ ǫ for all
p ∈ Bδ. Given ǫ > 0, we choose δ := ǫ/C and use iii) with r = δ and find

‖g0(p)‖ ≤ Cδ = ǫ for all p ∈ Bδ.

6



In Example 2.3, the newly generated points lie in the convex hull of the old ones.
Especially for input data p ∈ B1,

‖g0(p)‖ ≤ max
i=0,...,2

‖pi‖ = |p|0 ≤ 1,

showing that g0 is bounded. By Lemma 2.5 g0 is continuous in n3 and the scheme fulfills
property (U).

3 Convergence

In this section, we will see that summability of |Gℓ(P)|1 is a sufficient condition for a
GLU-scheme G to be convergent. This result is used to analyze Example 2.3. Further,
the property of |Gℓ(P)|1 being a null sequence is necessary for convergent GLU-schemes.
With an additional restriction, this condition is also sufficient, but in general it does
not guarantee convergence since we have a divergent example of such a GLU-scheme.
For the notion of convergence of a refined chain, we use a standard definition based on
uniform convergence of points at dyadic values.

Definition 3.1. A GLU-scheme G is called convergent at P ∈ E
≥n if there exists a

continuous limit curve Φ[P] : R → E such that

lim
ℓ→∞

max
i=0,...,#P−1

‖Φ[P](2−ℓi)− pℓi‖ = 0.

G is called (everywhere) convergent, if it is convergent at all P ∈ E
≥n.

As stated in [8], this definition is closely related to convergence of a special sequence
of functions in the L∞-norm: For eachPℓ we define a piecewise linear continuous function
fℓ : R → E with vertices at fℓ(2

−ℓi) := pℓi for i = 0, . . . ,#Pℓ − 1 and repetition at the
ends, i.e. fℓ(2

−ℓi) := pℓ0 for i < 0 and fℓ(2
−ℓi) := pℓ

#Pℓ−1
for i ≥ #Pℓ. On the space of

continuous curves f : R → E we define the L∞-norm as

‖f‖∞ := sup
x∈R

‖f(x)‖.

Then G is convergent at P if and only if the sequence fℓ is convergent in the L∞-norm.
A proof of this fact can be found in [2].

One easily observes that

‖fℓ+1 − fℓ‖∞ = max

{

max
i=0,...,#Pℓ−m−1

max

{

‖pℓ+1
2i − pℓi‖, ‖p

ℓ+1
2i+1 −

pℓi + pℓi+1

2
‖

}

,

max
j=1,...,m

‖pℓ+1
#Pℓ+1−1

− pℓ#Pℓ−j‖

}

=: Fℓ, (1)

where the last term comes from the end conditions. This proves, together with standard
arguments, the following statement analogous to Theorem 1 in [7].
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Proposition 3.2. If the GLU-scheme G is convergent at P, then Fℓ is a null sequence.

Unfortunately, Fℓ is an artificial quantity, while the decay of |Gℓ(P)|1 towards 0
is a more natural condition. Therefore, we want to replace Fℓ in Proposition 3.2 by
|Gℓ(P)|1. The following Lemma is needed for this purpose.

Lemma 3.3. If G is a GLU-scheme, then Fℓ is a null sequence if and only if |Gℓ(P)|1
is a null sequence.

Because the proof is a bit more technical, it is given in Section 4. The combination
of Proposition 3.2 and Lemma 3.3 proves our first main result.

Theorem 3.4. If the GLU-scheme G is convergent at P, then |Gℓ(P)|1 is a null se-
quence.

One could conjecture that the decay of |Gℓ(P)|1 towards 0 is already a sufficient
condition for convergence. The following example disproves this thought.

Example 3.5. Let m = 3 and d = 2, which means E = R
2. Consider the scheme

defined by

g0(p) =
7 + 3a

8
p1 +

3− 9a

8
p2 +

−3 + 9a

8
p3 +

1− 3a

8
p4,

g1(p) =
7 + 2a

16
p1 +

9− 6a

16
p2 +

1 + 6a

16
p3 +

−1− 2a

16
p4,

for p ∈ E
4. Using the notation qy for the second coordinate of q ∈ E, the parameters

are given by

a = sgn
(

(p1 − 3p2 + 3p3 − p4)y

) b

b+ 1
, b =











−
W−1(− ln 4

4
c)

ln 4
if 0 < c < 4

e·ln 4

0 if c = 0
1

ln 4
if c ≥ 4

e·ln 4

and

c =

{

2 ‖p1−p2−p3+p4‖
‖p1−3p2+3p3−p4‖

if p1 − 3p2 + 3p3 − p4 6= 0

0 else
.

Here, W−1 is the inverse of x 7→ xex for x < −1, see Figure 2, also known as the
lower branch of the Lambert W function. It is defined for y ∈ (−1/e, 0) with the image
W−1(y) ∈ (−∞,−1). Hence,

−
1

ln 4
W−1

(

−
ln 4

4
c

)

≥
1

ln 4
> 0

for 0 < c < 4/(e·ln 4). Together, b ≥ 0 and a ∈ [−1, 1]. Hence gλ is an affine combination
with non-linear but bounded coefficients. Now c is obviously invariant under similarities
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Figure 2: plot of x 7→ xex for x < −1 (solid line) and W−1 (dashed line).
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Figure 3: zoom-in of the initial chain (lowest line) and Fℓ for ℓ = 5, 10, 15, 20, 25 (from
bottom to top) showing divergence as for large subdivision levels a non-summable in-
crease in y-direction is still noticeable. For ℓ ≥ 10 the plot appear as thick lines due to
high oscillations.
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and so are b and a. Because gλ is an affine combination with invariant coefficients,
this scheme fulfills condition (G). Regarding the fact that a linear combination with
bounded coefficients maps bounded data to bounded data, g0 and g1 are continuous in
n4 by Lemma 2.5. Hence, G is a GLU-scheme.

Now we apply G to a special initial chain P with Gℓ(P) divergent but |Gℓ(P)|1 → 0.
This chain is sampled from a translated standard parabola with noise, namely P ∈ E

7

with pi = [x0 + i, (x0 + i)2 + 2 + (−1)i], x0 ∈ R arbitrary. One can show by induction
that

pℓi =

[

x0 + i
1

2ℓ
,

(

x0 + i
1

2ℓ

)2

+ 2
ℓ+1
∑

k=1

1

k
+ (−1)i

1

ℓ+ 1

]

, ℓ ∈ N0. (2)

A proof of this formula is given in Section 4. With this we have for example for the
y-coordinate of pℓ0

lim
ℓ→∞

(pℓ0)y = lim
ℓ→∞

x2
0 + 2

ℓ+1
∑

k=1

1

k
+

1

ℓ+ 1
= ∞,

showing divergence of Gℓ(P). This behaviour can also be observed in Figure 3 as high
subdivision levels still have a noticable increase in the y-direction. On the other hand

|Gℓ(P)|1 ≤ C

(

1

2ℓ
+

1

4ℓ
+

1

ℓ+ 1

)

for a constant C < ∞, which yields |Gℓ(P)|1 → 0.

This example shows that we have to impose a stronger condition than |Gℓ(P)|1 → 0
to guarantee convergence of GLU-schemes. The following proposition specifies a suffi-
cient condition in terms of summability of Fℓ. Because this result follows word by word
from Theorem 3 in [7], the proof is left out.

Proposition 3.6. A GLU-scheme G is convergent, if Fℓ is summable.

If we want to prove the same result with |Gℓ(P)|1 being summable, we need another
Lemma.

Lemma 3.7. If G is a GLU-scheme, then Fℓ is summable if and only if |Gℓ(P)|1 is
summable.

Proof. Anticipating the proof of Lemma 3.3, by (6) we get

k
∑

ℓ=1

Fℓ ≤ (C + 1)m
k

∑

ℓ=1

|Gℓ(P)|1 +
k+1
∑

ℓ=2

|Gℓ(P)|1 ≤ (Cm+m+ 1)
k+1
∑

ℓ=1

|Gℓ(P)|1.
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Hence, summability of Fℓ follows from summability of |Gℓ(P)|1.
On the other hand, again anticipating the inequality (7) we have

k
∑

ℓ=1

|Gℓ(P)|1 ≤ |G(P)|1 +
k

∑

ℓ=1

|Gℓ+1(P)|1 ≤ |G(P)|1 + 2
k

∑

ℓ=1

Fℓ +
1

2

k
∑

ℓ=1

|Gℓ(P)|1

and further
k

∑

ℓ=1

|Gℓ(P)|1 ≤ 2|G(P)|1 + 4
k

∑

ℓ=1

Fℓ.

Thus, if Fℓ is summable, then so is |Gℓ(P)|1.

Again, combining Proposition 3.6 and Lemma 3.7, we have our second main result.

Theorem 3.8. A GLU-scheme G is convergent, if |Gℓ(P)|1 is summable.

In the following, we want to use this result to show convergence of the scheme
introduced in Example 2.3 for parameters α ∈ (2/3, 1).
For ℓ ∈ N0 we have

‖pℓ+1
2i+1 − pℓ+1

2i ‖ = ‖g1(p
ℓ
i , . . . , p

ℓ
i+2)− g0(p

ℓ
i , . . . , p

ℓ
i+2)‖

= ‖αpℓi+1 + (1− α)M − αpℓi − (1− α)M‖

≤ α|Gℓ(P)|1

and
‖pℓ+1

2i+2 − pℓ+1
2i+1‖ ≤ ‖pℓ+1

2i+2 − pℓi+1‖+ ‖pℓi+1 − pℓ+1
2i+1‖ =: I1 + I2.

The second term I2 can be estimated using triangle inequality,

I2 = (1− α)

∥

∥

∥‖pℓi+2 − pℓi+1‖(p
ℓ
i − pℓi+1) + ‖pℓi+1 − pℓi‖(p

ℓ
i+2 − pℓi+1)

∥

∥

∥

‖pℓi+2 − pℓi+1‖+ ‖pℓi+2 − pℓi‖+ ‖pℓi+1 − pℓi‖

≤ (1− α)max{‖pℓi+1 − pℓi‖, ‖p
ℓ
i+2 − pℓi+1‖}

≤ (1− α)|Gℓ(P)|1

and analogously for the first term I1

I1 ≤ (1− α)max{‖pℓi+2 − pℓi+1‖, ‖p
ℓ
i+2 − pℓi‖} ≤ 2(1− α)|Gℓ(P)|1.

Summarizing all inequalities yields

|Gℓ+1(P)|1 ≤ max{α, 3(1− α)}|Gℓ(P)|1 =: C|Gℓ(P)|1.

If α ∈ (2/3, 1) then C < 1 and |Gℓ(P)|1 is a geometric sequence, hence summable. With
Theorem 3.8 this proves convergence of the scheme for all initial data when α ∈ (2/3, 1).
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We conclude the analysis of this scheme by noticing that it is non-interpolatory and does
not fulfill equilinearity and as such can neither be covered by the theory developed in [7]
nor by [10].

We return to the general study of convergence of GLU-schemes if summability of
|Gℓ(P)|1 is not given. For a special subclass of GLU-schemes excluding Example 3.5,
we can nevertheless prove that convergence follows already from |Gℓ(P)|1 → 0. With
Theorem 3.4, this gives a full classification of convergence. To formulate this result, we
need further notation. According to the representation of linear schemes in terms of
pairs of matrices [14], we define associated self-maps g0,g1 : E

n → E
n by

g0(p0, . . . , pn−1) :=



















g0(p0, . . . , pm)
g1(p0, . . . , pm)
g0(p1, . . . , pm+1)
g1(p1, . . . , pm+1)

...
g0(pm, . . . , pn−1)



















, g1(p0, . . . , pn−1) :=



















g1(p0, . . . , pm)
g0(p1, . . . , pm+1)
g1(p1, . . . , pm+1)

...
g0(pm, . . . , pn−1)
g1(pm, . . . , pn−1)



















,

where n = 2m + 1 is the number of points in a chain p ∈ E
n such that the num-

ber of points in the subdivided chain is raised by 1, namely G(p) ∈ E
n+1. For

Λ = [λ1, . . . , λℓ] ∈ {0, 1}ℓ, we write

gΛ := gλℓ
◦ · · · ◦ gλ1

for the corresponding composition of the functions g0,g1.

Theorem 3.9. Let G be a GLU-scheme with both refinement rules g0 and g1 continuous
in nm+1 and s ∈ N such that

max
Λ∈{0,1}s

sup
p∈B1

|gΛ(p)|0 ≤ 1. (3)

Then G is convergent if and only if |Gℓ(P)|1 is a null sequence.

Remark 3.10. In Example 3.5, continuity of g1 in nm+1 is fulfilled, but condition (3) is
violated by a properly scaled version of the chain used in Example 3.5.

Proof. The necessity of |Gℓ(P)|1 being a null sequence is shown in Theorem 3.4. On
the other hand, after a simple but technical computation we get accordingly to (1)

‖fℓ+k − fℓ‖∞ = max

{

max
i=0,...,j∗−1

max
r=0,...,2k−1

‖pℓ+k
2ki+r

−
((

1−
r

2k

)

pℓi +
r

2k
pℓi+1

)

‖,

max
r=0,...,r∗

‖pℓ+k
2kj∗+r

−
((

1−
r

2k

)

pℓj∗ +
r

2k
pℓj∗+1

)

‖,

max
i=j∗+1,...,#Pℓ−1

‖pℓ+k
#Pℓ+k−1

− pℓi‖

}

=: max{I1, I2, I3}
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for all k, ℓ ∈ N, where we used the shortcut j∗ = #Pℓ − n + 1 + ⌊2−k(n − 2)⌋ and
r∗ = n− 2− 2k⌊2−k(n− 2)⌋ . By the triangle inequality and with

max
r=0,...,2k−1

‖pℓi −
(

1−
r

2k

)

pℓi −
r

2k
pℓi+1‖ ≤ |Gℓ(P)|1,

we have

I1 ≤ |Gℓ(P)|1 + max
i=0,...,j∗−1

max
r=0,...,2k−1

‖pℓ+k
2ki+r

− pℓi‖. (4)

Further, one can easily see that for each r ∈ {0, . . . , 2k − 1} there exists Λr ∈ {0, 1}k

with
k

∑

s=1

2k−sλs = r.

As already stated in [10], the identity T n
j P

k = gΛ(T
n
i P) holds with j = 2k(i+

∑k

s=1 2
−sλs)

for all Λ = [λ1, . . . , λℓ] ∈ {0, 1}k and all P ∈ E
≥n. This shows that pℓ+k

2ki+r
coincides with

the first point of the subchain T n
j P

ℓ+k = gΛr
(T n

i P
ℓ), denoted by (gΛr

(T n
i P

ℓ))1. Hence,

‖pℓ+k
2ki+r

− pℓi‖ = ‖(gΛr
(T n

i P
ℓ))1 − pℓi‖ ≤ |gΛr

(T n
i P

ℓ)− pℓi |0,

where the difference in the last term is meant pointwise. By assumption and Lemma 2.5,
we have ‖gλ(p)‖ ≤ Cλ|p|0 for all p ∈ E

m+1, λ ∈ {0, 1}. Combining these inequalities
yields

|gλ(p)|0 ≤ C|p|0, p ∈ E
n, λ ∈ {0, 1},

where C := max{C0, C1} and further |gµ(p)|0 ≤ Cs|p|0 for all p ∈ E
n with µ ∈ {0, 1}m,

m ≤ s and Cs := maxm≤s C
m. Choosing the representation r = ms + α with m ∈ N,

0 ≤ α < s, using condition (G) and iterating (3) m-times shows

|gΛr
(T n

i P
ℓ)− pℓi |0 = |gΛr

(T n
i P

ℓ − pℓi)|0 ≤ |gΛα
(T n

i P
ℓ − pℓi)|0 ≤ Cs|T

n
i P

ℓ − pℓi |0,

where Λα = [λ1, . . . , λα] ∈ {0, 1}α are the first α entries of the index vector Λr ∈
{0, 1}k. A combination of this inequality with (4) and an analogous estimation of (5),
anticipating the proof of Lemma 3.3, yields

I1 ≤ |Gℓ(P)|1 + max
i=0,...,j∗−1

max
r=0,...,2k−1

|gΛr
(T n

i P
ℓ)− pℓi |0

≤ |Gℓ(P)|1 + max
i=0,...,j∗−1

Cs|T
n
i P

ℓ − pℓi |0

≤ Csn|G
ℓ(P)|1.

Exactly the same argumentation holds for I2 with i = j∗ and r ∈ {0, . . . , r∗}. Thus

I2 ≤ Csn|G
ℓ(P)|1.
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For the estimation of I3 we first observe #Pℓ+k = 2k(#Pℓ − n+ 1) + n− 1 by iterating
#Pℓ+1 = 2#Pℓ − n + 1 from Defintion 2.1. With this, we have #Pℓ+k − 1 = 2kj∗ +
r∗ and therefore analogously to the estimation of I1 the representation pℓ+k

#Pℓ+k−1
=

(gΛr∗
(T n

j∗P
ℓ))1. Hence,

‖pℓ+k
#Pℓ+k−1

− pℓi‖ ≤ ‖(gΛr∗
(T n

j∗P
ℓ))1 − pℓj∗‖+ ‖pℓj∗ − pℓi‖

≤ Csn|G
ℓ(P)|1 + (#Pℓ − j∗ − 1)|Gℓ(P)|1

for i = j∗ + 1, . . . ,#Pℓ − 1. With #Pℓ − j∗ − 1 ≤ n this gives the inequality I3 ≤
(Cs + 1)n|Gℓ(P)|1 and finally

‖fℓ+k − fℓ‖∞ ≤ (Cs + 1)n|Gℓ(P)|1.

Now, if |Gℓ(P)|1 is a null sequence, then f ℓ is a Cauchy sequence in the L∞-norm and
hence convergent to a continuous limit.

4 Proofs

In this section, we want to prove Lemma 3.3 and Equation (2).

Lemma 3.3. If G is a GLU-scheme, then Fℓ is a null sequence if and only if |Gℓ(P)|1
is a null sequence.

Proof. First, we want to show that the decay of |Gℓ(P)|1 towards 0 implies the decay of
Fℓ. To do this, we estimate the norm of the subchain Tm+1

i Pℓ− pℓi , where the difference
is meant pointwise. By the triangle inequality,

|Tm+1
i Pℓ − pℓi |0 = max

j=i,...,i+m
‖pℓj − pℓi‖ ≤ m|Gℓ(P)|1 (5)

for all i = 0, . . . ,#Pℓ −m− 1 and analogously |Tm+1
i Pℓ − (pℓi+1 + pℓi)/2|0 ≤ m|Gℓ(P)|1.

Commutation with translation and Lemma 2.5 with choosing r = m|Gℓ(P)|1 yields

‖pℓ+1
2i − pℓi‖ = ‖g0(T

m+1
i Pℓ)− pℓi‖ = ‖g0(T

m+1
i Pℓ − pℓi)‖ ≤ Cm|Gℓ(P)|1

and in the same way

∥

∥

∥

∥

pℓ+1
2i+1 −

pℓi+1 + pℓi
2

∥

∥

∥

∥

≤ ‖pℓ+1
2i+1 − pℓ+1

2i ‖+

∥

∥

∥

∥

pℓ+1
2i −

pℓi+1 + pℓi
2

∥

∥

∥

∥

≤ |Gℓ+1(P)|1 + Cm|Gℓ(P)|1.
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Dealing with the end conditions, we have #Pℓ+1−2 = 2(#Pℓ−m−1) by Definition 2.1.
Hence, using the abbreviation Nℓ := #Pℓ,

‖pℓ+1
Nℓ+1−1 − pℓNℓ−j‖ ≤‖pℓ+1

Nℓ+1−1 − pℓ+1
Nℓ+1−2‖+ ‖pℓ+1

Nℓ+1−2 − pℓNℓ−m−1‖

+ ‖pℓNℓ−m−1 − pℓNℓ−j‖

≤|Gℓ+1(P)|1 + ‖g0(T
m+1
Nℓ−m−1P

ℓ)− pℓNℓ−m−1‖+m|Gℓ(P)|1

≤|Gℓ+1(P)|1 + (C + 1)m|Gℓ(P)|1

for all j = 1, . . . ,m. Collecting all results, we obtain

0 ≤ Fℓ ≤ |Gℓ+1(P)|1 + (C + 1)m|Gℓ(P)|1. (6)

Hence, if |Gℓ(P)|1 is a null sequence, then so is Fℓ.
Second, we want to prove the reversed implication. To this end, we observe that

each index j = 0, . . . ,#Pℓ+1 − 1 of Pℓ+1 can be written in terms of 2i or 2i + 1 with
i = 0, . . . ,#Pℓ −m− 1. With that we have, see Figure 4,

‖pℓ+1
2i+1 − pℓ+1

2i ‖ ≤

∥

∥

∥

∥

pℓ+1
2i+1 −

pℓi+1 + pℓi
2

∥

∥

∥

∥

+

∥

∥

∥

∥

pℓi+1 + pℓi
2

− pℓi

∥

∥

∥

∥

+ ‖pℓi − pℓ+1
2i ‖

≤ Fℓ +
1

2
|Gℓ(P)|1 + Fℓ, i = 0, . . . ,#Pℓ −m− 1,

and in the same way ‖pℓ+1
2i+2 − pℓ+1

2i+1‖ ≤ 2Fℓ + |Gℓ(P)|1/2. Both inequalities together
yield

|Gℓ+1(P)|1 −
1

2
|Gℓ(P)|1 ≤ 2Fℓ. (7)

Because Fℓ is a null sequence and thus bounded, we can also bound the sequence in
(7) for all ℓ ∈ N by some constant C < ∞. Given N ∈ N, one easily verifies by induction

|Gℓ+1(P)|1 =
1

2ℓ−N+1
|GN(P)|1 +

ℓ
∑

r=N

1

2ℓ−r

(

|Gr+1(P)|1 −
1

2
|Gr(P)|1

)

(8)

for all ℓ ≥ N . Choosing N = 1 in (8), we have

|Gℓ+1(P)|1 ≤
1

2ℓ
|G(P)|1 +

ℓ
∑

r=1

1

2ℓ−r

(

|Gr+1(P)|1 −
1

2
|Gr(P)|1

)

≤ |G(P)|1 + C
ℓ

∑

r=1

1

2ℓ−r

= |G(P)|1 + C

ℓ−1
∑

s=0

1

2s

≤ |G(P)|1 + 2C =: M
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pℓi

pℓi+1

pℓi+pℓi+1

2

pℓ+1

2i

pℓ+1

2i+1

pℓ+1

2i+2

Figure 4: Illustration of Gℓ(P) and Gℓ+1(P).

for all ℓ ∈ N. By the fact that we are dealing with finite chains, the term |G(P)|1 is
clearly finite, too, and hence |Gℓ(P)|1 is bounded by M < ∞. Using (7) again with the
property of Fℓ being a null sequence, we can find for a given ǫ > 0 a natural number
N1 ∈ N with

|Gℓ+1(P)|1 −
1

2
|Gℓ(P)|1 ≤

ǫ

4

for all ℓ ≥ N1. Build upon this, there exists another number N2 ≥ N1 such that
M2−(ℓ−N1+1) ≤ ǫ/2 for all ℓ ≥ N2. Finally, using (8) with N = N1 we have

|Gℓ+1(P)|1 ≤
1

2ℓ−N1+1
|GN1(P)|1 +

ℓ
∑

r=N1

1

2ℓ−r

(

|Gr+1(P)|1 −
1

2
|Gr(P)|1

)

≤ M
1

2ℓ−N1+1
+

ǫ

4

ℓ
∑

r=N1

1

2ℓ−r

≤
ǫ

2
+

ǫ

4
2 = ǫ

for all ℓ ≥ N2 and hence, |Gℓ(P)|1 is a null sequence.

Now we want to prove (2) by induction, which was given by

pℓi =

[

x0 + i
1

2ℓ
,

(

x0 + i
1

2ℓ

)2

+ 2
ℓ+1
∑

k=1

1

k
+ (−1)i

1

ℓ+ 1

]

, ℓ ∈ N0

for initial data pi = [x0 + i, (x0 + i)2 + 2+ (−1)i], x0 ∈ R arbitrary. Obviously for ℓ = 0
the points p0i coincide with the initial data pi. Suppose (2) holds, we want to show the
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same representation for pℓ+1
i . To do this, we first compute the parameter c. Using the

notation u · v for the scalar product of vectors u, v ∈ R
4 and qx for the first coordinate

of a point q ∈ E = R
2, we get

(pℓi − pℓi+1 − pℓi+2 + pℓi+3)x =

(

x0 + i
1

2ℓ

)









1
−1
−1
1









·









1
1
1
1









+
1

2ℓ









1
−1
−1
1









·









0
1
2
3









= 0.

The second coordinate of pℓi − pℓi+1 − pℓi+2 + pℓi+3 is after evaluating the scalar products
equal to (pℓi − pℓi+1 − pℓi+2 + pℓi+3)y = 4 · 4−ℓ. In total,

pℓi − pℓi+1 − pℓi+2 + pℓi+3 =

[

0,
4

4ℓ

]

.

An analogous computation yields

pℓi − 3pℓi+1 + 3pℓi+2 − pℓi+3 =

[

0, 8
(−1)i

ℓ+ 1

]

with the observation sgn
(

(pℓi − 3pℓi+1 + 3pℓi+2 − pℓi+3)y

)

= (−1)ℓ. Hence c = (ℓ + 1)4−ℓ.

Because (ℓ+1)4−ℓ is monotonically decreasing, we estimate 0 < c ≤ (0+1)40 = 1 ≤ 4
e·ln 4

.
This means that b is given by

b = −
1

ln 4
W−1

(

−
ln 4

4
(ℓ+ 1)

1

4ℓ

)

= −
1

ln 4
W−1

(

−(ℓ+ 1) ln 4e−(ℓ+1) ln 4
)

= −
1

ln 4

(

−(ℓ+ 1) ln 4
)

= ℓ+ 1

using W−1 as the inverse of xex. Thus a = (−1)i(ℓ + 1)/(ℓ + 2). Now we are ready to
investigate pℓ+1

i , but for convenience we only show induction on pℓ+1
2i = g0(T

4
i P

ℓ) while
pℓ+1
2i+1 is determined in the same fashion. The first coordinate is

(

pℓ+1
2i

)

x
=

(

x0 + i
1

2ℓ

)









1

8









7
3
−3
1









·









1
1
1
1









+
3a

8









1
−3
3
−1









·









1
1
1
1

















+
1

2ℓ









1

8









7
3
−3
1









·









0
1
2
3









+
3a

8









1
−3
3
−1









·









0
1
2
3

















= x0 + i
1

2ℓ

= x0 + (2i)
1

2ℓ+1
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and the second coordinate after computing the scalar products when using a = (−1)i(ℓ+
1)/(ℓ+ 2)

(pℓ+1
2i )y =

(

x0 + i
1

2ℓ

)2

+ 2
ℓ+1
∑

k=1

1

k
+ 3

(−1)i

ℓ+ 1
a

=

(

x0 + (2i)
1

2ℓ+1

)2

+ 2
ℓ+2
∑

k=1

1

k
+ (−1)2i

1

ℓ+ 2
.

This completes the proof and validates (2).

5 Conclusion

We have introduced a general type of geometric subdivision schemes, called GLU-
schemes, which is a generalization of the class of GLUE-schemes presented in [10] and an
extension to interpolatory planar schemes analyzed in [7]. The main results concerning
necessary and sufficient conditions for convergence are generalizations of those in [7]. For
example, the decay of the maximal edge length towards 0 is also the necessary condition
here, while summability is sufficient for convergence, too. Therefore the interpolatory
property is replaced by continuity in the constant null chain nm+1, which enables a
more free choice of the refinement rule g0. Example 2.3 and its convergence analysis
demonstrates this freedom and the power of the sufficient condition in comparison to [7]
and [10] since their analysis can not cover non-interpolatory and non-equilinear schemes
like Example 2.3. In general, a purely uniform decay of edge lengths is not enough to
guarantee convergence, as Example 3.5 shows. Nevertheless this necessary condition
gives a full characterization of convergence for the subclass of continuous GLU-schemes
with a sort of contraction condition (3).

Future research includes a C1-analysis for GLU-schemes or even a generalization
of the tools used for G1-analysis in [7]. Another further step could be to drop the
continuity of g0 in nm+1, because it is not clear if by further subdivision we only need to
have a continuous limit for null sequences of a certain shape instead of all null sequences.
Additionally, one could hope for another quantity like relative distortion in [10], such
that the decay towards 0 implies convergence, while summability yields smoothness.
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