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Abstract

Consider the Stokes resolvent system in general unbounded domains Ω ⊂
Rn, n ≥ 2, with boundary of uniform class C3, and Navier slip boundary
condition. The main result is the resolvent estimate in function spaces of
the type L̃q defined as Lq ∩L2 when q ≥ 2, but as Lq +L2 when 1 < q < 2,
adapted to the unboundedness of the domain. As a consequence we get
that the Stokes operator generates an analytic semigroup on a solenoidal
subspace L̃qσ(Ω) of L̃q(Ω).
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1 Introduction and main result

Given an unbounded domain Ω ⊂ Rn we consider for a prescribed external force
f : Ω× (0, T )→ Rn the Stokes resolvent system with Navier boundary condition

λu−∆u +∇p = f in Ω

divu = 0 in Ω

u · n = 0 on ∂Ω

αu + β(TTT(u, p)n)τ = 0 on ∂Ω.

(1.1)
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Here u : Ω → Rn, p : Ω → R are the unknown velocity field and pressure,
respectively, and the complex number λ is contained in the sector

Sε = {λ ∈ C\{0} : | arg λ| < π/2 + ε}, 0 < ε < π/2.

The tensor TTT = TTT(u, p) = −pIII + SSS(u) = −pIII + 2νDDD(u) is the Cauchy stress
tensor where DDD(u) = 1

2
(∇u+ (∇u)>) denotes the symmetric part of the velocity

gradient and ν > 0 is the viscosity. As usual in the analysis of the (linear) Stokes
system we set ν = 1 for simplicity and obtain for the viscous stress tensor

SSS(u) = ∇u + (∇u)>.

Let n denote the unit outer normal to ∂Ω, and let the subscript τ indicate
the tangential component of a vector field on ∂Ω. The constants α ∈ [0, 1) and
β ∈ (0, 1] satisfy α+β = 1. Hence the boundary condition αu+β(TTT(u, p)n)τ = 0

(called Navier or Robin condition or of third type) simplifies to

Bα,β(u) := αu + β(SSS(u)n)τ = 0 (1.2)

and describes three different physical cases. For α = 0 and β = 1 we obtain the
so-called no-stick or perfect slip condition, meaning that the fluid is subject to
no tangential stresses at the boundary; this case is similar to the Neumann or
perfect insulation condition for the heat equation. When 0 < α, β < 1, tangential
stresses at the boundary are proportional to the tangential velocity uτ = u on
∂Ω (recall the impermeability condition u ·n = 0 on ∂Ω); for the Laplacian this
condition is called the third or oblique boundary condition. Finally, if β → 0+,
the Navier condition becomes the no-slip or Dirichlet condition and describes the
adhesion of particles on the boundary.

The boundary condition (1.2) was introduced by Navier in [23] and is in
particular reasonable for problems dealing with coating flows, fibre spinning and
microfluids or flows in semiconductor melts; for references see [29].

Let us mention some known results for the Stokes resolvent system with
Dirichlet boundary condition u = 0. A typical strategy is to start with the
whole space case solved with the help of Fourier transforms and multiplier theory
and continue with the half space and bent half spaces. Finally, a cut-off procedure
allows to solve the problem in bounded domains ([13]). For a potential theoretic
approach see [30], and, e.g., [18] for a method using pseudodifferential operators.
Moreover, we refer to [13] for results in exterior domains, to [9, 10] for infinite
cylinders, and to [1, 2] for layers. Resolvent estimates in weighted function spaces
for (bent) half spaces and aperture domains are considered in [14, 15, 16]. The
main argument is that a cut-off procedure reduces the problem to finitely many
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bent half spaces and the whole space case. However, this techniques excludes
many other interesting unbounded domains, e.g., domains with several exits to
infinity, with infinitely many holes, with spiraling exits etc.

The Navier boundary condition (1.2) was first considered by Giga in [19] for
a bounded domain as a special case of a more general condition. For the case
of a half space Saal [25] showed that the Stokes operator generates an analytic
semigroup and admits a bounded H∞-calculus. In [26] Shibata and Shimada
proved the unique solvability of the Stokes resolvent system with the Navier
boundary condition for bounded and exterior domains. This is done by a cut-off
technique, where - as for the Dirichlet case - existence and uniqueness are proven
successively for the whole space, the half space, bent half spaces and a bounded
(or exterior) domain. We note that an inhomogeneous divergence as well as
non-zero boundary conditions are included; this will also be used in our analysis.
Shimada [29] even proved the strong unique solvability of the instationary system
with Navier boundary condition for a bounded domain.

For the case of the Neumann boundary condition where n · TTT(u, p) = ϕ

is prescribed on ∂Ω similar results were obtained by Shibata and Shimizu, see
[27] for the resolvent equation in bounded and exterior domains and [28] for the
instationary system in a bounded domain. The Neumann condition was also
treated in several papers of Solonnikov and Grubb (e.g. in [20]) using pseudo-
differential operators.

Due to counter-examples by Bogovskij and Maslennikova [3, 22] the Helmholtz
decomposition of vector fields in Lq(Ω), 1 < q < ∞, on an unbounded smooth
domain may fail unless q = 2. By analogy, a bounded Helmholtz projection Pq
with the properties required to define the Stokes operator Aq = −Pq∆ when
q 6= 2 may not exist. Therefore, in [4, 5, 6, 7, 8] H. Kozono, H. Sohr and the first
author of this article introduced the spaces

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), if 1 ≤ q < 2,

Lq(Ω) ∩ L2(Ω), if 2 ≤ q ≤ ∞.
(1.3)

The corresponding norm is defined as ‖u‖L̃q = max{‖u‖q, ‖u‖2} when q ≥ 2, and
as inf{‖u1‖q + ‖u2‖2 : u = u1 + u2, u1 ∈ Lq(Ω), u2 ∈ L2(Ω)} when 1 ≤ q < 2.
For bounded domains we have that L̃q(Ω) = Lq(Ω) with equivalent norms. We
note that functions in L̃q(Ω) locally behave like Lq-functions, but globally exploit
L2-properties. By well-known results of interpolation theory, L̃q(Ω)′ ∼= L̃q

′
(Ω)

when 1 ≤ q <∞.
By analogy, function spaces like L̃qσ(Ω) of solenoidal vector fields and W̃ k,q(Ω)

of weakly differentiable functions will be defined. In [6] the authors showed for
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general uniformly smooth domain Ω ⊂ Rn that in L̃q(Ω), 1 < q < ∞, the cor-
responding Helmholtz projection P̃q is a well-defined bounded projection. Then
the Stokes operator Ãq = −P̃q∆ with Dirichlet boundary condition generates an
analytic semigroup ([5, 8]) on L̃qσ(Ω) and has the property of maximal regularity
([7]). Moreover, Kunstmann [21] showed that Ãq admits a bounded H∞-calculus.
These results are applied by Riechwald and the first author in [11] in order to
develop the theory of very weak solutions to the Navier-Stokes equations with
Dirichlet boundary condition in uniformly smooth domains.

To work in general unbounded domains we use the exhaustion method, i.e., we
approximate Ω from the interior by a sequence of increasing bounded domains. In
the case of the Dirichlet boundary condition u = 0 on ∂Ω (see [5]) the boundary
condition is included in the definition of the space W 1,q

0 (Ω) as a closure of C∞0 -
functions. A similar approach cannot directly be applied to the Navier boundary
condition. Moreover, we do not have a global trace theorem at hand for general
unbounded domains. Therefore, we pose some restrictions on the domain Ω, see
Assumption 1.1 below. Actually, it is not clear whether there are uniform C3-
domains not fulfilling Assumption 1.1; for the definition of uniform C3-domain Ω

and further notation we refer to Definition 2.1 in Sect. 2 below.

Assumption 1.1. A uniform C3-domain Ω ⊂ Rn of type (α̃, β̃, K) in this article
is assumed to have the following representation: There exists a sequence {Ωj}j∈N
of bounded uniform C3-domains of type τΩ = (α̃, β̃, K) such that Ωj ⊂ Ω and

I Ωj ⊂ Ωj+1 for all j ∈ N and Ω =
⋃∞
j=1 Ωj,

I Γj := ∂Ωj ∩ ∂Ω 6= ∅ for all j ∈ N,

I Γj ⊂ Γj+1 for all j ∈ N and ∂Ω =
⋃∞
j=1 Γj.

Ω
Ω

Ω

Figure 1: Examples of uniformly smooth domains satisfying Assumption 1.1.

For 1 < q <∞ let Pq : Lq(Ω)→ Lqσ(Ω) denote the Helmholtz projection. To
define the Stokes operator with Navier boundary condition Bα,β we introduce for
1 < q <∞ the Sobolev space

W 2,q
B (Ω) = W 2,q

Bα,β
(Ω) =

{
u ∈ W 2,q(Ω) : Bα,β(u) = 0 on ∂Ω

}
.
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The boundary condition for the space W 2,q
B (Ω) is understood locally in the sense

of usual traces. Then for a bounded domain Ω the domain of the Stokes operator
Aq = −Pq∆ is given by

Dq(Ω) = D(Aq) = Lqσ(Ω) ∩W 2,q
Bα,β

(Ω).

However, this definition is not suitable for general unbounded domains. For this
reason, let

D̃q(Ω) = D(Ãq) =

{
D(Aq) ∩D(A2), 2 ≤ q <∞,
D(Aq) +D(A2), 1 < q < 2.

(1.4)

Then we define with the help of the Helmholtz projection P̃q the Stokes operator
with Navier boundary condition for a general uniformly smooth domain as

Ãq = −P̃q∆ : D(Ãq) ⊂ L̃qσ(Ω)→ L̃qσ(Ω). (1.5)

We will write either D(Ãq) or D̃q(Ω); if there can be no confusion concerning the
domain Ω, we write D(Ãq), otherwise, we use the notation D̃q(Ω).

Now we can rewrite the system (1.1) as the abstract resolvent problem

λu + Ãqu = P̃qf .

We are interested in the unique solvability of this equation for a right-hand side
in L̃qσ(Ω) and in properties of the Stokes operator Ãq. In particular, we show that
−Ãq generates an analytic semigroup in L̃qσ(Ω). Our main result reads as follows:

Theorem 1.2 (Resolvent problem for Ãq). Let 1 < q < ∞, 0 < ε < π
2
, δ > 0.

Let Ω ⊂ Rn, n ≥ 2, be a uniform C3-domain of type τΩ = (α̃, β̃, K) and let
Assumption 1.1 be satisfied. Then the following assertions hold:

(i) The sector Sε is contained in the resolvent set of −Ãq, i.e., the resolvent

(λ+ Ãq)
−1 : L̃qσ(Ω)→ L̃qσ(Ω)

exists as a bounded operator for λ ∈ Sε. Moreover, for f ∈ L̃qσ(Ω) there
exists a unique u = (λ+ Ãq)

−1f satisfying the estimate

‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) ≤ C‖f‖L̃q(Ω) (1.6)

for all λ ∈ Sε with |λ| ≥ δ, where C = C(q, ε, δ, τΩ) > 0.
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(ii) For given f ∈ L̃q(Ω) and λ ∈ Sε the Stokes resolvent system (1.1) has a
unique solution (u,∇p) ∈ D(Ãq) × L̃q(Ω) defined by u = (λ + Ãq)

−1P̃qf

and ∇p = (I − P̃q)(f + ∆u), and satisfying

‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) + ‖∇p‖L̃q(Ω) ≤ C‖f‖L̃q(Ω) (1.7)

for |λ| ≥ δ with C = C(q, ε, δ, τΩ) > 0.

(iii) The Stokes operator Ãq : D(Ãq) → L̃qσ(Ω) is a densely defined closed oper-
ator, and −Ãq generates an analytic semigroup {e−tÃq}t≥0 in L̃qσ(Ω) satis-
fying the estimate

‖e−tÃqf‖L̃q(Ω) ≤ Ceδt‖f‖L̃q(Ω) (1.8)

for f ∈ L̃qσ(Ω), t ≥ 0, where C = C(q, δ, τΩ) > 0.

(iv) For the adjoint operator the duality relations Ã′q = Ãq′, 〈Ãqu,v〉 = 〈u, Ãq′v〉
for all u ∈ D(Ãq), v ∈ D(Ãq′), hold.

Corollary 1.3 (Equivalent norms on D(Ãq)). Let 1 < q < ∞, let Ω ⊂ Rn,
n ≥ 2, be a uniform C3-domain, and let Assumption 1.1 hold. Then the norms

‖ ·‖W̃ 2,q(Ω), ‖ ·‖L̃q(Ω) +‖Ãq · ‖L̃q(Ω), ‖ ·‖L̃q(Ω) +‖(1+ Ãq) · ‖L̃q(Ω), ‖(1+ Ãq) · ‖L̃q(Ω)

are equivalent on D(1 + Ãq) := D(Ãq) with a constant depending on Ω only
through τΩ.

Corollary 1.4 (L̃r-L̃q–estimate). Let 1 < q ≤ r <∞, δ > 0, let Ω ⊂ Rn, n ≥ 2,
be a uniform C3-domain, and let Assumption 1.1 be satisfied. Then the estimate

‖e−tÃqu‖L̃r(Ω) ≤ C
(1 + t

t

)γ
eδt‖u‖L̃q(Ω), u ∈ L̃qσ(Ω), t > 0, (1.9)

with a constant C = C(δ, q, τΩ) > 0, holds true in the following cases:

(i) If q < n
2
and q ≤ r ≤ nq

n−2q
where 0 ≤ γ = n

2

(
1
q
− 1

r

)
≤ 1.

(ii) If q ≥ n
2
and q ≤ r where 1 ≥ γ ≥ 1− q

r
≥ 0.

This article is organized as follows. In Sect. 2 we describe several preliminaries
and recall necessary results for the bounded domain case. Then Sect. 3 contains
the proof of Theorem 1.2 and of the Corollaries 1.3 and 1.4.
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2 Preliminaries

Let us recall the definition of a uniform Ck-domain and its essential properties.

Definition 2.1. A domain Ω ⊂ Rn, n ≥ 2, is called a uniform Ck-domain of
type τΩ = (α̃, β̃, K), where k ∈ N, k ≥ 2, α̃ > 0, β̃ > 0 and K > 0, if for each
x0 ∈ ∂Ω there exist - after a translation and rotation - a Cartesian coordinate
system with origin at x0 and coordinates y = (y′, yn), y′ = (y1, . . . , yn−1), and a
Ck-function h(y′), |y′| ≤ α̃, with ‖h‖Ck ≤ K such that the neighborhood

Uα̃,β̃,h(x0) := {y ∈ Rn : h(y′)− β̃ < yn < h(y′) + β̃, |y′| < α̃}

of x0 satisfies Uα̃,β̃,h(x0) ∩ ∂Ω = {y = (y′, yn) ∈ Rn : h(y′) = yn, |y′| < α̃} and

U−
α̃,β̃,h

(x0) := {y ∈ Rn : h(y′)− β̃ < yn < h(y′), |y′| < α̃} = Uα̃,β̃,h(x0) ∩ Ω.

Notice that the constants α̃, β̃, K do not depend on x0 ∈ ∂Ω. Without loss
of generality we choose the new coordinate system y = (y′, yn) in a way that the
axes of y′ are tangential to ∂Ω in x0. Thus we have h(0) = 0, ∇′h(0) = 0, and
due to a continuity argument for each given constantM > 0 we can choose α̃ > 0

sufficiently small such that
‖h‖C1 ≤M. (2.1)

Considering a uniform C3-domain of type τΩ = (α̃, β̃, K) there exists a cov-
ering of Ω by open balls Bj = Br(xj) where xj ∈ Ω and r = r(τΩ) > 0, i.e.
Ω ⊂ ⋃j Bj, such that with appropriate functions hj ∈ C3

Bj ⊂ Uα̃,β̃,hj(xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω.

The index j runs from 1 to some finite number N ∈ N if Ω is bounded and
j ∈ N for Ω unbounded. The covering {Bj} can be established in such a way
that no more than some fixed number N0 = N0(τΩ) of the balls have a nonempty
intersection. Moreover, there exists a partition of unity {ϕj}, ϕj ∈ C∞0 (Rn),
related to this covering, such that

0 ≤ ϕj ≤ 1, suppϕj ⊂ Bj,
∑
j

ϕj = 1 on Ω (2.2)

‖∇ϕj‖∞, ‖∇2ϕj‖∞, ‖∇3ϕj‖∞ ≤ C = C(τΩ) (2.3)

uniformly in j. Without loss of generality let us assume for xj ∈ Ω that suppϕj ⊂
B−j , where B

−
j denotes the lower half-ball of Bj.

If Ω is unbounded, then it can be expressed as a union of countably many
bounded uniform C3-domains Ωk ⊂ Ω, k ∈ N, such that Ωk ⊂ Ωk+1 for all k ∈ N
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and Ω =
⋃∞
k=1 Ωk. Each of these subdomains is of the same type (α̃′, β̃′, K ′) and

we may assume that α̃ = α̃′, β̃ = β̃′, K = K ′, i.e. τΩk = τΩ. Under Assumption
1.1 to hold in Theorem 1.2 we even suppose that Γj := ∂Ωj ∩ ∂Ω 6= ∅, Γj ⊂ Γj+1

for all j ∈ N, and ∂Ω =
⋃∞
j=1 Γj.

Using the above-mentioned procedure we are able to localize our problem to
domains of the form

H ′ := H ′
α̃,β̃,r,h

= {y ∈ Rn : h(y′)− β̃ < yn < h(y′), |y′| < α̃} ∩Br(0),

where we assume Br(0) ⊂ {y ∈ Rn : h(y′) − β̃ < yn < h(y′) + β̃, |y′| < α̃}, and
the function h ∈ C3

0(B′r(0)) satisfies h(0) = 0, ∇′h(0) = 0, and the smallness
asumption ‖h‖C1 ≤ M is satisfied for some given M > 0. Here B′r(0), 0 < r =

r(τΩ) < α̃, denotes an (n− 1)-dimensional ball.
Furthermore, again thanks to the properties of the support of the ϕj’s we can

even work in the domains H, with

H ⊂ H ′ and ∂H = ∂1H∪̇ ∂2H, where ∂1H ⊂ {y ∈ Rn : yn = h(y′)}. (2.4)

We evidently choose H so that suppϕj ∩ H ′ ⊂ H and dist(suppϕj, ∂2H) > 0,
see Figure 2, and that H is a uniform C3-domain of type τΩ. Such a domain H
is obviously bounded and (uniformly) star shaped with respect to some ball

Br′(x0) ⊂ H where 0 < r̃ = r̃(τΩ) ≤ r′ ≤ r = r(τΩ). (2.5)

Br(0)

H

y′

yn

suppϕj

h(y′)

∂Ω

Figure 2: Illustration of a local domain H.

Let us introduce the following spaces of Sobolev type. Given 1 < q, q′ < ∞
such that 1 = 1

q
+ 1

q′
, let W 1,q(Ω) and W 1,q

0 (Ω) = C∞0 (Ω)
‖·‖W1,q with norm ‖ ·‖W 1,q
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denote the usual Lq-Sobolev spaces. Then

W−1,q(Ω) =
(
W 1,q′

0 (Ω)
)′

Ŵ 1,q(Ω) =
{
u ∈ Lqloc(Ω) : ∇u ∈ Lq(Ω)

}
Ŵ−1,q(Ω) =

(
Ŵ 1,q′(Ω)

)′
.

In the space Ŵ 1,q(Ω) we identify two elements differing by a constant and equip
it with the norm ‖∇ · ‖Lq(Ω). If Ω is bounded, we may identify

Ŵ 1,q(Ω) = W 1,q(Ω) ∩ Lq0(Ω), Lq0(Ω) :=
{
u ∈ Lq(Ω) :

∫
Ω

u = 0
}
.

Lemma 2.2 (Poincaré and Friedrichs inequalities). Let 1 < q < ∞ and H be a
bounded domain as in (2.4). Let either u ∈ W 1,q

0 (H) or u ∈ W 1,q(H),
∫
H
u = 0.

Then
‖u‖Lq(H) ≤ C(q, τΩ)‖∇u‖Lq(H). (2.6)

In the case of vector fields u ∈ W 1,q(H) satisfying u · n = 0 on ∂H a similar
estimate holds.

Proof. The result for u ∈ W 1,q
0 (H) is well known. For u ∈ W 1,q(H),

∫
H
u = 0,

the inequality is known to hold with a constant C = C(q,Ω), see [17, Theorem
II.5.4]. The more concrete dependence C = C(q, τΩ) uses the condition (2.5) and
will be proved in a forthcoming paper [12].

Concerning u ∈ W 1,q(H) satisfying u · n = 0 on ∂H we apply [17, Exercise
II.4.5] where the inequality is proven with a constant C ≤ diamH(|q−2|+n+1).
Here diamH ≤ 2r(τΩ).

Lemma 2.3 (Divergence equation, [5], Lemma 2.1 in [8]). Let 1 < q <∞.

(i) There is a bounded linear operator R : Lq0(H)→ W 1,q
0 (H) such that divRf =

f for all f ∈ Lq0(H). Moreover, there exists a constant C = C(q, τΩ) > 0

such that
‖Rf‖W 1,q(H) ≤ C‖f‖Lq(H) for all f ∈ Lq0(H).

(ii) There exists C = C(q, τΩ) > 0 such that for every p ∈ Lq0(H)

‖p‖Lq(H) ≤ C‖∇p‖W−1,q(H) = C sup

{ |〈p, div v〉|
‖∇v‖Lq′ (H)

: 0 6= v ∈ W 1,q′

0 (H)

}
.

(2.7)
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In the following, we consider the Stokes resolvent system with inhomogeneous
divergence and non-zero boundary data. We will apply these results to prove
resolvent estimates for a bounded uniformly smooth domain with constant inde-
pendent of its size. We start with an auxiliary result in bent half spaces.

Given ω ∈ C3(Rn−1) we define the bent half space

H̃ω = {y ∈ Rn : yn > ω(y′)}.

For the control of ω we use the definition ‖∇′ω‖Ck =
∑

1≤|α′|≤k+1

‖∂α′x′ ω‖L∞ , k = 1, 2.

Proposition 2.4 ([26]). Let 1 < q < ∞ and let 0 < ε < π
2
. Let λ ∈ Sε,

f ∈ Lq(H̃ω), g ∈ Ŵ 1,q(H̃ω) ∩ Ŵ−1,q(H̃ω), supp g compact and h ∈ W 1,q(H̃ω),
h · n = 0 on ∂H̃ω. Then there exist constants λ0 = λ0(q, ε, ‖∇′ω‖C2) ≥ 1 and
K0 = K0(q, ε), 0 < K0 ≤ 1, with the following property: If ‖∇′ω‖L∞(Rn−1) ≤ K0

and |λ| ≥ λ0, then the resolvent problem (with H = H̃ω)

λu− divSSS(u) +∇p = f in H

divu = g in H

u · n = 0 on ∂H

Bα,β(u) = h on ∂H.

(2.8)

admits a unique solution (u, p) ∈ W 2,q(H̃ω) × Ŵ 1,q(H̃ω) which satisfies the esti-
mate (with H = H̃ω)

‖λu‖Lq(H) + |λ|1/2‖∇u‖Lq(H) + ‖∇2u‖Lq(H) + ‖∇p‖Lq(H)

≤ C
(
‖f‖Lq(H) + ‖λg‖Ŵ−1,q(H) + ‖λ1/2g, λ1/2h, ∇g, ∇h‖Lq(H)

) (2.9)

with some constant C = C(q, ε, ‖∇′ω‖C2) > 0.

Lemma 2.5 (Stokes resolvent system in H as in (2.4)). Let 1 < q < ∞ and
0 < ε < π

2
. For given f ∈ Lq(H), g ∈ Ŵ 1,q(H) ∩ Ŵ−1,q(H) and h ∈ W 1,q(H)

with h · n = 0 on ∂H let u ∈ W 2,q(H), p ∈ Ŵ 1,q(H) satisfy the Stokes resolvent
system (2.8) with λ ∈ Sε. Moreover, assume that

suppu ∪ supp p ⊂ Br and dist(suppu ∪ supp p, ∂2H) > 0. (2.10)

Then there are constants λ0 = λ0(q, ε, τΩ) ≥ 1, C = C(q, ε, τΩ) > 0 such that for
all |λ| ≥ λ0 the estimate (2.9) holds for (u, p).

Proof. Due to (2.10) we extend u, p by zero so that (u,∇p) may be considered
as a solution of the Stokes resolvent system in a bent half-space H̃ω and use
Proposition 2.4. The smallness assumption on ∇′ω is satisfied thanks to (2.1),
where we choose M ≤ 1. Moreover, checking all constants appearing in the proof
of [26], we see that they depend on the parameters q, ε, τΩ only.

10



Proposition 2.6 (Stokes operator in bounded domains). Let Ω ⊂ Rn be a
bounded domain of uniform C3-type.

(i) Let 1 < q < ∞. The Stokes operator Aq = −Pq∆ : D(Aq) → Lqσ(Ω) is a
densely defined closed operator on Lqσ(Ω), and the resolvent problem

λu + Aqu = f ∈ Lqσ(Ω), λ ∈ Sε, |λ| > δ > 0, 0 < ε <
π

2
, (2.11)

has a unique solution u ∈ D(Aq) satisfying the resolvent estimate

‖λu‖Lq(Ω) + ‖Aqu‖Lq(Ω) ≤ C‖f‖Lq(Ω), C = C(ε, q, δ,Ω) > 0. (2.12)

Hence −Aq generates an analytic semigroup {e−tAq}t≥0 on Lqσ(Ω). Moreover, the
duality relation A′q = Aq′ is satisfied.

The resolvent estimate (2.12) also holds in a neighborhood of λ = 0 when
α > 0 or in case that α = 0 and Ω is not rotationally symmetric. In particular,

‖u‖W 2,q(Ω) ≤ C(q,Ω)‖Aqu‖Lq(Ω).

In the latter cases the semigroup is even uniformly bounded in t > 0.
(ii) For q = 2 the resolvent problem (2.11) has a unique solution u ∈ D(A2)

satisfying
‖λu‖L2(Ω) + ‖A2u‖L2(Ω) ≤ C‖f‖L2(Ω) (2.13)

with C = C(ε) > 0 independent of Ω and δ. The operator A2 is selfadjoint.

Proof. (i) With help of the Helmholtz projection Pq the resolvent estimate (2.12)
follows from [26, Theorem 1.3] where a resolvent estimate such as (2.9) is proved.
The other properties of Aq are standard results based on the resolvent estimate.

For the proof of the duality relations, let u ∈ D(Aq) and v ∈ D(Aq′). Since
u and v are solenoidal, tangential to ∂Ω, and (1.2) holds for u and v,

〈−∆u,v〉 = 〈− divSSS(u),v〉

= 〈SSS(u),∇v〉 −
∫
∂Ω

v · SSS(u)n dσ

= 〈∇u,SSS(v)〉 −
∫
∂Ω

v · (SSS(u)n)τ dσ

= 〈u,− divSSS(v)〉 −
∫
∂Ω

(
v · (SSS(u)n)τ − u · (SSS(v)n)τ

)
dσ

= 〈u,−∆v〉.

Hence even 〈Aqu,v〉 = 〈u, Aq′v〉, and D(Aq′) ⊂ D(A′q). Since e.g. 1 ∈ ρ(−Aq) ∩
ρ(−Aq′), standard arguments prove that D(Aq′) = D(A′q), i.e., Aq′ = A′q, cf. [13,
Proof of Corollary 1.6].
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(ii) In view of (i) it remains to prove the estimate (2.13) with C = C(ε)

independent of Ω and δ. Let λu + A2u = f , f ∈ L2
σ(Ω) and λ ∈ Sε. Since A2 is

selfadjoint, it holds the estimate

‖f‖2
L2(Ω) = ‖λu + A2u‖2

L2(Ω) ≥ | Imλ|2‖u‖2
L2(Ω).

For Reλ ≤ 0 we have Imλ = ±|λ| cos ε′ and | Imλ| = |λ| cos ε′ ≥ |λ| cos ε,
0 ≤ ε′ < ε < π/2. Thus C(ε)|λ|‖u‖L2 ≤ ‖f‖L2 for Reλ ≤ 0. Note that we get a
similar estimate for Reλ > 0 and π

2
− ε < | arg λ| < π

2
.

It remains to consider the case Reλ > 0 when | arg λ| ≤ π
2
− ε. There holds

〈f ,u〉 = λ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω) +

∫
Ω

(∇u)T · ∇u dx+
α

β
‖u‖2

L2(∂Ω).

Since
∣∣Re

∫
Ω

(∇u)T · ∇u dx
∣∣ ≤ ‖∇u‖2

L2 , we obtain the estimate Reλ‖u‖2
L2 ≤

‖f‖L2‖u‖L2 which implies ‖f‖L2 ≥ Reλ‖u‖L2 ≥ C(ε)|λ|‖u‖L2 .

Now the proof of (2.13) is complete.

Lemma 2.7. Let 1 < q < ∞ and let Ω ⊂ Rn be a bounded domain of uniform
C3-type. Then there exists a constant C = C(q, τΩ) > 0 such that

C‖u‖W 2,q(Ω) ≤ ‖u‖D(Aq) = ‖u‖Lq(Ω) + ‖Aqu‖Lq(Ω), u ∈ D(Aq). (2.14)

Proof. Consider a parametrization {hj} of ∂Ω, the covering of Ω with balls {Bj}
and the corresponding partition of unity {ϕj}, 1 ≤ j ≤ N , as described above.
We define

U ′j := U−α,β,hj(xj) ∩Bj for xj ∈ ∂Ω, U ′j := Bj for xj ∈ Ω, 1 ≤ j ≤ N.

Hence we may work in domains Uj ⊂ U ′j, assume that each Uj has the form as
the set H in (2.4), (2.5), and apply the results of Lemma 2.5 for H.

Given u ∈ D(Aq) let f ∈ Lqσ(Ω) satisfy λ0u + Aqu = f where λ0 ≥ 1 is the
constant appearing in Lemma 2.5, i.e.,

λ0u−∆u +∇p = f , divu = 0 in Ω, u · n = 0, Bα,βu = 0 on ∂Ω

with ∇p = (I − Pq)∆u. Our aim is to prove the estimate

‖∇2u‖Lq(Ω) ≤ C(q, τΩ)
(
‖f‖Lq(Ω) + ‖u‖Lq(Ω)

)
.

Let Mj = Mj(p) be the constant such that p −Mj ∈ Lq0(Uj), j = 1, . . . , N .
Then uϕj and (p−Mj)ϕj satisfy the local resolvent system

λ0uϕj − divSSS(uϕj) +∇(ϕj(p−Mj)) = fϕj + (p−Mj)∇ϕj
−2∇u∇ϕj −∆ϕju− (∇u)T∇ϕj −∇2ϕju in Uj

div(uϕj) = ∇ϕj · u in Uj
ϕju · n = 0 on ∂Uj

Bα,β(uϕj) = βu(∇ϕj · n) =: h∂ on ∂Uj.

(2.15)
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Since ∇ϕj ∈ C∞0 (Bj) and Uj is a bounded C3-domain of uniform type τΩ, we
know that n ∈ C2(∂Uj) and supj ‖n‖C2(∂Uj) <∞. Hence in the sequel we assume
that ∇ϕj · n is extended to a function Φj ∈ C2(Uj) satisfying ‖Φj‖C2 ≤ C(τΩ).
Moreover, as n = nUj on supph∂ ⊂ ∂Ω∩Bj, the condition h∂ ·n = 0 is satisfied.
Applying the estimate (2.9) to the local resolvent system with λ = λ0 we gain

‖∇2(uϕj)‖Lq(Uj) + ‖∇(ϕj(p−Mj))‖Lq(Uj)
≤ C

(
‖fϕj‖Lq(Uj) + ‖(p−Mj)∇ϕj‖Lq(Uj) + 2‖∇u∇ϕj‖Lq(Uj)

+ ‖∆ϕju‖Lq(Uj) + ‖(∇u)T∇ϕj‖Lq(Uj) + ‖∇2ϕju‖Lq(Uj)
+ λ0‖∇ϕj · u‖Ŵ−1,q(Uj)

+ λ
1/2
0 ‖∇ϕj · u‖Lq(Uj)

+ ‖∇(∇ϕj · u)‖Lq(Uj) + λ
1/2
0 ‖βuΦj‖Lq(Uj) + ‖∇(βuΦj)‖Lq(Uj)

)
(2.16)

where here and in the remaining part of the proof C = C(q, τΩ) > 0. Thanks to
(2.3), estimate (2.16) simplifies to the inequality

‖ϕj∇2u‖Lq(Uj) + ‖ϕj∇p‖Lq(Uj) ≤ C
(
‖f‖Lq(Uj) + ‖u‖Lq(Uj)

+‖∇u‖Lq(Uj) + ‖p−Mj‖Lq(Uj) + ‖∇ϕj · u‖Ŵ−1,q(Uj)

)
. (2.17)

In the following we estimate the last two terms on the right-hand side of (2.17).
Since p−Mj ∈ Lq0(Uj) we have, due to (2.7), ‖p−Mj‖Lq(Uj) ≤ C‖∇p‖W−1,q(Uj).
Let ψ ∈ W 1,q′

0 (Uj). Then, using the Poincaré inequality (2.6) for ψ, we obtain

|〈p, divψ〉Uj | = |〈∇p, ψ〉Uj | = |〈f , ψ〉Uj − 〈∇u,∇ψ〉Uj − 〈λ0u, ψ〉Uj | (2.18)

≤ C
(
‖f‖Lq(Uj) + ‖u‖Lq(Uj) + ‖∇u‖Lq(Uj)

)
‖∇ψ‖Lq′ (Uj).

Hence we conclude the estimate

‖p−Mj‖Lq(Uj) ≤ C
(
‖f‖Lq(Uj) + ‖u‖Lq(Uj) + ‖∇u‖Lq(Uj)

)
. (2.19)

Now let v ∈ Ŵ 1,q′(Uj), i.e. v ∈ W 1,q′(Uj),
∫
Uj
v = 0. Using (2.6) again we

conclude from

|〈∇ϕj · u, v〉Uj | ≤ ‖∇ϕj · u‖Lq(Uj)‖v‖Lq′ (Uj) ≤ C‖u‖Lq(Uj)‖∇v‖Lq′ (Uj)

that
‖∇ϕj · u‖Ŵ−1,q(Uj)

≤ C‖u‖Lq(Uj).
Altogether we get from (2.17), when raising all terms to the power q, the local

inequalities

‖ϕj∇2u‖qLq(Uj) + ‖ϕj∇p‖qLq(Uj) ≤ C
(
‖f‖qLq(Uj) + ‖u‖qLq(Uj) + ‖∇u‖qLq(Uj)

)
. (2.20)
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Now we take the sum of these inequalities over j = 1, . . . , N and use the
crucial property that at most N0 = N0(τΩ) of the neighborhoods U1, . . . , UN
intersect. We obtain by Hölder’s inequality and (2.20) that

‖∇2u‖qLq(Ω) + ‖∇p‖qLq(Ω) =

∫
Ω

((∑
j

ϕj|∇2u|
)q

+
(∑

j

ϕj|∇p|
)q)

dx

≤ N
q/q′

0

∑
j

(
‖ϕj∇2u‖qLq(Uj) + ‖ϕj∇p‖qLq(Uj)

)
≤ CN

q/q′

0

∑
j

(
‖f‖qLq(Uj) + ‖u‖qLq(Uj) + ‖∇u‖qLq(Uj)

)
≤ CN

q/q′

0 N0

(
‖f‖qLq(Ω) + ‖u‖qLq(Ω) + ‖∇u‖qLq(Ω)

)
.

To estimate the term ‖∇u‖Lq(Ω) we use that for 0 < M < 1 there exists a constant
CM = C(M, q, τΩ) > 0 such that for u ∈ W 2,q(Ω) the interpolation estimate

‖∇u‖Lq(Ω) ≤M‖∇2u‖Lq(Ω) + CM‖u‖Lq(Ω). (2.21)

holds; cf. [5]. Choosing M ∈ (0, 1) sufficiently small we get that

‖∇2u‖Lq(Ω) ≤ C
(
‖f‖Lq(Ω) + ‖u‖Lq(Ω)

)
= C

(
‖λ0u + Aqu‖Lq(Ω) + ‖u‖Lq(Ω)

)
≤ C‖u‖D(Aq).

Since ‖u‖Lq(Ω) ≤ ‖u‖D(Aq), (2.21) completes the proof of (2.14).

3 Proofs

It is our aim to show the Stokes resolvent estimate in the L̃q(Ω)-norm with a
constant depending on Ω only through its type τΩ = (α, β,K). We start with the
bounded domain case, first when 2 < q <∞ and then, by duality arguments, for
q ∈ (1, 2). Finally, we consider unbounded domains.

3.1 Resolvent estimates in bounded domains

Case 2 ≤ q <∞. For λ ∈ Sε, 0 < ε < π
2
, we consider the resolvent equation

λu + Aqu = λu−∆u +∇p = f , f ∈ Lqσ(Ω). (3.1)

For its solution u ∈ D(Aq) and ∇p = (I − Pq)∆u, given by Proposition 2.6 (i)
we will prove the estimate

‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) + ‖∇p‖L̃q(Ω) ≤ C‖f‖L̃q(Ω), (3.2)
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with |λ| ≥ δ > 0 and a constant C = C(q, ε, δ, τΩ) > 0.
We use the localization procedure as in Lemma 2.7, let Mj = Mj(p) be the

constant such that p − Mj ∈ Lq0(Uj), and obtain the local system (2.15), j =

1, . . . , N , with λ0 replaced by a general λ ∈ Sε. We again assume that ∇ϕj ·n is
extended to a function Φj ∈ C2(Uj) satisfying ‖Φj‖C2 ≤ C(τΩ).

However, in order to apply the resolvent estimate (2.9) we replace λ by λ+λ′0 ∈
Sε with λ′0 ≥ 0 sufficiently large such that |λ + λ′0| ≥ λ0 ≥ 1 for |λ| ≥ δ, λ0 as
in (2.9) (e.g., λ′0 can be chosen as λ0

cos ε
). Hence the term λ′0uϕj appears on the

right-hand side of (2.15)1.
Then from the resolvent estimate (2.16) in Uj including the lower order terms

|λ+ λ′0|‖uϕj‖q, |λ+ λ′0|1/2‖∇(uϕj)‖q as in (2.9) we get (with ‖ · ‖q = ‖ · ‖Lq(Uj))

|λ+ λ′0|‖uϕj‖q + |λ+ λ′0|1/2‖∇(uϕj)‖q + ‖∇2(uϕj)‖q + ‖∇(ϕj(p−Mj))‖q
≤ C

(
‖fϕj‖q + λ′0‖uϕj‖q + ‖(p−Mj)∇ϕj‖q + 2‖∇u∇ϕj‖q + ‖∆ϕju‖q

+ ‖(∇u)T∇ϕj‖q + ‖∇2ϕju‖q + |λ+ λ′0|‖∇ϕj · u‖Ŵ−1,q(Uj)

+ ‖∇(∇ϕj · u)‖q + |λ+ λ′0|1/2
(
‖∇ϕj · u‖q + ‖uΦj‖q

)
+ ‖∇(uΦj)‖q

)
.

Thanks to the property (2.3) of ϕj and |λ+λ′0| ≥ |λ| cos ε we obtain the estimate

‖λϕju‖q + |λ|1/2‖ϕj∇u‖q + ‖ϕj∇2u‖q + ‖ϕj∇p‖q
≤ C

(
‖f‖q + ‖u‖q + ‖∇u‖q + ‖p−Mj‖q

+ ‖λ∇ϕj · u‖Ŵ−1,q(Uj)
+ |λ|1/2‖u‖q

)
with C = C(q, ε, δ, τΩ) as λ′0 depends on λ0 = λ0(q, ε, τΩ) and ε only.

To estimate the pressure term, we have by (2.7) and (2.6) (cf. (2.18), (2.19))

‖p−Mj‖q ≤ C(q, τΩ)

(
‖f‖q + ‖∇u‖q

+ sup

{ |〈λu, ψ〉Uj |
‖∇ψ‖q′

: 0 6= ψ ∈ W 1,q′

0 (Uj)

})
.

‖p−Mj‖q ≤ C(q, τΩ)

(
‖f‖q +‖∇u‖q + sup

{ |〈λu, ψ〉Uj |
‖∇ψ‖q′

: 0 6= ψ ∈ W 1,q′

0 (Uj)

})
.

It remains to estimate |〈λu, ψ〉Uj | for ψ ∈ W 1,q′

0 (Uj). We use the usual interpola-
tion inequality

‖v‖r ≤ θ(1/ε)1/θ‖v‖2 + (1− θ)ε1/(1−θ)‖v‖q, (3.3)

with r ∈ [2, q], θ ∈ [0, 1], 1
r

= θ
2

+ 1−θ
q
, ε > 0. Let r ∈ [2, q) be such that the

embedding W 1,q′(Uj) ↪→ Lr
′
(Uj) holds. Then the estimate

|〈λu, ψ〉Uj | ≤ ‖λu‖r‖ψ‖r′
≤
(
C(M, q)‖λu‖2 +M‖λu‖q

)
‖∇ψ‖q′
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implies that

‖p−Mj‖q ≤ C
(
‖f‖q + ‖∇u‖q + ‖λu‖2

)
+M‖λu‖q (3.4)

with C = C(q,M, τΩ) and M ∈ (0, 1) to be chosen later. Similarly, for v ∈
Ŵ 1,q′(Uj) = W 1,q′(Uj) ∩ Lq

′

0 (Uj) we have due to (3.3), (2.3) and (2.6)

|〈∇ϕj · u, v〉Uj | ≤
(
C(q,M, τΩ)‖u‖2 +M‖u‖q

)
‖∇v‖q′ ,

which yields
‖λ∇ϕj · u‖Ŵ−1,q(Uj)

≤ C‖λu‖2 +M‖λu‖q (3.5)

with C = C(q,M, τΩ), M ∈ (0, 1). Finally,

|λ|1/2‖u‖q ≤ C(M)‖u‖q +M‖λu‖q. (3.6)

Considering the estimates (3.4), (3.5) and (3.6) we obtain - with all norms
evaluated on Uj, j = 1, . . . , N -

‖λϕju‖q + |λ|1/2‖ϕj∇u‖q + ‖ϕj∇2u‖q + ‖ϕj∇p‖q
≤ C

(
‖f‖q + ‖u‖q + ‖∇u‖q + ‖λu‖2

)
+M‖λu‖q

where C = C(q, ε, δ,M, τΩ).
We raise this inequality to its qth power, sum over j = 1, . . . , N and use the

important property of the number N0 as well as the reverse Hölder inequality
(
∑

j a
q
j)

1/q ≤ (
∑

j a
2
j)

1/2, 2 ≤ q, for aj = ‖λu‖L2(Uj). Now we obtain that

‖λu‖qLq(Ω) + ‖|λ|1/2∇u‖qLq(Ω) + ‖∇2u‖qLq(Ω) + ‖∇p‖qLq(Ω)

≤ N
q/q′

0

∑
j

(
‖λϕju‖qLq(Uj) + ‖|λ|1/2ϕj∇u‖qLq(Uj) + ‖ϕj∇2u‖qLq(Uj) + ‖ϕj∇p‖qLq(Uj)

)
≤ N

q/q′

0

∑
j

(
C
(
‖f‖qLq(Uj) + ‖u‖qLq(Uj)+ ‖∇u‖

q
Lq(Uj)

+ ‖λu‖qL2(Uj)

)
+M‖λu‖qLq(Uj)

)
≤ N q

0

(
C‖f‖qLq(Ω) + ‖u‖qLq(Ω) + ‖∇u‖qLq(Ω) +M‖λu‖qLq(Ω)

)
+N

q/q′+q/2
0 C‖λu‖qL2(Ω),

and therefore the estimate

‖λu‖Lq(Ω) + |λ|1/2‖∇u‖Lq(Ω) + ‖∇2u‖Lq(Ω) + ‖∇p‖Lq(Ω)

≤ C
(
‖f‖Lq(Ω) + ‖u‖Lq(Ω) + ‖∇u‖Lq(Ω) + ‖λu‖L2(Ω)

)
+M‖λu‖Lq(Ω)

(3.7)

with C = C(q, ε,M, δ, τΩ), |λ| ≥ δ.
Employing (2.21) and the estimate

‖u‖Lq(Ω) ≤M‖∇2u‖Lq(Ω) + C(M, q, τΩ)
(
‖u‖L2(Ω) + ‖∇2u‖L2(Ω)

)
,
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cf. [5], [8, Lemma 2.2], we eliminate by absorption arguments for sufficiently
small M the terms ‖u‖Lq(Ω), ‖∇u‖Lq(Ω), ‖λu‖Lq(Ω) from the right-hand side of
(3.7). Thus we get that

‖λu‖Lq(Ω)+|λ|1/2‖∇u‖Lq(Ω) + ‖∇2u‖Lq(Ω) + ‖∇p‖Lq(Ω)

≤ C
(
‖f‖Lq(Ω) + ‖λu‖L2(Ω) + ‖u‖L2(Ω) + ‖∇2u‖L2(Ω)

)
.

With the help of (2.14) for q = 2 and (2.13) for |λ| ≥ δ we know that all L2-norms
above can be estimated by

C(q, ε, τΩ)
(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
≤ C(q, ε, δ, τΩ)‖f‖L2(Ω).

Thus we have

‖λu‖Lq(Ω) + |λ|1/2‖∇u‖Lq(Ω) +‖∇2u‖Lq(Ω) +‖∇p‖Lq(Ω) ≤ C
(
‖f‖Lq(Ω) +‖f‖L2(Ω)

)
,

|λ| ≥ δ, C = C(q, ε, δ, τΩ). Moreover, since |λ| ≥ δ we even have

‖λu‖Lq(Ω) + ‖u‖W 2,q(Ω) + ‖∇p‖Lq(Ω) ≤ C(δ)
(
‖f‖Lq(Ω) + ‖f‖L2(Ω)

)
. (3.8)

Finally adding (3.8) with q replaced by 2 we obtain the estimate (3.2).

Case 1 < q < 2. For f ∈ Lqσ(Ω) + L2
σ(Ω) = Lqσ(Ω) and λ ∈ Sε we consider the

resolvent equation (3.1) and its unique solution u ∈ D(Aq) +D(A2) = D(Aq) =

D(Ãq), ∇p = (I − P̃q)∆u. We show the estimate

‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) + ‖∇p‖L̃q(Ω) ≤ C‖f‖L̃q(Ω), (3.9)

where here and in the rest of this subsection C = C(q, ε, δ, τΩ) > 0, |λ| ≥ δ > 0.
Note the following facts: P̃q = Pq, Ãq = Aq and L̃qσ(Ω)′ = L̃q

′
σ (Ω); moreover,

D(Aq′) ∩ D(A2) = D(Aq′) = D(Ãq′) is dense in L̃q
′
σ (Ω) = Lq

′
σ (Ω) and λ + Ãq′ :

D(Ãq′) → L̃q
′
σ (Ω) is surjective. Hence it follows from the duality Ãq′ = Ã′q and
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the resolvent estimate in Lq′σ (Ω) by setting g = λv + Ãq′v for v ∈ D(Ãq′) that

‖f‖L̃q(Ω) ≥ sup

{ |〈f ,v〉|
‖v‖

L̃q
′
σ (Ω)

: 0 6= v ∈ L̃q′σ (Ω)

}
= sup

{ |〈λu + Ãqu,v〉|
‖v‖

L̃q
′
σ (Ω)

: 0 6= v ∈ D(Ãq′)

}
= sup

{ |〈u, λv + Ãq′v〉|
‖v‖

L̃q
′
σ (Ω)

: 0 6= v ∈ D(Ãq′)

}
= sup

{ |〈u, g〉|
‖(λ+ Ãq′)−1g‖

L̃q
′
σ (Ω)

: 0 6= g ∈ L̃q′σ (Ω)

}
≥ C−1 sup

{ |〈λu, g〉|
‖g‖

L̃q
′
σ (Ω)

: 0 6= g ∈ L̃q′σ (Ω)

}
= C−1‖λu‖L̃q(Ω)

for all λ ∈ Sε, |λ| ≥ δ > 0.
In particular, we have δ‖u‖L̃q(Ω) ≤ C‖f‖L̃q(Ω) and, thanks to λu +Aqu = f ,

we even get that

‖λu‖L̃q(Ω) + ‖u‖L̃q(Ω) + ‖Aqu‖L̃q(Ω) ≤ C‖f‖L̃q(Ω). (3.10)

From the properties of the sum spaces and from Lemma 2.7 we have that

‖u‖W̃ 2,q(Ω) ≤ C‖u‖D(Ãq)
≤ C

(
‖u‖L̃q(Ω) + ‖Aqu‖L̃q(Ω)

)
where the last estimate follows from [4, (2.2)]. Then we conclude from (3.10)
the resolvent estimate (3.9) and a similar estimate for f ∈ L̃q(Ω) by applying
P̃q = Pq.

3.2 Resolvent estimates in unbounded domains

Case 2 ≤ q < ∞. Let f ∈ L̃qσ(Ω), and λ ∈ Sε. We set f j := f |Ωj ∈ L̃q(Ωj),
where {Ωj}j∈N is a sequence of bounded smooth subdomains as in Assumption
1.1. Then we consider the solution (uj,∇pj) ∈ D̃q(Ωj) × L̃q(Ωj) of the Stokes
resolvent system in the domain Ωj,

λuj −∆uj +∇pj = f j, divuj = 0 in Ωj

uj · nj = 0, Bα,β(uj) = 0 on ∂Ωj,
(3.11)

satisfying the estimate

‖λuj‖L̃q(Ωj) + ‖uj‖W̃ 2,q(Ωj)
+ ‖∇pj‖L̃q(Ωj) ≤ C‖f j‖L̃q(Ωj) ≤ C‖f‖L̃q(Ω) (3.12)
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with |λ| ≥ δ > 0 and C = C(q, δ, ε, τΩ) > 0 independent of j ∈ N.
We denote by f̃ j the extension of f j by zero to the whole of Ω; for vector- or

matrix-valued functions this definition is understood componentwise. Obviously,
f̃ j → f strongly in L̃q(Ω) as j →∞.

We consider the pressure first. Then ∇pj ∈ L̃q(Ωj), and the extensions ∇̃pj ∈
L̃q(Ω) satisfy the estimate

‖∇̃pj‖L̃q(Ω) = ‖∇pj‖L̃q(Ωj) ≤ C‖f‖L̃q(Ω)

uniformly in j ∈ N with the same constant as in (3.12); note that ∇̃pj is not
necessarily a gradient field on Rn. By a reflexivity argument we obtain (at least
for a not relabelled subsequence) that ∇̃pj ⇀ Q weakly in L̃q(Ω). The weak
lower semicontinuity of norms implies the estimate ‖Q‖L̃q(Ω) ≤ C‖f‖L̃q(Ω). Fur-
thermore, a de Rham argument yields the existence of a gradient ∇p such that
Q = ∇p ∈ Gq(Ω) ∩G2(Ω). Hence ∇p satisfies ‖∇p‖L̃q(Ω) ≤ ‖f‖L̃q(Ω).

Concerning the velocity field we have uj ∈ Dq(Ωj)∩D2(Ωj) where Dq(Ωj) =

Lqσ(Ωj) ∩W 2,q
B (Ωj). The componentwise extensions of uj,∇uj,∇2uj from Ω to

Rn satisfy ũj, ∇̃uj, ∇̃2uj ∈ Lq(Ω) ∩ L2(Ω) and even ũj ∈ L̃qσ(Ω). Moreover,
(3.12) implies that

‖λũj‖L̃q(Ω) + ‖ũj‖L̃q(Ω) + ‖∇̃uj‖L̃q(Ω) + ‖∇̃2uj‖L̃q(Ω) ≤ C‖f‖L̃q(Ω).

From this uniform estimate we easily get the existence of u ∈ L̃q(Ω) such that (at
least for not relabelled subsequences) ũj ⇀ u, ∇̃uj ⇀ ∇u, ∇̃2uj ⇀ ∇2u weakly
in L̃q(Ω). Moreover, since L̃qσ(Ω) is a closed and hence weakly closed subspace of
L̃q(Ω), we see that u ∈ L̃qσ(Ω). From these weak convergences it follows that

‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) ≤ C‖f‖L̃q(Ω) (3.13)

for |λ| ≥ δ > 0.
To show that u satisfies the Navier boundary condition let us fix j0 ∈ N.

Thanks to trace theorems and compact embeddings we conclude from the weak
convergence uj ⇀ u in W̃ 2,q(Ωj0) that (at least for a subsequence) uj → u

and ∇uj → ∇u in Lq(∂Ωj0) as j → ∞. Since Bα,βuj = 0 on ∂Ωj we get that
Bα,βu = 0 on ∂Ωj0 . With the help of Assumption 1.1 we conclude that Bα,βu = 0

on ∂Ω.
Finally note that the weak convergences prove that u,∇p is a solution of the

Stokes resolvent system in Ω satisfying the resolvent estimates (1.6), (1.7).
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Case 1 < q < 2. Looking at (3.11) we find pressure gradients∇pj = ∇p1
j+∇p2

j ∈
Lq(Ωj) + L2(Ωj) = L̃q(Ωj) such that ‖∇pj‖L̃q(Ωj) = ‖∇p1

j‖Lq(Ωj) + ‖∇p2
j‖L2(Ωj).

Their extensions ∇̃p1
j and ∇̃p2

j satisfy with the same constant C = C(q, δ, ε, τΩ) as
in (3.12) the estimates ‖∇̃p1

j‖Lq(Ω) + ‖∇̃p2
j‖L2(Ω) ≤ C‖f‖L̃q(Ω). This implies that

(at least for a subsequence) ∇̃p1
j ⇀ Q1 = ∇p1 weakly in Lq(Ω) and ∇̃p2

j ⇀ Q2 =

∇p2 weakly in L2(Ω), where we also used de Rham’s argument. Consequently,
we obtain the inequalities ‖∇p1‖Lq(Ω) + ‖∇p2‖L2(Ω) ≤ C‖f‖L̃q(Ω), and ∇p =

∇p1 +∇p2 satisfies ∇p ∈ G̃q(Ω) and

‖∇p‖L̃q(Ω) ≤ ‖∇p1‖Lq(Ω) + ‖∇p2‖L2(Ω) ≤ C‖f‖L̃q(Ω). (3.14)

Let us now concentrate on the velocity uj ∈ Dq(Ωj) + D2(Ωj). We choose
uj = u1

j + u2
j such that u1

j ∈ Dq(Ωj), u2
j ∈ D2(Ωj) and

‖uj‖W̃ 2,q(Ωj)
= ‖u1

j‖W 2,q(Ωj) + ‖u2
j‖W 2,2(Ωj).

For u1
j ,u

2
j we define the extensions ũ1

j ∈ Lqσ(Ω), ∇̃u1
j , ∇̃2u1

j ∈ Lq(Ω), and ũ2
j ∈

L2
σ(Ω), ∇̃u2

j , ∇̃2u2
j ∈ L2(Ω). By estimate (3.12) we have for |λ| ≥ δ > 0.

‖ũ1
j + ũ2

j‖L̃q(Ω) = sup

{∣∣〈ũ1
j + ũ2

j , ϕ
〉

Ω

∣∣
‖ϕ‖L̃q′ (Ω)

: 0 6= ϕ ∈ L̃q′(Ω)

}
= sup

{ |〈u1
j + u2

j , ϕ〉Ωj |
‖ϕ‖L̃q′ (Ω)

: 0 6= ϕ ∈ L̃q′(Ω)

}
≤ sup

{ |〈u1
j + u2

j , ϕ〉Ωj |
‖ϕ‖L̃q′ (Ωj)

: 0 6= ϕ ∈ L̃q′(Ωj)

}
= ‖uj‖Lq(Ωj)+L2(Ωj) ≤ C|λ|−1‖f‖L̃q(Ω)

(3.15)

as well as for k = 0, 1, 2

‖∇̃ku1
j‖Lq(Ω) + ‖∇̃ku2

j‖L2(Ω) ≤ ‖u1
j‖W 2,q(Ωj) + ‖u2

j‖W 2,2(Ωj)

= ‖uj‖W̃ 2,q(Ωj)
≤ C‖f‖L̃q(Ω).

(3.16)

From the uniform estimate (3.16) we obtain for k = 0, 1, 2 the (componentwise)
weak convergences ∇̃ku1

j ⇀ ∇ku1 weakly in Lq(Ω) and ∇̃ku2
j ⇀ ∇ku2 weakly in

L2(Ω). Defining u := u1 +u2 we get that ũj := ũ1
j + ũ2

j ⇀ u1 +u2 =: u weakly
in Lqσ(Ω) + L2

σ(Ω) and u ∈ (Lqσ(Ω) ∩W 2,q(Ω)) + (L2
σ(Ω) ∩W 2,2(Ω)). Moreover,

for |λ| ≥ δ > 0,
‖λu‖L̃q(Ω) + ‖u‖W̃ 2,q(Ω) ≤ C‖f‖L̃q(Ω). (3.17)
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Concerning the Navier boundary condition for u = u1 +u2 we argue as in the
previous case. To be more precise, on Ωj0 , j0 ∈ N fixed, we use trace theorems and
compactness arguments to conclude that u1

j → u1 in W 1,q(∂Ωj0) and u2
j → u2

in W 1,2(∂Ωj0) as j → ∞, j ≥ j0. Hence Bα,βu = 0 on ∂Ω. Obviously, the weak
convergences also imply that u,∇p is a solution of the Stokes resolvent problem
satsifying the resolvent estimates.

3.3 Further proofs

The next step is the proof of uniqueness based on the duality relation

〈Ãqu,v〉 = 〈u, Ãq′v〉 for all u ∈ D(Ãq),v ∈ D(Ãq′). (3.18)

Indeed, let us assume (3.18) and that u ∈ D(Ãq) and λ ∈ Sε satisfy the
resolvent equation λu + Ãqu = 0. Then for any f ∈ L̃q′σ (Ω) there is a solution
v ∈ D(Ãq′) (constructed as above) of λv + Ãq′v = f . So we have

〈u,f〉 = 〈u, λv + Ãq′v〉 = 〈λu + Ãqu,v〉 = 0

for all f ∈ L̃q′σ (Ω) and thus u = 0.
Hence it remains to show (3.18). Actually, since P̃ ′q = P̃q′ , we only have to

verify the relation 〈∆u,v〉 = 〈u,∆v〉 for all u ∈ D(Ãq), v ∈ D(Ãq′). Moreover,
it is enough to show this relation for functions from Dq(Ω) and Dq′(Ω). Indeed,
for u ∈ D(Ãq) = Dq(Ω) ∩ D2(Ω), q ≥ 2, and for v ∈ D(Ãq′), v = v1 + v2 ∈
Dq′(Ω) +D2(Ω), q′ < 2, we obtain

〈∆u,v〉 = 〈∆u,v1〉+ 〈∆u,v2〉 = 〈u,∆v1〉+ 〈u,∆v2〉 = 〈u,∆v〉.

Let u ∈ Dq(Ω), v ∈ Dq′(Ω). Since the domain Ω is in general unbounded
we cannot apply integration by parts directly. Therefore, let ψ ∈ C∞0 (B2) be a
cut-off function such that ψ = 1 in B1, and let ψj(x) := ψ

(
x
j

)
, j ∈ N. Then there

holds ψj = 1 in Bj, suppψj ⊂ B2j and ‖∇kψj‖∞ ≤ c
jk
, k = 0, 1, 2; here Br ⊂ Rn

denotes the ball with center 0 and radius r > 0.
Now, for u ∈ W 2,q(Ω), v ∈ W 2,q′(Ω), by Lebesgue’s theorem on dominated

convergence
∫

Ω
∆u · v dx = limj→∞

∫
Ω

∆(uψj) · vψj dx. Here, after lengthy cal-
culations and two integrations by parts, we get for each j ∈ N that∫

Ω

∆(uψj) · vψj dx =

∫
Ω∩B2j

divSSS(uψj) · vψj dx−
∫

Ω∩B2j

∇ div(uψj) · vψj dx

=

∫
Ω

ψju ·∆(vψj) dx+ J1
j − J2

j + J3
j − J4

j
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with the terms J1
j − J2

j + J3
j − J4

j standing for the boundary integrals∫
∂Ω∩B2j

SSS(uψj)n · vψj dσ −
∫
∂Ω∩B2j

ψju · SSS(vψj)n dσ

+

∫
∂Ω∩B2j

ψju · n div(vψj) dσ −
∫
∂Ω∩B2j

div(uψj)ψjv · n dσ.

As u ∈ Dq(Ω), v ∈ Dq′(Ω) and ∂Ω∩B2j ⊂ B2j we have even in the trace sense
that u · n = v · n = 0 and Bα,β(u) = Bα,β(v) = 0 on ∂Ω ∩ B2j. Consequently,
J3
j = J4

j = 0. Moreover, it holds the identity

SSS(uψj)n · vψj = SSS(u)n · vψ2
j + u · n(∇ψj · v)ψj + u · v(∇ψj · n)ψj,

and a similar one holds for SSS(vψj)n · uψj. Here the boundary integrals over
the terms involving u · n and v · n vanish. Next, the difference of the boundary
integrals over the right-hand side terms (involving u·v) vanishes. Finally, SSS(u)n·
vψ2

j = (SSS(u)n)τ · vψ2
j , so that due to the Navier boundary condition∫

∂Ω∩B2j

SSS(u)n · vψ2
j dσ = −α

β

∫
∂Ω∩B2j

u · vψ2
j dσ.

Now we conclude that J1
j − J2

j = 0.
Altogether, by the dominated convergence theorem, we arrive at the duality

relation 〈∆u,v〉 = 〈u,∆v〉. Now the proof of uniqueness is complete.

Finally, we prove parts (iii) and (iv) of Theorem 1.2. Clearly, Ãq is densely
defined since C∞0,σ(Ω) is contained in D(Ãq).

By part (iii) the resolvent (λ+ Ãq)
−1 is well defined for all λ ∈ Sε and satisfies

‖(λ + Ãq)
−1‖ ≤ C

|λ| for λ ∈ Sε with |λ| ≥ δ > 0. Then standard semigroup
theory implies that −Ãq generates an analytic semigroup satisfying the estimate
‖e−tÃq‖ ≤ Ceδt, t ≥ 0, δ > 0, where C = C(q, δ, τΩ) > 0.

To prove that Ã′q = Ãq′ , in view of (3.18) it suffices to show that D(Ã′q) ⊂
D(Ãq′). However, since ρ(Ãq) ∩ ρ(Ãq′) 6= ∅, this inclusion is obvious.

Finally, statement (iv) is an easy consequence of the previous assertions. The-
orem 1.2 is thus completely proven.

Proof of Corollary 1.3 Let u ∈ D(Ãq). Then the statement of the corollary
follows from the chain of inequalities

‖u‖L̃q(Ω) + ‖Ãqu‖L̃q(Ω) ≤ C‖u‖W̃ 2,q(Ω) ≤ C‖(1 + Ãq)u‖L̃q(Ω)

≤ C
(
‖u‖L̃q(Ω) + ‖(1 + Ãq)u‖L̃q(Ω)

)
≤ C

(
‖u‖L̃q(Ω) + ‖Ãqu‖L̃q(Ω)

)
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with a constant C = C(q, τΩ). The second estimate is due to the resolvent esti-
mate (1.6) with λ = 1.

For the proof of the L̃r-L̃q-estimates, see Corollary 1.4, we need Sobolev em-
beddings for spaces of type W̃ k,q.

Lemma 3.1 (Sobolev embeddings, [24]). Let m ∈ N, 1 ≤ q <∞ and let Ω ⊂ Rn

be a uniform Ck-domain, k ≥ 1. Then the embedding

W̃m,q(Ω) ↪→ L̃r(Ω)

holds either if mq < n and q ≤ r ≤ nq
n−mq , or if mq = n and q ≤ r < ∞, or if

mq > n and q ≤ r ≤ ∞. The embedding constant depends on m, q, r, n and τΩ.

Proof of Corollary 1.4. Let u ∈ L̃qσ(Ω). Notice that in both cases the estimate
holds for q = r with γ = 0. Thus let 1 < q < r <∞ and, moreover, let s ∈ (r,∞)

be such that 1
r

= 1−γ
q

+ γ
s
with 0 < γ < 1 and W̃ 2,q(Ω) ↪→ L̃s(Ω). Then by the

interpolation inequality ‖v‖L̃r ≤ ‖v‖1−γ
L̃q
‖v‖γ

L̃s
based on the complex interpolation

[L̃q(Ω), L̃s(Ω)]γ = L̃r(Ω), see [24, Corollary 1], Lemma 3.1 and Corollary 1.3 we
obtain

‖e−tÃqu‖L̃r(Ω) ≤ ‖e−tÃqu‖1−γ
L̃q(Ω)
‖e−tÃqu‖γ

W̃ 2,q(Ω)

≤ Ceδt(1−γ)‖u‖1−γ
L̃q(Ω)
‖(1 + Ãq)e

−tÃqu‖γ
L̃q(Ω)

≤ Ceδt(1−γ)‖u‖1−γ
L̃q(Ω)

(1 + t

t

)γ
eδtγ‖u‖γ

L̃q(Ω)

= C
(1 + t

t

)γ
eδt‖u‖L̃q(Ω),

where C = C(q, τΩ) > 0. It remains to discuss the cases (i) and (ii).
For q < n

2
the embedding W̃ 2,q(Ω) ↪→ L̃s(Ω) holds for q ≤ s ≤ nq

n−2q
. Thus

choosing s = nq
n−2q

, i.e. 1
s

= 1
q
− 2

n
, we obtain the desired estimate for q < r < nq

n−2q

with 0 < γ = n
2

(
1
q
− 1

r

)
< 1. If r = nq

n−2q
then W̃ 2,q(Ω) ↪→ L̃r(Ω) and the estimate

holds with γ = 1.
Now let n

2
≤ q < r. Then W̃ 2,q(Ω) ↪→ L̃s(Ω) for all q ≤ s < ∞. If, in

particular, W̃ 2,q(Ω) ↪→ L̃r(Ω) then the estimate holds with γ = 1. Otherwise,
with some s ∈ (r,∞), we have 0 < γ < 1. Choosing s as large as possible and
considering the identity 1

r
= 1−γ

q
+ γ

s
for such s we get the condition γ > 1− q

r
.
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