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Abstract. We present a method for the precise determination of the volume of subsets of

Rd which are bounded by a hypersurface parametrized by a set of refinable functions. The
derivation is based on the linear refinement equations rather than on closed form expressions
of these functions, which may not be available. In particular, our approach makes it possible

to compute the area of planar domains bounded by subdivision curves or the volume of spatial
domains bounded by subdivision surfaces.

1. Introduction

The volume of some subset Ω ⊂ Rd can be determined easily with the help of the diver-
gence theorem if a closed form expression for the parametrization of its boundary is available.
However, if the boundary is created by a subdivision scheme, the problem is more delicate. If,
for instance, a boundary curve is generated by the four-point scheme, then it is impossible to
find a parametrization which is suitable for direct integration. Equally, if a boundary surface
is generated by a subdivision algorithm like Catmull-Clark or Loop, then a piecewise analytic
representation is known, but there are infinitely many of these pieces. In applications, it may be
sufficient to compute a numerical approximation, but convergence rates of standard quadrature
schemes are typically low due to the limited regularity of subdivision functions.

In this paper, we present an alternative approach to the problem. It is based on the refinement
rules of the representation of the boundary rather than on explicit knowledge of its function
values. In fact, our method applies whenever the parametrization of the boundary consists of
a finite number of patches each of which is a linear combination of a set of refinable functions.
Here, refinability means that there exists a partition of the domain of the patch into subdomains
such that the restrictions of the functions to these subdomains can be reparametrized in terms of
the functions themselves. This assumption is satisfied for boundaries generated by subdivision
schemes, wavelets, or B-splines, but also for more general classes of functions.

The basic idea is the following: Application of the divergence theorem shows that the con-
tribution of a single patch to the total volume of the given set Ω can be expressed by means of
a certain multi-linear form M , which has to be determined. After partitioning the domain of
the patch, the same contribution is now obtained as the sum over the shares of the subpatches,
which in turn can be described in terms of M . In this way, we obtain a linear interrelation
between the coefficients of the multi-linear form which, typically, determines M up to scaling.
Eventually, the remaining degree of freedom can be calibrated by considering a single special
configuration. In Figure 1, we see two cases which can be handled by our framework. On the left
hand side, we see a tripod generated from an assembly of four unit cubes by the Catmull-Clark
algorithm. The enclosed volume V ≈ 2.504005476 is given exactly as the quotient of two fairly
big integers1. The subdivision surface on the right is generated from a regular octahedron with
all edges length 1 by the algorithm suggested in [10], where the edges of two opposite triangles

are tagged to form sharp creases. Here, the enclosed volume is V = 9
√
2/56 ≈ 0.227284323.
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Figure 1. Catmull-Clark surface (left) and subdivision surface with sharp
creases (right). The determination of the enclosed volumes is based on the
equivalence of a given and the refined representation of the boundary.

The idea which is detailed and generalized in this report appears first in the monograph [19].
Here, Warren and Weimer introduce the basic principle for univariate subdivision schemes and
determine the area form corresponding to the four-point scheme without tension. The problem
of computing volumes of spatial subsets bounded by subdivision surfaces, which has some rele-
vance in applications, has also been considered before, but using a different approach. In [16],
approximate volume formulas for boundaries generated by subdivision schemes are suggested.
They are obtained by summing up the volume contributions of a finite number of spline rings,
and neglecting an infinite number of ever smaller pieces near the extraordinary vertex. The con-
tribution of a single spline ring is assumed to be computable via integration so that, essentially,
the approach of Peters and Nasri is restricted to algorithms generalizing B-spline or box spline
subdivision. Accurate results for boundaries generated by the Doo-Sabin algorithm are derived
by Schwald in [18]. Here, the volume contributions of all spline rings are taken into account.
This is achieved by eigen-decomposition of the subdivision matrix and the summation of the
contributions of certain infinite sequences of scaled eigen-rings, amounting to the summation of
geometric series. The volume of the set bounded by the limit surface corresponding to the unit
cube is found to be 6241/9920, showing that the according value 0.629137 . . . given in [16] is
accurate up to the fifth digit.

The paper is organized as follows: In the next section, we develop the fundamental ideas. In
particular, we introduce systems of refinable functions, and also systems of partially refinable
functions, which are useful when analyzing subdivision surfaces in a vicinity of an extraordinary
vertex. Further, we discuss how to reduce the possibly high complexity of a given problem by
exploiting symmetries. Section 3 is devoted to a discussion of some algorithmic issues. First,
we describe the basic strategy. In particular, it is shown how to set up the linear system
for the determination of the coefficients of the sought multi-linear form, and how to calibrate
the remaining free parameters. Then, we discuss some variants, including the case of partial
refinability and the involvement of symmetries. In Section 4, we consider a few special scenarios
in order to illustrate the potential of our method in applications. We discuss uniform and non-
uniform univariate subdivision schemes, uniform tensor product– and triangle–based schemes,
and finally some non-uniform bivariate schemes.

2. Foundation

In this section, we prepare the ground for the computation of volumes by means of alternating
multilinear forms and for their explicit determination. After introducing some notation, we
elaborate on volumes bounded by hypersurface segments which are parametrized by functions
allowing for complete or partial refinement. Also the aspect of symmetry is discussed.

2.1. Notation. Let Ω ⊂ Rd with d ≥ 2 be a bounded open subset with boundary ∂Ω, the
latter being the closure of the finite, disjoint union of segments2 ∂Ωj , j ∈ J . Each segment
is parametrized over some open, Jordan measurable3 domain ωj ⊂ Rd−1 by some function

2Segments of bivariate spline or subdivision surfaces are also called patches.
3The Lebesgue measure of the boundary of a Jordan measurable set is 0. Hence, integrals over the set and its

closure coincide.
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xj : ωj → Rd in the Sobolev class H1,∞ of functions whose weak first derivative is essentially
bounded4. That is,

∂Ω =
⋃
j∈J

∂Ωj , ∂Ωj = xj(ωj), ∂Ωi ∩ ∂Ωj = ∅, i 6= j ∈ J.

The area element of ∂Ωj is given by

dAj = ‖nj‖ dλ, nj :=


[
0 1

−1 0

]
∂1xj if d = 2

∂1xj ∧ · · · ∧ ∂d−1xj if d > 2,

where λ is the Lebesgue measure on ωj . The unit normal on that segment is n0
j := εjnj/‖nj‖,

where the sign εj ∈ {−1, 1} is chosen such that n0
j is pointing to the exterior of Ω. Now, the

divergence theorem yields the formula

vol(Ω) =

∫
Ω

1 dλ =
1

d

∑
j∈J

∫
∂Ωj

xj · n0
j dAj =

1

d

∑
j∈J

εj

∫
ωj

xj · nj dλ

for the volume of Ω. Thus, suppressing subscripts, the problem of determining vol(Ω) is reduced
to the computation of expressions of the form

V (x) :=
1

d

∫
ω

x · n dλ =
1

d

∫
ω

det[x, Dx] dλ, x ∈ H1,∞(ω,Rd),

where Dx := [∂1x, . . . , ∂d−1x] is the Jacobian of the map x. If the components of x lie in a
common, finite dimensional function space, spanned5 by functions bj : ω → R forming the row
vector B := [b1, . . . , bn], we write

x = BP :=

n∑
j=1

bjp
j

for certain coefficients pj ∈ Rd, which are regarded as row vectors and stacked to form the
matrix P ∈ Rn×d. The elements of P are denoted by pjk and its columns by Pk, i.e.,

P =

p
1

...
pn

 = (pjk)j,k = [P1, . . . , Pd].

Using standard multi-index notation, we write

pα := pα1
1 · · · pαd

d , α = [α1, . . . , αd] ∈ Γ := {1, . . . , n}d.

2.2. Volumes as Multilinear Forms. Going back to the definition of V , we find

V (BP) =
∑
α∈Γ

det[Pα1 , . . . , Pαd
]m̃α, m̃α :=

1

d

∫
ω

bα1∂1bα2 · · · ∂d−1bαd
dλ.

We expand the determinants and collect products containing pα to obtain the representation of
V (BP) in terms of some d-linear form M in Rn,

(1) V (BP) = M ·P :=
∑
α∈Γ

mαp
α, mα :=

∑
π∈Πd

det(π)m̃απ.

Here, Πd denotes the set of all d× d permutation matrices, i.e., the vector-matrix product απ is
a rearrangement of the entries of α. For instance, in the curve case d = 2, it is

(2) mα =
1

2

∫
ω

(bα1b
′
α2

− bα2b
′
α1
) dλ.

When permuting the coordinates of P, the resulting value of V coincides with the given one up
to sign,

V (BPπ) = det(π)V (BP), π ∈ Πd.

4This implies that the functions xj are continuous and that all integrals appearing in the following are well

defined. The slightly weaker condition xj ∈ H1,d−1 would be equally sufficient for that purpose.
5Typically, the functions b1, . . . , bn are linearly independent and thus form a basis, but this fact is not needed

here.
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Hence, as could also be seen directly from the definition, the d-linear form M is alternating, i.e.,
M · (Pπ) = det(π)M ·P. The space of all such forms is denoted by

S :=
{
M = (mα)α∈Γ : mα = det(π)mαπ, π ∈ Πd

}
,

and can be parametrized as follows: Let Λ := {λ ∈ Γ : λ1 < λ2 < · · · < λd} be the set of strictly
monotone increasing multi-indices. The number of elements in Λ is |Λ| =

(
n
d

)
. With δα,β the

Kronecker symbol, let Eα := (δα,β)β∈Γ be the unit form with all coefficients being 0, except for
that with index α ∈ Γ. For λ ∈ Λ, the alternating d-linear form Sλ is defined by composing the
unit forms corresponding to the permutations of λ. More precisely,

Sλ :=
∑
π∈Πd

det(π)Eλπ ∈ S.

Since span{Sλ : λ ∈ Λ} = S, there exist coefficients cλ ∈ R such that the sought d-linear form is
M =

∑
λ∈Λ cλSλ.

2.3. Refinability. Of course, if the functions B = [b1, . . . , bn] are known explicitly, the coeffi-
cients mα can be determined by integration. However, this must not be taken for granted: If,
for instance, the functions are generated by a recursive procedure like subdivision, direct access
to the values of B might be difficult or even impossible. But even in this case, the problem can
be solved if the functions B allows refinement in the following sense:

Definition 1. The system B is called refinable over ω if there exists a finite family of pairs
(Tk, Ak), k ∈ K, consisting of diffeomorphisms Tk : ω → τk ⊂ ω with detDTk > 0 and constant
(n× n)-matrices Ak with the following properties:

• Up to closure, the images τk form a partition of ω,

ω =
⋃
k∈K

τk, τk ∩ τ` = ∅, k 6= ` ∈ K.

• B restricted to τk can be reparametrized over ω by means of itself,

B ◦ Tk = BAt
k, k ∈ K.

Typically, the maps Tk are similarities, and all images τk, k ∈ K, are congruent. With m the
cardinality of K, this case is referred to as an m-split. However, the following example shows
that also more general types of partitions are feasible.

Example 1. The functions B(t) = [1, t, t2] are refinable over ω = (0, 1) with

T1(t) = t/3, T2(t) = (2t+ 1)/3, A1 =

1 0 0
0 1/3 0
0 0 1/9

 , A2 =

 1 0 0
1/3 2/3 0
1/9 4/9 4/9

 .

The partition of ω into τ1 = (0, 1/3), τ2 = (1/3, 1) is asymmetric, but of course, this choice is
not unique. In particular, the usual two-split T1(t) = t/2, T2(t) = (1 + t)/2 is equally possible.

�

Now, the following result is as elementary as crucial:

Theorem 2. Let the functions B be refinable according to the preceding definition. Then

(3) M =
∑
k∈K

M [Ak],

where the d-linear form M [A] is defined by

M [A] ·P := M · (AtP), P ∈ Rn×d.

Its coefficient with index α ∈ Γ is given by

(4) (M [A])α =
∑
β∈Γ

Aα,βmβ , Aα,β := Aα1,β1 · · ·Aαd,βd
.
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Figure 2. Four-split of an irregular quad patch with N = 6 in a Doo-Sabin mesh.

Proof. For arbitrary P, let x := BP and yk := x ◦ Tk = BAt
kP for k ∈ K. Using ω =

⋃
τk, the

chain rule and the substitution rule, we find

M ·P =
∑
k∈K

∫
τk

det[x, Dx] dλ =
∑
k∈K

∫
ω

det[y, DykDT−1
k ] detDTk dλ

=
∑
k∈K

∫
ω

det[y, Dyk] dλ =
∑
k∈K

M · (At
kP) =

∑
k∈K

M [Ak] ·P.

Since this equality is valid for any P, (3) follows. Equation (4) is easily verified by inspection. �

It should be noted that the statement of the theorem does not rely on the fairly complicated
definition of the coefficients mα in terms of integrals over products of functions bj and their
derivatives. Rather, it reflects the refinement property of the function space in use.

Example 2 (resumption of Example 1). Let us go back to the example introduced above. Here,
in the 2d case, M can be regarded as a skew-symmetric (3× 3)-matrix, and the theorem yields
the condition

M = A1MAt
1 +A2MAt

2.

When solving this homogeneous system for M in the space of skew-symmetric matrices, as
described later, we find a one-dimensional space of solutions,

(5) M = h1M1, M1 :=

 0 3 3
−3 0 1
−3 −1 0

 , h1 ∈ R.

�

The constant in the example can be fixed if V (x) = M · P is known for a single, non-trivial
case. We prepare the more detailed discussion of Section 3.1.3 by considering the following
situation: If the trace x(ω) is planar, i.e., contained in a hyperplane in Rd, then the set

C(x) := {sx(u) : s ∈ (0, 1), u ∈ ω}

is a cone with base x(ω) and apex at the origin. Its volume is given by

vol(C(x)) =

∫
C(x)

1 dV =

∫ 1

0

∫
ω

det[x(u) sDx(u)] duds

=

∫ 1

0

∫
ω

sd−1 det[x(u) Dx(u)] duds =
1

d

∫
ω

det[x(u) Dx(u)] du = V (x).

That is, V (x) is just the volume of the cone C(x) and thus can be determined easily by geometric
reasoning in many cases.

Example 3 (resumption of Example 2). Let P t
1 = [2, 0, 0], P t

2 = [0, 1, 0]. Then the trace of
the curve x(t) = B(t)P = [2, t], t ∈ (0, 1), is a straight line connecting the points [2, 0] and
[2, 1]. The corresponding cone C(x) is a triangle with volume V (x) = 1. Comparison with
V (x) = P t

1MP2 = 6h1 shows that h1 = 1/6, and M is fixed. �
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2.4. Partial Refinability. The methodology introduced above covers a broad range of cases,
but to facilitate, for instance, an efficient treatment of volumes bounded by subdivision surfaces
of arbitrary topology, we need to generalize our setup. To explain the problem, we consider an
irregular patch of a Doo-Sabin surface parametrized by x : (0, 1)2 → R3, see Figure 2. It is
determined by n = N + 5 control points, where N is the valency of the extraordinary vertex at
issue. The function system B consists of N special functions and five biquadratic tensor product
B-splines (TPBS). The standard four-split yields one irregular patch and three regular patches.
While the new irregular patch can be expressed by the given functions B, a representation of the
new regular ones require the complete set of nine biquadratic TPBS. It is possible to circumvent
the problem by augmenting the given system B artificially by the four missing TPBS. However,
this unnecessarily increases the size of the problem. A preferable solution is based on the
observation that the trilinear forms corresponding to the three regular patches can be derived
explicitly from the regular setup, which has to be treated anyway. Thus, these terms do not
need to be determined again, but can be regarded as known. The following definition accounts
for that situation:

Definition 3. The functions B = [b1, . . . , bn] are called partially refinable over ω if there exists
a finite family of triples (Tk, Ak, Bk), k ∈ K, consisting of diffeomorphisms Tk : ωk → τk ⊂ ωk

defined on Jordan measurable domains ωk ⊂ Rd−1 with detDTk > 0, constant (n×nk)-matrices
Ak, and vectors Bk = [bk,1, . . . , bk,nk

] of real-valued functions defined on ωk with the following
properties:

• Up to closure, the images τk form a partition of ω,

ω =
⋃
k∈K

τk, τk ∩ τ` = ∅, k 6= ` ∈ K.

• B restricted to τk can be reparametrized over ω by means of the functions Bk,

B ◦ Tk = BkA
t
k, k ∈ K.

The index set K is partitioned into the set

K ′ := {k ∈ K : Bk = B,ωk = ω}
of indices referring to copies of the given functions, and the set K ′′ := K \K ′ of indices corre-
sponding to auxiliary functions.

Clearly, refinability is a special case of partial refinability, characterized by K ′′ = ∅. On the
other hand, K ′ = ∅ is also possible as demonstrated later in Example 15. Below, we assume
that the d-linear forms M ′′

k related to the auxiliary functions Bk by

M ′′
k ·P = V (BkP), k ∈ K ′′, P ∈ Rnk×d,

are known, while the d-linear form M corresponding to the functions B is sought. The fol-
lowing formula interrelates these objects and can be regarded as an inhomogeneous system for
determining M :

Theorem 4. Let B be partially refinable according to the preceding definition. Then

(6) M =
∑
k∈K′

M [Ak] +
∑

k∈K′′

M ′′
k [Ak].

Proof. The proof is a verbatim transcription of that of Theorem 2. �

Typically, the inhomogeneous system (6) has a unique solution so that there is no need for
calibration. The next example illustrates the method:

Example 4. With a` := 2−`, we define the function ϕ : (0, 1) → R by

ϕ(t) := (t− a`+1)(a` − t), t ∈ [a`+1, a`), ` ∈ N0,

see Figure 3. The functions B(t) := [ϕ(t), t] are not refinable over ω = (0, 1), but partially
refinable with

T1(t) = t/2, T2(t) = (t+ 1)/2, A1 =
1

4

[
1 0
0 2

]
, A2 =

1

4

[
0 1 −1
2 2 0

]
,
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Figure 3. Function ϕ : (0, 1) → R as used in Example 4.
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Figure 4. Refinement of a triangular patch adjacent to a sharp crease. The
parametrizations x, y1, . . . ,y4 depend on the vertices P, and At

kP as indicated.

and functions B1 := B,B2(t) := [1, t, t2]. Thus, K ′ = {1},K ′′ = {2}. The vector B2 of auxiliary
functions was already considered in Example 1. So we know

M ′′
2 =

1

6

 0 3 3
−3 0 1
−3 −1 0

 , M ′′
2 [A2] = A2M

′′
2 A

t
2 =

1

48

[
0 1
−1 0

]
.

The solution of the linear system M = A1MAt
1 +M ′′

2 [A2] is unique and fixes M without cali-
bration,

M =
1

42

[
0 1
−1 0

]
.

It should be noted that in this case it would have been also possible (though quite laborious) to
compute the specific value of the coefficient m1,2 = −m2,1 directly by integration according to
(2). �

Example 5. Figure 4 shows a four-split of a triangle adjacent to a mesh boundary in the context
of subdivision. The refinement results in three distinct types of patches. In order to apply the
previous theorem, we encode the refinement with K ′′ = {1, 2}, and K ′ = {3, 4}. Based on the
number of depicted control points, the matrix A1 has dimensions 9 × 12, A2 is 9 × 10, A3 and
A4 are 9× 9. M may be determined by the linear system (6) if M1 and M2 are known. �

2.5. Symmetry. In many cases, the arrangement of coefficients P can be changed in certain
ways without altering the modulus of the corresponding volume V (BP). For instance, for a curve
in Bernstein-Bézier form, reversing the order of control points results merely in a change of sign.
Consequently, the coefficients of the bilinear form satisfy mα = −mn+1−α. The exploitation of
symmetry properties of this type can be used to reduce the number of unknowns significantly
when determining M . We formalize the concept as follows:

Definition 5. An n× n permutation matrix σ ∈ Πn is called a symmetry of the functions B if

(7) V (BP) = det(σ)V (BσP), P ∈ Rn×d.

The set of all symmetries is denoted by Σ and called the symmetry group of B.

It is easy to verify that Σ is indeed a group with matrix multiplication as the group operation.
In particular, σ−1 = σt. We identify the matrix σ with the one-line notation σ(1), . . . , σ(n) of
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the corresponding permutation of the set {1, . . . , n}. That is, the index σ(i) is characterized by

σi,j = δσ(i),j , i, j = 1, . . . , n.

Further, we define σ(α) := [σ(α1), . . . , σ(αd)]. Comparing the expressions

V (BP) =
∑
α∈Γ

mαp
α =

∑
α∈Γ

mσ(α)p
σ(α), V (BσP) =

∑
α∈Γ

mαp
σ(α),

we find

mα = det(σ)mσ(α), α ∈ Γ, σ ∈ Σ,

for the coefficients of M in case of symmetry. The linear space of all these Σ-symmetric d-
linear forms which are also alternating is denoted by Ŝ. Comparison with (7) yields M · P =

det(σ)M · (σP) for all elements M ∈ Ŝ, and σ ∈ Σ. By the group property of Σ, the same
condition holds true for the inverse permutation σt. Hence, we obtain the representation

Ŝ =
{
M ∈ S : M = det(σ)M [σ], σ ∈ Σ

}
.

Recalling notation introduced in Section 2.2, we derive a parametrization of this space using a
bit of elementary group theory: Given any multi-index α ∈ Γ with pairwise different entries,
there exists a unique permutation matrix ωα ∈ Πd such that αωα ∈ Λ is ordered. Now, we define
the map G : Σ× Λ → Λ by

G(σ, λ) := σ(λ)ωσ(λ), σ ∈ Σ, λ ∈ Λ.

Since G(Id, λ) = λ and G(σ1, G(σ2, λ)) = G(σ1σ2, λ) for all λ ∈ Λ and σ1, σ2 ∈ Σ, this map
defines a group action of Σ on Λ. The G-orbit of λ ∈ Λ is defined as the set

Ω(λ) := {G(σ, λ) : σ ∈ Σ},

and it is easy to see that there exist multi-indices λ1, . . . , λI such that

Λ =
I⋃

i=1

Ω(λi), Ω(λi) ∩ Ω(λj) = ∅, i 6= j = 1, . . . , I.

That is, the G-orbits Ω(λi) form a partition of Λ. For each orbit, we define a d-linear form Ŝi

by

Ŝi :=
∑
σ∈Σ

det(σ) det(ωσ)SG(σ,λi), i = 1, . . . , I,

and it follows Ŝ = span{Ŝi : i = 1, . . . , I}, and dim Ŝ ≤ I. The sought d-linear form M can now
be written as

M = ĉ1Ŝ1 + · · ·+ ĉI ŜI .

Example 6. Let B(t) := [(1 − t)2, 2t(1 − t), t2] be the quadratic Bernstein polynomials over
ω = (0, 1), and let T1(t) := t/2, T2(t) := (1 + t)/2. Reverting the order of control points P
causes nothing but a change of orientation of the corresponding curve. Hence, the symmetry
group Σ contains the identity and the permutation

σ :=

0 0 1
0 1 0
1 0 0

 , det(σ) = −1.

The G-orbits to the multi-indices λ1 = [1, 2] and λ2 = [1, 3] form a partition of Λ, and the

corresponding bilinear forms generating Ŝ are

Ŝ1 =

 0 1 0
−1 0 1
0 −1 0

 , Ŝ2 =

 0 0 2
0 0 0
−2 0 0

 .

Substitution of M = ĉ1Ŝ1 + ĉ2Ŝ2 in the equation M = A1MAt
1 +A2MAt

2 yields a homogeneous
system for the two unknowns ĉ1, ĉ2 ∈ R. The solution is spanned by ĉ1 = 4, ĉ2 = 1 so that
M1 = 4Ŝ1 + Ŝ2. Calibration yields M = M1/12. �
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10 11 12 13 14 15

16 17 18 19 20

21 22 23 24

25 26 27

= ∪ ∪ ∪

Figure 5. Four-split of a triangular patch in a Butterfly mesh. The vertices in
the two-ring determine the surface parametrized by the center triangle.

Example 7. A regular patch in a Butterfly-mesh is defined by |P| = 27 control points, see
Figure 5. That means, |Λ| =

(
27
3

)
= 2925. The volume contribution by the surface patch is

invariant under permutation of the control points by the dihedral group Σ = D3 up to sign in
the sense of (7). Using the computer, we find that there are I = 509 G-orbits, and further, that

dim Ŝ = 508. This discrepancy6 does not cause any problems in the subsequent treatment of
the scheme. The size of the linear system to be solved is reduced by the factor 2925/509 ≈ 5.7,
which is roughly the number of elements of the symmetry group D3. �

3. Algorithms

In this section, we elaborate on algorithms for determining M . First, we explain the basic
algorithm for a refinable system B in some detail. Then, we discuss modifications to the basic
algorithm in order to address partial refinability and symmetry.

3.1. Base Case. The algorithm for computing M in case of a refinable system of functions
proceeds as follows:

1. Choose mappings {Tk : k ∈ K} and corresponding matrices {Ak, k ∈ K} providing a
refinement of B over ω.

2. Set up the homogeneous system

(8) M −
∑
k∈K

M [Ak] = 0, M ∈ S,

and compute a basis {M1, . . . ,Mr} of the space M of solutions.
3. Use at least r additional pieces of information to determine the coefficients h1, . . . , hr in

the ansatz

M = h1M1 + · · ·+ hrMr.

Before we discuss the three steps in turn, let us briefly comment on the role of the functions
b1, . . . , bn. Apparently, these functions are never used explicitly in the algorithm so that it can
be run without any knowledge about them. However, it is important to note that existence and
sufficient smoothness of these functions must be assured to obtain meaningful results. Consider,
for instance, a divergent uniform subdivision scheme. Then the algorithm will derive some
bilinear form M from the refinement matrices A1, A2, but there exist no corresponding curves
and hence no planar sets whose areas could be addressed.

3.1.1. Refinement. In most applications, the functions B admit uniform binary refinement in a
natural way. In particular, in the curve case d = 2, we may often choose T1(t) = t/2, T2(t) =
(t + 1)/2 for ω = (0, 1). When generated by a standard subdivision scheme, as discussed in
Section 4.1, the matrices A1, A2 are just the transposes of the two refinement matrices appear-
ing in the matrix approach to smoothness analysis. In the surface case d = 3, the domain ω is
typically (but not necessarily) a triangle or a quadrangle. Triangle-based subdivision algorithms
like Loop or Butterfly admit refinement with respect to the standard four-split of the domain
triangle, while two rounds of

√
3-subdivision lead to a nine-split. Quad-based subdivision algo-

rithms like Doo-Sabin or Catmull-Clark fit in with a four-split of the domain square. In all these
cases, the coefficients of the matrices Ak can be read off easily from the subdivision rules in use.

6The discrepancy stems from the representative multi-index (5, 12, 19) that is invariant under a mirror
operation.
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3.1.2. The Homogeneous System. To determine a basis of M in practise, we vectorize the tensor
equation M =

∑
k M [Ak]. This is done in the standard way by lexicographic ordering of the set

Γ. More precisely, the vector M∗ ∈ Rnd

corresponding to the tensor M ∈ Rn×···×n is defined by

M∗
α∗ := Mα, α∗ := 1 +

d∑
j=1

(αj − 1)nj−1 ∈ N.

We call α∗ the linear index corresponding to the multi-index α ∈ Γ. The following lemma is a
generalization of the well-known formula (XY Zt)∗ = (X ⊗Z)Y ∗ for the vectorization of matrix
products by means of the Kronecker product.

Lemma 6. The vectorization of the d-linear form M [A] in Rn is given by

(M [A])∗ = A⊗dM∗,

where the (nd × nd)-matrix

A⊗d := A⊗ · · · ⊗A

is defined as the d-fold Kronecker product of A with itself.

Proof. The coefficients of the Kronecker power are given by A⊗d
α∗,β∗ = Aα,β . Hence, by (4),

(A⊗dM∗)α∗ =

nd∑
β∗=1

A⊗d
α∗,β∗M

∗
β∗ =

∑
β∈Γ

Aαβmα = (M [A])α,

as requested. �

Using this result, the vectorized form of (3) reads

A∗M∗ = 0, A∗ := Id−
∑
k∈K

A⊗d
k .

Still, the search for solutions has to be confined to the space S of alternating forms, as introduced
in Section 2.2. The linear index λ× ∈

{
1, . . . ,

(
n
d

)}
corresponding to the multi-index λ ∈ Λ is

again obtained by lexicographic ordering of that set. Skipping the proof, we note that

λ× =

(
n

d

)
−

d∑
i=1

(
n− λi

d+ 1− i

)
.

Since span{Sλ : λ ∈ Λ} = S, it is M =
∑

λ∈Λ cλSλ for coefficients cλ yet to be determined. We

vectorize the d-linear forms Sλ and collect the resulting columns in the
(
nd ×

(
n
d

))
-matrix S∗

such that the column with index λ× is just S∗
λ. Now, the space of alternating forms satisfying (8)

is given by the solution of the linear system A∗S∗C∗ = 0, where C∗ ∈ R|Λ| is the vectorization of
the coefficients cλ, λ ∈ Λ. The following theorem shows that this linear system can be replaced
by an equivalent one which is significantly smaller. It has only

(
n
d

)
instead of nd rows and thus

is square.

Theorem 7. Let B be refinable according to Definition 1. Then the d-linear forms M satisfying
(8) are characterized by M∗ = S∗C∗ and L∗C∗ = 0, where the system matrix is

(9) L∗ := (S∗)tA∗S∗ ∈ R(
n
d)×(

n
d), A∗ := Id−

∑
k∈K

A⊗d
k .

The coefficients of L∗ are given by

L∗
λ×,µ× = d!δλ,µ −

∑
k∈K

∑
π1∈Πd

∑
π2∈Πd

det(π1) det(π2)(Ak)λπ1,µπ2 , λ, µ ∈ Λ.

Proof. To verify the representation of M in terms of the kernel of L∗, we have to show for all
C∗ ∈ R|Λ| with L∗C∗ = 0 that also A∗S∗C∗ = 0 holds. The d-linear form M with M∗ = S∗C∗

is alternating, i.e., M ∈ S. Then it is clear from the definition that M [Ak] is alternating, too.
Hence, M −

∑
k M [Ak] ∈ S, implying that there exists some vector D∗ satisfying

A∗S∗C∗ =
(
M −

∑
k∈K

M [Ak]
)∗

= S∗D∗.
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Using (S∗)tS∗ = d! Id, the equation

0 = L∗C∗ = (S∗)tA∗S∗C∗ = (S∗)tS∗D∗ = d!D∗

implies D∗ = 0 and further A∗S∗C∗ = 0. The formula for the coefficients is easily obtained by
expanding the matrix product. �

Example 8 (resumption of Example 3). The space S of alternating bilinear forms in R3 is spanned
by

S1,2 =

 0 1 0
−1 0 0
0 0 0

 , S1,3 =

 0 0 1
0 0 0
−1 0 0

 , S2,3 =

0 0 0
0 0 1
0 −1 0

 .

The matrix A∗ = Id−A1 ⊗A1 −A2 ⊗A2 has size 9× 9, while L∗ is only 3× 3,

L∗ =
4

27

 0 0 0
−6 6 0
−1 −2 9

 .

The kernel of this matrix has dimension 1 and is spanned by the vector C∗ = [3, 3, 1]t so that
we recover the solution

M = h1M1, M1 := 3S1,2 + 3S1,3 + S2,3 =

 0 3 3
−3 0 1
−3 −1 0

 ,

presented already in (5). �
3.1.3. Calibration. The dimension r of the space M of d-linear forms satisfying (8) is at least 1
because it contains the d-linear form M defined in (1). Dimensions r > 1 are unlikely, though
not excluded. In Example 4, we will deliberately construct such a case, but, as a matter of
fact, we never encountered this situation in a realistic scenario. In particular, all cases discussed
in the next section lead to a one-dimensional space. Calibration, as we call the process of
determining the constants h1, . . . , hr in the ansatz M =

∑
i hiMi, can be accomplished by

exploiting additional information about M .
The following strategy to gather such data proved to be sufficient in all cases we considered:

It is based on seeking special configurations of coefficients P such that the resulting values M ·P
can be determined explicitly by geometric reasoning. Comparison with the ansatz then yields
the unknowns. If, as it applies in many cases, the space of functions spanned by the functions B
contains all constant and linear functions, the following strategy proves to be useful: A standard
configuration of coefficients P = P1 is characterized by x1(u) := B(u)P1 = [d, u+c] for all u ∈ ω
and some constant c ∈ R. Hence, x1(ω) = {d} × (ω + c), and the cone C(x1) has volume

V (x1) = M ·P1 = vold−1(ω).

If M = span{M1} is one-dimensional, this condition yields already the desired result,

(10) M = h1M1, h1 :=
vold−1(ω)

M1 ·P1
.

Otherwise, if the dimension of M is greater than 1, one has to resort to additional specific cases.
As an alternative, one may search a different pattern of refinement and give it a try.

Example 9. We consider bilinear functions over the unit square,

B(u1, u2) = [(1− u1)(1− u2), (1− u1)u2, u1(1− u2), u1u2], u ∈ (0, 1)2.

When using as few as two mappings, e.g.,

T1(u1, u2) = (u1/2, u2), T2(u1, u2) = ((u1 + 1)/2, u2),

then M has dimension 2 because there is simply not enough information provided to resolve the
structure of B completely. To remedy the situation, we add a less obvious special case to the
standard configuration P1,

P1 :=

3 3 3 3
0 0 1 1
0 1 0 1

t

, P2 :=

3 3 3 3
0 0 2 1
0 1 0 1/2

t

.
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While x1 = BP1 parametrizes a square with side length 1, the trace of x2 := BP2 is a de-
generate quad, namely the triangle with vertices (3, 0, 0), (3, 2, 0), (3, 0, 1). The volumes of the
corresponding cones are V (x1) = V (x2) = 1, what is just enough information to fix M within
the two-dimensional space M. We find

m1,2,3 = m1,2,4 = −m1,3,4 = −m2,3,4 = 1/12.

All other non-vanishing coefficients are related by alternation, mαπ = det(π)mα, α ∈ Γ. The
fact that M is two-dimensional indicates a deficiency of the chosen refinement rather than an
intrinsic problem with the given functions. And indeed, when using the standard four-split

T1(u1, u2) = (u1, u2)/2 T3(u1, u2) = (u1, u2 + 1)/2(11)

T2(u1, u2) = (u1 + 1, u2)/2 T4(u1, u2) = (u1 + 1, u2 + 1)/2

the dimension of M becomes 1, as expected. Now, of course, the standard configuration P1

alone is sufficient for calibration according to (10). �

3.2. Variants. Now, we discuss variants on the base algorithm in the case of partial refinability
and symmetry.

3.2.1. Partial Refinability. The necessary modifications for the case of partial refinability are
marginal.

Theorem 8. Let B be partially refinable according to the Definition 3. Then the d-linear forms
satisfying (6) are characterized by M∗ = S∗C∗ and L∗C∗ = Y ∗, where the system matrix is

L∗ := (S∗)tA∗S∗, A∗ := Id−
∑
k∈K′

A⊗d
k ,

as before, and the right hand side is

Y ∗ := (S∗)t
∑

k∈K′′

A⊗d
k (M ′′

k )
∗.

Proof. Using Lemma 6, vectorization of (6) yields the system

A∗S∗C∗ = Z∗ :=
∑

k∈K′′

A⊗d
k (M ′′

k )
∗.

Multiplication with (S∗)t from the left proves necessity of the condition given in the theorem.
To show that it is sufficient, assume that L∗C∗ = Y ∗. As in the proof of Theorem 7, there exists
D∗ such that A∗S∗C∗ = S∗D∗. Regarding the right hand side Y ∗, we note that the d-linear
forms M ′′

k , and hence also the M ′′
k [Ak] are alternating. Hence, there exists a vector E∗ such that

Z∗ = S∗E∗. Together, we have (S∗)tS∗D∗ = (S∗)tS∗E∗. Because (S∗)tS∗ = d! Id, it follows
D∗ = E∗, and finally A∗S∗C∗ = S∗D∗ = S∗E∗ = Z∗. �

Example 10 (resumption of Example 4). With

A∗ =
1

16


15 0 0 0
0 14 0 0
0 0 14 0
0 0 0 12

 , A2 ⊗A2 =
1

16


0 0 0 0 1 −1 0 −1 1
0 0 0 2 2 0 −2 −2 0
0 2 −2 0 2 −2 0 0 0
4 4 0 4 4 0 0 0 0

 ,

and

S∗ = [0,−1, 1, 0]t, (M ′′
2 )

∗ =
1

6
[0,−3,−3, 3, 0,−1, 3, 1, 0]t,

we obtain a linear system of size 1 × 1 with L∗ = 7/4 and Y ∗ = 1/24. Its solution C∗ = 1/42
yields the bilinear form M = S/42, as presented before. �
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3.2.2. Symmetry. In case of a non-trivial symmetry group Σ, there is a family Ŝi, i = 1, . . . , I,
spanning the space Ŝ of Σ-symmetric d-linear forms. Collecting the vectorized versions in the
(nd × I)-matrix Ŝ∗ := [Ŝ∗

1 , . . . , Ŝ
∗
I ], the sought M can be written as M∗ = Ŝ∗Ĉ∗ for some vector

Ĉ∗ ∈ RI . Analogous to Theorem 7, we observe that the solutions of A∗M∗ = A∗Ŝ∗Ĉ∗ = 0
satisfy

L̂∗Ĉ∗ = 0, L̂∗ := (Ŝ∗)tA∗Ŝ∗ ∈ RI×I .

The coefficients of L̂∗ are given by

(12) L̂∗
i,j = diδi,j −

∑
k∈K

∑
σ1,σ2∈Σ

∑
π1,π2∈Πd

det(σ1σ2) det(ωσ1ωσ2π1π2)(Ak)G(σ1λi)π1,G(σ2λj)π2
,

where i, j ∈ I, and di := ‖Ŝ∗
i ‖2 is the squared Euclidean norm of Ŝ∗

i .

Example 11 (resumption of Example 6). The bilinear forms Ŝ1, Ŝ2 generating Ŝ yield

Ŝ∗ =

[
0 −1 0 1 0 −1 0 1 0
0 0 −2 0 0 0 2 0 0

]t
.

The kernel of the resulting matrix L̂∗ =
[

1 −4
−1 4

]
is spanned by the vector [4, 1]t so that M1 =

4Ŝ1 + Ŝ2. Calibration yields M = M1/12. �

It should be noted that exploiting symmetry can reduce the costs of solving a given problem
considerably, and can well make the difference between the capacities of a standard PC and a
mainframe. As a rule of thumb, the number sizes of the matrices L∗ and L̂∗ are related by

(
n
d

)
/I ≈

#Σ, where #Σ is the number of elements of the symmetry group. Consequently, the required
storage and computation time are reduced by the factors (#Σ)2 and (#Σ)3, respectively. For
larger problems, these savings are significant, even if there exists only one non-trivial symmetry
so that #Σ = 2.

4. Case Studies

In this section, we discuss a series of examples that are relevant for applications and/or
illustrate the potential of our approach. The amount of data which the first author has collected
during extensive studies of these and further examples is far too copious to be presented here in
detail. Instead, this material as well as some Mathematica source code is available for download7.

4.1. Binary Subdivision Curves. In this section, we discuss uniform and non-uniform binary
subdivision curves. Subdivision schemes of arbitrary arity can also be treated by our approach,
but are not considered here.

4.1.1. Uniform Univariate Schemes. Let the boundary curve ∂Ω of the set Ω ⊂ R2 be generated
by a binary, stationary, and uniform C1 subdivision scheme with finite masks from a periodic
sequence p1, . . . ,pN ∈ R2 of control points. Then we partition ∂Ω into N segments ∂Ωj .
Suppressing the subscript j, the natural parametrization of any segment is given by some function
x : (0, 1) → R2 which is the linear combination of functions8 B = [b1, . . . , bn] with a subsequence
P of n consecutive control points, x = BP. The number n of functions is related to the size
of the masks. When applying the subdivision scheme to the points P, we obtain a vector
Q = [q1; . . . ;qn+1] of n + 1 new control points. The vectors formed by the first n and the last
n points of Q are denoted by Q1 := [q1; . . . ;qn] and Q2 := [q2; . . . ;qn+1], respectively. They
are related to Q by a pair of square matrices with columns containing the subdivision masks
padded with zeros,

Q1 := At
1P, Q2 := At

2P.

Using the two-split T1(t) = t/2, T2(t) = (1 + t)/2 of the interval ω = (0, 1), we obtain the
reparametrization x ◦ Tk = BAt

kP and the refinement equations

B ◦ Tk = BAt
k, k ∈ {1, 2}.

7http://www.hakenberg.de/subdivision/subdivision.htm
8If ϕ : R → R is the basic limit function of the subdivision scheme with suppϕ = [0, n], then bk is the

restriction of ϕ(·+ n− k) to the unit interval, but this fact is not needed here.
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Hence, the matrix A∗ = Id−A1 ⊗ A1 − A2 ⊗ A2 can be generated easily. As for calibration,
we recall that the subdivision scheme is assumed to be C1. Thus, it is known to generate
constant and linear functions from constant and linear sequences of control points, respectively.
In particular,

B(t)P1 = [2, t+ c], P1 :=

[
2 2 · · · 2
1 2 · · · n

]t
,

for some constant c ∈ R so that P1 defines a standard configuration, independent of the specific
scheme.

Example 12. For B-splines of degree k ∈ N with integer knots and the standard two-split of
ω = (0, 1) the refinement matrices are well known,

(A1)i,j =
1

2k

(
k + 1

2i− j

)
, (A2)i,j =

1

2k

(
k + 1

2i− j − 1

)
, i, j = 1, . . . , k + 1.

For the corresponding bilinear forms Mk
B we obtain for instance

M1
B =

1

2

[
0 −1
1 0

]
, M2

B =
1

24

0 −5 −1
5 0 −5
1 5 0

 , M3
B =

1

720


0 −31 −28 −1
31 0 −183 −28
28 183 0 −31
1 28 31 0

 .

In all these cases, the kernel of L∗ is one-dimensional so that calibration according to (10)
determines Mk

B uniquely. Since the B-splines considered here are polynomials on ω = (0, 1), the
coefficients of Mk

B can alternatively be calculated using integration according to (2). �
Example 13. The interpolatory four-point scheme (FPS) with tension parameter w ∈ (0, 0.19273 . . .)
generates C1-limit curves, see [9]. The mask [−w, 1/2 + w, 1/2 + w,−w] determines new edge
points. The support of the scheme is n = 6. The basis functions in bj ∈ B for j = 1, . . . , n do
not have a closed-form expression, which rules out integration (2). The refinement matrices are

(13) A1 =


0 −w 0 0 0 0
1 w′ 0 −w 0 0
0 w′ 1 w′ 0 −w
0 −w 0 w′ 1 w′

0 0 0 −w 0 w′

0 0 0 0 0 −w

 , A2 =


−w 0 0 0 0 0
w′ 0 −w 0 0 0
w′ 1 w′ 0 −w 0
−w 0 w′ 1 w′ 0
0 0 −w 0 w′ 1
0 0 0 0 −w 0


where w′ := 1/2+w. Using a computer algebra system, we find (MFPS)i,j =

1
F mi,j with common

denominator F = −96w5+144w4−102w3+72w2−24w+6, and coefficients m1,2 = 8w6+8w5+
4w4 + 4w3, m1,3 = −16w5 + 6w4 − 10w3 + 2w2, m1,4 = −6w4 + 2w3 − 2w2, m1,5 = 4w3 − 4w4,
m1,6 = 8w5−8w6, m2,3 = −12w5+16w4−12w3+6w2−4w, m2,4 = 8w5−6w4+14w3−2w2+4w,
m2,5 = 8w6+12w5−2w4−2w3−4w2, and m3,4 = 12w5−38w4+13w3−24w2+4w−3. Further,
mi,j = m7−j,7−i = −mj,i for all i, j ∈ {1, . . . , 6}.

The curve generated from the four corner points of the unit square encloses an area of
16ω3+11ω2+7ω+3

48ω4−24ω3+27ω2−9ω+3 . The area form for tension parameter w = 1/16 is already derived in

[19], page 166. �
4.1.2. Non-Uniform Univariate Schemes. Now, we consider two non-uniform schemes. These
schemes have little relevance in applications, but, from a structural point of view, they can be
regarded as one-dimensional analogies to subdivision schemes for surfaces of arbitrary topology.
Thus, the subsequent arguments may serve as a preparation for the bivariate cases discussed
later on.

Example 14. We consider a simple modification to cubic B-Spline subdivision. By replacing
the averaging mask [1, 6, 1]/8 with [0, 1, 0] at selected crease vertices, these control points are
interpolated by the limit curve. The three control points P that determine a segment adjacent
to the crease vertex, see Figure 6, are subdivided by

A1 =
1

8

4 1 0 0
4 6 4 0
0 1 4 8

 , A2 =
1

8

1 0 0
6 4 0
1 4 8

 .
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= ∪

Figure 6. Decomposition of a segment adjacent to a crease vertex (red) into a
regular cubic B-spline segment (gray) and a new segment adjacent to a crease
vertex (red). The limit curve is not shown.

MFPS MH-2L MH-1L MH+1L MH+2L MB
3

MFPS MFPS MFPS MFPS MH-2L MH-1L MH+1L MH+2L MB
3 MB

3 MB
3 MB

3

Figure 7. The four bilinear forms M(−2), M(−1), M(+1), and M(+2) determine
the area contribution of the four non-uniform curve segments close to the inter-
face. The recursive relation follows from overlapping the segments before and
after one round of subdivision.

It is easy to see that the left segment of the limit curve is just a cubic polynomial written in
B-spline form, which has been considered before. The right segment, however, consists of an
infinite sequence of cubic pieces. This is exactly the situation of partial refinability as discussed
in sections 2.4 and 3.2.1. The equation that relates the area forms before and after one round
of subdivision is M = M3

B[A1] + M [A2] where M3
B is familiar from Example 12, and M is the

sought 3× 3 alternating bilinear form. Writing out the equations gives−15 0 0
1 −14 0
5 12 −8

m1,2

m1,3

m2,3

 =
1

24

1513
55

 ⇒ M =
1

24

0 −1 −1
1 0 −9
1 9 0

 .

�

Example 15. In [13], page 21, Levin derives a C1 curve subdivision scheme that blends between
the FPS with tension parameter w = 1/16 and cubic B-spline subdivision. Figure 7 visualizes
the refinement of three segments to either side of the interface. For k ∈ {1, 2}, the subdivision

matrices A
(−3)
k are stated in (13), the matrices A

(−2)
k , A

(−1)
k have dimension 6× 6, the matrices

A
(+1)
k are 5 × 5, and A

(+2)
k are 5 × 4. The segment (−2) is refined into two FPS patches. The

segment (+2) is refined into two cubic B-spline segments. That means the alternating bilinear
forms M(−2), M(+2) follow explicitly from forms for the respective uniform schemes and are
computed first:

M(−2) = MFPS[A
(−2)
1 ] +MFPS[A

(−2)
2 ]

M(+2) = M3
B[A

(+2)
1 ] +M3

B[A
(+2)
2 ]

Subsequently, the forms for the segments adjacent to the interface vertex (−1), and (+1) follow
from solving linear systems that use the previously obtained M(−2), M(+2):

M(−1) = M(−2)[A
(−1)
1 ] +M(−1)[A

(−1)
2 ]

M(+1) = M(+1)[A
(+1)
1 ] +M(+2)[A

(+1)
2 ]

The resulting forms contain lengthy fractions and are omitted here. �

4.2. Binary Subdivision Surfaces. In this section, we discuss a series of variants on binary
subdivision algorithms for surfaces, both quad and triangle based, both uniform and non-uniform.
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Figure 8. A biquadratic TPBS patch depends on 3 · 3 = 9 control points P.
Refinement is based on a 2× 2 = 4-split.

4.2.1. Tensor Product Surfaces. Bivariate bases on rectangular domains are often defined as
tensor product of univariate functions. If B1, B2 are two (possibly coinciding) function systems
with n1 and n2 elements, respectively, then the corresponding tensor product system B is defined
by

B(u1, u2) = B1(u1)⊗B2(u2) = [b11(u1)b
2
1(u2), b

1
1(u1)b

2
2(u2), . . . , b

1
n1
(u1)b

2
n2
(u2)].

The following theorem states that refinability of the univariate bases implies refinability of their
tensor product, and shows how to establish the according rules in a convenient way:

Theorem 9. For i ∈ {1, 2}, let Bi be a univariate function system which is refinable over the
interval ωi with pairs (T i

ki
, Ai

ki
), ki ∈ Ki. Then the tensor product system B := B1 ⊗ B2 is

refinable over ω := ω1 × ω2 with

Tk(u1, u2) :=
(
T 1
k1
(u1), T

2
k2
(u2)

)
, Ak := A1

k1
⊗A2

k2
, k = (k1, k2) ∈ K := K1 ×K2.

Proof. The partitioning of ω into sets Tk(ω
1
k1

× ω2
k2
), k ∈ K, is obvious. Further, the mixed-

product property yields

B ◦ Tk = (B1 ◦ T 1
k1
)⊗ (B2 ◦ T 2

k2
) =

(
B1 · (A1

k1
)t
)
⊗

(
B2 · (A2

k2
)t
)

= (B1 ⊗B2)
(
(A1

k1
)t ⊗ (A2

k2
)t
)
= (B1 ⊗B2)(A1

k1
⊗A2

k2
)t = BAt

k

for any k ∈ K, as claimed. �

Clearly, a similar result applies to higher-dimensional tensor products as well, and also vari-
ants concerning partial refinability can be derived easily. For later reference, we consider some
low degree TPBS surfaces. In principle, there are three different approaches to determine the
corresponding volume forms

(1) Integration of the coefficients of M using (1), what is feasible since all basis functions
are polynomials.

(2) Computation of the nullspace of L∗ as defined in (9) and subsequent calibration according
to (10).

(3) Computation of the nullspace of L̂∗ as defined in (12) using the dihedral symmetry group
Σ = D4 and subsequent calibration according to (10).

But of course, we will focus on options 2 and 3. We will always specify only one sample entry
for comparison; complete results can be found online.

Example 16 (resumption of Example 12). Bilinear TPBS on the unit square are related to the
functions B1 introduced in the preceding example by

B(u1, u2) = B1(u1)⊗B1(u2) = [(1− u1)(1− u2), (1− u1)u2, u1(1− u2), u1u2],

what is just the system discussed in Example 2. The four diffeomorphisms T1, . . . , T4 given there
are related to T 1

1 (t) = T 2
1 (t) = t/2, T 1

2 (t) = T 2
2 (t) = (1+t)/2 by the formula given in the theorem

and relabelling. Also the four matrices can be found easily using A1
k = A2

k, for instance

A2,1 = A1
2 ⊗A1

1 =

[
1/2 0
1/2 1

]
⊗

[
1 1/2
0 1/2

]
=

1

4


2 1 0 0
0 1 0 0
2 1 4 2
0 1 0 2

 .

�
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Figure 9. Refinement of a bicubic TPBS where 16 control points P determine
the surface parametrized by the unit square.
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Figure 10. Four-split of a triangular patch in a quartic three-direction box
spline. The vertices in the 1-ring determine the surface parametrized by the
center triangle ω.

Example 17. We consider biquadratic TPBS on the unit square, as illustrated in Figure 8. The
total number of coefficients to be determined is 93 = 729. The size of L∗ is

(
9
3

)
= 84, while the

size of L̂∗ is only 14. Aside from the zeros which are enforced by the alternating property, there
exists further non-trivial zeros. They are generated by the coefficient m1,2,3 = 0. The remaining
coefficients are signed copies of only 13 distinct numbers. A sample value is m2,4,5 = −121/4800.
The form M is already listed in [18], pages 82–86. �

Example 18. Now, we consider bicubic TPBS on the unit square. The total number of coefficients
to be determined is 163 = 4096. The size of L∗ is

(
16
3

)
= 560, while the size of L̂∗ is only 75.

With indexing as in Figure 9, the non-trivial zeros are generated by the coefficients m1,2,3 =
m1,2,4 = m2,6,10 = m2,6,14 = 0. The remaining coefficients are signed copies of only 71 distinct
numbers, where the largest one is m6,7,10 = 22344529

1219276800 . �
The practical limitations of the approach presented here become apparent if we consider the

complexity of the problem to be solved in the case of tensor product surfaces of significantly
higher bidegree g � 1. Here, the number of basis functions is n = (g + 1)2. Hence, the
dimension of the matrix L∗ is ` :=

(
n
3

)
≈ g6/6, and the number of coefficients to be stored is

`2 ≈ g12/36. Solving the linear system via factorization needs `3/3 ≈ g18/648 operations. The

dihedral symmetry group D4 has 8 elements. Thus, the matrix L̂∗ has only size ˆ̀≈ `/8 so that
storage requirements are approximatively reduced by the factor 82 = 64, and computation time
by the factor 83 = 512. This is a significant saving, but even then, already modest values of g
yield a problem beyond the reach of current computer technology.

4.2.2. Triangle-Based Uniform Subdivision. Now, we consider triangular surface patches which
are generated by uniform binary subdivision.

Example 19. Three-direction box splines, sometimes also called triangular B-splines, are another
natural extension of univariate B-splines to the bivariate case. They consist of triangular poly-
nomial pieces and thus can be treated by elementary integration according to (1), but also by
using the refinement rules, which are typically very simple for low degrees. In Figure 10, we see
the pattern for a C2 quartic box spline. This case is of particular interest since it is used for the
regular parts of the mesh in Loop subdivision. Here, the size of L∗ is

(
12
3

)
= 220. Exploiting the

dihedral symmetry group Σ = D3 yields the matrix L̂∗, which has only size 43. After calibration
with (10), we find for instance m5,6,9 = 34091/1425600. �
Example 20 (resumption of Example 7). We continue our discussion of the Butterfly scheme.
Here, the volume form cannot be determined via straightforward integration because the basis
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Figure 11. Decomposition of a non-regular quad patch in a Catmull-Clark mesh.

functions do not have a closed-form expression. The size of L∗ is
(
27
3

)
= 2925, while L̂∗ has

only size dim Ŝ = 508. Similar to the FPS, the subdivision weights may be subject to a tension
parameter w ∈ R, but we we fix the natural choice w = 1/16. In this case, the limit surface
is C1. The non-trivial zeros are generated by m1,j,27 = 0 for j ∈ {2, 3, . . . , 13} ∪ {16, 17} and
m1,15,25 = 0. The coefficient with the largest amplitude is m12,13,18 ≈ 0.151032, while the
smallest one is m9,1,25 ≈ 1.45624E − 16. The latter value is not a zero perturbed by roundoff
errors, but the floating point evaluation of a fraction with 74 digits in the numerator and 90
digits in the denominator. �

4.2.3. Non-Uniform Subdivision Schemes. Non-uniform refinement rules for subdivision curves,
as discussed in Examples 14 and 15, do not appear frequently in practice. In surface model-
ing however, meshes are likely to feature irregularities and the designers of surface subdivision
schemes are creative to cope with them in order to produce smooth limit surfaces. To name just
a few schemes currently in use, there are those based on quads [1, 3, 11] and triangles [15, 4, 12],
but also mixed schemes [14, 17] and schemes with crease rules [10, 2]. Refinability or partial
refinability is a common feature of all these schemes so that the corresponding volume forms can
be determined by our approach. What follows is a tour de force through the different types. For
more details, we refer to the online material mentioned above.

Example 21 (resumption of Example 17). The Doo-Sabin algorithm is a generalization of bi-
quadratic TPBS subdivision. An extraordinary patch including a vertex of valency N ≥ 3, N 6=
4, is defined by n = N +5 control points. Five of them correspond to standard TPBS, while the
other N are special as they consist of an infinite number of polynomial pieces, faintly resembling
the univariate case discussed in Example 4. Assuming that the extraordinary vertex corresponds
to the parameter u1 = u2 = 1, the map T4 from the standard four-split (11) yields a new ex-
traordinary patch, while the other three yield regular ones. That means, in (6) K ′′ = {1, 2, 3},
K ′ = {4}, and M ′′ corresponds to the uniform case N = 4 derived earlier. A refinement of a
patch with N = 6 is shown in Figure 2. The symmetry group consists of the identity and a
reflection across the diagonal containing the extraordinary point. �

Example 22 (resumption of Example 18). The Catmull-Clark algorithm is a generalization of
bicubic TPBS subdivision. An extraordinary patch including a vertex of valency N ≥ 3, N 6= 4,
is defined by n = 2N + 8 control points. Seven of them correspond to standard TPBS, while
the other are special as they consist of an infinite number of polynomial pieces. Assuming that
the extraordinary vertex corresponds to the parameter u1 = u2 = 1, the map T4 from the
standard four-split (11) yields a new extraordinary patch, while the other three yield regular
ones. That means, in (6) K ′′ = {1, 2, 3}, K ′ = {4}, and M ′′ corresponds to the uniform patch
N = 4 derived earlier. For valency N = 5, the refinement of a patch is depicted in Figure 11.
Here, the largest coefficient is m10,7,11 ≈ 0.0202676, and the smallest positive coefficient is
m16,1,18 ≈ 1.31029E − 10. Again, the symmetry group consists of the identity and a reflection
across the diagonal containing the extraordinary point. �

Example 23 (resumption of Example 19). The Loop algorithm is a generalization of quartic
box-spline subdivision. An extraordinary patch including a vertex of valency N ≥ 3, N 6= 6, is
defined by n = N + 6 control points. Five of them coincide with the uniform scenario, while
the other are special. We refine ω as illustrated by Figure 12: the map Tk for k ∈ K ′ = {4}
yields a new extraordinary patch, while the other three K ′′ = {1, 2, 3} yield regular ones. In (6),
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Figure 12. Four-split of a extraordinary triangular patch in a Loop mesh.

Figure 13. Classification and ordering of patch types adjacent to a sharp crease
for the successive derivation of corresponding volume forms.
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Figure 14. Decomposition of a quad patch adjacent to a crease.

M ′′ corresponds to N = 6 and was derived earlier. For valency N = 4, the largest coefficient is
m5,6,9 ≈ 0.0216354, and the smallest positive coefficients are m1,2,7 = m2,3,4 = 1/3991680. �

In [7], we discuss the three mentioned algorithms in detail, carry out the computation of
volume forms up to a certain valency, and state additional sample coefficient values.

4.2.4. Schemes with Sharp Creases. [10] extends the Loop-scheme to produce sharp creases along
selected edge-cycles. Later, [2] introduces the same modification to Catmull-Clark subdivision.
In [8], we discuss these algorithms in detail.

Example 24. We consider the algorithm suggested in [2]. The refinement rules along the crease
edges are simply cubic B-spline subdivision for curves. Because control points from “beyond”
the crease do not affect a patch, the support of the original schemes is reduced. As already
encountered in Example 15, the derivation of a volume form for a patch adjacent to a crease
may depend on another volume form for a patch adjacent to a crease. A line-up of patch types is
required so that refinement only drafts patch types derived earlier. Figure 13 shows the line-up
for the scheme suggested in [2]. We consider the refinement illustrated in Figure 14. Here,
K ′′ = {1, 2, 3}, K ′ = {4}, A1, and A2 have dimensions 16× 16, A3 is 16× 12, and A4 is 16× 16.
The forms M ′′

1 = M ′′
2 are known from Example 18. Assuming M ′′

3 is provided from a prior
derivation, the sought M follows from (6). The largest coefficient is m6,11,10 ≈ 0.035485, the
smallest positive entry is m1,14,4 = 256

53133856452440253 . �

5. Conclusion

We suggest a method for determining the volume of a subset of Rd in the case that its boundary
is the union of a set of refinable patches. The contribution of each patch can be expressed in
terms of a d-linear form which is narrowed by an underdetermined linear system derived from the
refinement equations of the patch. The remaining degrees of freedom – this is typically only one
– can be fixed by comparison with certain elementary configurations. Symmetries can be used
to reduce the complexity of the linear system. In particular, our approach is applicable to planar
sets bounded by subdivision curves and to spatial sets bounded by subdivision algorithms like
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Catmull-Clark, Loop, or Butterfly, but also non-uniform variants like crease rules are covered.
Applications of our theory include for instance the deformation of subdivision surfaces under
preservation of volume.

In the more application-oriented reports [5] and [6], we have generalized the ideas presented
here to the computation of higher order moments of sets bounded by subdivision curves and
surfaces respectively. Higher order moments are required, for instance, to determine centroids
or inertia tensors. While being similar from a structural point of view, the big challenge here
is to cope with the rapidly growing complexity of the linear systems to be solved, coming along
with an unfavorable loss of inherent symmetries.

Acknowledgement: We would like to thank Scott Schaefer for fruitful discussions and com-
ments, and for providing sample 3d–meshes.
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