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Abstract. We consider the instationary Boussinesq equations in a
smooth three-dimensional exterior domain. A strong solution is a weak
solution such that the velocity field additionally satisfies Serrin’s condi-
tion. The crucial point in this concept of a strong solution is the fact
that we have required no additional integrability condition for the tem-
perature. We present a sufficient criterion for the existence of such a
strong solution. Further we will characterize the class of initial values
that allow the existence of such a strong solution in a sufficiently small
interval. Finally we will obtain an uniqueness criterion for weak solu-
tions of the Boussinesq equations which is based on the identification of
a weak solution with a strong solution.

1. Introduction and main results

Let Ω ⊆ R3 be a domain, and let [0, T [ , 0 < T ≤ ∞, be a time interval. We
consider the Boussinesq equations

ut −∆u+ u · ∇u+∇p = θg + f1 in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

θt −∆θ + u · ∇θ = f2 in ]0, T [×Ω ,

u = 0 , θ = 0 on ]0, T [×∂Ω ,

u = u0 , θ = θ0 at t = 0 ,

(1.1)

where u : [0, T [×Ω→ R3 denotes the velocity of the fluid, θ : [0, T [×Ω→ R
the difference of the temperature to a fixed reference temperature and p :
[0, T [×Ω → R denotes the pressure. We consider the following data: f1 :
[0, T [→ R3 is the external force per unit mass, f2 : [0, T [×Ω→ R the external
thermal radiation per unit mass, u0 : Ω → R3 , θ0 : Ω → R are the initial
values and g : [0, T [×Ω → R3 denotes the gravitational force. We remark
that in most applications the gravitational force is a constant vector field in
time. The Boussinesq equations constitute a model of motion of a viscous,
incompressible buoyancy-driven fluid flow coupled with heat convection. The
Boussinesq system has been investigated by many researchers, see e.g. [1, 2,
4, 14, 15, 18, 23, 24, 27] and papers cited there. We introduce the following
space of test functions:

C∞0 ([0, T [;C∞0,σ(Ω)) := {w |[0,T [×Ω ;w ∈ C∞0 (]− 1, T [×Ω) ; divw = 0 }.
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Motivated by the concept of a weak solution (in the sense of Leray-Hopf) of
the instationary Navier-Stokes equations we start with the following

Definition 1.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let g :
]0, T [×Ω→ R3 be a measurable vector field, and f1, f2 ∈ L1

loc([0, T [;L2(Ω)).
Further assume u0 ∈ L2

σ(Ω) and θ0 ∈ L2(Ω). A pair

u ∈ L∞loc([0, T [;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) , (1.2)

θ ∈ L∞loc([0, T [;L2(Ω)) ∩ L2
loc([0, T [;H1

0 (Ω)) , (1.3)

with θg ∈ L1
loc([0, T [;L2(Ω)) is called a weak solution of the Boussinesq sys-

tem (1.1) if the following identities are satisfied for all w ∈ C∞0 ([0, T [;C∞0,σ(Ω))

and all φ ∈ C∞0 ([0, T [×Ω):

− 〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T + 〈u · ∇u,w〉Ω,T
= 〈θg, w〉Ω,T + 〈f1, w〉Ω,T + 〈u0, w〉Ω ,

− 〈θ, φt〉Ω,T + 〈∇θ,∇φ〉Ω,T + 〈u · ∇θ, φ〉Ω,T = 〈f2, φ〉Ω,T + 〈θ0, φ(0)〉Ω.

In the identities above 〈·, ·〉Ω , 〈·, 〉Ω,T denotes the usual L2-scalar product in
Ω and in ]0, T [×Ω, respectively.

Given a weak solution (u, θ) of (1.1) we may assume, after a possible redef-
inition on a set of vanishing Lebesgue measure, that u : [0, T [→ L2

σ(Ω) and
θ : [0, T [→ L2(Ω) are both weakly continuous functions and the initial values
u0, θ0 are attained in the following sense:

lim
t↘0
〈u(t), w〉Ω = 〈u0, w〉Ω , lim

t↘0
〈θ(t), φ〉Ω = 〈θ0, φ〉Ω

for all w ∈ L2
σ(Ω) and all φ ∈ L2(Ω). If g ∈ L∞(]0, T [×Ω) we can show

with the Faedo-Galerkin method analogously as in [23, Theorem 1] that
there exists a weak solution of (1.1) in [0, T [×Ω. Moreover, there exists a
distribution p, called an associated pressure, such that

ut −∆u+ u · ∇u+∇p = θg + f1

holds in the sense of distributions in ]0, T [×Ω, see [25, V.1.7]. For exponents
s, q with 1 < q, s <∞ we define the Serrin number by

S(s, q) :=
2

s
+

3

q
.

Up to now, uniqueness and regularity of weak solutions of the three-dimensional
Boussinesq equations is an unsolved problem. To motivate Definition 1.2 be-
low let us consider the well known instationary Navier-Stokes equations. By
definition, u is called a strong solution of the Navier-Stokes equations if u is a
weak solution satisfying additionally Serrin’s condition u ∈ Ls(0, T ;Lq(Ω))
where 1 < s, q <∞ with S(s, q) = 1. It is well known that such a strong so-
lution is uniquely determined and regular (see [25, Section V.4]). Motivated
by this result we give the following

Definition 1.2. Consider data as in Definition 1.1. We say that (u, θ) is a
strong solution of (1.1) if (u, θ) is a weak solution of (1.1) and if there are
exponents 1 < s, q <∞ with S(s, q) = 1 such that u ∈ Ls(0, T ;Lq(Ω)).
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The crucial point in the definition above is the fact that we have required
no additional integrability condition for θ. The paper [19] deals with strong
solutions of the Boussinesq system in a smooth bounded domain. It follows
from [19, Theorem 1.6] that strong solutions of the Boussinesq equations
are smooth if the data are smooth. Further (see Theorem 1.7 below) strong
solutions are uniquely determined. The goal of the present paper is to in-
vestigate existence of strong solutions of (1.1) in an exterior domain and to
apply these results to obtain an uniqueness criterion for weak solutions which
is based on the identification of weak solutions with strong solutions. Our
first main result is a sufficient criterion for the existence of a strong solution
of (1.1). We denote by ∆ = ∆2 , A = A2 the Laplace and Stokes operator,
respectively. For further information about these operators we refer to the
preliminaries.

Theorem 1.3. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let 0 <
T <∞ and 1 < s, q <∞ with S(s, q) = 1. Consider g ∈ L8/5(0, T ;L4(Ω))∩
Lµ(0, T ;Lp(Ω)) where 1 < µ, p < ∞ satisfy S(µ, p) = 3

2 and 1
12 > 1

p −
1
q .

Let f1 ∈ Ls∗(0, T ;Lq∗(Ω)) ∩ L1(0, T ;L2(Ω)) where 1 < s∗, q∗ < ∞ with
S(s∗, q∗) = 3 satisfy 1

3 + 1
q ≥

1
q∗
≥ 1

q . Further assume f2 ∈ L1(0, T ;L2(Ω))

and u0 ∈ L2
σ(Ω) , θ0 ∈ L2(Ω). Introduce

E1(t) := e−tAu0 +

∫ t

0
e−(t−τ)APf1(τ) dτ , t ∈ [0, T [ , (1.4)

E2(t) := et∆θ0 +

∫ t

0
e(t−τ)∆f2(τ) dτ , t ∈ [0, T [. (1.5)

Then there exists a constant ε∗ = ε∗(Ω, q, p) > 0 such that if the conditions

‖E1‖q,s;T + ‖E1‖2,2;T + ‖E2‖4, 8
3

;T ≤
ε∗

1 + T
1
2

+ 3
2q

, (1.6)

‖g‖p,µ;T + T 1/2‖g‖4, 8
5

;T ≤ ε∗ (1.7)

are fulfilled, then there exists a strong solution (u, θ) of the Boussinesq equa-
tions (1.1).

Remark. Since for all q > 3, there exists 2 < p < 12 satisfying 1
12 >

1
p −

1
q ,

the requirements on µ, p can be fulfilled for all possible exponents s, q.

For a proof of this result we refer to Section 4. The idea is to construct (u, θ)
as a solution of a suitable non-linear problem, see (3.18) below. Afterwards
we have to show that (u, θ) fulfils (1.2), (1.3). Due to the missing imbedding
Lq(Ω) ↪→ Lp(Ω) , q > p, in an unbounded domain and also more restrictive
imbedding properties of fractional powers of the Stokes and Laplace operator
in an exterior domain we have to modify the proof of [19, Theorem 1.3] where
the corresponding result is shown for a bounded domain. Especially due to
the application of (2.6) the existence result above can only be shown for
0 < T <∞.
The next corollary presents a smallness condition on u0, θ0, g, f1, f2 implying
the existence of a strong solution (u, θ) of (1.1) with u ∈ Ls(0, T ;Lq(Ω))
where 1 < s, q with S(s, q) = 1.
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Corollary 1.4. Consider data as in Theorem 1.3. There exists a constant
ε∗ = ε∗(Ω, q, q∗, p) > 0 with the following property: If the conditions(∫ T

0
‖e−tAu0‖22 dt

)1/2
+

∫ T

0
‖e−tAu0‖sq dt

)1/s
≤ ε∗

1 + T
1
2

+ 3
2q

, (1.8)

(∫ T

0
‖et∆θ0‖8/34 dt

)3/8
≤ ε∗

1 + T
1
2

+ 3
2q

, (1.9)

‖f1‖q∗,s∗;T + T 1/2‖f1‖2,1;T + ‖f2‖2,1;T ≤
ε∗

1 + T
1
2

+ 3
2q

, (1.10)

‖g‖p,µ;T + T 1/2‖g‖4, 8
5

;T ≤ ε∗ , (1.11)

are fulfilled, then there exists a strong solution (u, θ) of the Boussinesq equa-
tions (1.1).

A proof can be found in Section 5.1. It follows from (2.2), (2.4) below that
e−tAu0 ∈ Lq(Ω) for a.a. t ∈ [0, T [, yielding that the left hand side of (1.8)
is well defined. In the following theorem we will show the condition (1.12)
below on u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω) defines the largest possible class of initial
values to obtain a strong solution (u, θ) of (1.1) with u ∈ Ls(0, T ;Lq(Ω)) , 0 <
T < ∞, in an exterior domain for all s, q with S(s, q) = 1. Especially no
additional integrability condition for θ0 is required. For optimal initial value
conditions of the Boussinesq system in a bounded domain we refer to [19,
Theorem 1.4], for a completely general domain to [21, Theorem 1.3 (ii)].

Theorem 1.5. Consider data as in Theorem 1.3. Then the condition∫ ∞
0
‖e−tAu0‖sq dt <∞ (1.12)

is necessary and sufficient for the existence of 0 < T ′ ≤ T and a strong
solution (u, θ) with u ∈ Ls(0, T ′;Lq(Ω)) of the Boussinesq equations (1.1).

The proof of the theorem above is the content of Section 5.2. Before we are
ready to present the uniqueness criterion we need the following

Definition 1.6. Consider data as in Definition 1.1, assume additionally
g ∈ L8/3

loc ([0, T [;L4(Ω)), and let (u, θ) be a weak solution of (1.1). We say
that (u, θ) fulfils the strong energy inequality if there is a null set N ⊆]0, T [
such that

1

2
‖u(t)‖22+

∫ t

s
‖∇u‖22 dτ ≤

1

2
‖u(s)‖22+

∫ t

s
〈θg, u〉Ω dτ+

∫ t

s
〈f1, u〉Ω dτ (1.13)

for all s ∈ (]0, T [\N) ∪ {0} and all t ∈ [s, T [.

For a proof of this result we refer to Section 5.3. We need the additional
assumption g ∈ L8/3

loc ([0, T [;L4(Ω)) compared to Definition 1.1 to guarantee
that

∫ t
s 〈θg, u〉Ω dτ exists. Now we have all ingredients at handto formulate

Theorem 1.7 which is a uniqueness theorem for weak solutions of (1.1). This
result is based on the construction of a strong solution of (1.1) and the
identification of this solution with the given weak solutions. For uniqueness
and regularity results for the Navier-Stokes equations which are based on
the method of the identification of a strong solution with a weak solution we
refer to [6, 7, 10] and papers cited there.
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Theorem 1.7. Consider data as in Theorem 1.3. Let (u, θ) and (v,Θ) be
weak solutions of the Boussinesq system (1.1). Assume u ∈ Lsloc([0, T [;Lq(Ω))
and that (v,Θ) satisfies the strong energy inequality (1.13). Then u(t) = v(t)
and θ(t) = Θ(t) for almost all t ∈ [0, T [.

The present paper is organized as follows. After presenting some prelimi-
naries in Section 2, we deal with the construction of a suitable fixed point
needed for proving Theorem 1.3 in Section 3. The topic of the following
section is the proof of Theorem 1.3. Finally, the last section is dedicated to
the proof of Corollary 1.4, Theorem 1.5 and Theorem 1.7.

2. Preliminaries
Given a domain Ω ⊆ Rn , n ∈ N, and 1 ≤ q ≤ ∞ , k ∈ N, we need the

usual Lebesgue and Sobolev spaces, Lq(Ω) ,W k,q(Ω) with norm ‖ · ‖Lq(Ω) =
‖ · ‖q and ‖ · ‖Wk,q(Ω), respectively. For two measurable functions f, g with
f · g ∈ L1(Ω), where f · g means the usual scalar product of vector or matrix
fields, we set 〈f, g〉Ω :=

∫
Ω f(x) · g(x) dx. Note that the same symbol Lq(Ω)

etc. will be used for spaces of scalar-, vector- or matrix-valued functions.
Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote the space of functions for which all
partial derivatives of order |α| ≤ m (|α| < ∞ when m = ∞) exist and are
continuous. As usual, Cm0 (Ω) is the set of all functions from Cm(Ω) with
compact support in Ω. Further C∞0,σ(Ω) := { v ∈ C∞0 (Ω); div v = 0 }. For

1 < q < ∞ we define Lqσ(Ω) := C∞0,σ(Ω)
‖·‖q and W 1,2

0,σ (Ω) := C∞0,σ(Ω)
‖·‖W1,2 .

For 1 ≤ q ≤ ∞ let q′ be the dual exponent such that 1
q + 1

q′ = 1. It is well

known that Lqσ(Ω)′ ∼= Lq
′
σ (Ω) , 1 < q <∞, using the standard pairing 〈·, ·〉Ω.

Given a Banach space X, 1 ≤ p ≤ ∞, and an interval ]0, T [ we denote by
Lp(0, T ;X) the space of (equivalence classes of) strongly measurable func-

tions f :]0, T [→ X such that ‖f‖p :=
(∫ T

0 ‖f(t)‖pX dt
)1/p

<∞ if 1 ≤ p <∞
and ‖f‖∞ := ess supt∈]0,T [ ‖f(t)‖X if p =∞. Moreover

Lploc([0, T [;X) := {u : [0, T [→ X strongly measurable,

u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.

If X = Lq(Ω), 1 ≤ q ≤ ∞, the norm in Lp(0, T ;Lq(Ω)) will be denoted by
‖f‖q,p;T . Fix an exterior domain Ω ⊆ R3 with ∂Ω ∈ C2,1 and 1 < q < ∞.
Let Pq : Lq(Ω)→ Lqσ(Ω), be the Helmholtz projection and let ∆q denote the
Laplace operator with domain D(∆q) := W 1,q

0 (Ω) ∩W 2,q(Ω). We introduce
the Stokes operator by

D(Aq) = Lqσ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), Aqu := −Pq∆qu , u ∈ D(Aq).

The Stokes operator is consistent in the sense that for 1 < q, r <∞

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.1)

Throughout this paper we will write A = A2 and ∆ = ∆2. For α ∈ [−1, 1] the
fractional power Aαq : D(Aαq ) → Lqσ(Ω) with dense domain D(Aαq ) ⊆ Lqσ(Ω)
is a well defined, injective, closed operator such that

(Aαq )−1 = A−αq , R(Aαq ) = D(A−αq ) and (Aαq )′ = Aαq′ .
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In general, D(Aαq ), will be equipped with the graph norm ‖u‖D(Aαq ) := ‖u‖q+

‖Aαq u‖q which makesD(Aαq ) to a Banach space since Aαq is closed. Analogous
properties hold for fractional powers (−∆q)

α : D((−∆q)
α) ⊆ Lq(Ω)→ Lq(Ω)

of −∆q.
It is well known that −Aq generates a uniformly bounded analytic semi-

group { e−tAq ; t ≥ 0 } on Lqσ(Ω) and that ∆q generates a uniformly bounded
analytic semigroup { et∆q ; t ≥ 0} on Lq(Ω). The decay estimates

‖Aαq e−tAqu‖q ≤ c t−α, ∀u ∈ Lqσ(Ω) , t > 0 , (2.2)

‖(−∆q)
αet∆qφ‖q ≤ c t−α ∀φ ∈ Lq(Ω) , t > 0 , (2.3)

are satisfied where α ≥ 0 , q > 1, and c = c(Ω, q, α) > 0. There holds

‖u‖r ≤ c‖Aαq u‖q ∀u ∈ D(Aαq ) , (2.4)
‖φ‖r ≤ c‖(−∆q)

αφ‖q ∀φ ∈ D((−∆q)
α) (2.5)

with a constant c = c(Ω, q, α) > 0 where 0 ≤ α ≤ 1
2 , 1 < q < 3, with

2α + 3
r = 3

q . We refer to [11, 12, 13] for the results above and further
properties.

We also need the perturbed Stokes operator (I +Aq). For each α ∈ [0, 1]
we have that (I + Aq)

α with dense domain D((I + Aq)
α) ⊆ Lqσ(Ω) is a well

defined bijective, closed operator. There holds (see [22, Lemma 4.11]) that
D((I +Aq)

α) = D(Aαq ). For each 1 < q <∞ , 0 ≤ α ≤ 1 the estimate

‖(I +Aq)
αe−tAqu‖q ≤ c(Ω, q, α)

(t+ 1)α

tα
‖u‖q (2.6)

holds for all t > 0 and all u ∈ Lqσ(Ω). Further for 1 < q < 3 and 0 ≤ α ≤ 1
2

let q < r <∞ be defined by 2α+ 3
r = 3

q . Then

‖u‖r ≤ c(Ω, q, r)‖(I +Aq)
αu‖q (2.7)

for all u ∈ D((I+Aq)
α). For a proof of (2.6) and (2.7) we refer to [8, Lemma

3.3]. We remark that analogous estimates of (2.6), (2.7) hold where Aq is
replaced by −∆q.

3. Construction of a suitable fixed Point

The proof of Theorem 1.3 is essentially based on the existence of a suitable
solution of (3.18) below. To solve this system we need the estimates presented
in Lemma 3.3. To begin with, let us cite the following lemma which will be
frequently used in the progress of this paper without referring back to it
every time we use it.

Lemma 3.1. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1.
(i) Let q > 3

2 , F ∈ L
q(Ω). Choose r, σ ≥ 0 with

2σ +
3

r
=

3

q
, 0 ≤ σ ≤ 1

2
. (3.1)

There exists a unique element in Lrσ(Ω) denoted by A−1/2−σ
r PrdivF ∈ Lrσ(Ω)

with
〈A−1/2−σ

r PrdivF,A
1/2+σ
r′ w〉Ω = −〈F,∇w〉Ω (3.2)
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for all w ∈ D(A
1/2+σ
r′ ). There holds

‖A−1/2−σ
r PrdivF‖r ≤ c‖F‖p (3.3)

with a constant c = c(Ω, q, r) > 0.
(ii) Let 1 < q < ∞, and let F ∈ Lq(Ω). There exists a unique element

(I +Aq)
−1/2PqdivF ∈ Lqσ(Ω) with

〈(I +Aq)
−1/2PqdivF, (I +Aq′)

1/2w〉Ω = −〈F,∇w〉Ω (3.4)

for all w ∈ D((I +Aq′)
1/2). The estimate

‖(I +Aq)
−1/2PqdivF‖q ≤ c‖F‖q (3.5)

is satisfied for all F ∈ Lq(Ω) with a constant c = c(Ω, q) > 0 .

Proof. See [8, Lemma 3.1] and [8, Lemma 3.4]. �

Remark. Since ‖∇w‖q ≤ c(Ω, q)‖(I + Aq)
1/2w‖q , w ∈ D((I + Aq)

1/2) holds
for all 1 < q <∞ (see [8, Lemma 3.3 (1)]) the expression (I+Aq)

−1/2PqdivF

can be defined for all 1 < q < ∞, in contrast to A−1/2
q PqdivF , which needs

the restriction q > 3
2 in an exterior domain.

We need the following system of integral equations characterizing weak so-
lutions of the Boussinesq system (1.1).

Lemma 3.2. Consider data as in Definition 1.1. Then (u, θ) with (1.2), (1.3)
and θg ∈ L1

loc([0, T [;L2(Ω)) is a weak solution of (1.1) if and only if the sys-
tem of integral equations

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ +

∫ t

0
e−(t−τ)APf1(τ) dτ

−A1/2

∫ t

0
e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ u(τ)

)
dτ ,

(3.6)

θ(t) = et∆θ0 +

∫ t

0
e(t−τ)∆f2(τ) dτ

− (−∆)1/2

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ

(3.7)

is fulfilled for almost all t ∈ [0, T [.

Proof. The representation formula (3.6) follows from [25, Chapter IV, Sec-
tion 2.4] with f := θg ∈ L1

loc([0, T [;L2(Ω)). To prove (3.7) we replace −A
by ∆ and use the same argumentation as in the proof of (3.6). �

We proceed with the following lemma:

Lemma 3.3. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
0 < T < ∞. Consider 1 < s, q < ∞ with S(s, q) = 1. Consider g ∈
L8/5(0, T ;L4(Ω)) ∩ Lµ(0, T ;Lp(Ω)) where 1 < µ < ∞ , 1 < p < 12, satisfy
S(µ, p) = 3

2 and 1
12 >

1
p −

1
q . Define α := 1

2 + 3
2q and the Banach spaces

X := Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2
σ(Ω)) , Y := L8/3(0, T ;L4(Ω)).
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(i) Define the bilinear form
F1 : X ×X → X ,

F1(u, v)(t) := −
∫ t

0
Aαq e

−(t−τ)AqA−αq Pqdiv
(
u(τ)⊗ v(τ)

)
dτ

for a.a. t ∈ [0, T [. Then

‖F1(u, v)‖X ≤ c(1 + Tα)‖u⊗ v‖ q
2
, s
2

;T ≤ c(1 + Tα)‖u‖X‖v‖X (3.8)

for all u, v ∈ X where c = c(Ω, q) > 0 is a constant.
(ii) Define the bilinear form

F2 : X × Y → Y ,

F2(u, θ)(t) := −
∫ t

0
(−∆4)αe(t−τ)∆4(−∆4)−αdiv

(
θ(τ)u(τ)

)
dτ

for a.a. t ∈ [0, T [. Then

‖F2(u, θ)‖Y ≤ c‖u‖X‖θ‖Y (3.9)

for all u ∈ X , θ ∈ Y with c = c(Ω, q) > 0.
(iii) Define the linear map

L : Y → X ,(
Lθ
)
(t) :=

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ

for a.a. t ∈ [0, T [. Then

‖Lθ‖X ≤ c
(
‖g‖p,µ;T + T 1/2‖g‖4, 8

5
;T

)
‖θ‖Y (3.10)

for all θ ∈ Y with c = c(Ω, q, p) > 0.

Proof. Fix u , v ∈ X and θ ∈ Y . Define 1 < q2, s2 <∞ by
1

q2
=

1

2
+

1

q
,

1

s2
=

1

2
+

1

s
.

Proof of (i), step 1. Estimates (2.2), (2.4) and (3.3) with r = 3
2q imply

‖F(u, v)(t)‖q ≤ c
∫ t

0
|t− τ |−α‖A−αq Pqdiv

(
u⊗ v

)
(τ)‖q dτ

≤ c
∫ T

0
|t− τ |−α‖(u⊗ v)(τ)‖ q

2
dτ

for a.a. t ∈ [0, T [. Due to the Hardy-Littlewood inequality (see [26, V, 1.2])
with (1− α) + 1

s = 1
s/2 we obtain

‖F(u, v)‖q,s;T ≤ c‖u⊗ v‖ q
2
, s
2

;T ≤ c‖u‖q,s;T ‖v‖q,s;T (3.11)

with c = c(Ω, q) > 0.
Proof of (i), step 2. Due to u⊗v ∈ L

s
2 (0, T ;L

q
2 (Ω))∩Ls2(0, T ;Lq2(Ω))

and (3.2), (3.4) we can show with the consistence of the Stokes operator and
duality arguments analogously as in [8, Lemma 3.2], that

F1(u, v)(t) = −
∫ t

0
(I +Aq2)1/2e−(t−τ)Aq2 (I +Aq2)−1/2Pq2div

(
u(τ)⊗ v(τ)

)
(3.12)
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for a.a. t ∈ [0, T [. Since 2 · 3
2q + 3

2 = 3
q2

and 0 < T < ∞ we obtain
with (2.6), (2.7) and the closedness of I +Aq in combination with [16, The-
orem 3.7.12],

‖F1(u, v)(t)‖2

≤ c
∥∥∥−∫ t

0
(I +Aq2)αe−(t−τ)Aq2 (I +Aq2)−1/2Pq2div

(
u(τ)⊗ v(τ)

)
dτ
∥∥∥
q2

≤ c
∫ t

0

(1 + (t− τ)

(t− τ)

)α
‖(I +Aq2)−1/2Pq2div

(
u(τ)⊗ v(τ)

)
‖q2 dτ

≤ c(1 + T )α
∫ T

0
|t− τ |−α‖(I +Aq2)−1/2Pq2div

(
u(τ)⊗ v(τ)

)
‖q2 dτ

≤ c(1 + Tα)

∫ T

0
|t− τ |−α‖u(τ)⊗ v(τ)‖q2 dτ

for a.a. t ∈ [0, T [ with c = c(Ω, q) > 0. Since (1 − α) + 1
2 = 1

s2
we get with

the Hardy Littlewood inequality

‖F(u, v)‖2,2;T ≤ c(1 + Tα)‖u⊗ v‖q2,s2;T ≤ c(1 + Tα)‖u‖2,2;T ‖v‖q,s;T (3.13)

with c = c(Ω, q) > 0. Combining (3.11), (3.13) yields

‖F(u, v)‖X ≤ c(1 + Tα)‖u‖X‖v‖X

for all u, v ∈ X with a constant c = c(Ω, q) > 0
Proof of (ii). Introduce 1 < x1, x2 <∞ by

1

x1
=

1

8/3
+

1

s
,

1

x2
=

1

4
+

1

q
.

Especially x2 >
3
2 . We get with (2.3), (2.5) and (3.3) (where A4 is replaced

by (−∆4))

‖(F2(u, θ))(t)‖4 ≤ c
∫ t

0
|t− τ |−α‖(−∆4)−αdiv

(
θ(τ)u(τ)

)
‖4 dτ

≤ c
∫ T

0
|t− τ |−α‖θ(τ)u(τ)‖x2 dτ

for a.a. t ∈ [0, T [ with c = c(Ω, q) > 0. The Hardy-Littlewood inequality
with (1− α) + 1

8/3 = 1
x1
, combined with Hölder’s inequality, yields

‖F2(u, θ)‖4, 8
3

;T ≤ c‖θu‖x2,x1;T ≤ c‖u‖q,s;T ‖θ‖4, 8
3

;T (3.14)

with c = c(Ω, q) > 0.
Proof of (iii), step 1. Define σ := 3

2(1
4 −

1
q + 1

p). By construction
0 ≤ σ < 1

2 and 2σ + 3
q = 3

4 + 3
p . Define 1 < x1, x2 <∞ by

1

x1
=

1

8/3
+

1

µ
,

1

x2
=

1

4
+

1

p
.
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Due to p < 12 it follows 1 < x2 < 3. From (2.2), (2.4) we obtain with the
closedness of Aq in combination with [16, Theorem 3.7.12] that

‖(Lθ)(t)‖q ≤ c
∥∥∥∫ t

0
Aσx2e

−(t−τ)Ax2Px2(θg) dτ
∥∥∥
x2

≤ c
∫ T

0
|t− τ |−σ‖θ(τ)g(τ)‖x2 dτ

(3.15)

for almost all t ∈ [0, T [ with c = c(Ω, q, p) > 0. Since (1 − σ) + 1
s = 1

x1
we

can apply the Hardy-Littlewood estimate to (3.15) and get

‖Lθ‖q,s;T ≤ c‖θg‖x2,x1;T ≤ c(Ω, q, p)‖g‖p,µ;T ‖θ‖4, 8
3

;T . (3.16)

Proof of (iii), step 2. By [25, Chapter IV, Lemma 2.4.2] there holds
1

2
‖Lθ‖22,∞;T + ‖∇Lθ‖22,2;T ≤ 8‖θg‖22,1;T .

It follows by interpolation

‖Lθ‖2,2;T ≤ cT 1/2‖θg‖2,1;T ≤ cT 1/2‖θ‖4, 8
3

;T ‖g‖4, 8
5

;T . (3.17)

Proof of (iii), step 3. Combining (3.16), (3.17) yields (3.10). �

The final result of this section reads as follows:

Theorem 3.4. Consider data as in Lemma 3.3, let F1,F2,L, X, Y be defined
as in Lemma 3.3, and let E1 , E2 be as in (1.4), (1.5). Then there exists a
constant ε∗ = ε∗(Ω, q, p) > 0 such that if the conditions (1.6), (1.7) are
fulfilled, then there exists u ∈ X , θ ∈ Y with

u = E1 + F1(u, u) + Lθ ,
θ = E2 + F2(u, θ)

(3.18)

and
‖u‖X + ‖θ‖Y ≤ 4

(
‖E1‖X + ‖E2‖Y

)
. (3.19)

Proof. Fix a constant K > 0 such that the estimates (3.8), (3.9), (3.10) are
satisfied where c is replaced by K. By construction K = K(Ω, q, p). Define
α := 1

2 + 3
2q . In the following we will show that if

12K(1 + Tα)(‖E1‖X + ‖E2‖Y ) <
1

2
, (3.20)

K(‖g‖p,µ;T + T 1/2‖g‖4, 8
5

;T ) <
1

2
(3.21)

are fulfilled, then there exists u ∈ X , θ ∈ Y fulfilling (3.18), (3.19). With no
loss of generality assume A := ‖E1‖X + ‖E2‖Y > 0. We endow X × Y with
the norm ‖(u, θ)‖X×Y := ‖u‖X + ‖θ‖Y and obtain that X × Y is a Banach
space. Define the nonlinear map

T : X × Y → X × Y , T (u, θ) :=
(
E1 + F1(u, u) + Lθ,E2 + F2(u, θ)

)
.

Since 4KA < 1 we can introduce R as the smallest positive root of the
polynomial Kx2 − 1

2x+A, i.e.

R :=

1
2 −

√
1
4 − 4KA

2K
=

2A

1
2 +

√
1
4 − 4KA

.



STRONG SOLUTIONS IN EXTERIOR DOMAINS 11

Introduce the closed ball B := {(u, θ) ∈ X × Y ; ‖(u, θ)‖X×Y ≤ R}. We
obtain with (3.10), (3.21)

‖Lθ‖X ≤
1

2
‖θ‖Y (3.22)

for all θ ∈ Y . There holds

‖T (u, θ)‖X×Y ≤ K‖u‖X(‖u‖X + ‖θ‖Y ) + 1
2‖θ‖Y +A ≤ KR2 + 1

2R+A = R.

Thus T (B) ⊆ B. From (3.8), (3.9), (3.10) and (3.22) it follows

‖T (u, θ)− T (ũ, θ̃)‖X×Y
=
(
F1(u, u− ũ) + F1(u− ũ, ũ) + L(θ − θ̃) ,F2(u, θ − θ̃) + F2(u− ũ, θ̃)

)
≤ K(1 + Tα)(‖u‖X + ‖ũ‖X)‖u− ũ‖X + 1

2‖θ − θ̃‖Y
+K‖u‖X‖θ − θ̃‖Y +K‖u− ũ‖X‖θ̃‖Y
≤ 3K(1 + Tα)R‖u− ũ‖X +KR‖θ − θ̃‖Y + 1

2‖θ − θ̃‖Y

≤
(

3K(1 + Tα)R+ 1
2

)
‖(u, θ)− (ũ, θ̃)‖X×Y

for all (u, θ) , (ũ, θ̃) ∈ B. From (3.20) and R < 4A we get the inequality
3K(1 + Tα)R + 1

2 < 1. Altogether T : B → B is a strict contraction.
By Banach’s fixed point theorem there exists (u, θ) ∈ B with T (u, θ) =
(u, θ). Furthermore (u, θ) is the unique fixed point of T in B. Especially we
get (3.19).

Consequently, there exists a constant ε∗ = ε∗(Ω, q, p) > 0 with the follow-
ing property: If the conditions (1.6), (1.7) are fulfilled, then (3.20), (3.21)
hold. The proof is complete. �

4. Proof of Thoerem 1.3

To begin with, let us present a sketch of proof. In the first step we use
Theorem 3.4 to construct u ∈ Ls(0, T ;Lq(Ω)) ∩ L2(0, T ;L2(Ω)) and θ ∈
L8/3(0, T ;L4(Ω)) fulfilling (3.18). The proof of ∇u ,∇θ ∈ L2(0, T ;L2(Ω))
differs from the proof for a bounded domain and is based on the application
of Yosida’s smoothing procedure. We remark that the additional L2(L2)-
integrability for u is needed for the proof of ∇u ∈ L2(0, T ;L2(Ω)).

Proof. Step 1. Let E1, E2 be as in (1.4), (1.5). Introduce the Banach spaces
X := Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2

σ(Ω)) and Y := L8/3(0, T ;L4(Ω)) and let
F1,F2, and L as in Lemma 3.3. By Theorem 3.4 there exists a constant
ε∗ = ε∗(Ω, q, p) > 0 with the following property: If the conditions (1.6), (1.7)
are fulfilled, then there exists u ∈ Ls(0, T ;Lqσ(Ω))∩L2(0, T ;L2

σ(Ω)) and θ ∈
L8/3(0, T ;L4(Ω)) satisfying (3.18) and (3.19). To finish the proof we have to
show that, after a possible reduction of ε∗ (see the discussion following (4.5)),
that such a solution (u, θ) fulfils (1.2), (1.3).
Step 2. Introduce α := 1

2 + 3
2q and 1 < s2, q2 <∞ by

1

s2
=

1

2
+

1

s
,

1

q2
=

1

2
+

1

q
.
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Further, define

E(t) := E1(t) + L(θ)(t)

= e−tAu0 +

∫ t

0
e−(t−τ)AP (θg)(τ) dτ +

∫ t

0
e−(t−τ)APf1(τ) ,

(4.1)

ũ(t) := −
∫ t

0
Aαq e

−(t−τ)AqA−αq Pqdiv
(
u⊗ u

)
(τ) dτ (4.2)

for almost all t ∈ [0, T [, so that u = ũ+E. We remark that u is constructed
as a very weak solution of the instationary Navier-Stokes equations with
the additional property u ∈ L2(0, T ;L2(Ω)). For further information about
very weak solutions of the Navier-Stokes equations we refer to [5, 7]. Since
u⊗ u ∈ L

s
2 (0, T ;L

q
2 (Ω)) ∩ Ls2(0, T ;Lq2(Ω)) we obtain as in (3.12)

ũ(t) = −
∫ t

0
(I +Aq2)1/2e−(t−τ)Aq2 (I +Aq2)−1/2Pq2div

(
u⊗ (ũ+ E)

)
(τ) dτ

(4.3)

for almost all t ∈ [0, T [.
To prove ∇u ∈ L2(0, T ;L2(Ω)) let Jn := (I + 1

nA
1/2
q2 )−1 , n ∈ N, be

the Yosida approximation of I in Lqσ(Ω), so that ũ = Jnũ + 1
nA

1/2
q2 Jnũ.

Since A1/2
q generates a bounded semigroup, the sequences (‖Jn‖)n∈N and

(‖ 1
nA

1/2
q Jn‖)n∈N are bounded, see [3, II, Sections 3,4]. We can rewrite equal-

ity (4.3) in the form

ũ(t) = −
∫ t

0
e−(t−τ)Aq2

(
u · ∇Jnũ+ u · ∇E

)
dτ

−
∫ t

0
(I +Aq2)1/2e−(t−τ)Aq2 (I +Aq2)−1/2Pq2div

(
u⊗ 1

n
A1/2
q2 Jnu

)
dτ

for a.a. t ∈ [0, T [. We apply A1/2
q2 Jn to the identity above and get

A1/2
q2 Jnũ(t)

= −
∫ t

0
A1/2
q2 e

−(t−τ)Aq2

(
Jn(u · ∇Jnũ) + Jn(u · ∇E)

)
dτ

−
∫ t

0
(I +Aq2)1/2e−(t−τ)Aq2 1

nA
1/2
q2 Jn(I +Aq2)−1/2Pq2div

(
u⊗A1/2

q2 Jnũ
)
dτ

=: T1(t) + T2(t)
(4.4)

for almost all t ∈ [0, T [. With 2 · 3
2q + 3

2 = 3
q2

and (2.2), (2.4) it follows

‖T1(t)‖2 ≤ c
∥∥∥∫ t

0
Aαq2e

−(t−τ)Aq2

(
Jn(u · ∇Jnũ) + Jn(u · ∇E)

)
dτ
∥∥∥
q2

≤ c
∫ T

0
|t− τ |−α

(
‖u · ∇Jnũ‖q2 + ‖u · ∇E‖q2

)
dτ
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for a.a. t ∈ [0, T [ with a constant c = c(Ω, q) > 0. Moreover, with (2.6),
(2.7) and (3.5) we get, since T is finite, that

‖T2(t)‖2

≤ c
∥∥∥∫ t

0
(I +Aq2)αe−(t−τ)Aq2 1

nA
1/2
q2 Jn(I +Aq2)−1/2Pq2div

(
u⊗A1/2

q2 Jnũ
)
dτ
∥∥∥
q2

≤ c
∫ t

0

(1 + |t− τ |)α

|t− τ |α
∥∥ 1
nA

1/2
q2 Jn(I +Aq2)−1/2Pq2div

(
u⊗A1/2

q2 Jnũ
)
‖q2 dτ

≤ c
∫ T

0
|t− τ |−α‖u⊗A1/2

q2 Jnũ‖q2dτ

with a constant c = c(Ω, q, T ) > 0. The Hardy-Littlewood inequality with
(1 − α) + 1

2 = 1
s2

applied to (4.4), Hölder’s inequality and the identity

‖∇Jnũ‖2,2;T = ‖A1/2
q2 Jnũ‖2,2;T combined with (2.1) yield

‖A1/2
q2 Jnũ‖2,2;T

≤ c
(
‖u · ∇Jnũ‖q2,s2;T + ‖u · ∇E‖q2,s2;T + ‖u⊗A1/2

q2 Jnũ‖q2,s2;T

)
≤ c∗‖u‖q,s;T

(
‖A1/2

q2 Jnũ‖2,2;T + ‖∇E‖2,2;T

) (4.5)

with a fixed constant c∗ = c∗(Ω, q, T ) > 0. Replacing ε∗ by min{ε∗, 1
8c∗
} it

follows from (1.6), (3.19) that

c∗‖u‖q,s;T ≤
4c∗ε∗

1 + T
1
2

+ 3
2q

≤ 4c∗ε∗ ≤
1

2
. (4.6)

Therefore, the absorption principle can be applied to (4.6) and yields

‖A1/2
q2 Jnũ‖2,2;T ≤ c‖u‖q,s;T ‖∇E‖2,2;T (4.7)

with a constant c = c(Ω, q, T ) > 0 independent of n ∈ N. By a functional
analytic argument (see [25, II.(3.18)]) and (2.1) we get ũ(t) ∈ D(A1/2) for a.a.
t ∈ [0, T [ and A1/2ũ ∈ L2(0, T ;L2(Ω)). Consequently ∇ũ ∈ L2(0, T ;L2(Ω)).
It follows

ũ(t) = −
∫ t

0
e−(t−τ)Aq2Pq2

(
u · ∇u

)
dτ (4.8)

for a.a. t ∈ [0, T [. The same argumentation as in [9, page 102] shows
that (4.8) implies u ⊗ u ∈ L2(0, T ;L2(Ω)). A careful inspection shows that
this proof remains true although we consider an exterior domain instead of
a bounded domain. Consequently, we can write

ũ(t) = −
∫ t

0
A1/2e−(t−τ)AA−1/2Pdiv

(
u⊗ u

)
(τ).

Altogether, ũ can be considered as a weak solution of the (linear) Stokes
system with initial value 0 and external force f = −div(u⊗u) where u⊗u ∈
L2(0, T ;L2(Ω)). By linear theory (see [25, IV, Theorems 2.3.1 and 2.4.1]) it
follows that ũ satisfies (1.2). Thus, u = ũ+ E also satisfies (1.2).
Step 3. Introduce

θ̃(t) := −
∫ t

0
(−∆4)αe(t−τ)∆4(−∆4)−αdiv

(
θ(τ)u(τ)

)
dτ (4.9)
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for a.a. t ∈ [0, T [. Thus θ = θ̃ + E2. Due to step 2 we know that (1.2)
holds. It follows by interpolation u ∈ L8/3(0, T ;L4(Ω)). Consequently θu ∈
L4/3(0, T ;L2(Ω)).

Therefore, (see (4.3)) we can rewrite (4.9) as

θ̃(t) = −
∫ t

0
(−∆)1/2e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ

for a.a. t ∈ [0, T [. Consequently, (2.3), (2.5) imply

‖θ̃(t)‖2 ≤ c(Ω)

∫ T

0
|t− τ |−1/2‖(−∆)−1/2divθ(τ)u(τ)‖2 dτ

for a.a t ∈ [0, T [. The Hardy-Littlewood inequality in the form 1
2 + 1

4 = 1
4/3

yields
‖θ̃‖2,4;T ≤ c‖(−∆)−1/2div(θu)‖2, 4

3
;T ≤ c‖θu‖2, 4

3
;T .

Especially θ̃ ∈ L2(0, T ;L2(Ω)). The consistence of the Laplace operator and
θu ∈ Ls2(0, T ;Lq2(Ω)) yield

θ̃(t) = −
∫ t

0
(I −∆q2)1/2e(t−τ)∆q2 (I −∆q2)−1/2div

(
θ(τ)u(τ)

)
dτ (4.10)

for almost all t ∈ [0, T [. In the proof that θ fulfils (1.3) we will proceed as in
step 2. Let Jn := (I+ 1

n(−∆q2)1/2)−1 , n ∈ N, be the Yosida approximation of
I in Lq2(Ω). Then θ̃ = Jnθ̃ + 1

n(−∆q2)1/2Jnθ̃. An analogous argumentation
as in step 2 that leads from (4.3) to (4.6) shows that

‖(−∆q2)1/2Jnθ̃‖2,2;T ≤ c‖u‖q,s;T ‖∇E2‖2,2;T

holds with a constant c = c(Ω, q, T ) > 0 independent of n ∈ N. Consequently
∇θ̃ ∈ L2(0, T ;L2(Ω)). It follows from (4.9) that

θ̃(t) = −
∫ t

0
e(t−τ)∆q2

(
u · ∇θ

)
(τ) dτ for a.a. t ∈ [0, T [. (4.11)

Proceeding analogously as in step 2 we can prove that θ fulfils (1.3). The
proof is complete. �

5. Proof of the remaining results

5.1. Proof of Corollary 1.4. Let ε∗ be the constant constructed in Theo-
rem 1.3, let E1, E2 be defined as in (1.4), (1.5). Further, introduce

(Gf1)(t) :=

∫ t

0
e−(t−τ)APf1(τ) dτ , a.a. t ∈ [0, T [ , (5.1)

(Hf2)(t) :=

∫ t

0
e(t−τ)∆f2(τ) dτ , a.a. t ∈ [0, T [. (5.2)

With the help of [25, IV, Lemma 2.4.2 d)] it follows

‖Gf1‖2,2;T ≤ T 1/2‖Gf1‖2,∞;T ≤ 4T 1/2‖f1‖2,1;T . (5.3)
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Due to 1
3 + 1

q ≥
1
q∗
≥ 1

q we can choose 0 ≤ σ ≤ 1
2 such that 2σ + 3

q = 3
q∗
.

Further, since S(s∗, q∗) = 3 it follows 1 < q∗ < 3. Consequently, (2.2), (2.4)
can be applied to get

‖(Gf1)(t)‖q ≤ c
∥∥∥∫ t

0
Aσq∗e

−(t−τ)Aq∗Pf1(τ) dτ
∥∥∥
q∗

≤ c
∫ T

0
|t− τ |−σ‖f1(τ)‖q∗ dτ

(5.4)

for a.a. t ∈ [0, T [. We use (1 − σ) + 1
s = 1

s∗
and the Hardy-Littlewood

inequality to get
‖Gf1‖q,s;T ≤ c‖f1‖q∗,s∗;T (5.5)

with a constant c = c(Ω, q, q∗) > 0. Combining (5.3), (5.5) yields

‖Gf1‖2,2;T + ‖Gf1‖q,s;T ≤ c(Ω, q, q∗)
(
‖f1‖q∗,s∗;T + T 1/2‖f1‖2,1;T

)
.

From [21, Lemma 3.2 (ii)] we get the estimate ‖Hf2‖4, 8
3

;T ≤ c‖f2‖2,1;T with
an absolute constant c > 0. Altogether

‖E1‖q,s;T + ‖E1‖2,2;T + ‖E2‖4, 8
3

;T

≤
(∫ T

0
‖e−tAu0‖22 dt

)1/2
+

∫ T

0

(
‖e−tAu0‖sq dt

)1/s
+
(∫ T

0
‖et∆θ0‖8/34 dt

)3/8

+ c‖f1‖q∗,s∗;T + c T 1/2‖f1‖2,1;T + c‖f2‖2,1;T

(5.6)

holds with a constant c = c(Ω, q, q∗) > 0. Looking at (5.6) it follows
that there exists a constant c∗ = c∗(Ω, q, q∗, p) > 0 such that if the con-
ditions (1.8), (1.9), (1.10), (1.11) are satisfied where ε∗ is replaced by c∗,
then (1.6), (1.7) hold. Consequently, Theorem 1.3 implies the existence of a
strong solution in this case.

5.2. Proof of Theorem 1.5. Define T (t) := et∆θ0 , t ∈ [0, T [. By lin-
ear theory (see [25, Lemma IV.2.4.2]) if follows T ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)). Due to the continuous imbedding H1(Ω) ↪→ L6(Ω) it fol-
lows T ∈ L8/3(0, T ;L4(Ω)). Therefore, the sufficiency of (1.12) for the exis-
tence of 0 < T ′ ≤ T and strong solution (u, θ) of (1.1) in [0, T ′[×Ω follows
from Corollary 1.4.

For the proof of the converse direction let (u, θ) be a strong solution of (1.1)
with u ∈ Ls(0, T ′;Lq(Ω)) where 0 < T ′ ≤ T . Let Lθ be as in Lemma 3.3
and Gf1 as in (5.1). From (3.6) we get

e−tA = u(t)− ũ(t)− (Lθ)(t)− (Gf1)(t) , a.a. t ∈ [0, T ′[ , (5.7)

where

ũ(t) := −
∫ t

0
A1/2e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ u(τ)

)
dτ

for a.a. t ∈ [0, T ′[. From [8, (3.11)] with r1 := q
2 , r2 := q it follows

ũ(t) = −
∫ t

0
Aαq e

−(t−τ)AqA−αq Pqdiv
(
u(τ)⊗ u(τ)

)
dτ
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for a.a. t ∈ [0, T ′[ where α := 1
2 + 3

2q . By (3.11), (3.16) and (5.5) we get
e−tA ∈ Ls(0, T ′;Lq(Ω)). With the help of [17, Theorem 1.2 (ii)] we obtain∫∞
T ′ ‖e

−tAu0‖sq dt ≤ c
∫∞
T ′ t
− 3

2
s( 1

2
− 1
q

)‖u0‖s2 dt <∞.

5.3. Proof of Theorem 1.7. First, let us remark that the following theo-
rem holds:

Theorem 5.1. Consider data as in Theorem 1.3. Assume that (u, θ) and
(v,Θ) are weak solutions of (1.1) with u , v ∈ Lsloc([0, T [;Lq(Ω)). Then u(t) =
v(t) and θ(t) = Θ(t) for a.a. t ∈ [0, T [.

Proof. The proof of [19, Theorem 1.5] is based on [19, (3.5), (3.6), (3.7)].
Since we can replace these estimates by (3.11) (3.14), (3.16) the proof of the
result above is the same as [19, Theorem 1.5] with s1 = 8

3 , q1 = 4. �

Let (u, θ) and (v,Θ) be as in Theorem 1.7 and let 1 < x1, x2 < ∞ be
defined by 1

x1
= 1

2 −
1
s and 1

x2
= 1

2 −
1
q . Since S(x1, x2) = 3

2 it follows
u ∈ Lx1(0, T ;Lx2(Ω)). Therefore

‖u⊗ u‖2,2;T ≤ ‖u‖x2,x1;T ‖u‖q,s;T <∞.

By [25, Theorem IV.2.3.1] we obtain that u : [0, T [→ L2
σ(Ω) is strongly con-

tinuous and that (u, θ) satisfy (1.13). Considering (u, θ) as a weak solution
of the Boussinesq equations (1.1) in [t0, T − t0[ we obtain from Theorem 1.5∫ ∞

0
‖e−tAu(t0)‖sq dt <∞ for all t0 ∈ [0, T [.

Now all requirements of [21, Corollary 1.7] are fulfilled. Using Theorem 1.5
and Theorem 5.1 we can follow the proof of [21, Corollary 1.7] to show that
u(t) = v(t) and θ(t) = Θ(t) for a.a. t ∈ [0, T [.

Acknowledgement. The author thanks Reinhard Farwig for his kind sup-
port.
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