Existence of solutions on the whole time axis to the Navier-Stokes equations with precompact range in L^3

Reinhard Farwig^{*}, Tomoyuki Nakatsuka[†] and Yasushi Taniuchi[‡]

Abstract

We present an existence theorem of mild solutions on the whole time axis to the Navier-Stokes equations in unbounded domains $\Omega \subset \mathbb{R}^3$ having precompact range in $L^3(\Omega)$, if the external force is small and has precompact range in some function space. In our forthcoming paper [8] we proved the uniqueness of such solutions.

AMS Subject Classification (2010): 35Q30; 35A01; 76D05

Key words: Navier-Stokes equations; global in time mild solutions; existence; precompact range condition; unbounded domains

1 Introduction

The motion of a viscous incompressible fluid in domains $\Omega \subset \mathbb{R}^3$ is governed by the Navier-Stokes equations:

(N-S)
$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p &= f, \quad t \in \mathbb{R}, \ x \in \Omega, \\ \operatorname{div} u &= 0, \quad t \in \mathbb{R}, \ x \in \Omega, \\ u|_{\partial\Omega} &= 0, \quad t \in \mathbb{R}, \end{cases}$$

where $u = (u^1(x,t), u^2(x,t), u^3(x,t))$ and p = p(x,t) denote the velocity vector and the pressure, respectively, of the fluid at the point $(x,t) \in \Omega \times \mathbb{R}$. Here f is a given external force. In this paper we consider mild solutions to (N-S) in *unbounded* domains Ω which are bounded on the whole time axis. Typical examples of such solutions are periodic-in-time and almost periodic-in-time solutions.

^{*}Fachbereich Mathematik and International Research Training Group Darmstadt-Tokyo (IRTG 1529), Technische Universität Darmstadt, 64289 Darmstadt, Germany, farwig@mathematik.tu-darmstadt.de

[†]Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan

 $^{^{\}ddagger}$ Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan, taniuchi@math.shinshu-u.ac.jp

In case where $\Omega \subset \mathbb{R}^3$ is bounded, the existence and uniqueness of time-periodic solutions were considered by several authors; see e.g. [9] and references therein. Maremonti [26, 27] was the first to prove the existence of unique time-periodic regular solutions to (N-S) in *unbounded* domains, namely for $\Omega = \mathbb{R}^3$ and $\Omega = \mathbb{R}^3_+$. In the case of more general unbounded domains, the existence of time-periodic solutions was proven by Kozono-Nakao [22], Maremonti-Padula [28], Salvi [32], Yamazaki [38], Galdi-Sohr [16], Kubo [24], Crispo-Maremonti [5] and Kang-Miura-Tsai [21]. In [38, 21], solutions in $L^{3,\infty}$, the weak L^3 space, were dealt with. Without time-periodic condition on f, the existence of mild solutions bounded on the whole time axis was also shown in [22], [38] and [21].

Concerning the uniqueness of solutions bounded on the whole time-axis, roughly speaking, it was shown in [26, 27, 22, 28, 38, 24, 5] that a small solution in some function spaces (e.g. $BC(\mathbb{R}; L^{3,\infty}(\Omega)))$ is unique within the class of solutions which are sufficiently small; i.e., if u and v are solutions for the same force f and if both of them are small, then u = v. In [16], it was shown that a small time-periodic solution is unique within the larger class of all periodic weak solutions v with $\nabla v \in L^2(0,T; L^2)$, satisfying the energy inequality $\int_0^T \|\nabla v\|_{L^2}^2 d\tau \leq -\int_0^T (F, \nabla v) d\tau$ and mild integrability conditions on the corresponding pressure; here T is a period of F and $f = \nabla \cdot F$.

Another type of uniqueness theorem for $L^{3,\infty}$ -solution bounded on the whole time axis was proven in our previous paper [8] without assuming the energy inequality or timeperiodic condition. In the case of an exterior domain $\Omega \subset \mathbb{R}^3$, the whole space \mathbb{R}^3 , the halfspace \mathbb{R}^3_+ , a perturbed halfspace, or an aperture domain, it was shown in [8] that if uand v are solutions in

(1.1)
$$BC(\mathbb{R}; \tilde{L}^{3,\infty})$$

for the same force f, one of them is small in $L^{3,\infty}$ and if the other solution has a precompact range in $L^{3,\infty}$, then u = v. Here $\tilde{L}^{3,\infty} := \overline{L_{\sigma}^{3,\infty} \cap L^{\infty}}^{\|\cdot\|_{L^{3,\infty}}}$. See also [36, 13, 14, 30, 31]. This uniqueness theorem is applicable to time-periodic and almost periodic solutions given in [22, 38], since continuous time-periodic and almost periodic-in-time $L^{3,\infty}$ -solutions uhave a precompact range $\mathcal{R}(u) = \{u(t); t \in \mathbb{R}\}$ in $L^{3,\infty}$, see [4, Theorem 6.5]. Note that there exist many functions which have a precompact range and are not almost periodic, e.g. $a \sin(t^2)$ for $a \neq 0$. Hence, the set of functions with precompact range is much larger than the set of almost periodic functions.

While in [8] we proved the uniqueness theorem of solutions on \mathbb{R} with precompact range as mentioned above, the existence theorem of such solutions was not known except in the special case where f is almost periodic. In the present paper, we prove existence of continuous solutions u having precompact range $\mathcal{R}(u)$ in L^3 on the whole time axis, if the external force is small and has precompact range in some function space and if Ω satisfies the following Assumption 1.

Assumption 1 $\Omega \subset \mathbb{R}^3$ is the half-space \mathbb{R}^3_+ , the whole space \mathbb{R}^3 , an infinite layer, a perturbed half-space, or an aperture domain with $\partial \Omega \in C^{2,1}$.

For the definitions of infinite layers, perturbed half-spaces and aperture domains, see Abe-Shibata [1], Kubo-Shibata [25] and Farwig-Sohr [10, 11].

Let $BUC(\mathbb{R}; Y)$ denote the set of all bounded uniformly continuous functions on \mathbb{R} with values in a Banach space Y. Now our main result reads as follows:

Theorem 1. Let $\Omega \subset \mathbb{R}^3$ be a domain satisfying Assumption 1. Moreover, let q, r, lsatisfy 3/2 < q < 3, 2 < r < 3, $1/\kappa := 1/r + 1/q < 1$ and $(1/3 + 1/q)^{-1} < l < q$ and let

 $X := \{ v \in L^r_{\sigma} ; \nabla v \in L^q \} \text{ with norm } \|v\|_X := \|v\|_{L^r} + \|\nabla v\|_{L^q}.$

There exists a number $\epsilon = \epsilon(q, r, l, \Omega) > 0$ with the following property: Let f have the form $f = \nabla \cdot F$ with $F \in BUC(\mathbb{R}; L^{r/2})$ and $\nabla \cdot F \in BUC(\mathbb{R}; L^{\kappa} \cap L^{l})$,

(1.2)
$$\sup_{t} \|\nabla \cdot F(t)\|_{L^{\kappa} \cap L^{l}} + \sup_{t} \|F(t)\|_{L^{r/2}} < \epsilon$$

and let the range $\mathcal{R}(F)$ be precompact in $L^{r/2}$. Then there exists a solution $u \in BUC(\mathbb{R}; X)$ of the integral equation

(I.E.)
$$u(t) = \int_{-\infty}^{t} e^{-(t-s)A} P(-u \cdot \nabla u + \nabla \cdot F)(s) \, ds$$

such that $\mathcal{R}(u)$ is precompact in L^3_{σ} . Here L^3_{σ} , the Stokes operator A and the Helmholtz operator P are defined in the next section.

Remark 1. (i) The existence of L^3 -solutions to (I.E.) was proven by Kozono-Nakao [22] and Kubo [24] with a smallness condition on f slightly different from (1.2).

(ii) Thanks to the uniqueness theorem in [8], the small solution given in Theorem 1 is unique within the class of all solutions in $BC(\mathbb{R}; L^3_{\sigma})$ having a precompact range in L^3 .

(iii) Since $C_{0,\sigma}^{\infty}$ is dense in L_{σ}^{3} and since $\mathcal{R}(u)$ is precompact in L_{σ}^{3} , we see that u has a uniform decay property in the following sense:

$$\lim_{R \to \infty} \sup_{t \in \mathbb{R}} \|u(t)\|_{L^3(\{|x| > R\})} = 0.$$

2 Notations and Key lemmata

In this section, we introduce some notation and key lemmata. Let $C_{0,\sigma}^{\infty}(\Omega) = C_{0,\sigma}^{\infty}$ denote the set of all C^{∞} -real vector fields $\phi = (\phi^1, \phi^2, \phi^3)$ with compact support in Ω such that div $\phi = 0$. Then L_{σ}^r , $1 < r < \infty$, is the closure of $C_{0,\sigma}^{\infty}$ with respect to the L^r -norm $\|\cdot\|_r$. Concerning Sobolev spaces we use the notations $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$, $k \in \mathbb{N}$, $1 \leq p \leq \infty$. Note that very often we will simply write L^r and $W^{k,p}$ instead of $L^r(\Omega)$ and $W^{k,p}(\Omega)$, respectively. The symbol (\cdot, \cdot) denotes the L^2 - inner product and the duality pairing between L^p and $L^{p'}$, where 1/p + 1/p' = 1.

In this paper, we denote by C various constants. In particular, $C = C(*, \dots, *)$ denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: $L^r(\Omega) = L_{\sigma}^r \oplus G_r$ $(1 < r < \infty)$, where $G_r = \{\nabla p \in L^r; p \in L_{loc}^r(\overline{\Omega})\}$, see Fujiwara-Morimoto [15], Miyakawa [29], Simader-Sohr [35], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata [1]; then P_r denotes the projection operator from L^r onto L_{σ}^r along G_r . The Stokes operator on L_{σ}^r is defined by $A_r = -P_r\Delta$ with domain $D(A_r) = W^{2,r} \cap W_0^{1,r} \cap L_{\sigma}^r$. It is known that $(L_{\sigma}^r)^*$ (the dual space of $L_{\sigma}^r) = L_{\sigma}^{r'}$ and A_r^* (the adjoint operator of $A_r) = A_{r'}$. It is shown by Giga [17], Giga-Sohr [18], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata [1] that $-A_r$ generates a uniformly bounded holomorphic semigroup $\{e^{-tA_r}; t \ge 0\}$ of class C_0 in L_{σ}^r . Since $P_r u = P_q u$ for all $u \in L^r \cap L^q$ $(1 < r, q < \infty)$ and since $A_r u = A_q u$ for all $u \in D(A_r) \cap D(A_q)$, for simplicity, we shall abbreviate $P_r u, P_q u$ as Pu for $u \in L^r \cap L^q$ and $A_r u, A_q u$ as Au for $u \in D(A_r) \cap D(A_q)$, respectively.

Proposition 2.1. Let Y and Y_1 be Banach spaces, let $\mathcal{L}(Y, Y_1)$ denote the space of bounded linear operators from Y to Y_1 , and let $B_r(y)$ be the open ball of radius r > 0 and center y in Y or Y_1 .

(i) Let (f_j) be a sequence in $BC(\mathbb{R}; Y)$. Assume that for each j the range $\mathcal{R}(f_j) := \{f_j(t); t \in \mathbb{R}\}$ is precompact in Y and f_j converges to a function f in $BC(\mathbb{R}; Y)$. Then $\mathcal{R}(f)$ is precompact in Y.

(ii) Let $A \subset Y$ be precompact, and let $T(\cdot) : [m, M] \to \mathcal{L}(Y, Y_1)$ be continuous. Then the set $T(\cdot)A = \{T(s)a : s \in [m, M], a \in A\}$ is precompact in Y_1 . In particular, if $f \in BC(\mathbb{R}; Y)$ has precompact range $\mathcal{R}(f)$ in Y and $T \in \mathcal{L}(Y, Y_1)$, then $\mathcal{R}(Tf) :=$ $\{Tf(t); t \in \mathbb{R}\}$ is precompact in B_1 .

(iii) Let $A \subset Y$ be precompact. Then the convex hull conv(A) is precompact in Y.

(iv) Let $1 , <math>f = (f_1, f_2, f_3) \in BC(\mathbb{R}; L^p)$ and $\mathcal{R}(f)$ be precompact in L^p . Then, $\mathcal{R}(f \otimes f)$ is precompact in $(L^{p/2})^{3 \times 3}$. Proof. (i) Let $\epsilon > 0$ be fixed. By the assumption, we find $j_0 \in \mathbb{N}$ such that $\sup_t ||f(t) - f_{j_0}(t)||_Y < \epsilon$. Since $\mathcal{R}(f_{j_0}) \subset Y$ is precompact, there exists a finite set $\{y_1, \ldots, y_N\} \subset B$ such that $\mathcal{R}(f_{j_0}) \subset \bigcup_{k=1}^N B_{\epsilon}(y_k)$. Hence, we conclude that $\mathcal{R}(f) \subset \bigcup_{k=1}^N B_{2\epsilon}(y_k)$.

(ii) Given $\epsilon > 0$, there exists to $\eta := \epsilon/(1 + \sup_{a \in A} ||a|| + \sup_{s \in [m,M]} ||T(s)||_{\mathcal{L}(Y,Y_1)})$ finitely many $a_i \in A$ such that $A \subset \bigcup_i B_\eta(a_i)$. Moreover, there exists $n \in \mathbb{N}$ such that $||T(s) - T(s')||_{\mathcal{L}(Y,Y_1)} < \eta$ for all $s, s' \in [m, M]$ with $|s - s'| \leq \frac{M-m}{n}$. Then, with $s_j = m + \frac{j}{n}(M-m), j = 0, \ldots, n-1$, we get for $s \in [s_j, s_{j+1}]$ and $a \in B_\eta(a_i)$ that

(2.1)
$$||T(s)a - T(s_j)a_i|| \le ||T(s)a - T(s_j)a|| + ||T(s_j)a - T(s_j)a_i||$$

(2.2)
$$\leq \eta \sup_{a \in A} \|a\| + \eta \sup_{s \in [m,M]} \|T(s)\|_{\mathcal{L}(Y,Y_1)} \leq \epsilon.$$

Hence $T(\cdot)A \subset \bigcup_{i,j} B_{\varepsilon}(T(s_j)a_i)$, proving the precompactness of $T(\cdot)A$ in Y_1 . The second statement is a trivial consequence.

(iii) is well-known, see [6, Proposition 7.2 (d)]. (iv) is easy to prove. \Box

Lemma 2.1 ([37, 18, 2, 3, 1, 19, 25, 23]). For all t > 0 and $\phi \in L^q_{\sigma}$, the following inequalities are satisfied:

(2.3)
$$\|e^{-tA}\phi\|_p \le Ct^{-3/2(1/q-1/p)}\|\phi\|_q \quad \text{when } 1 < q \le p < \infty,$$

(2.4)
$$\|\nabla e^{-tA}\phi\|_p \le Ct^{-1/2-3/2(1/q-1/p)} \|\phi\|_q \quad when \ 1 < q \le p < \infty,$$

where the constant $C = C(p, q, \Omega)$ is independent of ϕ .

It is notable that in the case where Ω is an exterior domain with smooth boundary Iwashita [20] proved that (2.3) holds for $1 < q \leq p < \infty$ and (2.4) holds for $1 < q \leq p \leq 3$. In the Lorentz spaces $L^{p,s}$, similar estimates hold, see [33, 34, 38].

Lemma 2.2. Let $1 and <math>0 < m < M < \infty$.

(i) Let $f \in BUC(\mathbb{R}; L^p)$ and let

$$g(t) := \int_m^M e^{-sA} Pf(t-s) \, ds \text{ for } t \in \mathbb{R}.$$

If $\mathcal{R}(f)$ is precompact in L^p , then $\mathcal{R}(g)$ is precompact in L^p_{σ} .

(ii) Let $F = (F_{ij})_{i,j=1,2,3} \in BUC(\mathbb{R}; L^p)$, and let

$$h(t) := \int_{m}^{M} e^{-sA} P \nabla \cdot F(t-s) \, ds \quad \text{for } t \in \mathbb{R}.$$

If $\mathcal{R}(F)$ is precompact in L^p , then $\mathcal{R}(h)$ is a precompact set in L^{α}_{σ} for all $\alpha \geq p$.

Proof. (i) The main idea is to approximate integrals by Riemannian sums and to use Proposition 2.1.

Let us consider the partition $s_j = m + \frac{jL}{n}$, j = 0, ..., n, where L = M - m, of the interval [m, M], and let $f_t(s) := Pf(t - s)$, $t \in \mathbb{R}$. Then $f_t \in BUC(\mathbb{R}; L^p)$ and $\|f_t\|_{BUC(\mathbb{R}; L^p)} \leq c \|f\|_{BUC(\mathbb{R}; L^p)}$ for each $t \in \mathbb{R}$. Moreover, we recall for any $x \in L^p_{\sigma}$ and $0 < t < s < \infty$ the trivial estimate

(2.5)
$$\begin{aligned} \|(e^{-sA} - e^{-tA})x\|_{p} &= \|(e^{-(s-t)A} - I)e^{-tA}x\|_{p} \\ &\leq \int_{0}^{s-t} \|e^{-\tau A}Ae^{-tA}x\|_{p} d\tau \\ &\leq \frac{c}{t}(s-t)\|x\|_{p}. \end{aligned}$$

Now we get from (2.5) the convergence property

$$\begin{split} & \left| \int_{m}^{M} e^{-sA} f_{t}(s) \, ds - \frac{L}{n} \sum_{j=0}^{n-1} e^{-s_{j}A} f_{t}(s_{j}) \right\|_{p} \\ & \leq \sum_{j=0}^{n-1} \int_{s_{j}}^{s_{j+1}} \left\| e^{-sA} f_{t}(s) - e^{-s_{j}A} f_{t}(s_{j}) \right\|_{p} \, ds \\ & \leq \sum_{j=0}^{n-1} \int_{s_{j}}^{s_{j+1}} \left(\left\| \left(e^{-sA} - e^{-s_{j}A} \right) f_{t}(s) \right) \right\|_{p} + \left\| e^{-s_{j}A} \right\| \|f_{t}(s) - f_{t}(s_{j})\|_{p} \right) \, ds \\ & \leq c \sum_{j=0}^{n-1} \int_{s_{j}}^{s_{j+1}} \left(\frac{s - s_{j}}{s_{j}} \|f_{t}(s)\|_{p} + \|f_{t}(s) - f_{t}(s_{j})\|_{p} \right) \, ds \\ & \leq c \frac{L^{2}}{nm} \|f\|_{BUC(\mathbb{R};L^{p})} + cL \sup_{t} \sup_{|s| \leq L/n} \|f(t) - f(t - s)\|_{p} \\ & \to 0 \end{split}$$

as $n \to \infty$ uniformly in $t \in \mathbb{R}$.

By Proposition 2.1 (ii), (iii), and the norm continuity of the analytic semigroup e^{-sA} in $s \in [m, M]$ the sets $E_0 = \{e^{-sA}f_t(s') : s, s' \in [m, M], t \in \mathbb{R}\}$ and also $E_1 = \{\frac{L}{n}\sum_{j=0}^{n-1}e^{-(m+\frac{jL}{n})A}f_t(m+\frac{jL}{n}); t \in \mathbb{R}, n \in \mathbb{N}\}$ are precompact in L^p_{σ} . Therefore, by Proposition 2.1 (i) and the above convergence, $\mathcal{R}(g) \subset \overline{E}_1$ is precompact in L^p_{σ} as well.

(ii) Let $T := e^{-\frac{m}{2}A}P\nabla$. By a duality argument, it is straightforward to see that the operator T can be extended as a bounded operator from L^p to L^{α}_{σ} for all $\alpha \geq p$. Using this operator, h can be written as follows:

$$h(t) = \int_{\frac{m}{2}}^{M-\frac{m}{2}} e^{-sA} P(TF(t-s-\frac{m}{2})) \, ds.$$

Since $\mathcal{R}(F)$ is precompact in L^p and since $F \in BUC(\mathbb{R}; L^p)$, by Proposition 2.1 (ii) we see that $\mathcal{R}(TF)$ is precompact in L^{α}_{σ} and $TF \in BUC(\mathbb{R}; L^{\alpha}_{\sigma})$ for all $\alpha \geq p$. Then, it follows immediately from part (i) that $\mathcal{R}(h)$ is precompact in L^{α}_{σ} for all $\alpha \geq p$. \Box

Lemma 2.3. Let q, r, l, κ satisfy the hypotheses of Theorem 1. Then there exists a constant $C(q, r, l, \Omega) > 0$ such that

(2.6)
$$\sup_{t} \int_{M}^{\infty} \|e^{-sA}P\nabla \cdot F(t-s)\|_{X} ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} (\|F\|_{L^{\infty}(\mathbb{R};L^{r/2})} + \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa})}),$$

(2.7)
$$\sup_{t} \int_{0}^{m} \|e^{-sA}P\nabla \cdot F(t-s)\|_{X} \, ds \leq C \Big(m^{1-\frac{3}{2q}} \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa})} + m^{\frac{1}{2}-\frac{3}{2l}+\frac{3}{2q}} \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{l})} \Big),$$

$$(2.8) \quad \sup_{t} \int_{M}^{\infty} \|e^{-sA} P(u \cdot \nabla v)(t-s)\|_{X} \, ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} \|u\|_{L^{\infty}(\mathbb{R};X)} \|v\|_{L^{\infty}(\mathbb{R};X)},$$

$$(2.9) \quad \sup_{t} \int_{0}^{m} \|e^{-sA} P(u \cdot \nabla v)(t-s)\|_{X} \, ds \leq Cm^{1-\frac{3}{2q}} \|u\|_{L^{\infty}(\mathbb{R};X)} \|v\|_{L^{\infty}(\mathbb{R};X)},$$

for all $m, M > 0, u, v \in BC(\mathbb{R}; X)$ and all $F \in BC(\mathbb{R}; L^{r/2})$ with $\nabla \cdot F \in L^{\infty}(\mathbb{R}; L^{\kappa} \cap L^{l})$.

Remark 2. (i) X is continuously embedded in L^3_{σ} .

(ii) Letting M = 1, m = 1, by (2.6)-(2.9) we have

(2.10)
$$\sup_{t} \int_{0}^{\infty} \|e^{-sA}P\nabla \cdot F(t-s)\|_{X} \, ds \leq C(\|F\|_{L^{\infty}(\mathbb{R};L^{r/2})} + \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa}\cap L^{l})}),$$
$$\sup_{t} \int_{0}^{\infty} \|e^{-sA}P(u \cdot \nabla v)(t-s)\|_{X} \, ds \leq C\|u\|_{L^{\infty}(\mathbb{R};X)}\|v\|_{L^{\infty}(\mathbb{R};X)}.$$

Proof of Lemma 2.3. This lemma was essentially proven in [22]. Since

$$|(e^{-sA}P\nabla \cdot F,\phi)| = |(F,\nabla e^{-sA}\phi)| \le C||F||_{r/2}s^{-\frac{1}{2}-\frac{3}{2r}}||\phi||_{(1-\frac{1}{r})^{-1}} \text{ for } \phi \in C^{\infty}_{0,\sigma},$$

it holds that

$$\begin{aligned} \|e^{-sA}P\nabla \cdot F\|_{r} &\leq Cs^{-\frac{1}{2}-\frac{3}{2r}} \|F\|_{r/2}, \\ \|e^{-sA}P\nabla \cdot (u\otimes v)\|_{r} &\leq Cs^{-\frac{1}{2}-\frac{3}{2r}} \|u\|_{r} \|v\|_{r}. \end{aligned}$$

Then, since r < 3,

(2.11)
$$\int_{M}^{\infty} \|e^{-sA}P\nabla \cdot F(t-s)\|_{r} \, ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} \|F\|_{L^{\infty}(\mathbb{R};L^{r/2})},$$

(2.12)
$$\int_{M} \|e^{-sA}P\nabla \cdot (u \otimes v)(t-s)\|_{r} ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} \|u\|_{L^{\infty}(\mathbb{R};L^{r})} \|v\|_{L^{\infty}(\mathbb{R};L^{r})}.$$

It is straightforward to see that

$$(2.13) \qquad \int_{M}^{\infty} \|\nabla e^{-sA} P \nabla \cdot F(t-s)\|_{q} \, ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa})},$$

$$(2.14) \qquad \int_{M}^{\infty} \|\nabla e^{-sA} P(u \cdot \nabla v)(t-s)\|_{q} \, ds \leq CM^{\frac{1}{2}-\frac{3}{2r}} \|u\|_{L^{\infty}(\mathbb{R};L^{r})} \|\nabla v\|_{L^{\infty}(\mathbb{R};L^{q})}$$

Hence, from (2.11)-(2.14) we obtain (2.6) and (2.8). Moreover, we get the estimates

(2.15)
$$\int_{0}^{m} \|e^{-sA}P\nabla \cdot F(t-s)\|_{r} ds \leq C \int_{0}^{m} s^{-\frac{3}{2q}} \|\nabla \cdot F(t-s)\|_{L^{\kappa}} ds$$
$$\leq Cm^{1-\frac{3}{2q}} \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa})},$$

(2.16) $\int_{0}^{m} \|e^{-sA}P(u \cdot \nabla v)(t-s)\|_{r} \, ds \leq Cm^{1-\frac{3}{2q}} \|u\|_{L^{\infty}(\mathbb{R};L^{r})} \|\nabla v\|_{L^{\infty}(\mathbb{R};L^{q})},$

as well as

$$(2.17) \qquad \int_{0}^{m} \|\nabla e^{-sA} P \nabla \cdot F(t-s)\|_{q} \, ds \leq C \int_{0}^{m} s^{-\frac{1}{2} - \frac{3}{2}(\frac{1}{l} - \frac{1}{q})} \|\nabla \cdot F(t-s)\|_{l} \, ds$$

$$\leq C m^{\frac{1}{2} - \frac{3}{2l} + \frac{3}{2q}} \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{l})},$$

$$(2.18) \int_{0}^{m} \|\nabla e^{-sA} P(u \cdot \nabla v)(t-s)\|_{q} \, ds \leq C \int_{0}^{m} s^{-\frac{1}{2} - \frac{3}{2}((\frac{1}{q^{*}} + \frac{1}{q}) - \frac{1}{q})} \|u\|_{q^{*}} \|\nabla v\|_{q} \, ds$$

$$\leq C m^{1 - \frac{3}{2q}} \|\nabla u\|_{L^{\infty}(\mathbb{R};L^{q})} \|\nabla v\|_{L^{\infty}(\mathbb{R};L^{q})}$$

where 1/q = 1/q - 1/3. Here we used the Sobolev inequality $||f||_{q^*} \leq C ||\nabla f||_q$ for $f \in X$, see [12, Lemma 3.1]. Hence, from (2.15)–(2.18) we obtain (2.7) and (2.9).

3 Proof of Theorem 1

Proof of Theorem 1. In the same way as in [22, 24], we can construct a solution u to (I.E.) by an iterative procedure. Indeed, let

$$u_0(t) \equiv 0,$$

$$u_{j+1}(t) = \int_{-\infty}^t e^{-(t-s)A} P(-u_j \cdot \nabla u_j + \nabla \cdot F)(s) \, ds$$

$$= -\int_0^\infty e^{-sA} P \nabla \cdot (u_j \otimes u_j)(t-s) \, ds + \int_0^\infty e^{-sA} P \nabla \cdot F(t-s) \, ds$$

$$=: G_j(t) + G_0(t).$$

Then, (2.10) yields that for $h \in \mathbb{R}$,

$$\begin{split} \sup_{t} \|G_{0}(t+h) - G_{0}(t)\|_{X} &\leq C \Big(\sup_{t} \|F(t+h) - F(t)\|_{L^{r/2}} \\ &+ \sup_{t} \|\nabla \cdot F(t+h) - \nabla \cdot F(t)\|_{L^{\kappa} \cap L^{l}} \Big), \\ \sup_{t} \|G_{j}(t+h) - G_{j}(t)\|_{X} &\leq 2C \Big(\sup_{t} \|u_{j}(t)\|_{X}) (\sup_{t} \|u_{j}(t+h) - u_{j}(t)\|_{X} \Big), \end{split}$$

and

$$\|u_{j+1}\|_{L^{\infty}(\mathbb{R};X)} \leq C \left(\|F\|_{L^{\infty}(\mathbb{R};L^{r/2})} + \|\nabla \cdot F\|_{L^{\infty}(\mathbb{R};L^{\kappa}\cap L^{l})} \right) + C \|u_{j}\|_{L^{\infty}(\mathbb{R};X)}^{2},$$

$$\|u_{j+1} - u_{j}\|_{L^{\infty}(\mathbb{R};X)} \leq C \left(\|u_{j}\|_{L^{\infty}(\mathbb{R};X)} + \|u_{j-1}\|_{L^{\infty}(\mathbb{R};X)} \right) \|u_{j} - u_{j-1}\|_{L^{\infty}(\mathbb{R};X)}.$$

By a standard argument, we observe that $G_0, G_j, u_j \in BUC(\mathbb{R}; X)$, the sequence (u_j) is bounded in $BUC(\mathbb{R}; X)$ and converges to a solution u of (I.E.) in $BUC(\mathbb{R}; X)$.

We will show that u has a precompact range in L^3_{σ} . Let

$$G_{0,n}(t) := \int_{1/n}^{n} e^{-sA} P \nabla \cdot F(t-s) \, ds,$$

$$G_{j,n}(t) := \int_{1/n}^{n} e^{-sA} P \nabla \cdot (u_j \otimes u_j)(t-s) \, ds.$$

By Lemma 2.3, we observe that

$$\sup_{t} \|G_{0}(t) - G_{0,n}(t)\|_{3} \leq C \sup_{t} \|G_{0}(t) - G_{0,n}(t)\|_{X}$$
$$\leq \sup_{t} \int_{0}^{1/n} \|e^{-sA}P\nabla \cdot F(t-s)\|_{X} \, ds + \sup_{t} \int_{n}^{\infty} \|e^{-sA}P\nabla \cdot F(t-s)\|_{X} \, ds$$
$$\leq C(n^{-1+\frac{3}{2q}} + n^{-\frac{1}{2}+\frac{3}{2l}-\frac{3}{2q}} + n^{\frac{1}{2}-\frac{3}{2r}}) \to 0 \text{ as } n \to \infty$$

and

$$\begin{split} \sup_{t} \|G_{j}(t) - G_{j,n}(t)\|_{3} &\leq C \sup_{t} \|G_{j}(t) - G_{j,n}(t)\|_{X} \\ &\leq \sup_{t} \int_{0}^{1/n} \|e^{-sA}P\nabla \cdot (u_{j} \otimes u_{j})(t-s)\|_{X} \, ds + \sup_{t} \int_{n}^{\infty} \|e^{-sA}P\nabla \cdot (u_{j} \otimes u_{j})(t-s)\|_{X} \, ds \\ &\leq C(n^{-1+\frac{3}{2q}} + n^{\frac{1}{2} - \frac{3}{2r}}) \to 0 \text{ as } n \to \infty. \end{split}$$

Thus $G_{0,n}$ and $G_{j,n}$ converge to G_0 and G_j in $BC(\mathbb{R}; L^3_{\sigma})$ as $n \to \infty$, respectively. Since Lemma 2.2 (ii) implies that $\mathcal{R}(G_{0,n})$ is precompact in L^3_{σ} for each $n \in \mathbb{N}$, by Proposition 2.1 (i), we see that $\mathcal{R}(G_0)$ is precompact in L^3_{σ} .

If we assume that $\mathcal{R}(u_{j_0})$ is precompact in L^3 for some j_0 , then, by Proposition 2.1 (iv), $\mathcal{R}(u_{j_0} \otimes u_{j_0})$ is precompact in $L^{3/2}$. Hence, in this case, by Lemma 2.2 (ii) we obtain that $\mathcal{R}(G_{j_0,n})$ is precompact in L^3_{σ} and consequently $\mathcal{R}(G_{j_0})$ is precompact in L^3_{σ} . Then we have that $\mathcal{R}(u_{j_0+1})$ is precompact in L^3_{σ} . Therefore, by induction, we conclude that $\mathcal{R}(u_j)$ is precompact in L^3 for each $j \in \mathbb{N}$. Since u_j converges to the mild solution u in $BC(\mathbb{R}; L^3_{\sigma})$, from Proposition 2.1 (i) it follows that $\mathcal{R}(u)$ is precompact in L^3_{σ} . This proves Theorem 1. Acknowledgments. The first and second author greatly acknowledge the support by IRTG 1529 Darmstadt-Tokyo. The second and third authors are supported in part by a Grant-in-Aid for JSPS Fellows No.25002702 and by a Grant-in-Aid for Scientific Research(C) No.23540194, respectively, from the Japan Society for the Promotion of Science.

References

- [1] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer Part 2, $\lambda = 0$ case, J. Math. Fluid Mech, 5 (2003), 245–274.
- [2] W. Borchers and T. Miyakawa, L² decay for Navier-Stokes flow in halfspaces, Math. Ann., 282 (1988), 139–155.
- W. Borchers and T. Miyakawa, Algebraic L² decay for Navier-Stokes flows in exterior domains, Acta Math., 165 (1990), 189–227.
- [4] C. Corduneanu, Almost Periodic Functions, 2nd ed., Chelsea Publ. Company, New York, N.Y., (1989).
- [5] F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions, Math. Meth. Appl. Sci., 31 (2008), 249–277.
- [6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag Berlin Heidelberg Tokyo 1985.
- [7] R. Farwig, H. Kozono and H. Sohr, An L^p-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21–53.
- [8] R. Farwig, T. Nakatsuka and Y. Taniuchi, Uniqueness of solutions on the whole time axis to the Navier-Stokes equations in unbounded domains, Technische Universität Darmstadt, Fachbereich Mathematik, preprint no. 2675 (2013).
- [9] R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249–281.
- [10] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607–643.
- [11] R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with noncompact boundary in L^q-spaces, Math. Nachr., **170** (1994), 53–77.
- [12] R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in L^q-space, Analysis, 16 (1996), 1–26.
- [13] R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains, J. Evol. Equ., 11 (2011), 485–508.

- [14] R. Farwig and Y. Taniuchi, Uniqueness of backward asymptotically almost periodicin-time solutions to Navier-Stokes equations in unbounded domains, Discrete Contin. Dyn. Syst. - Ser. S 6 (2013), 1215-1224.
- [15] D. Fujiwara and H. Morimoto, An L_r-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685–700.
- [16] G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363–406.
- [17] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L^r spaces, Math. Z., **178** (1981), 297–329.
- [18] Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103–130.
- [19] T. Hishida, *The nonstationary Stokes and Navier-Stokes flows through an aperture*, in "Contributions to current challenges in mathematical fluid mechanics," Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 79-123.
- [20] H. Iwashita, $L_q L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in L_q spaces, Math. Ann., **285** (1989), 265–288.
- [21] K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data, Comm. Partial Differential Equations 37 (2012),1717-1753.
- [22] H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., 48 (1996), 33–50.
- [23] T. Kubo, The Stokes and Navier-Stokes Equations in an aperture domain, J. Math. Soc. Japan, 59 (2007), 837–859.
- [24] T. Kubo, Periodic solutions of the Navier-Stokes equations in a perturbed half-space and an aperture domain, Math. Methods Appl. Sci., 28 (2005), 1341–1357.
- [25] T. Kubo and Y. Shibata, On some properties of solutions to the Stokes equation in the half-space and perturbed half-space, in "Dispersive Nonlinear Problems in Mathematical Physics," Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, (2004), 149–220.
- [26] P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503–529.
- [27] P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space, Ric. Mat., 40 (1991), 81–135.
- [28] P. Maremonti and M. Padula, Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, J. Math. Sci. (New York), 93 (1999), 719–746.

- [29] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115–140.
- [30] T. Nakatsuka, On uniqueness of stationary solutions of the Navier-Stokes equation in exterior domains, Nonlinear Anal., 75 (2012), 3457–3464.
- [31] T. Nakatsuka, Uniqueness of steady Navier-Stokes flows in exterior domains, Funkcial. Ekvac., 56 (2013), 323–337.
- [32] R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, in "Navier-Stokes Equations and Related Nonlinear Problems" (ed. A. Sequeira) (Funchal, 1994), Plenum, New York, (1995), 63–73.
- [33] Y. Shibata, On a stability theorem of the Navier-Stokes equations in a three dimensional exterior domain, Tosio Kato's method and principle for evolution equations in mathematical physics (Sapporo, 2001). Surikaisekikenkyusho Kokyuroku 1234 (2001), 146–172.
- [34] Y. Shibata, On some stability theorems about viscous fluid flow, Quad. Sem. Mat. Brescia, 01 (2003).
- [35] C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in L^q-spaces for bounded and exterior domains, in "Mathematical Problems Relating to the Navier-Stokes Equation" (ed. G. P. Galdi), Series Adv. Math. Appl. Sci., **11**, World Scientific, River Edge, NJ, (1992), 1–35.
- [36] Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains, Math. Z., **261** (2009), 597–615.
- [37] S. Ukai, A solution formula for the Stokes equation in \mathbb{R}^n_+ , Comm. Pure Appl. Math., 40 (1987), 611–621.
- [38] M. Yamazaki, The Navier-Stokes equations in the weak-Lⁿ space with time-dependent external force, Math. Ann., 317 (2000), 635–675.