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Abstract

We present an existence theorem of mild solutions on the whole time axis to the
Navier-Stokes equations in unbounded domains Ω ⊂ R3 having precompact range
in L3(Ω), if the external force is small and has precompact range in some function
space. In our forthcoming paper [8] we proved the uniqueness of such solutions.
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1 Introduction

The motion of a viscous incompressible fluid in domains Ω ⊂ R3 is governed by the

Navier-Stokes equations:

(N-S)


∂tu−∆u+ u · ∇u+∇p = f, t ∈ R, x ∈ Ω,

div u = 0, t ∈ R, x ∈ Ω,
u|∂Ω = 0, t ∈ R,

where u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the velocity vector and the

pressure, respectively, of the fluid at the point (x, t) ∈ Ω× R. Here f is a given external

force. In this paper we consider mild solutions to (N-S) in unbounded domains Ω which are

bounded on the whole time axis. Typical examples of such solutions are periodic-in-time

and almost periodic-in-time solutions.
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In case where Ω ⊂ R3 is bounded, the existence and uniqueness of time-periodic solu-

tions were considered by several authors; see e.g. [9] and references therein. Maremonti

[26, 27] was the first to prove the existence of unique time-periodic regular solutions to

(N-S) in unbounded domains, namely for Ω = R3 and Ω = R3
+. In the case of more general

unbounded domains, the existence of time-periodic solutions was proven by Kozono-Nakao

[22], Maremonti-Padula [28], Salvi [32], Yamazaki [38], Galdi-Sohr [16], Kubo [24], Crispo-

Maremonti [5] and Kang-Miura-Tsai [21]. In [38, 21], solutions in L3,∞, the weak L3 space,

were dealt with. Without time-periodic condition on f , the existence of mild solutions

bounded on the whole time axis was also shown in [22], [38] and [21].

Concerning the uniqueness of solutions bounded on the whole time-axis, roughly speak-

ing, it was shown in [26, 27, 22, 28, 38, 24, 5] that a small solution in some function spaces

(e.g. BC(R;L3,∞(Ω))) is unique within the class of solutions which are sufficiently small;

i.e., if u and v are solutions for the same force f and if both of them are small, then u = v.

In [16], it was shown that a small time-periodic solution is unique within the larger class

of all periodic weak solutions v with ∇v ∈ L2(0, T ;L2), satisfying the energy inequality∫ T
0
‖∇v‖2

L2 dτ ≤ −
∫ T

0
(F,∇v) dτ and mild integrability conditions on the corresponding

pressure; here T is a period of F and f = ∇ · F .

Another type of uniqueness theorem for L3,∞-solution bounded on the whole time axis

was proven in our previous paper [8] without assuming the energy inequality or time-

periodic condition. In the case of an exterior domain Ω ⊂ R3, the whole space R3, the

halfspace R3
+, a perturbed halfspace, or an aperture domain, it was shown in [8] that if u

and v are solutions in

(1.1) BC(R; L̃3,∞)

for the same force f , one of them is small in L3,∞ and if the other solution has a precompact

range in L3,∞, then u = v. Here L̃3,∞ := L3,∞
σ ∩ L∞

‖·‖L3,∞
. See also [36, 13, 14, 30, 31].

This uniqueness theorem is applicable to time-periodic and almost periodic solutions given

in [22, 38], since continuous time-periodic and almost periodic-in-time L3,∞-solutions u

have a precompact range R(u) = {u(t); t ∈ R} in L3,∞, see [4, Theorem 6.5]. Note that

there exist many functions which have a precompact range and are not almost periodic,

e.g. a sin(t2) for a 6= 0. Hence, the set of functions with precompact range is much larger

than the set of almost periodic functions.

While in [8] we proved the uniqueness theorem of solutions on R with precompact

range as mentioned above, the existence theorem of such solutions was not known except

in the special case where f is almost periodic. In the present paper, we prove existence
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of continuous solutions u having precompact range R(u) in L3 on the whole time axis,

if the external force is small and has precompact range in some function space and if Ω

satisfies the following Assumption 1.

Assumption 1 Ω ⊂ R3 is the half-space R3
+, the whole space R3, an infinite layer, a

perturbed half-space, or an aperture domain with ∂Ω ∈ C2,1.

For the definitions of infinite layers, perturbed half-spaces and aperture domains, see

Abe-Shibata [1], Kubo-Shibata [25] and Farwig-Sohr [10, 11].

Let BUC(R;Y ) denote the set of all bounded uniformly continuous functions on R
with values in a Banach space Y . Now our main result reads as follows:

Theorem 1. Let Ω ⊂ R3 be a domain satisfying Asssumption 1. Moreover, let q, r, l

satisfy 3/2 < q < 3, 2 < r < 3, 1/κ := 1/r + 1/q < 1 and (1/3 + 1/q)−1 < l < q and let

X := {v ∈ Lrσ ; ∇v ∈ Lq} with norm ‖v‖X := ‖v‖Lr + ‖∇v‖Lq .

There exists a number ε = ε(q, r, l,Ω) > 0 with the following property: Let f have the

form f = ∇ · F with F ∈ BUC(R;Lr/2) and ∇ · F ∈ BUC(R;Lκ ∩ Ll),

(1.2) sup
t
‖∇ · F (t)‖Lκ∩Ll + sup

t
‖F (t)‖Lr/2 < ε

and let the rangeR(F ) be precompact in Lr/2. Then there exists a solution u ∈ BUC(R;X)

of the integral equation

(I.E.) u(t) =

∫ t

−∞
e−(t−s)AP (−u · ∇u+∇ · F )(s) ds

such that R(u) is precompact in L3
σ. Here L3

σ, the Stokes operator A and the Helmholtz

operator P are defined in the next section.

Remark 1. (i) The existence of L3-solutions to (I.E.) was proven by Kozono-Nakao

[22] and Kubo [24] with a smallness condition on f slightly different from (1.2).

(ii) Thanks to the uniqueness theorem in [8], the small solution given in Theorem 1 is

unique within the class of all solutions in BC(R;L3
σ) having a precompact range in L3.

(iii) Since C∞0,σ is dense in L3
σ and since R(u) is precompact in L3

σ, we see that u has

a uniform decay property in the following sense:

lim
R→∞

sup
t∈R
‖u(t)‖L3({|x|>R}) = 0.
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2 Notations and Key lemmata

In this section, we introduce some notation and key lemmata. Let C∞0,σ(Ω) = C∞0,σ denote

the set of all C∞-real vector fields φ = (φ1, φ2, φ3) with compact support in Ω such that

div φ = 0. Then Lrσ, 1 < r < ∞, is the closure of C∞0,σ with respect to the Lr-norm

‖ · ‖r. Concerning Sobolev spaces we use the notations W k,p(Ω) and W k,p
0 (Ω), k ∈ N,

1 ≤ p ≤ ∞. Note that very often we will simply write Lr and W k,p instead of Lr(Ω) and

W k,p(Ω), respectively. The symbol (·, ·) denotes the L2- inner product and the duality

pairing between Lp and Lp
′
, where 1/p+ 1/p′ = 1.

In this paper, we denote by C various constants. In particular, C = C(∗, · · · , ∗)
denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: Lr(Ω) = Lrσ ⊕ Gr (1 < r < ∞), where

Gr = {∇p ∈ Lr; p ∈ Lrloc(Ω)}, see Fujiwara-Morimoto [15], Miyakawa [29], Simader-

Sohr [35], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata [1]; then Pr

denotes the projection operator from Lr onto Lrσ along Gr. The Stokes operator on Lrσ

is defined by Ar = −Pr∆ with domain D(Ar) = W 2,r ∩ W 1,r
0 ∩ Lrσ. It is known that

(Lrσ)∗ (the dual space of Lrσ) = Lr
′
σ and A∗r (the adjoint operator of Ar) = Ar′ . It is shown

by Giga [17], Giga-Sohr [18], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata

[1] that −Ar generates a uniformly bounded holomorphic semigroup {e−tAr ; t ≥ 0} of class

C0 in Lrσ. Since Pru = Pqu for all u ∈ Lr ∩ Lq (1 < r, q < ∞) and since Aru = Aqu for

all u ∈ D(Ar)∩D(Aq), for simplicity, we shall abbreviate Pru, Pqu as Pu for u ∈ Lr ∩Lq

and Aru,Aqu as Au for u ∈ D(Ar) ∩D(Aq), respectively.

Proposition 2.1. Let Y and Y1 be Banach spaces, let L(Y, Y1) denote the space of bounded

linear operators from Y to Y1, and let Br(y) be the open ball of radius r > 0 and center

y in Y or Y1.

(i) Let (fj) be a sequence in BC(R;Y ). Assume that for each j the range R(fj) :=

{fj(t); t ∈ R} is precompact in Y and fj converges to a function f in BC(R;Y ). Then

R(f) is precompact in Y .

(ii) Let A ⊂ Y be precompact, and let T (·) : [m,M ] → L(Y, Y1) be continuous. Then

the set T (·)A = {T (s)a : s ∈ [m,M ], a ∈ A} is precompact in Y1. In particular, if

f ∈ BC(R;Y ) has precompact range R(f) in Y and T ∈ L(Y, Y1), then R(Tf) :=

{Tf(t); t ∈ R} is precompact in B1.

(iii) Let A ⊂ Y be precompact. Then the convex hull conv(A) is precompact in Y .

(iv) Let 1 < p < ∞, f = (f1, f2, f3) ∈ BC(R;Lp) and R(f) be precompact in Lp.

Then, R(f ⊗ f) is precompact in (Lp/2)3×3.
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Proof. (i) Let ε > 0 be fixed. By the assumption, we find j0 ∈ N such that supt ‖f(t) −
fj0(t)‖Y < ε. Since R(fj0) ⊂ Y is precompact, there exists a finite set {y1, . . . , yN} ⊂ B

such that R(fj0) ⊂
⋃N
k=1 Bε(yk). Hence, we conclude that R(f) ⊂

⋃N
k=1B2ε(yk).

(ii) Given ε > 0, there exists to η := ε/
(
1 + supa∈A ‖a‖ + sups∈[m,M ] ‖T (s)‖L(Y,Y1)

)
finitely many ai ∈ A such that A ⊂

⋃
iBη(ai). Moreover, there exists n ∈ N such

that ‖T (s) − T (s′)‖L(Y,Y1) < η for all s, s′ ∈ [m,M ] with |s − s′| ≤ M−m
n

. Then, with

sj = m+ j
n
(M −m), j = 0, . . . , n− 1, we get for s ∈ [sj, sj+1] and a ∈ Bη(ai) that

‖T (s)a− T (sj)ai‖ ≤ ‖T (s)a− T (sj)a‖+ ‖T (sj)a− T (sj)ai‖(2.1)

≤ η sup
a∈A
‖a‖+ η sup

s∈[m,M ]

‖T (s)‖L(Y,Y1) ≤ ε.(2.2)

Hence T (·)A ⊂
⋃
i,j Bε(T (sj)ai), proving the precompactness of T (·)A in Y1. The second

statement is a trivial consequence.

(iii) is well-known, see [6, Proposition 7.2 (d)]. (iv) is easy to prove.

Lemma 2.1 ([37, 18, 2, 3, 1, 19, 25, 23]). For all t > 0 and φ ∈ Lqσ, the following

inequalities are satisfied:

(2.3) ‖e−tAφ‖p ≤ Ct−3/2(1/q−1/p)‖φ‖q when 1 < q ≤ p <∞,

(2.4) ‖∇e−tAφ‖p ≤ Ct−1/2−3/2(1/q−1/p)‖φ‖q when 1 < q ≤ p <∞,

where the constant C = C(p, q,Ω) is independent of φ.

It is notable that in the case where Ω is an exterior domain with smooth boundary

Iwashita [20] proved that (2.3) holds for 1 < q ≤ p <∞ and (2.4) holds for 1 < q ≤ p ≤ 3.

In the Lorentz spaces Lp,s, similar estimates hold, see [33, 34, 38].

Lemma 2.2. Let 1 < p <∞ and 0 < m < M <∞.

(i) Let f ∈ BUC(R;Lp) and let

g(t) :=

∫ M

m

e−sAPf(t− s) ds for t ∈ R.

If R(f) is precompact in Lp, then R(g) is precompact in Lpσ.

(ii) Let F = (Fij)i,j=1,2,3 ∈ BUC(R;Lp), and let

h(t) :=

∫ M

m

e−sAP∇ · F (t− s) ds for t ∈ R.

If R(F ) is precompact in Lp, then R(h) is a precompact set in Lασ for all α ≥ p.
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Proof. (i) The main idea is to approximate integrals by Riemannian sums and to use

Proposition 2.1.

Let us consider the partition sj = m + jL
n
, j = 0, . . . , n, where L = M − m, of

the interval [m,M ], and let ft(s) := Pf(t − s), t ∈ R. Then ft ∈ BUC(R;Lp) and

‖ft‖BUC(R;Lp) ≤ c‖f‖BUC(R;Lp) for each t ∈ R. Moreover, we recall for any x ∈ Lpσ and

0 < t < s <∞ the trivial estimate

‖(e−sA − e−tA)x‖p = ‖(e−(s−t)A − I)e−tAx‖p

≤
∫ s−t

0

‖e−τAAe−tAx‖p dτ(2.5)

≤ c

t
(s− t)‖x‖p.

Now we get from (2.5) the convergence property∥∥∥∫ M

m

e−sAft(s) ds−
L

n

n−1∑
j=0

e−sjAft(sj)
∥∥∥
p

≤
n−1∑
j=0

∫ sj+1

sj

∥∥e−sAft(s)− e−sjAft(sj)∥∥p ds
≤

n−1∑
j=0

∫ sj+1

sj

(∥∥(e−sA − e−sjA)ft(s))∥∥p + ‖e−sjA‖‖ft(s)− ft(sj)‖p
)
ds

≤ c
n−1∑
j=0

∫ sj+1

sj

(s− sj
sj
‖ft(s)‖p + ‖ft(s)− ft(sj)‖p

)
ds

≤ c
L2

nm
‖f‖BUC(R;Lp) + cL sup

t
sup
|s|≤L/n

‖f(t)− f(t− s)‖p

→ 0

as n→∞ uniformly in t ∈ R.

By Proposition 2.1 (ii), (iii), and the norm continuity of the analytic semigroup

e−sA in s ∈ [m,M ] the sets E0 = {e−sAft(s′) : s, s′ ∈ [m,M ], t ∈ R} and also E1 =

{L
n

∑n−1
j=0 e

−(m+ jL
n

)Aft(m+ jL
n

); t ∈ R, n ∈ N} are precompact in Lpσ. Therefore, by Propo-

sition 2.1 (i) and the above convergence, R(g) ⊂ E1 is precompact in Lpσ as well.

(ii) Let T := e−
m
2
AP∇·. By a duality argument, it is straightforward to see that the

operator T can be extended as a bounded operator from Lp to Lασ for all α ≥ p. Using

this operator, h can be written as follows:

h(t) =

∫ M−m
2

m
2

e−sAP (TF (t− s− m

2
)) ds.

6



Since R(F ) is precompact in Lp and since F ∈ BUC(R;Lp), by Proposition 2.1 (ii) we see

that R(TF ) is precompact in Lασ and TF ∈ BUC(R;Lασ) for all α ≥ p. Then, it follows

immediately from part (i) that R(h) is precompact in Lασ for all α ≥ p.

Lemma 2.3. Let q, r, l, κ satisfy the hypotheses of Theorem 1. Then there exists a con-

stant C(q, r, l,Ω) > 0 such that

sup
t

∫ ∞
M

‖e−sAP∇ · F (t− s)‖X ds ≤ CM
1
2
− 3

2r

(
‖F‖L∞(R;Lr/2)(2.6)

+‖∇ · F‖L∞(R;Lκ)

)
,

sup
t

∫ m

0

‖e−sAP∇ · F (t− s)‖X ds ≤ C
(
m1− 3

2q ‖∇ · F‖L∞(R;Lκ)(2.7)

+m
1
2
− 3

2l
+ 3

2q ‖∇ · F‖L∞(R;Ll)

)
,

sup
t

∫ ∞
M

‖e−sAP (u · ∇v)(t− s)‖X ds ≤ CM
1
2
− 3

2r ‖u‖L∞(R;X)‖v‖L∞(R;X),(2.8)

sup
t

∫ m

0

‖e−sAP (u · ∇v)(t− s)‖X ds ≤ Cm1− 3
2q ‖u‖L∞(R;X)‖v‖L∞(R;X)(2.9)

for all m,M > 0, u, v ∈ BC(R;X) and all F ∈ BC(R;Lr/2) with ∇·F ∈ L∞(R;Lκ∩Ll).

Remark 2. (i) X is continuously embedded in L3
σ.

(ii) Letting M = 1,m = 1, by (2.6)-(2.9) we have

sup
t

∫ ∞
0

‖e−sAP∇ · F (t− s)‖X ds ≤ C(‖F‖L∞(R;Lr/2) + ‖∇ · F‖L∞(R;Lκ∩Ll)),

sup
t

∫ ∞
0

‖e−sAP (u · ∇v)(t− s)‖X ds ≤ C‖u‖L∞(R;X)‖v‖L∞(R;X).

(2.10)

Proof of Lemma 2.3. This lemma was essentially proven in [22]. Since

|(e−sAP∇ · F, φ)| = |(F,∇e−sAφ)| ≤ C‖F‖r/2s−
1
2
− 3

2r ‖φ‖(1− 1
r

)−1 for φ ∈ C∞0,σ,

it holds that

‖e−sAP∇ · F‖r ≤ Cs−
1
2
− 3

2r ‖F‖r/2,

‖e−sAP∇ · (u⊗ v)‖r ≤ Cs−
1
2
− 3

2r ‖u‖r‖v‖r.

Then, since r < 3,∫ ∞
M

‖e−sAP∇ · F (t− s)‖r ds ≤ CM
1
2
− 3

2r ‖F‖L∞(R;Lr/2),(2.11) ∫ ∞
M

‖e−sAP∇ · (u⊗ v)(t− s)‖r ds ≤ CM
1
2
− 3

2r ‖u‖L∞(R;Lr)‖v‖L∞(R;Lr).(2.12)
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It is straightforward to see that∫ ∞
M

‖∇e−sAP∇ · F (t− s)‖q ds ≤ CM
1
2
− 3

2r ‖∇ · F‖L∞(R;Lκ),(2.13) ∫ ∞
M

‖∇e−sAP (u · ∇v)(t− s)‖q ds ≤ CM
1
2
− 3

2r ‖u‖L∞(R;Lr)‖∇v‖L∞(R;Lq).(2.14)

Hence, from (2.11)–(2.14) we obtain (2.6) and (2.8). Moreover, we get the estimates∫ m

0

‖e−sAP∇ · F (t− s)‖r ds ≤ C

∫ m

0

s−
3
2q ‖∇ · F (t− s)‖Lκ ds(2.15)

≤ Cm1− 3
2q ‖∇ · F‖L∞(R;Lκ),∫ m

0

‖e−sAP (u · ∇v)(t− s)‖r ds ≤ Cm1− 3
2q ‖u‖L∞(R;Lr)‖∇v‖L∞(R;Lq),(2.16)

as well as∫ m

0

‖∇e−sAP∇ · F (t− s)‖q ds ≤ C

∫ m

0

s−
1
2
− 3

2
( 1
l
− 1
q

)‖∇ · F (t− s)‖l ds(2.17)

≤ Cm
1
2
− 3

2l
+ 3

2q ‖∇ · F‖L∞(R;Ll),∫ m

0

‖∇e−sAP (u · ∇v)(t− s)‖q ds ≤ C

∫ m

0

s−
1
2
− 3

2
(( 1
q∗+ 1

q
)− 1

q
)‖u‖q∗‖∇v‖q ds(2.18)

≤ Cm1− 3
2q ‖∇u‖L∞(R;Lq)‖∇v‖L∞(R;Lq)

where 1/q∗ = 1/q−1/3. Here we used the Sobolev inequality ‖f‖q∗ ≤ C‖∇f‖q for f ∈ X,

see [12, Lemma 3.1]. Hence, from (2.15)–(2.18) we obtain (2.7) and (2.9).

3 Proof of Theorem 1

Proof of Theorem 1. In the same way as in [22, 24], we can construct a solution u to

(I.E.) by an iterative procedure. Indeed, let

u0(t) ≡ 0,

uj+1(t) =

∫ t

−∞
e−(t−s)AP (−uj · ∇uj +∇ · F )(s) ds

=−
∫ ∞

0

e−sAP∇ · (uj ⊗ uj)(t− s) ds+

∫ ∞
0

e−sAP∇ · F (t− s) ds

=: Gj(t) +G0(t).

(3.1)

Then, (2.10) yields that for h ∈ R,

sup
t
‖G0(t+ h)−G0(t)‖X ≤C

(
sup
t
‖F (t+ h)− F (t)‖Lr/2

+ sup
t
‖∇ · F (t+ h)−∇ · F (t)‖Lκ∩Ll

)
,

sup
t
‖Gj(t+ h)−Gj(t)‖X ≤2C

(
sup
t
‖uj(t)‖X)(sup

t
‖uj(t+ h)− uj(t)‖X

)
,
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and

‖uj+1‖L∞(R;X) ≤C
(
‖F‖L∞(R;Lr/2) + ‖∇ · F‖L∞(R;Lκ∩Ll)

)
+ C‖uj‖2

L∞(R;X),

‖uj+1 − uj‖L∞(R;X) ≤C
(
‖uj‖L∞(R;X) + ‖uj−1‖L∞(R;X)

)
‖uj − uj−1‖L∞(R;X).

By a standard argument, we observe that G0, Gj, uj ∈ BUC(R;X), the sequence (uj) is

bounded in BUC(R;X) and converges to a solution u of (I.E.) in BUC(R;X).

We will show that u has a precompact range in L3
σ. Let

G0,n(t) :=

∫ n

1/n

e−sAP∇ · F (t− s) ds,

Gj,n(t) :=

∫ n

1/n

e−sAP∇ · (uj ⊗ uj)(t− s) ds.

By Lemma 2.3, we observe that

sup
t
‖G0(t)−G0,n(t)‖3 ≤ C sup

t
‖G0(t)−G0,n(t)‖X

≤ sup
t

∫ 1/n

0

‖e−sAP∇ · F (t− s)‖X ds+ sup
t

∫ ∞
n

‖e−sAP∇ · F (t− s)‖X ds

≤C(n−1+ 3
2q + n−

1
2

+ 3
2l
− 3

2q + n
1
2
− 3

2r )→ 0 as n→∞

and

sup
t
‖Gj(t)−Gj,n(t)‖3 ≤ C sup

t
‖Gj(t)−Gj,n(t)‖X

≤ sup
t

∫ 1/n

0

‖e−sAP∇ · (uj ⊗ uj)(t− s)‖X ds+ sup
t

∫ ∞
n

‖e−sAP∇ · (uj ⊗ uj)(t− s)‖X ds

≤C(n−1+ 3
2q + n

1
2
− 3

2r )→ 0 as n→∞.

Thus G0,n and Gj,n converge to G0 and Gj in BC(R;L3
σ) as n → ∞, respectively. Since

Lemma 2.2 (ii) implies that R(G0,n) is precompact in L3
σ for each n ∈ N, by Proposition

2.1 (i), we see that R(G0) is precompact in L3
σ.

If we assume that R(uj0) is precompact in L3 for some j0, then, by Proposition 2.1

(iv), R(uj0 ⊗uj0) is precompact in L3/2. Hence, in this case, by Lemma 2.2 (ii) we obtain

that R(Gj0,n) is precompact in L3
σ and consequently R(Gj0) is precompact in L3

σ. Then

we have that R(uj0+1) is precompact in L3
σ. Therefore, by induction, we conclude that

R(uj) is precompact in L3 for each j ∈ N. Since uj converges to the mild solution u in

BC(R;L3
σ), from Proposition 2.1 (i) it follows that R(u) is precompact in L3

σ. This proves

Theorem 1.

9



Acknowledgments. The first and second author greatly acknowledge the support by

IRTG 1529 Darmstadt-Tokyo. The second and third authors are supported in part by

a Grant-in-Aid for JSPS Fellows No.25002702 and by a Grant-in-Aid for Scientific Re-

search(C) No.23540194, respectively, from the Japan Society for the Promotion of Science.

References

[1] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite
layer Part 2, λ = 0 case, J. Math. Fluid Mech, 5 (2003), 245–274.

[2] W. Borchers and T. Miyakawa, L2 decay for Navier-Stokes flow in halfspaces, Math.
Ann., 282 (1988), 139–155.

[3] W. Borchers and T. Miyakawa, Algebraic L2 decay for Navier-Stokes flows in exterior
domains, Acta Math., 165 (1990), 189–227.

[4] C. Corduneanu, Almost Periodic Functions, 2nd ed., Chelsea Publ. Company, New
York, N.Y., (1989).

[5] F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global
existence with bounded flux and time-periodic solutions, Math. Meth. Appl. Sci., 31
(2008), 249–277.

[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag Berlin Heidelberg
Tokyo 1985.

[7] R. Farwig, H. Kozono and H. Sohr, An Lp-approach to Stokes and Navier-Stokes
equations in general domains, Acta Math., 195 (2005), 21–53.

[8] R. Farwig, T. Nakatsuka and Y. Taniuchi, Uniqueness of solutions on the whole time
axis to the Navier-Stokes equations in unbounded domains, Technische Universität
Darmstadt, Fachbereich Mathematik, preprint no. 2675 (2013).

[9] R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with
inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56
(2010), 249–281.

[10] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in
bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607–643.

[11] R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with
noncompact boundary in Lq-spaces, Math. Nachr., 170 (1994), 53–77.

[12] R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for
aperture domains in Lq-space, Analysis, 16 (1996), 1–26.

[13] R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to
Navier-Stokes equations in unbounded domains, J. Evol. Equ., 11 (2011), 485–508.

10



[14] R. Farwig and Y. Taniuchi, Uniqueness of backward asymptotically almost periodic-
in-time solutions to Navier-Stokes equations in unbounded domains, Discrete Contin.
Dyn. Syst. - Ser. S 6 (2013), 1215-1224.

[15] D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of
vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685–700.

[16] G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically
reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004),
363–406.

[17] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces,
Math. Z., 178 (1981), 297–329.

[18] Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ.
Tokyo Sect. IA Math., 36 (1989), 103–130.

[19] T. Hishida, The nonstationary Stokes and Navier-Stokes flows through an aperture, in
“Contributions to current challenges in mathematical fluid mechanics,” Adv. Math.
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