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to the Navier-Stokes equations
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Abstract

We present an existence theorem of mild solutions on the whole time axis to the
Navier-Stokes equations in unbounded domains €2 C R? having precompact range
in L3(12), if the external force is small and has precompact range in some function
space. In our forthcoming paper [8] we proved the uniqueness of such solutions.
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1 Introduction

The motion of a viscous incompressible fluid in domains @ C R? is governed by the
Navier-Stokes equations:
ou—Au+u-Vu+Vp = f, teR, xe€Q,
(N-S) diveu = 0, teR, ze,
u\ oo = 0, teR,
where u = (ul(xz,t),u*(x,t),u3(z,t)) and p = p(x,t) denote the velocity vector and the
pressure, respectively, of the fluid at the point (z,f) € Q x R. Here f is a given external
force. In this paper we consider mild solutions to (N-S) in unbounded domains €2 which are
bounded on the whole time axis. Typical examples of such solutions are periodic-in-time

and almost periodic-in-time solutions.
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In case where € C R? is bounded, the existence and uniqueness of time-periodic solu-
tions were considered by several authors; see e.g. [9] and references therein. Maremonti
[26, 27] was the first to prove the existence of unique time-periodic regular solutions to
(N-S) in unbounded domains, namely for 2 = R? and Q2 = R?. In the case of more general
unbounded domains, the existence of time-periodic solutions was proven by Kozono-Nakao
[22], Maremonti-Padula [28], Salvi [32], Yamazaki [38], Galdi-Sohr [16], Kubo [24], Crispo-
Maremonti [5] and Kang-Miura-Tsai [21]. In [38, 21], solutions in L**°, the weak L? space,
were dealt with. Without time-periodic condition on f, the existence of mild solutions
bounded on the whole time axis was also shown in [22], [38] and [21].

Concerning the uniqueness of solutions bounded on the whole time-axis, roughly speak-
ing, it was shown in [26, 27, 22, 28, 38, 24, 5] that a small solution in some function spaces
(e.g. BC(R; L*>*>(2))) is unique within the class of solutions which are sufficiently small;
i.e., if u and v are solutions for the same force f and if both of them are small, then u = v.
In [16], it was shown that a small time-periodic solution is unique within the larger class
of all periodic weak solutions v with Vv € L?(0,T’; L?), satisfying the energy inequality
fOT Vo3, dr < — fOT(F , Vv)dr and mild integrability conditions on the corresponding
pressure; here T is a period of F'and f =V - F.

Another type of uniqueness theorem for L3*-solution bounded on the whole time axis
was proven in our previous paper [8] without assuming the energy inequality or time-
periodic condition. In the case of an exterior domain 2 C R3, the whole space R3, the
halfspace R3, a perturbed halfspace, or an aperture domain, it was shown in [8] that if u

and v are solutions in

(1.1) BC(R; L**)

for the same force f, one of them is small in L>* and if the other solution has a precompact
~ 30— llseo

range in L3>, then u = v. Here L3 := Ly>® N L 2% See also (36, 13, 14, 30, 31].

This uniqueness theorem is applicable to time-periodic and almost periodic solutions given
in [22, 38], since continuous time-periodic and almost periodic-in-time L**-solutions u
have a precompact range R(u) = {u(t);t € R} in L3>, see [4, Theorem 6.5]. Note that
there exist many functions which have a precompact range and are not almost periodic,
e.g. asin(t?) for a # 0. Hence, the set of functions with precompact range is much larger
than the set of almost periodic functions.

While in [8] we proved the uniqueness theorem of solutions on R with precompact
range as mentioned above, the existence theorem of such solutions was not known except

in the special case where f is almost periodic. In the present paper, we prove existence



of continuous solutions u having precompact range R(u) in L? on the whole time axis,
if the external force is small and has precompact range in some function space and if 2

satisfies the following Assumption 1.

Assumption 1 Q C R? is the half-space R, the whole space R?, an infinite layer, a
perturbed half-space, or an aperture domain with 0Q € C**.

For the definitions of infinite layers, perturbed half-spaces and aperture domains, see
Abe-Shibata [1], Kubo-Shibata [25] and Farwig-Sohr [10, 11].

Let BUC(R;Y') denote the set of all bounded uniformly continuous functions on R

with values in a Banach space Y. Now our main result reads as follows:

Theorem 1. Let Q C R?® be a domain satisfying Asssumption 1. Moreover, let q,r,1
satisfy 3/2 < q<3,2<r<3,1/k:=1/r+1/g<1and (1/3+1/q) "t <1< q and let

X :={vell; Vve L} with norm ||v|x = |v|- + || Vv La-

There ezists a number € = €(q,r,1,Q) > 0 with the following property: Let f have the
form f =V - F with F € BUC(R;L"/?) and V- F € BUC(R; L" N L}),

(1.2 Sup [V + F(O) e+ sup | F(O)] s < ¢

and let the range R(F) be precompact in L'/?. Then there exists a solutionu € BUC(R; X)

of the integral equation

t
(LE)  u(t) = / e IAP(_y . Vu+ V- F)(s) ds
such that R(u) is precompact in L3. Here L3, the Stokes operator A and the Helmholtz

operator P are defined in the next section.

Remark 1. (i) The existence of L*-solutions to (L.E.) was proven by Kozono-Nakao
[22] and Kubo [24] with a smallness condition on f slightly different from (1.2).
(ii) Thanks to the uniqueness theorem in [8], the small solution given in Theorem 1 is

unique within the class of all solutions in BC(R; L?) having a precompact range in L.
3

o)

(iii) Since Cg%, is dense in L} and since R(u) is precompact in L}, we see that u has

a uniform decay property in the following sense:

lim sup ||w(t)||L3({e/>r}) = O

R—o0 teR



2 Notations and Key lemmata

In this section, we introduce some notation and key lemmata. Let C§% (2) = C§% denote
the set of all C™-real vector fields ¢ = (¢!, ¢?, $®) with compact support in  such that
div¢ = 0. Then L7, 1 < r < oo, is the closure of (g, with respect to the L"-norm
| - ||. Concerning Sobolev spaces we use the notations W#*?(Q) and Wi?(Q), k € N,
1 < p < co. Note that very often we will simply write L™ and W*? instead of L"(Q) and
WHP(Q), respectively. The symbol (-,-) denotes the L?- inner product and the duality
pairing between LP and L?, where 1/p +1/p/ = 1.

In this paper, we denote by C' various constants. In particular, C' = C(x,--- %)
denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: L"(2) = LI & G, (1 < r < o0), where
G, = {Vp € L";p € L ()}, see Fujiwara-Morimoto [15], Miyakawa [29], Simader-
Sohr [35], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata [1]; then P,
denotes the projection operator from L" onto L[ along G,.. The Stokes operator on L
is defined by A, = —P,A with domain D(A,) = W?" N WOI’T N Ly. It is known that
(L-)* (the dual space of L7) = L and A* (the adjoint operator of A,) = A,.. It is shown
by Giga [17], Giga-Sohr [18], Borchers-Miyakawa [2], Farwig-Sohr [10, 12] and Abe-Shibata
[1] that — A, generates a uniformly bounded holomorphic semigroup {e=*47;¢ > 0} of class
Co in L. Since Pu = Pyu for all w € L"N LY (1 < r,q < oo) and since A,u = Aju for
all u € D(A,) N D(A,), for simplicity, we shall abbreviate P.u, P,u as Pu for u € L" N L%
and A,u, A,u as Au for u € D(A,) N D(4,), respectively.

Proposition 2.1. Let Y andY; be Banach spaces, let L(Y,Y7) denote the space of bounded
linear operators from 'Y to Yy, and let B,(y) be the open ball of radius r > 0 and center
yinY orY.

(1) Let (f;) be a sequence in BC(R;Y'). Assume that for each j the range R(f;) =
{f;(t);t € R} is precompact in'Y and f; converges to a function f in BC(R;Y). Then
R(f) is precompact in Y .

(i) Let A C'Y be precompact, and let T(-) : [m, M] — L(Y,Y1) be continuous. Then
the set T(-)A = {T(s)a : s € [m,M],a € A} is precompact in Yi. In particular, if
f € BC(R;Y) has precompact range R(f) in Y and T € L(Y,Y1), then R(Tf) =
{Tf(t);t € R} is precompact in Bj.

(i11) Let A C'Y be precompact. Then the convezr hull conv(A) is precompact in'Y .

() Let 1 < p < oo, [ = (f1,f2, f3) € BC(R; LP) and R(f) be precompact in LP.
Then, R(f @ f) is precompact in (LP/?)3*3.



Proof. (i) Let € > 0 be fixed. By the assumption, we find jo € N such that sup, || f(¢) —
fio()|ly < e. Since R(f;,) C Y is precompact, there exists a finite set {y1,...,yn} C B
such that R(f;,) € Un_, Be(y). Hence, we conclude that R(f) C Ur_, Bac(yk)-

(i) Given € > 0, there exists to n := €/(1 + sup,eca lall + supsepnan 1T(s) 2vn))
finitely many a; € A such that A C |, B,(a;). Moreover, there exists n € N such
that || T(s) — T(s")||lcvyyy < m for all s,s" € [m, M] with |s — ¢'| < 2= Then, with

si=m+2(M—-m),j=0,...,n—1, we get for s € [s;,5;11] and a € B,(a;) that

(2.1) 1T (s)a = T(s5)aill < T(s)a —T(s;)all + 1T (s;)a = T(s;)ail
(2:2) <nsup llaf| + 7 sup [T (s)]|cvn) < e
acA s€[m,M]

Hence T'(-)A C U, ; B:(T'(sj)a;), proving the precompactness of T'(-)A in Y. The second
statement is a trivial consequence.

(iii) is well-known, see [6, Proposition 7.2 (d)]. (iv) is easy to prove. O

Lemma 2.1 ([37, 18, 2, 3, 1, 19, 25, 23]). For allt > 0 and ¢ € L4, the following

o’

inequalities are satisfied:

93 €7tA¢ < Ct73/2(1/q71/p) ¢ when 1 < q<p<x,
P q

(2.4) Ve g|l, < Ct=1 /22320 g, when 1 < g < p < oo,
where the constant C'= C(p, q,2) is independent of ¢.

It is notable that in the case where €2 is an exterior domain with smooth boundary
Iwashita [20] proved that (2.3) holds for 1 < ¢ < p < co and (2.4) holds for 1 < ¢ < p < 3.

In the Lorentz spaces LP® similar estimates hold, see [33, 34, 38].

Lemma 2.2. Let 1 <p< oo and 0 <m < M < oo.
(i) Let f € BUC(R; L?) and let

g(t) == /M e APf(t—s)ds forteR.

If R(f) is precompact in LP, then R(g) is precompact in LP.
(i1) Let F' = (F}j)ij=123 € BUC(R; L?), and let

M
h(t) := / e APV - F(t —s)ds fort € R.

m

If R(F) is precompact in LP, then R(h) is a precompact set in LS for all o > p.

5



Proof. (i) The main idea is to approximate integrals by Riemannian sums and to use
Proposition 2.1.

Let us consider the partition s; = m + %, 7 =20,...,n, where L = M — m, of
the interval [m, M], and let fi(s) := Pf(t —s), t € R. Then f; € BUC(R;L?) and
| fillBuc@ry < || fllBucm;Lry for each t € R. Moreover, we recall for any € LE and

0 <t < s < oo the trivial estimate
I(e™>A — ez, = [[(e” 7 = De~ x|,
(2.5) < / e et dr
0
< 2(s = D]l
Now we get from (2.5) the convergence property

H /mM e*SAft(S) ds — ggesjAft(sj) ‘p

: Z/ le=*fu(s) — e fulsy)l|, ds

/S]+1 H —sA e—SjA)ft(S))Hp + ||6_5jA||||ft<S) — ft(sj)Hp) ds
< c;/sjw (5 ;Sj 1 £:(3)|lp + || fi(s) — ft(sj)Hp> ds

L?

< C_”fHBUCRLP) +CLSlip‘ ‘SULP/ 1 f(t) = f(t—5)|p
<L/n

IN

— 0

as n — oo uniformly in ¢t € R.

By Proposition 2.1 (ii), (iii), and the norm continuity of the analytic semigroup
e *4 in s € [m, M] the sets Ey = {e*Af,(s') : 5,5 € [m,M],t € R} and also E; =
{£ Z;:& e~ (M+3A L, (m + Ly: t € R,n € N} are precompact in L. Therefore, by Propo-
sition 2.1 (i) and the above convergence, R(g) C F; is precompact in L2 as well.

(ii) Let T := e~ 24PV-. By a duality argument, it is straightforward to see that the
operator 1" can be extended as a bounded operator from L? to L& for all a > p. Using

this operator, h can be written as follows:

m
2

h(t) = / _QG_SAP(TF(t—s—%))ds.



Since R(F’) is precompact in L? and since F' € BUC(R; L?), by Proposition 2.1 (ii) we see
that R(TF) is precompact in L% and TF € BUC(R; L%) for all @ > p. Then, it follows
immediately from part (i) that R(h) is precompact in LS for all a > p. O

Lemma 2.3. Let q,r, 1,k satisfy the hypotheses of Theorem 1. Then there exists a con-
stant C(q,r,1,2) > 0 such that

(26)  sup / le™**PV - F(t —s)lxds < CM> 2 (|F|lrrr

t M
+|V - Fll oo mizs))

(2.7) sup/ |e APV - F(t —s)||xds < C(ml’%HV - F|| oo (r;1#)
0

t

JrTTL%_%JF"’%||V - Fl| oo grty)

s 13
(2.8) SUP/ le™>AP(u- Vo)t —s)|xds < CM2"% [u]l o) [0 o rix)
t M

mn _3
29) s [ I P Ve s < Om' B fulie s e
t 0

for allm, M >0, u,v € BC(R; X) and all F € BC(R; L"/?) with V- F € L>*(R; L*NL").
Remark 2. (i) X is continuously embedded in L3.
(ii) Letting M = 1,m =1, by (2.6)-(2.9) we have

Sup/ le™ APV - F(t = 5)|x ds < C(|F || poe@izery + IV - Fll oo @izensy),
(2.10) too

Sup/ le* AP (u - Vo) (t — 5)|| x ds < Cllull poox) 0]l o i x)-
t 0

Proof of Lemma 2.3. This lemma was essentially proven in [22]. Since
. s 1 3 0
(e™4PV - F,¢)| = |(F, Ve ¢)| < C||Fll,j2572 72 [|¢]] (1)1 for ¢ € G5,
it holds that

He—sApv CF||, < 03_%_237HFH7«/27
e APV - (u® )|, < Csféf%HUHrHUHT'

Then, since r < 3,

N

@) [PV P - 9lds < O e,

M

s 1_3
@12) [ e PV et s)lds < OMEE fullpeguan ol e
M



It is straightforward to see that

(2.13) /M Ve APV - F(t —s)|lgds < CMz"%||V - F|| oo (mipr),

(2.14) / IVe™*P(u-Vo)(t = s)llyds < CM2% ul|poe o [ V0 1 i,

M
Hence, from (2.11)—(2.14) we obtain (2.6) and (2.8). Moreover, we get the estimates

(2.15) / e APV - F(t — 8)||, ds < 0/ IV Pt — 8)||e ds
0 0

IN

_3
le 29 HV . FHL‘”(R;L“),

" _3
216 [l P Ve leds < O uls s | Dol
0

as well as
(2.17) /0 Ve APV - F(t —s)||,ds < C 0 s3IV Pt — 8| ds
13,3
S sz 2 2q||V‘F||Loo(RLl),
(2.18)/0 Ve AP(u- Vo)t — s)|,ds < 0/0 522G DD |- V| ds

IN

_3
le 2q ||Vu||Loo(R;Lq) HVUHLOO(]R;LQ)

where 1/g% = 1/g—1/3. Here we used the Sobolev inequality || f||, < C||V f||, for f € X,
see [12, Lemma 3.1]. Hence, from (2.15)—(2.18) we obtain (2.7) and (2.9). O

3 Proof of Theorem 1

Proof of Theorem 1. In the same way as in [22, 24|, we can construct a solution u to

(LLE.) by an iterative procedure. Indeed, let
Uo(t) = 07

t
ujy1(t) :/ e UHAP(—y; - Vu; + V- F)(s) ds
(3.1) . -
:—/ e APV - (u; ® uj)(t — s) ds—l—/ e APV - F(t —s)ds
0 0

= G](t) + Go(t)
Then, (2.10) yields that for h € R,
sup [|Go(t + ) — Go(t)llx <C(supllF (¢ +h) = F(0)llr2

+50p [V F(t 4 1) = V- F(O)| o).

sup |G (t + 1) — G5 (1)l §2C(Sgp e (8)]1 ) (sup [ (£ + h) — u; (t)]lx),

8



and

lujiall e @x)y SC(I1F | oo ronrrzy + 1V - Fllpoe@zsnry) + Cllugll 2o @x)s

i1 — gl Lo @ix) <O (gl Lo @ixy + 11l zoemix) ) 15 — wj-1]] oo (mix)-

By a standard argument, we observe that Go, G;,u; € BUC(R; X), the sequence (u;) is
bounded in BUC(R; X) and converges to a solution u of (L.E.) in BUC(R; X).

We will show that u has a precompact range in L. Let

Gon(t) == / e APV - F(t — s)ds,
1

n

Gin(t) == /1 e APV - (uj ® uj)(t — s)ds.

n

By Lemma 2.3, we observe that

sup [Go(t) — Gon(t)]ls < CSIEP Go(t) — Gon(t)]|x

o

1/n
gsup/ ||eSAPV~F(t—s)Hde+sup/ le APV - F(t — )| x ds
t 0 t n

3 3

143 _1,3_3 13
<C(n "2 4n 2t a2 4 p2 ) 5 0asn — 0o

and
Sup G, (1) = G (1)l < Csup Gy 1) = G (1)

o0

1/n
§sup/ HeSAPV-(uj®uj)(t—s)\|xds+81;p/ e APV - (u; ® w;)(t — 5)]| x ds
0 n

t

43 1.3
<C(n "2 4+ n272) = 0 as n — oo.

Thus Gy, and G;,, converge to Gy and G; in BC(R; L}) as n — oo, respectively. Since
Lemma 2.2 (ii) implies that R(Gy ) is precompact in L} for each n € N, by Proposition
2.1 (i), we see that R(Gp) is precompact in L3.

If we assume that R(uj,) is precompact in L? for some jo, then, by Proposition 2.1
(iv), R(uj, ® uj,) is precompact in L3/2. Hence, in this case, by Lemma 2.2 (ii) we obtain
that R(Gj, ) is precompact in L? and consequently R(G},) is precompact in L3. Then
we have that R(uj,41) is precompact in L2. Therefore, by induction, we conclude that
R(u;) is precompact in L? for each j € N. Since u; converges to the mild solution u in
BC(R; L?), from Proposition 2.1 (i) it follows that R(u) is precompact in L. This proves
Theorem 1. O
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