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Abstract

We consider the nonstationary Navier-Stokes system in a smooth bounded domain
Ω ⊂ R3 with initial value u0 ∈ L2

σ(Ω). It is an important question to determine the
optimal initial value condition in order to prove the existence of a unique local strong
solution satisfying Serrin’s condition. In this paper, we introduce a weighted Serrin
condition that yields a necessary and sufficient initial value condition to guarantee
the existence of local strong solutions u(·) contained in the weighted Serrin class∫ T

0 (τα‖u(τ)‖q)s dτ < ∞ with 2
s + 3

q = 1 − 2α, 0 < α < 1
2 . Moreover, we prove a

restricted weak-strong uniqueness theorem in this Serrin class.
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1 Introduction

We consider the initial value problem

∂tu−∆u+ u · ∇u+∇p = f, div u = 0 in (0, T )× Ω (1.1)

u|∂Ω = 0, u(0) = u0

in a bounded domain Ω ⊂ R3 with boundary ∂Ω of class C2,1 and a time interval [0, T ),
0 < T ≤ ∞.

First we recall the definitions of weak and strong solutions to (1.1) and we define a
new type of a strong solution, the ”Lsα(Lq)-strong solution”.

Definition 1.1. Let u0 ∈ L2
σ(Ω) be an initial value and let f = divF with F = (Fij)

3
i,j=1 ∈

L2(0, T ;L2(Ω)) be an external force. A vector field

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω)) (1.2)

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes system (1.1)
with data u0, f , if the relation

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T (1.3)
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holds for each test function w ∈ C∞0 ([0, T );C∞0,σ(Ω)), and if the energy inequality

1

2
‖u(t)‖2

2 +

∫ t

0

‖∇u‖2
2 dτ ≤ 1

2
‖u0‖2

2 −
∫ t

0

(F,∇u) dτ (1.4)

is satisfied for 0 ≤ t < T .

A weak solution u of (1.1) is called an Lsα(Lq)-strong solution with exponents 2 < s <
∞, 3 < q < ∞ and weight τα in time, 0 < α < 1

2
, where 2

s
+ 3

q
= 1 − 2α such that

additionally the weighted Serrin condition

u ∈ Lsα(0, T ;Lq(Ω)), i.e.

∫ T

0

(τα‖u(τ)‖q)s dτ <∞ (1.5)

is satisfied. If in (1.5) α = 0 and 2
s

+ 3
q

= 1, then u is called a strong solution (Ls(Lq)-

strong solution).

In this definition we use the usual Lebesgue and Sobolev spaces, Lq(Ω) with norm
‖ · ‖Lq(Ω) = ‖ · ‖q and W k,q(Ω) with norm‖ · ‖Wk,q(Ω) = ‖ · ‖k;q, respectively for 1 < q <∞
and k ∈ N. Let Ls(0, T ;Lq(Ω)) = Ls(Lq), 1 < q, s < ∞, with norm ‖ · ‖Ls(0,T ;Lq(Ω)) =

‖·‖q,s;T = (
∫ T

0
‖ · ‖sq dt)1/s denote the classical Bochner spaces. Similarly, for 1 < q, s <∞

and α ≥ 0 we define the weighted (in time) Bochner spaces Lsα(0, T ;Lq(Ω)) = Lsα(Lq) with
norm

‖ · ‖Lsα(0,T ;Lq(Ω)) = ‖ · ‖Lsα(Lq) =
(∫ T

0

tα‖ · ‖sq dt
)1/s

.

The expression 〈·, ·〉Ω = 〈·, ·〉 denotes the pairing of functions on Ω, and 〈·, ·〉Ω,T means
the corresponding pairing on [0, T )×Ω. Furthermore, to deal with solenoidal vector fields
we use the smooth function spaces C∞0 (Ω) and C∞0,σ(Ω) = {v ∈ C∞0 (Ω) : div v = 0},
and the spaces Lqσ(Ω) = C∞0,σ(Ω)

‖·‖q
, W 1,q

0 (Ω) = C∞0 (Ω)
‖·‖1,q

, W 1,q
0,σ(Ω) = C∞0,σ(Ω)

‖·‖1,q
.

Throughout this paper, A = A2 denotes the Stokes operator in L2
σ(Ω). More general,

Aq, 1 < q < ∞, means the Stokes operator in Lqσ(Ω), and e−tAq , t ≥ 0, is the semigroup
generated by Aq in Lqσ(Ω). Note that, with x = (x1, x2, x3) ∈ Ω ⊂ R3, for F = (Fij)

3
i,j=1,

u = (u1, u2, u3) we let divF = (
∑3

i=1 ∂iFij)
3
j=1, u ·∇u = (u ·∇)u = (u1∂1 +u2∂2 +u3∂3)u,

so that u · ∇u = div(uu), uu = (uiuj)
3
i,j=1 if u is solenoidal.

For properties of weak and strong solutions to (1.1) we refer to [2, 3, 18, 19, 21, 24, 27].
We may assume in the following, without loss of generality, that each weak solution of
(1.1)

u : [0, T )→ L2
σ(Ω) is weakly continuous (1.6)

(see [26, V. Theorem 1.3.1].) Therefore u(0) = u0 is well-defined. Moreover, for a weak
solution u, there exists a distribution p in (0, T ) × Ω, the associated pressure, such that
∂tu−∆u+ u · ∇u+∇p = f holds in the sense of distributions [26, V. 1.7]. Assume that
u is a strong solution of (1.1), that ∂Ω is of class C∞ and F ∈ C∞((0, T ) × Ω). Then
Serrin’s condition (1.5) with α = 0 yields the regularity property

u ∈ C∞((0, T )× Ω), p ∈ C∞((0, T )× Ω), (1.7)
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and uniqueness within the class of weak solutions satisfying the energy inequality, see [26,
V. Theorem 1.8.2, Theorem 1.5.1].

The existence of at least one weak solution u of (1.1) is well-known since the pioneering
work of [19, 24]. The existence of a strong solution u of (1.1) could be shown up to
now at least in a sufficiently small interval [0, T ), 0 < T ≤ ∞, and under additional
smoothness conditions on the initial data u0 and the external force f . The first sufficient
condition on the initial data for a bounded domain seems to be due to [21], yielding a
solution class of so-called local strong solutions. Since then many results on sufficient
initial value conditions for the existence of local strong solutions have been developed, see
[2, 10, 13, 14, 18, 20, 22, 25, 26, 27]. Recent results in [8, 9] yield sufficient and necessary

conditions, also written in terms of (solenoidal) Besov spaces B
− 2
sq

q,sq (Ω) = B
−1+ 3

q
q,sq (Ω) where

2
sq

+ 3
q

= 1. See Section 4 for a definition of solenoidal Besov spaces; for a review of these

results we refer to [5].

In this paper, we are interested in a weighted Serrin condition with respect to time
and Lsα(Lq)-strong solutions. Our result yields a sufficient condition on initial data and
external force to guarantee the existence of local Lsα(Lq)-strong solutions. The motivation
for this approach is an extension of the results in [8, 9] where 2

s
+ 3

q
= 1 to the case

u0 /∈ B
−1+ 3

q
q,s (Ω), i.e.,

e−τAu0 /∈ Ls(0, T ;Lq(Ω)), but

∫ T

0

(
τα‖e−τAu0‖q

)s
dτ <∞, 2

s
+

3

q
= 1− 2α

with some α > 0. By this means the theory of [8, 9] is extended to the scale of Besov

spaces B
−1+ 3

q
q,s (Ω) filling the gap between B

−1+ 3
q

q,sq (Ω) where 2
sq

+ 3
q

= 1 and B
−1+ 3

q
q,∞ (Ω).

There are also some results using weighted Serrin’s conditions related to Kato’s approach
of construction of mild and strong solutions, see [17, 23].

We state our main result in a more precise way as follows.

Theorem 1.2. Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1, and
let 0 < T ≤ ∞, 2 < s < ∞, 3 < q < ∞, 0 < α < 1

2
with 2

s
+ 3

q
= 1 − 2α be given.

Consider the Navier-Stokes equation with initial value u0 ∈ L2
σ(Ω) and an external force

f = divF where F ∈ L2(0, T ;L2(Ω)) ∩ Ls/22α (0, T ;Lq/2(Ω)). Then there exists a constant
ε∗ = ε∗(q, s, α,Ω) > 0 with the following property: If

‖e−τAu0‖Lsα(0,T ;Lq) + ‖F‖
L
s/2
2α (Lq/2)

≤ ε∗, (1.8)

then the Navier-Stokes system (1.1) has a unique Lsα(Lq)-strong solution with data u0, f
on the interval [0, T ).

Theorem 1.3. Let Ω be as in Theorem 1.2, let 2 < s < ∞, 3 < q < ∞, 0 < α < 1
2

with 2
s

+ 3
q

= 1− 2α be given, and let u0 ∈ L2
σ(Ω) and an external force f = divF where

F ∈ L2(0,∞;L2(Ω)) ∩ Ls/22α (0,∞;Lq/2(Ω)).

(1) The condition ∫ ∞
0

(τα‖e−τAu0‖q)s dτ <∞ (1.9)
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is sufficient and necessary for the existence of a unique Lsα(Lq)-strong solution u ∈
Lsα(0, T ;Lq) of the Navier-Stokes system (1.1), with data u0, f in some interval [0, T ),
0 < T ≤ ∞.

(2) Let u be a weak solution of the system (1.1) in [0,∞)×Ω with data u0, f , and let∫ ∞
0

(τα‖e−τAu0‖q)s dτ =∞. (1.10)

Then the weighted Serrin’s condition u ∈ Lsα(0, T ;Lq(Ω)) does not hold for each 0 < T ≤
∞. Moreover, the system (1.1) does not have a Lsα(Lq)-strong solution with data u0, f
and weighted Serrin exponents s, q, α in any interval [0, T ), 0 < T ≤ ∞.

A weak-strong uniqueness theorem in the sense of the classical Serrin Uniqueness
Theorem seems to be out of reach for Lsα(Lq)-strong solutions within the full class of weak
solutions satisfying the energy inequality. The reason is based on the algebraic identities
and sharp use of norms and Hölder estimates in the proof of Serrin’s Theorem, cf. [26,
Ch. V, Sect. 1.5]. However, we prove uniqueness within the subclass of well-chosen weak
solutions describing weak solutions constructed by concrete approximation procedures.
We refer to Assumptions 5.1, 5.4 and Remarks 5.2, 5.3 for precise definitions.

Theorem 1.4. Let Ω ⊂ R3 be a bounded domain with boundary of class C2,1 and let
2 < s < ∞, 3 < q < ∞, 0 < α < 1

2
with 2

s
+ 3

q
= 1 − 2α be given. Moreover, suppose

that u0 ∈ L2
σ(Ω) ∩ B

−1+ 3
q

q,s and an external force f = divF where F ∈ L2(0,∞;L2(Ω)) ∩
L
s/2
2α (0,∞;Lq/2(Ω)) are given. Then the unique Lsα(Lq)-strong solution u ∈ Lsα(0, T ;Lq(Ω))

is unique on a time interval [0, T ′), T ′ > 0, in the class of all well-chosen weak solutions.

The plan of this paper is as follows. In Section 2, to prepare the proof we recall some
well-known properties of Stokes operators and some important estimates. In Section 3
we first prove Theorem 1.2 by admitting Lemma 3.1, Lemma 3.2 and Lemma 3.3. Then
we prove these Lemmata and finally we give a proof to Theorem 1.3. In Section 4 we
discuss these results in terms of Besov spaces, and the final section contains the proof of
Theorem 1.4.

2 Preliminaries

For the reader’s convenience, we first explain some well-known properties of the Stokes
operator. Let Ω be as in Theorem 1.2, let [0, T ), 0 < T ≤ ∞, be a time interval and
let 1 < q < ∞. Then Pq : Lq(Ω) → Lqσ(Ω) denotes the Helmholtz projection, and the
Stokes operator Aq = −Pq∆ : D(Aq)→ Lqσ(Ω) is defined with domain D(Aq) = W 2,q(Ω)∩
W 1,q

0 (Ω) ∩ Lqσ(Ω) and range R(Aq) = Lqσ(Ω). Since Pqv = Pγv for v ∈ Lq(Ω) ∩ Lγ(Ω) and
Aqv = Aγv for v ∈ D(Aq) ∩D(Aγ), 1 < γ < ∞, we sometimes write Aq = A to simplify
the notation if there is no misunderstanding. In particular, if q = 2, we always write
P = P2 and A = A2. Furthermore, let Aαq : D(Aαq ) → Lqσ(Ω), −1 ≤ α ≤ 1, denote the
fractional powers of Aq. It holds D(Aq) ⊆ D(Aαq ) ⊆ Lqσ(Ω), R(Aαq ) = Lqσ(Ω) if 0 ≤ α ≤ 1.

We note that (Aαq )−1 = (A−αq ) and (Aq)
′
= Aq′ where 1

q
+ 1

q′
= 1.
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Now we recall the embedding estimate

‖v‖q ≤ c‖Aαγv‖γ , v ∈ D(Aαγ ), 1 < γ ≤ q, 2α +
3

q
=

3

γ
, 0 ≤ α ≤ 1, (2.1)

and the estimate

‖Aαq e−tAqv‖q ≤ ct−αe−δt‖v‖q , v ∈ Lqσ(Ω), 0 ≤ α ≤ 1, t > 0, (2.2)

with constants c = c(Ω, q) > 0, δ = δ(Ω, q) > 0, see [1, 7, 11, 12, 15, 27, 31].

By using the estimates (2.1), (2.2) with 0 < β < 3
4
, 2β + 3

q
= 3

2
and constants c, δ > 0

not depending on t, we obtain for u0 ∈ L2
σ(Ω) that A−βu0 ∈ Lqσ(Ω) and that

‖e−tAu0‖q = ‖Aβe−tAA−βu0‖q = ‖Aβq e−tAqA−βu0‖q
≤ ct−βe−δt‖A−βu0‖q ≤ ct−βe−δt‖u0‖2

for t > 0. So ‖e−tAu0‖q with u0 ∈ L2
σ(Ω) is well-defined at least for t > 0, and∫∞

η
(τα‖e−τAu0‖q)s dτ <∞ for any η > 0 and α > 0. In particular, the assumptions (1.9),

(1.10) in Theorem 1.3 may be replaced by the assumption
∫ η

0
(τα‖e−τAu0‖q)s dτ < ∞ or∫ η

0
(τα‖e−τAu0‖q)s dτ =∞, respectively, for any η > 0.

Further note that D(A
1
2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) and that the norms

‖A
1
2
q v‖q ≈ ‖∇v‖q , v ∈ D(A

1
2
q ). (2.3)

are equivalent. In particular, if q = 2, then

‖A
1
2v‖2 = ‖∇v‖2 , v ∈ D(A

1
2 ). (2.4)

Another estimate which will be frequently used in Section 3 is as follows. Let g = divG
with G = (Gij)

3
i,j=1 ∈ Lq(Ω). Then an approximation argument, see [26, III Lemma 2.6.1],

[6, p. 431], shows that A
− 1

2
q Pq divG ∈ Lqσ(Ω) is well-defined by the identity

〈A−
1
2

q Pq divG,ϕ〉 = 〈G,∇A−
1
2

q′ ϕ〉, ϕ ∈ L
q′

σ (Ω),

1
q

+ 1
q′

= 1, and that

‖A−
1
2

q Pq divG‖q ≤ c‖G‖q (2.5)

holds with c = c(Ω, q) > 0. The estimate (2.5) was first established in [14, Lemma 2.1].

Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev inequality, cf.
[28, 29]: For α ∈ R and s ≥ 1 we consider the weighted Ls-space

Lsα(R) =
{
u : ‖u‖Lsα =

(∫
R
(|τ |α|u(τ)|)s dτ

)1/s

<∞
}
.

Lemma 2.1. Let 0 < λ < 1, 1 < s1 ≤ s2 < ∞, − 1
s1
< α1 < 1 − 1

s1
, − 1

s2
< α2 < 1 − 1

s2

and 1
s1

+ (λ+ α1 − α2) = 1 + 1
s2

, α2 ≤ α1. Then the integral operator

Iλf(t) =

∫
R
(t− τ)−λf(τ) dτ

is bounded as operator Iλ : Ls1α1
(R)→ Ls2α2

(R).
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3 Proof of Theorems 1.2 and 1.3

Now we are in the position to prove the main theorem.

Proof of Theorem 1.2. Let u be a weak solution of (1.1) with initial value u0 ∈ L2
σ and

external force f = divF where F ∈ L2(L2) ∩ Ls/22α (Lq/2). Furthermore, let Ef,u0 denote
the solution of the Stokes problem

∂tv −∆v +∇p = f, div v = 0

v|∂Ω = 0, v(0) = u0,

i.e.

Ef,u0(t) = e−tAu0 +

∫ t

0

A1/2e−(t−τ)AA−1/2P divF (τ) dτ

=: E0,u0(t) + Ef,0(t).

Assume E0,u0 ∈ Lsα(Lq), i.e.
∫ t

0
‖ταe−τAu0‖

s

q dτ <∞. Since u0 ∈ L2
σ and F ∈ L2(L2), we

know that Ef,u0 ∈ C0([0, T ];L2) ∩ L2(H1), satisfying the energy equality. Moreover, by
using the estimates (2.1) and (2.2) with 2β + 3

q
= 3

q/2
with q > 3, i.e. β = 3

2q
< 1

2
,

‖Ef,0(t)‖q ≤ c

∫ t

0

‖A
1
2

+βe−(t−τ)A(A−
1
2P div)F (τ)‖ q

2
dτ

≤ c

∫ t

0

(t− τ)−β−
1
2‖F (τ)‖ q

2
dτ.

By applying the weighted Hardy-Littlewood-Sobolev inequality (see Lemma 2.1) with the
exponents s2 = s, α2 = α, s1 = s/2, α1 = 2α, λ = β + 1

2
∈ (0, 1), −2

s
< 2α < 1 − 2

s
and

−1
s
< α < 1− 1

s
, we have

‖Ef,0‖Lsα(Lq) ≤ c‖F‖
L
s/2
2α (Lq/2)

(3.1)

provided 2
s

+ ( 3
2q

+ 1
2

+ 2α− α) = 1 + 1
s

(which is equivalent to 2
s

+ 3
q

= 1− 2α). We then

set ũ = u− Ef,u0 which solves the (Navier-)Stokes system

∂tũ−∆ũ+ u · ∇u+∇p = 0, div ũ = 0

ũ|∂Ω = 0, ũ(0) = 0.

So we can write at least formally

ũ(t) = −
∫ t

0

e−(t−τ)AP div(u⊗ u)(τ) dτ (3.2)

= −
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(u⊗ u)(τ) dτ.
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With β = 3
2q

as above we get

‖ũ(t)‖q ≤ c

∫ t

0

‖A
1
2

+βe−(t−τ)A‖‖A−
1
2P div ‖‖(u⊗ u)‖ q

2
dτ

≤ c

∫ t

0

(t− τ)−
1
2
−β‖u‖2

q dτ (3.3)

Then the Hardy-Littlewood-Sobolev inequality as above implies that

‖ũ(t)‖Lsα(Lq) ≤ c‖(‖u‖2
q)‖Ls/22α

= c‖u‖2
Lsα(Lq). (3.4)

Since u = ũ+ Ef,u0 we have

‖ũ‖Lsα(0,T ;Lq) ≤ c
(
‖ũ‖Lsα(0,T ;Lq) + ‖F‖

L
s/2
2α (0,T ;Lq/2)

+ ‖e−τAu0‖Lsα(0,T ;Lq)

)2
. (3.5)

As in [9, p. 99] there exists by Banach’s Fixed Point Theorem an ε∗ = ε∗(q, s, α,Ω) > 0
such that we get the existence of a unique fixed point ũ ∈ Lsα(0, T ;Lq) solving

∂tũ−∆ũ+ (ũ+ Ef,u0) · ∇(ũ+ Ef,u0) +∇p = 0, div ũ = 0

ũ|∂Ω = 0, ũ(0) = 0

provided (1.8) is satisfied, i.e. ‖e−τAu0‖Lsα(0,T ;Lq)+‖F‖Ls/22α (Lq/2)
≤ ε∗. Hence u = ũ+Ef,u0 ∈

Lsα(0, T ;Lq).

Now we need to prove that this constructed mild solution u is indeed a weak solution
under the following conditions, cf. the assumptions in Theorem 1.2 and some facts already
proved:

u, ũ ∈ Lsα(Lq), u0 ∈ L2
σ, e

−τAu0 ∈ Lsα(Lq), F ∈ L2(L2) ∩ Ls/22α (Lq/2).

To this aim we need the following lemmata which will be proved later.

Lemma 3.1. The mild solution u constructed in the above procedure satisfies ∇u ∈
L2(0, T ;L2(Ω)).

Lemma 3.2. Under the assumptions of Lemma 3.1 we have that u ∈ Ls2(0, T ;Lq2(Ω))
for all 2

s2
+ 3

q2
= 3

2
, 2 ≤ s2 ≤ ∞, 2 ≤ q2 ≤ 6. Moreover, ‖ũ(t)‖2 → 0 and u(t) → u0 in

L2(Ω) as t→ 0+.

Lemma 3.3. Under the assumptions of Lemma 3.1 u ∈ L4
α/(2+8α)(0, T ;L4(Ω)).

By Lemma 3.3 we may use that u ∈ L4
α/(2+8α)(L

4). Hence u ∈ L4(ε, T ;L4) for all

0 < ε < T . So, by [26, IV. Thm. 2.3.1, Lemma 2.4.2] and for a.a. ε ∈ (0, T ), u is the
unique weak solution in L4(ε, T ;L4) on (ε, T ) of the linear Stokes problem

∂tu−∆u+∇p = div F̃ , div u = 0

u|∂Ω = 0, u|t=ε = u(ε)
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with external force div F̃ , F̃ = F − u⊗ u ∈ L2(ε, T ;L2) and initial value u(ε) ∈ L4(Ω) ⊂
L2(Ω). Therefore, u satisfies the energy equality on (ε, T ), i.e.

1

2
‖u(t)‖2

2 +

∫ t

ε

‖∇u‖2
2 dτ =

1

2
‖u(ε)‖2

2 −
∫ t

ε

(F,∇u) dτ

for all t ∈ (ε, T ) and a.a. ε ∈ (0, T ). Moreover, u ∈ C0([ε, T );L2) and hence u ∈
C0((0, T );L2), see [26, IV 2.1-2.3]. Furthermore, since by Lemma 3.2 u ∈ L∞((0, T );L2),
it also satisfies the energy equality on [0, T ). Hence u is a weak solution; this completes
the proof of Theorem 1.2.

Now we prove the above Lemmata which are used in the proof of Theorem 1.2.

Proof of Lemma 3.1. We use a modification of the proof described in [9]. Since for
the moment we have no differentiability property for the mild solution u, we apply the
Yosida operator Jn = (I + 1

n
A

1
2 )−1, n ∈ N, to (3.2) and write JnP div u ⊗ u in the form

JnP div(u⊗ (ũ+ Ef,u0)), ũ = (I + 1
n
A

1
2 )ũn, where ũn = Jnũ. Then we have

JnP div u⊗ u = JnP (u · ∇Ef,u0) + JnP (u · ∇ũn) +
1

n
JnP div(u⊗ A

1
2 ũn)

= JnP (u · ∇Ef,u0) + JnP (u · ∇ũn) +
1

n
A

1
2Jn(A−

1
2P div)(u⊗ A

1
2 ũn).

We use Hölder’s inequality with 1
γ

= 1
2

+ 1
q

to obtain the estimate

‖JnP div(u⊗ u)‖γ ≤ c‖u‖q(‖∇Ef,u0‖2 + ‖∇ũn‖2 + ‖A
1
2 ũn‖2)

= c‖u‖q(‖∇Ef,u0‖2 + 2‖A
1
2 ũn‖2)

since ‖Jn‖ ≤ c and ‖ 1
n
A

1
2Jn‖ ≤ c uniformly in n ∈ N.

From (3.2) we get that

A
1
2 ũn(t) = −

∫ t

0

A
1
2 e−(t−τ)AJnP div(u⊗ u)(τ) dτ.

By the embedding estimate (2.1) with 2β + 3
2

= 3
γ

(i.e. β = 3
2q

since 1
γ

= 1
2

+ 1
q
) we see

that

‖A
1
2 ũn(t)‖2 ≤ c

∫ t

0

‖A
1
2

+βe−(t−τ)A‖‖JnP div(u⊗ u)(τ)‖γ dτ.

Applying Lemma 2.1 we have for 0 < T1 < T

‖A
1
2 ũn(t)‖L2(0,T1;L2) ≤ c

(∫ T1

0

(
τα‖u‖q(‖∇Ef,u0‖2 + ‖A

1
2 ũn‖2)

)s1 dτ
)1/s1

where s1 = (1
2

+ 1
s
)−1, α1 = α, s2 = 2, α2 = 0, and (1

2
+ 1

s
) + 3

2q
+ 1

2
+ α− 0 = 1 + 1

2
, which

is equivalent to 2
s

+ 3
q

= 1− 2α. Thus, by Hölder’s inequality,

‖A
1
2 ũn‖L2(0,T1;L2) ≤ c‖u‖Lsα(0,T1;Lq)(‖∇Ef,u0‖L2(0,T1;L2) + ‖A

1
2 ũn‖L2(0,T1;L2)). (3.6)
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Assume 0 < T1 < T so small such that c‖u‖Lsα(0,T1;Lq) ≤ 1
2

is satisfied. Then the absorption
argument easily leads from (3.6) to the estimate

‖A
1
2 ũn‖L2(0,T1;L2) ≤ 2c‖u‖Lsα(0,T1;Lq)‖∇Ef,u0‖L2(0,T1;L2) <∞

independent of n ∈ N. Consequently, A
1
2 ũ,∇ũ ∈ L2(0, T1;L2) and ∇u ∈ L2(0, T1;L2).

By the same procedure we obtain a new constant c = c(T ) > 0, a new length T2 and
consecutive intervals (T1, T1 +T2), (T1 +T2, T1 + 2T2),..., that ∇ũ ∈ L2(T1, T1 +T2;L2),...,
and consequently that ∇ũ, ∇u ∈ L2(0, T ;L2). This completes the proof.

Proof of Lemma 3.2. Let 1
q1

= 1
2

+ 1
q
, 1
s1

= 1
2

+ 1
s

and choose β by 2β + 3
q2

= 3
q1

= 3
2

+ 3
q
.

From (3.2) and (2.1) we conclude that

‖ũ(t)‖q2 ≤ c

∫ t

0

‖Aβe−(t−τ)A‖‖P (u · ∇u)‖q1 dτ

≤ c

∫ t

0

(t− τ)−β‖u‖q‖∇u‖2 dτ.

By the Hardy-Littlewood-Sobolev inequality,

‖ũ‖Ls2 (Lq2 ) ≤ c‖‖u‖q‖∇u‖2‖Ls1α
≤ c‖u‖Lsα(Lq)‖∇u‖L2(L2) <∞

for α2 = 0, α1 = α < 1− 1
s1

= 1
2
− 1

s
and s2 ≥ 2 ≥ s1 with (1

2
+ 1
s
)+(3

4
+ 3

2q
− 3

2q2
)+α = 1+ 1

s2
,

i.e., 2
s

+ 3
q

+ 2α− 1 = 2
s2

+ 3
q2
− 3

2
= 0. The case s2 = 2, q2 = 6 also follows from Lemma

3.1. As for the case s2 = ∞, q2 = 2, where β = 3
2q

, Hölder’s inequality directly implies
that

‖ũ(t)‖2 ≤ c

∫ t

0

(t− τ)−
3
2q τ−α(τα‖u‖q)‖∇u‖2 dτ

≤ C‖u‖Lsα(Lq)‖∇u‖L2(L2) (3.7)

where the integral
∫ t

0
((t− τ)−

3
2q τ−α)( 1

2
− 1
s

)−1
dτ is finite and independent of t; we note that

here α > 0 is necessary.

To be more precise, with a constant C > 0 independent of t,

‖ũ‖L∞(0,t;L2) ≤ C‖u‖Lsα(0,t;Lq)‖∇u‖L2(0,t;L2) → 0 as t→ 0 + .

So ‖ũ(t)‖2 → 0 as t → 0+. Hence u(t) = ũ(t) + Ef,u0(t) → u0 in L2(Ω) as t → 0+. The
proof is now complete.

Remark 3.4. From ∇u ∈ L2(L2) which implies u ∈ L2(L6) and from u ∈ L∞(L2),
cf. (3.7), it also follows immediately via Hölder’s inequality that u ∈ Ls2(Lq2) for all
2
s2

+ 3
q2

= 3
2
, 2 ≤ s2 ≤ ∞, 2 ≤ q2 ≤ 6.
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Proof of Lemma 3.3. Given q, s, α and β = 1
2+8α

we define q1,s1 by 1
4

= β
q

+ 1−β
q1

and
1
4

= β
s

+ 1−β
s1

. From Hölder’s inequality we know that ‖u(t)‖4 ≤ ‖u‖
β
q ‖u‖

1−β
q1

. Hence∫ T

0

τ 4αβ‖u‖4
4 dτ ≤

∫ T

0

(τα‖u‖q)
4β‖u‖4(1−β)

q1
dτ

≤ ‖u‖4β
Lsα(Lq)‖u‖

4(1−β)
Ls1 (Lq1 ) <∞

since 2
s1

+ 3
q1

= 3
2
. The proof is now complete.

Finally, we give a proof to Theorem 1.3.

Proof of Theorem 1.3. (1) Using (1.9) and the assumption on F we can choose 0 < T ≤ ∞
in such a way that (1.8) is satisfied. Then Theorem 1.2 yields the existence of a unique
Lsα(Lq)-strong solution u ∈ Lsα(0, T ;Lq(Ω)) of (1.1).

Conversely, assume that u ∈ Lsα(0, T ;Lq(Ω)), 0 < T ≤ ∞, is an Lsα(Lq)-strong solution
of (1.1). Recall that E0,u0 = u − ũ − Ef,0 where by (3.4) ũ ∈ Lsα(Lq), and by (3.1)
Ef,0 ∈ Lsα(Lq) Hence E0,u0 ∈ Lsα(Lq) as well, and (1.9) is satisfied. This proves part (1)
of Theorem 1.3.

(2) Let u be a weak solution as in Theorem 1.3 (2), and suppose that u ∈ Lsα(0, T ;Lq)
holds for some T > 0. Then we conclude from (1) that

∫∞
0

(τα‖e−τAu0‖q)s dτ <∞ which
is a contradiction to (1.10). This completes the proof.

4 Interpretation in Terms of Besov Spaces

For 1 < q < 3
2

and 0 < t < 1
q

let Bt
q,r(Ω)3 denote the usual Besov space of vector fields,

and let Btq,r(Ω) = Bt
q,r(Ω)3 ∩ Lqσ(Ω), see [3, (0.5), (0.6)]. Then, by [3, (0.4), (3.18)] with

H2
q(Ω) = D(Aq),

Btq,r(Ω) =
(
Lqσ(Ω), D(Aq)

)
θ,r
, 0 < θ < 1, 1 < r <∞, t = 2θ,

and C∞0,σ(Ω) is dense in Btq,r(Ω). Further, let B−tq,r(Ω) :=
(
Btq′,r′(Ω)

)′
, cf. [3, (0.6)]. Hence,

with t = 2α + 2
s

= 1 − 3
q

and the duality theorem for real interpolation, cf. [30, Thm.

1.11.2],

B
−1+ 3

q
q,s = B−2α− 2

s
q,s =

(
B2α+ 2

s

q′,s′

)′
=
(
Lq
′

σ , D(Aq′)
)′
α+ 1

s
,s′

=
(
D(Aq′), L

q′

σ

)′
1−α− 1

s
,s′

=
(
D(Aq′)

′, Lqσ
)

1−α− 1
s
,s
.

Using the identity (A−1u0, Aϕ) = (u0, ϕ) for ϕ ∈ D(A) we get that

‖u0‖
B
−1+3

q
q,s

≈ ‖u0‖(D(Aq′ )
′,Lqσ)

1−α− 1
s ,s
≈ ‖A−1u0‖(Lqσ ,D(Aq))1−α− 1

s ,s

≈ ‖A−1u0‖q +
(∫ ∞

0

(
τα+ 1

s‖Ae−τAA−1u0‖q
)sdτ

τ

)1/s

≈ ‖A−1u0‖q +
(∫ ∞

0

(
τα‖e−τAu0‖q

)s
dτ
)1/s

.
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Since the semigroup e−τA is exponentially decreasing, we may omit the term ‖A−1u0‖q
in the last norm above, see [30, Thm. 1.14.5]. Fixing q ∈ (3,∞) and considering s, α as
related by 2

(
1
s

+ α
)

= 1− 3
q
, we conclude that the norms

‖u0‖
B
−1+3

q
q,s

and ‖e−τAu0‖Lsα(Lq) are equivalent.

For later use, we introduce the notation

‖u0‖
B
−1+3

q
q,s (T )

= ‖e−τAu0‖Lsα((0,T ;Lq), 0 < T ≤ ∞.

In the limit α → 0 we approach the case B
−1+ 3

q
q,sq with 2

sq
+ 3

q
= 1 of the classical Serrin

condition considered in [8, 9], whereas for s→∞ we approach the limit space B
−1+ 3

q
q,∞ .

5 Restricted Serrin’s Uniqueness Theorem

Assumption 5.1. Let Ω ⊂ R3 be a bounded domain with boundary of class C2,1.

(1) Given u0 ∈ L2
σ(Ω) and an external force f = divF where F ∈ L2(0,∞;L2(Ω)) we

assume the existence of approximating sequences (u0n) ⊂ L2
σ(Ω) of u0 such that

u0n → u0 in L2
σ(Ω)

and (Fn) ⊂ L2(0,∞;L2(Ω)) of F such that

Fn → F in L2(0,∞;L2(Ω)) as n→∞.

(2) Let (Jn) denote a family of bounded operators in L(Lqσ(Ω), D
(
A

1/2
q )
)

such that for
each 1 < q <∞ there exists a constant Cq > 0 such that

‖Jn‖L(Lqσ) + ‖ 1

n
A1/2
q Jn‖L(Lqσ) ≤ Cq and Jnu→ u in Lqσ(Ω) as n→∞.

(3) For each n ∈ N let un denote the weak solution of the approximate Navier-Stokes
system

∂tun −∆un + (Jnun) · ∇un +∇pn = divFn, div un = 0 in (0, T )× Ω (5.1)

un|∂Ω = 0, un(0) = un0

Remark 5.2. A typical example of operators (Jn) in Assumption 5.1 is given by the family

of Yosida operators Jn =
(
I + 1

n
A

1/2
q

)−1
. It is well known that this family of operators

is uniformly bounded on Lqσ(Ω) as well as on D(A
1/2
q ) for each 1 < q < ∞. Moreover,

Jnu → u in Lqσ(Ω) as n → ∞. By analogy, the operators Jn = e−A
1/2
q /n have the same

properties.

We know from [26, Ch. V, Thm. 2.5.1] (with a minor modification in the case of

Jn = e−A
1/2
q /n) that there exists a unique weak solution un ∈ LHT := L∞(L2)∩L2(H1

0 ) of
(5.1) satisfying the uniform estimate

‖un‖L∞(L2) + ‖un‖L2(H1) ≤ C(‖u0n‖2 + ‖Fn‖L2(L2))

≤ C(‖u0‖2 + ‖F‖L2(L2) + 1)
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for all sufficiently large n ∈ N. Therefore, there exists v ∈ LHT and a subsequence (unk)
of (un) such that

unk ⇀ v in L2(H1
0 ), unk

∗
⇀ v in L∞(L2), unk → v in L2(L2).

From the last convergence we also conclude that unk(t0) → v(t0) in L2(Ω) for a.a. t0 ∈
(0, T ). Actually, v ∈ LHT is a weak solution of (1.1).

Remark 5.3. (1) Since we do not know whether weak solutions of (1.1) are unique, v
may depend on the subsequence (unk) chosen above. In this case, we say that

v is a well-chosen weak solution of (1.1). (5.2)

Note that a well-chosen weak solution v is always related to a concrete approximation
procedure as in Assumption 5.1 and the choice of an adequate (weakly−∗) convergent
subsequence of a sequence of approximate solutions (un).

(2) The question whether solutions constructed by the Galerkin method fall into the
scope of a modified Assumption 5.1 and yield uniqueness in the sense of Theorem 1.4
has not been settled. A similar question concerning the property to be a suitable weak
solution, cf. H. Beirão da Veiga [4, p.321], has been answered in the affirmative, see
J.-L. Guermond [16].

Assumption 5.4. Under the assumptions of Assumption 5.1 additionally let 2 < s <∞,

3 < q <∞, 0 < α < 1
2

with 2
s

+ 3
q

= 1− 2α be given. Suppose that even u0, u0n ∈ B
−1+ 3

q
q,s

and F, Fn ∈ Ls/22α (0,∞;Lq/2(Ω)) such that also

u0n → u0 in B
−1+ 3

q
q,s , Fn → F in L

s/2
2α (0,∞;Lq/2(Ω)) as n→∞.

From now on by a well-chosen weak solution of (1.1) we also assume that the approx-
imation satisfies Assumption 5.4 as well as Assumption 5.1.

Proof of Theorem 1.4. As in Sect. 3, we set un(t) = ũn(t) + Efn,u0n(t) where, cf. (3.2),

ũn(t) = −
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)(Jnun ⊗ un)(τ) dτ.

By the assumptions on u0n, Fn and a similar argument as in Sect. 3, (Efn,u0n) ⊂ Lsα(Lq)
is uniformly bounded and converges to Ef,u0 ; to be more precisely, due to the estimate
for E0,u0 and (3.1),

‖Efn,u0n − Ef,u0‖Lsα(0,T ′;Lq) ≤ c
(
‖u0n − u0‖

B
−1+3

q
q,s (T ′)

+ ‖Fn − F‖Lsα(0,T ′;Lq)

)
(5.3)

where c = c(q, s, α,Ω) > 0 is independent of the interval (0, T ′), 0 < T ′ ≤ T , on which
(5.3) is considered.

We also observe that as in (3.3)-(3.5)

‖ũn‖Lsα(0,T ′;Lq) ≤ Cq‖Jnun‖Lsα(0,T ′;Lq)‖un‖Lsα(0,T ′;Lq) ≤ C‖un‖2
Lsα(0,T ′;Lq)

≤ C
(
‖ũn‖Lsα(0,T ′;Lq) + ‖Efn,u0n‖Lsα(0,T ′;Lq)

)2
(5.4)

≤ C
(
‖ũn‖Lsα(0,T ′;Lq) + ‖u0n‖

B
−1+3

q
q,s (T ′)

+ ‖Fn‖Ls/2
α/2

(0,T ′;Lq/2)

)2
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with a constant C > 0 independent of 0 < T ′ ≤ T . Actually, as in the proof of Theorem
1.2 in Sect. 3, cf. [9, p. 99], there exists an ε∗ > 0 and T ′ ∈ (0, T ) independent of
n ∈ N such that we find a unique solution un of (5.1) on (0, T ′) in Lsα(0, T ′;Lq) for all
sufficiently large n ∈ N. Moreover, (un) is uniformly bounded in Lsα(Lq) with bound
‖un‖Lsα(0,T ′;Lq) ≤ Cε∗ where C is independent of N ∈ N and T ′. Hence we may assume
that unk ⇀ U in Lsα(Lq) as k →∞, using without loss of generality the same subsequence
as the sequence (unk) considered in the L2-theory of Remark 5.2. Consequently, U = v.

It remains to show that U equals the given strong Lsα(Lq)-solution u ∈ Lsα(0, T ′;Lq)
with data u0, F . Due to (3.2)

un(t)− u(t) = Efn,u0n(t)− Ef,u0(t)

−
∫ t

0

A1/2e−(t−τ)A(A−1/2P div)((Jnun − u)⊗ un + u⊗ (un − u))(τ) dτ

yielding the estimate

‖un − u‖Lsα(Lq) ≤ ‖Efn,u0n − Ef,u0‖Lsα(Lq)

+ C
(
‖Jnun − u‖Lsα(Lq) + ‖un − u‖Lsα(Lq))(‖un‖Lsα(Lq) + ‖u‖Lsα(Lq)

)
. (5.5)

Since

‖Jnun − u‖q ≤ ‖Jn(un − u)‖q + ‖Jnu− u‖q ≤ Cq‖un − u‖q + o(1) as n→∞

and
‖un‖Lsα(0,T ′;Lq) + ‖u‖Lsα(0,T ′;Lq) ≤ Cε∗,

we conclude from (5.5) and Lebesgue’s Theorem on Dominated Convergence that

‖un − u‖Lsα(0,T ′;Lq) ≤ ‖Efn,u0n − Ef,u0‖Lsα(0,T ;Lq) + Cε∗‖un − u‖Lsα(0,T ′;Lq) + o(1)

for all 0 < T ′ ≤ T and n ∈ N, but with C > 0 independent of T ′. Choosing ε∗ > 0 so
small that even Cε∗ ≤ 1

2
, we get that

‖un − u‖Lsα(0,T ′′;Lq) ≤ 2‖Efn,u0n − Ef,u0‖Lsα(0,T ′′;Lq) + o(1) as n→∞.

In order to fulfill the inequality Cε∗ ≤ 1
2

and (1.8) for u0n, u0 and Fn, F this step possibly
required to replace T ′ by a sufficiently small T ′′ ∈ (0, T ′]. Since the first term on the
right-hand side converges to 0 by Assumption 5.4, we obtain that ‖un− u‖Lsα(0,T ′′;Lq) → 0
as n→∞ and consequently that u = U = v on [0, T ′′).
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