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Abstract. We consider the spatially periodic Laplace and Stokes resolvent

problem and show corresponding weighted resolvent estimates on the locally
compact abelian group G := Rn−1×R/LZ, where the weight is in the Mucken-

houpt class Aq(G) for 1 < q <∞. A main tool is the use of Fourier techniques

on the Schwarz-Bruhat space S(G) and on the tempered distributions S′(G)
together with a weighted transference principle à la Anderson and Mohanty

(2009) and a splitting of the function spaces into a mean-value free part and

a lower-dimensional, nonperiodic part, which then enables us to make use of
a weighted Mikhlin multiplier theorem.
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1. Introduction

Let us consider the periodic linear Stokes resolvent problem
λu−∆u+∇p = f in Rn,

divu= g in Rn,
u(x′, xn + L) = u(x′, xn),

lim
|x′|→∞

u(x′, xn) = 0,

(1)

with periodic external force f(x′, xn) = f(x′, xn + L). Here, L > 0 is fixed and
λ ∈ Σϑ := {λ ∈ C : | arg λ| < ϑ, λ 6= 0} for some ϑ ∈ (0, π). We want to study
this problem in an Lq-setting on the periodic whole space using Fourier multiplier
techniques, following an ansatz by Kyed [10], who was considering time-periodic
systems. Our setup calls for different methods, as the problems investigated here
are spatially periodic. Nevertheless, the crucial cornerstones will be a weighted
transference principle of Fourier multipliers, which enables us to switch between
multipliers in different group settings, and a weighted version of the Mikhlin mul-
tiplier theorem. The transference principle is important, since Mikhlin’s theorem
only works in an Rn-setting.
Let us consider G := Rn−1 × R/LZ, L > 0, which together with addition as group
operation and the canonical quotient topology inherited from Rn yields a locally
compact abelian group as seen in [6, Example 2.1.3]. Thus, under the canonical
identification of G with Rn−1 × [0, L) the Haar measure µ on G is given up to
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a normalization factor by the product of the Lebesgue measure on Rn−1 and the
Lebesgue measure on [0, L), that is∫

G

f dµ =
1

L

∫ L

0

∫
Rn−1

f(x′, xn) dx′ dxn, f ∈ C0(G).

We will choose base sets Uk of the form
∏n
j=1 I

k
j , where the Ikj , 1 ≤ j ≤ n− 1 are

open intervals of length 2kL and Ikn is an open arc of length min{2kL,L}. These
sets obviously enjoy the doubling order 2n. In the following we will refer to such
sets as G-cubes of length 2kL.
As the structure of the groupG is of very concrete nature, it will be possible to define
a differentiable structure on G and consequently also Sobolev spaces. This yields a
promising starting point for investigating the linear Stokes resolvent problem (1),
which in terms of the group G may be equivalently rewritten as{

λu−∆u+∇p = f in G,
divu= g in G,

(2)

with λ ∈ Σϑ for some ϑ ∈ (0, π).
The following two theorems are our main theorems. Their proofs are postponed
until Section 5. For the definition of the projection P and the divergence space
W 1,q
ω,div(G), see (17) and (24) below, respectively. Firstly, we deal with the spatially

periodic Laplace equation, that is we will look at the problem

λu−∆u = f in G,(3)

with λ ∈ Σϑ := {λ ∈ C : | arg λ| < ϑ, λ 6= 0} for some ϑ ∈ (0, π).

Theorem 1.1. Let n ≥ 2, 1 < q < ∞ and ω ∈ Aq(G) and 0 < ϑ < π. Then
for each f ∈ Lqω(G) and λ ∈ Σϑ there is a unique solution u ∈ W 2,q

ω (G) to (3).
Moreover, u satisfies the estimate

‖λu,∇2u‖Lqω(G) ≤ c‖f‖Lqω(G),

where c = c(ω, n, q, ϑ, L) > 0 is an Aq(G)-consistent constant.

Similarly, we obtain existence and uniqueness of a solution to (2) in weighted
spaces.

Theorem 1.2. Let n ≥ 3, 1 < q < ∞, ω ∈ Aq(G) and 0 < ϑ < π. Then to

each f ∈ Lqω(G), g ∈ W 1,q
ω,div(G) and λ ∈ Σϑ there is a unique solution (u, p) ∈

W 2,q
ω (G)× Ŵ 1,q

ω (G) to (2) satisfying the a priori estimate

‖λu,∇2u,∇p‖Lqω(G)

≤ c(‖f‖Lqω(G) + ‖∇g‖Lqω(G) + |λ|(‖∇P⊥g‖Lqω(G) + ‖Pg‖Ŵ−1,q
ω̄ (Rn−1))),

(4)

where c = c(ω, n, q, ϑ, L) > 0 is an Aq(G)-consistent constant.
The same conclusion holds true for n = 2 if Pg = 0.

In the context of the classical whole space Rn, a corresponding result has been
obtained by Farwig and Sohr in [7] using the following multiplier theorem.

Proposition 1.3 (Weighted Mikhlin). Suppose that m ∈ L∞(Rn) ∩ Cn(Rn \ {0})
and there is a constant c > 0 such that for all 0 < R < ∞ and all multi-indices α
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with |α| ≤ n

R|α|−
1
2

(∫
R<|ξ|<2R

|Dαm(ξ)|2 dξ

) 1
2

≤ c.(5)

Then for every ω ∈ Aq(Rn), 1 < q < ∞, m is an Lqω(Rn)-multiplier with an
Aq(Rn)-consistent bound.

A sufficient condition for (5) to hold is |ξ||α||Dαm(ξ)| < c for all ξ ∈ Rn \ {0} and
all multi-indices α with |α| ≤ n.

Proof. See Theorem 3.9 of Chapter IV in [8]. �

In our case, the trick is to employ a transference principle of Fourier multipliers.
The idea of transference has been used for the first time by de Leeuw [5]. We will
state a weighted version due to Anderson and Mohanty [2], see Proposition 5.3
below.
This paper is organized as follows. In Section 2 we establish a differentiable struc-
ture on the group G and its dual group Ĝ. This will enable us to introduce the
concept of spatially periodic Sobolev spaces in Section 3. In Section 4 we will de-
rive a solution formula for the Stokes resolvent problem using Fourier techniques.
Finally, Theorem 1.1 and 1.2 will be proven in Section 5.

2. Differentiable Structure on G and Ĝ

Let us denote by πG the canonical quotient mapping

πG : Rn = Rn−1 × R→ G, πG(x′, xn) := (x′, [xn]),

where [xn] ∈ R/LZ is the equivalence class of xn ∈ R. For m ∈ N0 ∪ {∞}, we call

Cm(G) := {u : G→ C : ∃ũ ∈ Cm(Rn) such that ũ = u ◦ πG}

the space of m-times differentiable functions on G and define the derivatives via

Dαu = Dαũ|Rn−1×[0,L),

where α ∈ Nn0 with |α| ≤ m and where we have identified G with Rn−1 × [0, L) in
virtue of the canonical bijection. Observe that for u ∈ Cm(G), 0 ≤ m ≤ ∞, every
corresponding ũ ∈ Cm(Rn) is necessarily periodic of length L in the last variable,
and hence so is Dαũ for any multi-index α with |α| ≤ m. Therefore, we may write
Dαũ = (Dαu) ◦ π, and thus Dαu ∈ Cm−|α|(G). Moreover, let us introduce

Cm0 (G) := {u ∈ Cm(G) : supp u compact}.

It is clear that C∞(G) ⊂ Cm1(G) ⊂ Cm2(G) for m1,m2 ∈ N0 with m2 ≤ m1

and that a similar chain of inclusions holds for the spaces with compact support.
Moreover, since the topology of G is inherited from Rn, we see that C0(G) = C(G)
and C0

0 (G) = C0(G), where C(G) is the space of continuous functions and

C0(G) := {u ∈ C(G) : supp u compact}.

We introduce the Schwartz-Bruhat space (see [3, 11]) for the locally compact abelian
group G as follows. Let u ∈ C∞(G) and define for j ∈ N0

ρj(u) := sup
x=(x′,xn)∈G

(1 + |x′|)j |Dju(x)|,
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where Dju := (Dαu)|α|≤j . Then we denote the Schwartz-Bruhat space by

S(G) := {u ∈ C∞(G) : ρj(u) <∞ for all j ∈ N0}.

Clearly, ρj is a semi-norm on S(G) and so we can endow the space with the semi-
norm topology induced by the family {ρj : j ∈ N0}. Notice that the semi-norms
are in fact norms and that they are increasing in the sense that ρj(u) ≤ ρk(u) if
j ≤ k. Having set the topology of S(G), we can denote its dual space by S ′(G) and
equip it with the weak-* topology. In analogy to the classical Rn-setup, S ′(G) is
called the space of tempered distributions on G. Tempered distributions in S ′(G)
are of finite type. More precisely, we have the following lemma.

Lemma 2.1. A linear functional T on the Schwartz-Bruhat space S(G) is in S ′(G)
if and only if there are c > 0 and j ∈ N0 such that |〈T, u〉| ≤ cρj(u) for all S(G),
where 〈·, ·〉 is the duality paring of S ′(G) and S(G).

Proof. Assume there are c > 0 and j ∈ N0 such that |〈T, u〉| ≤ cρj(u) for all S(G).
Let (un)n∈N ⊂ S(G) be a null sequence, that is un → 0 in S(G) as n → ∞. In
particular, ρj(un) → 0 as n → ∞. This gives the continuity of T in the weak-*
topology of S ′(G).
Conversely assume that T ∈ S ′(G) and that for each j ∈ N we have uj ∈ S(G) such
that

|〈T, uj〉| > jρj(uj).

This shows that uj 6= 0 for all j ∈ N. Since ρj is a norm for every j ∈ N0, we can
define ũj := uj/(jρj(uj)) ∈ S(G). Then we have

|〈T, ũj〉| > 1, ρj(ũj) =
1

j
.

Thus, fixing j ∈ N0, we see by the monotonicity of the seminorms that ρj(ũm) ≤
ρm(ũm) = 1

m for all m ≥ j. Hence ρj(ũm) → 0 as m → ∞ for each j ∈ N0. This
yields ũj → 0 in S(G), contradicting |〈T, ũj〉| > 1. �

With the help of the lemma it is easy to see that derivatives of a tempered
distribution ψ ∈ S ′(G) defined via

〈DαT, u〉 := (−1)|α|〈T,Dαu〉, u ∈ S(G), α ∈ Nn0

yield again tempered distributions.
It is well-known that the Pontryagin dual of G is Ĝ = Rn−1× 2π

L Z, see for example
[10, Section 3.2.3]. We will introduce a differentiable structure in a similar way as
for the group G. That is, we define

C∞(Ĝ) := {u : Ĝ→ C : u(·, k) ∈ C∞(Rn−1) for all k ∈ 2π

L
Z}.

Furthermore, for α ∈ Nn−1
0 and u ∈ C∞(Ĝ) we define the derivatives Dαu(ξ, k) =

Dα
ξ u(ξ, k). Note that for η ∈ Ĝ we write |η| for the Euclidean norm of the vector

η = (ξ, k). With the seminorms

ρ̂j(u) := sup
η∈Ĝ

(1 + |η|)j |Dju(η)|,
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for u ∈ C∞(Ĝ), j ∈ N0 and Dju := (Dαu)|α|≤j we may introduce the Schwartz-

Bruhat space on Ĝ via

S(Ĝ) := {u ∈ C∞(Ĝ) : ρ̂j(u) <∞ for all j ∈ N0}.

The topology on S(Ĝ) will be given by the semi-norm topology induced by the

seminorms ρ̂j , j ∈ N0. Then we may introduce the dual space S ′(Ĝ) and equip it
with the weak-* topology.

Remark 2.2. Let p be a polynomial in G, i.e., p(x) =
∑
β∈Nn−1

0 ,|β|<m aβ · (x′)β

for some m ∈ N0 and aβ ∈ C. Then for u ∈ S(G) we have ψ · u ∈ S(G) for all
ψ ∈ C∞(G) with |ψ(x)| ≤ c|p(x)| for some c > 0. That is, the Schwartz-Bruhat
space is closed under multiplication with smooth functions of at most polynomial
growth and in particular under multiplication with itself. Moreover, also S ′(G) is
closed under multiplication with smooth functions of at most polynomial growth.
In fact, considering such ψ ∈ S(G) and T ∈ S ′(G) we see that v · T is well-defined
in S ′(G) via

〈v · T, u〉 := 〈T, v · u〉 <∞, u ∈ S(G).

One readily checks that for any α ∈ Nn0 we have the Leibniz product rule

Dα(v · T ) =
∑
|γ|≤|α|

(
α
γ

)
(Dγv) · (Dα−γT ).(6)

Similar arguments also apply in the case of the group Ĝ.

Remark 2.3. The construction of the spaces S(G) and S(Ĝ) is the original con-
struction due to F. Bruhat [3]. Later, Osborne [11] gave a different construction,
which turns out to be equivalent. For a proof we refer to [11, Theorem 1].

3. Function Spaces

With G being a locally compact abelian group with Haar measure µ, one can
define a nontrivial, translation-invariant, regular measure µ, called Haar measure
[1, 4, 9, 16], with µ(K) <∞ for all compact K ⊂ G. Furthermore, such a measure
is unique up to multiplication with a constant. For 1 ≤ q ≤ ∞, one can thus
introduce the space Lq(G) of q-integrable functions f : G→ R, which turns into a
Banach space if equipped with the usual norm

‖f‖q :=

(∫
G

|f |q dµ

) 1
q

, 1 ≤ q <∞,

‖f‖∞ := µ - ess sup
G
|f |.

Moreover, we consider the spaces Lqω(G) for 1 ≤ q <∞ and Muckenhoupt weights
ω ∈ Aq(G), which have been introduced in [14] in the context of locally compact
abelian groups. As G satisfies Assumption 1.1 of [14], the theory developed there
applies in our case. One noteworthy point is that we can additionaly show that
smooth functions with compact support are dense in Lqω(G).

Lemma 3.1. Let 1 ≤ q <∞ and ω ∈ Aq(G). Then C∞0 (G) is dense in Lqω(G).
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Proof. We want to use a mollifier argument involving the boundedness of the max-
imal operator on Lqω(G). The first main effort will be to construct a suitable
approximate identity ψk ∈ C∞0 (G). Consider a real-valued nonnegative function

ψ̃ ∈ C∞0 (Rn) with supp ψ̃ ⊂ BL/4(0) and
∫
Rn ψ̃ dx = L and define for k ∈ Z the

function ψ̃k ∈ C∞0 (Rn) via ψ̃k(x) := 2−knψ̃(2−kx). Furthermore define

Ψk : Rn → R, Ψk(x′, xn) =

∞∑
j=−∞

ψ̃k(x′, xn + jL).

Since ψ̃k is compactly supported, for each k ∈ Z and for each (x′, xn) ∈ Rn at most
a finite number of summands is nonzero and hence Ψk is periodic of length L in
the last variable and Ψk ∈ C∞(R). Furthermore,

ψk : G→ R, ψk(x′, [xn]) := Ψk(x′, xn),

is well-defined and we obtain that ψk is a nonnegative smooth function with supp ψk
contained in Uk−2, where Uk is a G-cube of length 2kL centered at 0 ∈ G. Moreover,
if k ≤ 0, then in the definition of Ψk there is at most one summand nonzero.
Therefore we obtain∫

G

ψk dµ =
1

L

∫ L

0

∫
Rn−1

Ψk dx′ dxn =
1

L

∫
Rn
ψ̃k dx = 1, k ≤ 0.

Let now f ∈ Lqω(G). The outline of the rest of the proof is as follows: Considering
fk := f ·χUk , k ∈ Z, we see by the Lebesgue Dominated Convergence Theorem that
functions with compact support are dense in Lqω(G). Hence we can assume supp f to
be compact. If we can show that |ψk∗f−f | → 0 almost everywhere in G as k → −∞
and supk≤0 ‖ψk ∗ f‖Lqω(G) ≤ c‖f‖Lqω(G), then we obtain ‖ψk ∗ f − f‖Lqω(G) → 0 as
k → −∞ by the Lebesgue Dominated Convergence Theorem. Here, the convolution
g ∗ h for two measurable functions g, h : G→ C is defined as

(g ∗ h)(x) =

∫
G

g(x− y)h(y) dµ(y),

and it is easy to see that with supp g and supp h compact also supp (g ∗ h) is
compact. In our case, this yields supp (ψk ∗ f) compact for all k ≤ 0. Furthermore,
since Dα(ψk ∗ f) = (Dαψk) ∗ f whenever α ∈ Nn0 , we also have ψk ∗ f ∈ C∞0 (G).
Having this in mind, let us first show that |ψk ∗ f − f | → 0 almost everywhere in
G as k → −∞. Since

∫
G
ψk dµ = 1 and supp ψk ⊂ Uk−2, it suffices to show that∫

Uk−2

ψε(y)|f(x− y)− f(x)|dµ(y) =

∫
G

ψk(y)|f(x− y)− f(x)|dµ(y)→ 0,

as k → −∞ for almost all x ∈ G. By Lebesgue’s differentiation theorem, see [6,
Chapter 2.2], there is N ⊂ G with µ(N) = 0 such that we can find for every δ > 0
and every x ∈ G \N an integer K(δ, x) ∈ Z such that∫

x+Uk

|f − f(x)|dµ ≤ δ · µ(x+ Uk),

for all k ≤ K(δ, x). Therefore, fix δ > 0 and x ∈ G \N . Without loss of generality
K(δ, x) ≤ 0 and consequently the G-cubes x+Uk are actual cubes for k ≤ K(δ, x),
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whence we see µ(x + Uk) = 2nkLn. Observe that ‖ψk‖L∞(G) = 2−kn‖ψ0‖L∞(G).
Hence, for k ∈ Z with k ≤ K, we obtain∫

x+Uk−2

ψk(y)|f(x− y)− f(x)|dµ(y) ≤ ‖ψk‖L∞(G)

∫
x+Uk−2

|f(y)− f(x)|dµ(y)

≤ δ · µ(x+ Uk−2)‖ψk‖L∞(G)

= δ · 2n(k−2)Ln2−kn‖ψ0‖L∞(G)

= δ · 2−2nLn‖ψ0‖L∞(G).

Since δ > 0 was chosen arbitrarily, we obtain the almost everywhere convergence
|ψk ∗ f − f | → 0 in G as k̃ → −∞.
Next we want to prove supk≤0 ‖ψk ∗ f‖Lqω(G) ≤ c‖f‖Lqω(G). We notice

sup
k≤0
|(ψk ∗ f)(x)| ≤ sup

k≤0

∫
G

ψk(x− y)|f(y)|dµ(y) = sup
k≤0

∫
x+Uk−2

ψk(x− y)|f(y)|dµ(y)

≤ sup
k≤0
‖ψk‖L∞(G)

∫
x+Uk−2

|f |dµ = ‖ψ0‖L∞(G) sup
k≤0

2−nk
∫
x+Uk−2

|f |dµ

= ‖ψ0‖L∞(G) sup
k≤0

2−2nLn

µ(x+ Uk−2)

∫
x+Uk−2

|f |dµ

≤ 2−2nLn‖ψ0‖L∞(G)MGf(x),

where MG is the maximal operator on G, see [14] for details about the maximal
operator, the class Aq(G) and Aq(G)-consistency. By [14, Theorem 1.4] we know
that the maximal operator M(G) is Aq(G)-consistently bounded on Lqω(G). It
follows

sup
k≤0
‖ψk ∗ f‖Lqω(G) ≤ c‖MGf‖Lqω(G) ≤ c‖f‖Lqω(G),

where c = c(ω) > 0 is an Aq(G)-consistent constant. As mentioned above, the
convergence |ψε ∗ f − f | → 0 almost everywhere in G as k → −∞ together with
‖ψk ∗f −f‖Lqω(G) ≤ (c+1)‖f‖Lqω(G) <∞ for all k ≤ 0 yields ‖ψk ∗f −f‖Lqω(G) → 0
as k → −∞ in virtue of the Lebesgue Dominated Convergence Theorem. �

As we deal with partial differential equations, there is the need to set up a
notion of differentiability in the context of Lebesgue spaces. As is well known in
the classical Rn-setting, a suitable concept is given by Sobolev spaces. In order
to introduce a corresponding concept in our setup, we need to discuss some more
properties of tempered distributions on G. We will write ω ∈ A∞(G) if ω ∈ Aq(G)
for some 1 < q <∞.

Lemma 3.2. Let 1 < q ≤ ∞ and ω ∈ Aq(G). Then for every u ∈ S(G) it holds
‖u‖Lqω(G) < ∞. Moreover, the continuous embeddings S(G) ↪→ Lqω(G) ↪→ S ′(G)
hold true, where we identify u ∈ Lqω(G) with Tu ∈ S ′(G) via

〈Tu, ψ〉 =

∫
G

uψ dµ.

Proof. Note that the assertion ‖u‖L∞ω (G) < ∞, ω ∈ A∞(G) is trivial, because as
shown in [14, Proposition 3.6 (iii)] it holds L∞ω (G) = L∞(G) with equal norms and
for every u ∈ S(G) we certainly have ‖u‖L∞(G) = ρ0(u) <∞. We thus concentrate
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on showing ‖u‖Lqω(G) <∞ for ω ∈ Aq(G) with 1 < q <∞.
Fix some ψ0 ∈ C∞0 (G) with supp ψ0 ⊂ U0. We claim that for all x = (x′, xn) ∈ G

(L+ |x′|)1−n ≤ 23nL

‖ψ0‖L1(G)
MGψ0(x).

Indeed, let x ∈ G and set k ∈ Z, as the largest integer such that 2kL ≤ L +
|x′|. Observe that necessarily k ≥ 0. Thus for the G-cube of length 2kL we have
µ(Uk) = L · (2kL)n−1. Furthermore, U0 ⊂ x + Uk+3. Indeed, since k ≥ 0, we
have |x′| < L + |x′| < 2k+1L and so x ∈ Uk+1 (note carefully that the choice of
xn ∈ R/LZ does not enter the argument here, as the G-cubes Uk for k ≥ 0 already
stretch across the entire period L). Since obviously 0 ∈ Uk+1, we obtain by the
engulfing property of G, see [14, Proposition 2.1 (ii)] the inclusion U0 ⊂ x+ Uk+3.
We can now calculate

1

(L+ |x′|)n−1

∫
G

|ψ0|dµ ≤
1

(2kL)n−1

∫
G

|ψ0|dµ =
L

L(2kL)n−1

∫
G

|ψ0|dµ

=
L

µ(x+ Uk)

∫
G

|ψ0|dµ =
L

µ(x+ Uk)

∫
x+Uk+3

|ψ0|dµ

=
23nL

µ(x+ Uk+3)

∫
x+Uk+3

|ψ0|dµ ≤ 23nL · MGψ0(x),

which proves the claim. Since the maximal operator is bounded on Lqω(G), we
obtain by introducing the function P (x) = (L+ |x′|)n−1∫

G

P−q dµω ≤ c
∫
G

(Mψ0)q dµω ≤ c
∫
G

|ψ0|q dµω <∞.

Now let ψ ∈ S(G). Then

‖ψ‖Lqω(G) ≤ ‖P · ψ‖L∞(G)‖P−1‖Lqω(G) ≤ ρn−1(ψ)‖P−1‖Lqω(G) <∞.
This gives the first assertion.
For the assertion concerning the continuous embeddings, we calculate with Hölder’s
inequality for u ∈ Lqω(G) and ψ ∈ S(G)

|〈u, ψ〉| ≤
∫
G

|uψ|dµ ≤ ‖u‖Lqω(G)‖ψ‖Lq′
ω′ (G)

≤ ‖u‖Lqω(G)‖P · ψ‖L∞(G)‖P−1‖
Lq
′
ω′ (G)

≤ c‖u‖Lqω(G)ρn−1(ψ),

where ω′ := ω−
q′
q ∈ Aq′ by [14, Proposition 3.2 (ii)] and therefore ‖P−1‖

Lq
′
ω′ (G)

≤ c
by what we have just proven. So Lemma 2.1 yields Lqω(G) ↪→ S ′(G). We note

that the dual space of Lqω(G) can be identified with Lq
′

ω′(G) via the dual pairing
〈u, v〉 =

∫
G
uv dµ. Therefore, by duality we arrive at

S(G) ↪→ Lqω(G) ↪→ S ′(G).

Moreover, in the unweighted case we obtain

|〈u, ψ〉| ≤ ‖u‖L∞(G)‖ψ‖L1(G) ≤ ‖u‖L∞(G)‖P 2 · ψ‖L∞(G)‖P−2‖L1(G)

≤ c‖u‖L∞(G)ρ2(n−1)(ψ),

since P−2 is easily seen to be integrable. Therefore L∞ω (G) = L∞(G) ↪→ S ′(G) for
all ω ∈ A∞(G). Since ‖ψ‖L∞(G) = ρ0(ψ) for ψ ∈ S(G), also S(G) ↪→ L∞(G) =
L∞ω (G) is valid and the lemma is proven. �
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We are now in the position to define weighted Sobolev spaces on G. Since for 1 <
q ≤ ∞ and ω ∈ Aq(G) we know Lqω(G) ↪→ S ′(G), given u ∈ Lqω(G) the derivative
Dαu is well-defined in S ′(G) for any α ∈ Nn0 and we say that Dαu ∈ Lqω(G) if there
is uα ∈ Lqω(G) with Tuα = Dαu as an identity in S ′(G).

Definition 3.3. Let m ∈ N0, 1 < q ≤ ∞ and ω ∈ Aq(G). Then we denote the
weighted Sobolev space of m-th order of q-integrable functions by

Wm,q
ω (G) := {u ∈ Lqω(G) : Dαu ∈ Lqω(G) for all α ∈ Nn0 with |α| ≤ m},

‖u‖Wm,q
ω (G) :=

∑
|α|<m

‖Dαu‖Lqω(G).

Remark 3.4. It should be noted that for all 1 < q ≤ ∞ and ω ∈ Aq(G), W 0,q
ω (G) =

Lq(G). Furthermore, for all m ∈ N0 we have that Wm,q
ω (G) equipped with its

respective norm yields Banach spaces. This follows from the continuous embedding
Lqω(G) ↪→ S ′(G). Indeed, let (un)n∈N be a Cauchy sequence in Wm,q

ω (G). Then
by definition of the norm of Wm,q

ω (G) the sequences (un)n∈N and (Dαun)n∈N are
Cauchy sequences in Lqω(G) for all multi-indices α ∈ Nn0 with |α| ≤ m. Since
Lqω(G) is a Banach space, un → u and Dαun → uα in Lqω(G) as n → ∞ for some
u, uα ∈ Lqω(G). Lqω(G) ↪→ S ′(G) is continuous, and so the same convergences hold
true in S ′(G). Hence

〈uα, ψ〉 = lim
n→∞

〈Dαun, ψ〉 = lim
n→∞

(−1)|α|〈un, Dαψ〉 = (−1)|α|〈u,Dαψ〉

for all ψ ∈ S(G). This shows uα = Dαu in S ′(G) and thus also in Lqω(G). Therefore,
un → u in Wm,q

ω (G), showing that Wm,q
ω (G) is a Banach space.

Lemma 3.5. Let k ∈ N0, 1 ≤ q < ∞ and ω ∈ Aq(G). Then C∞0 (G) is dense in
W k,q
ω (G).

Proof. Consider the approximate identity (ψk)k≤0 from the proof of Lemma 3.1. In
the proof we have seen that ‖ψk ∗ f − f‖Lqω(G) → 0 as k → −∞ for all f ∈ Lqω(G).
If f ∈ Wm,q

ω (G), then Dα(ψk ∗ f) = ψk ∗ Dαf for all α ∈ Nn0 with |α| ≤ m and
all k ∈ Z with k ≤ 0. Hence we see ‖ψk ∗ f − f‖Wm,q

ω (G) → 0 as k → −∞ for all
f ∈ Wm,q

ω (G). Therefore, the assertion is proven if we can show that the set of all
f ∈ Wm,q

ω (G) with compact support is dense in Wm,q
ω (G), since ψk ∗ f ∈ C∞0 (G)

for compactly supported f ∈ Lqω(G).
In contrast to the proof of Lemma 3.1 we choose smooth cut-off functions instead
of looking at the truncated functions fχUk , k ∈ Z. Write Qk for the projection of
the G-cube Uk to Rn−1, i.e., Qk is the n − 1-dimensional cube of length 2kL and
center in 0. Then choose for each k ∈ Z with k ≥ 0 a smooth χ̃k ∈ C∞0 (Rn−1) such
that

χ̃k = 1 in Qk, supp χ̃k ⊂ Qk+1, ‖Dαχk‖L∞(Rn−1) ≤ c/k,

for all α ∈ Nn−1
0 with |α| ≤ m for some c > 0 independent of k ∈ Z. The

function χk : G → C defined via χk(x′, [xn]) := χ̃k(x′) is in C∞0 (G) and hence
fχk ∈ Wm,q

ω (G) by the Leibnitz product rule (6) for products of Schwartz-Bruhat
functions with tempered distributions. Because we have for all α ∈ Nn0 with |α| ≤
m the pointwise convergence |Dα(fχk)(x) − Dαf(x)| → 0 almost everywhere as
k → ∞ and moreover ‖Dα(fχk)‖Lqω(G) ≤ c′‖Dαf‖Lqω(G), where c′ is independent
of k ∈ Z, the Lebesgue Dominated Convergence Theorem yields the assertion. �



10 JONAS SAUER

4. Fourier Transform and Solution Formula

On the group G := Rn × R/LZ we introduce the Fourier transform FG via

FG : L1(G)→ C(Ĝ),

FG(u)(ξ, k) := û(ξ, k) :=
1

L

∫ L

0

∫
Rn−1

u(x′, xn)e−ix
′·ξ−ikxn dx′ dxn.

Let us clarify the notation in order to avoid confusion. When we write Ĝ, we jump
freely between the actual Pontryagin dual of G, which consists of mappings of
the form (x, xn) 7→ e−ix

′·ξ−ikxn , and its homeomorphic identification Rn−1 × 2π
L Z,

which consists of elements of the form η = (ξ, k). Observe that FG maps into

C(Ĝ) by Lebesgue’s differentiation theorem. Furthermore, FG : S(G) → S(G) is

a homeomorphism by [3], where S(G) and S(Ĝ) are the Schwartz-Bruhat spaces

of rapidly decaying functions on G and Ĝ, respectively, as introduced in Section 2.
The inverse Fourier transform is given by

F−1
G : L1(Ĝ)→ C(G),

F−1
G (u)(x′, xn) := ǔ(x′, xn) :=

∑
k∈ 2π

L Z

∫
Rn−1

u(ξ, k)eix
′·ξ+ikxn dξ.

By the Pontryagin duality theorem in [12, Theorem 39, p.259], we can also introduce

the Fourier transform FĜ : S(Ĝ) → S(G), which again yields a homeomorphism

with inverse F−1

Ĝ
: S(G)→ S(Ĝ). In fact, by inversion of the Fourier transform, see

[13, Theorem 1.5.1], we have F−1
G (f̂)(x) = f(x) = FĜ(f̂)(−x) for all x ∈ G and all

f ∈ S(G). We can now introduce the Fourier transform on tempered distributions
via

FG : S ′(G)→ S ′(Ĝ),

〈FGT, ψ〉 := 〈T,FĜψ〉, ψ ∈ S(Ĝ),

and in an analogous way we may introduce

F−1
G : S ′(Ĝ)→ S ′(G),

〈F−1
G T, ψ〉 := 〈T,F−1

Ĝ
ψ〉, ψ ∈ S(G).

Since FG : S(G)→ S(Ĝ) is a homeomorphism, so is FG : S ′(G)→ S ′(Ĝ).
One main reason to use Fourier techniques in partial differential equations is the
correspondence between differential operators on G and polynomials on Ĝ. That
is, we obtain for all T ∈ S ′(G) and all multi-indeces α ∈ Nn0 the relation

FG(DαT ) = i|α|ηαF(T ),

and i|α|ηαF(T ) is well-defined in S ′(Ĝ) by Remark 2.2.
If we apply the Fourier transform on S ′(G) to the linear Stokes resolvent system
(2), we are thus led to the system{

λû+ |η|2û+ iηp̂ = f̂ in Ĝ,

η · û= ĝ in Ĝ.
(7)
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From this we see that −|η|2p̂ = iη · f̂ − (λ+ |η|2)ĝ and hence

(λ+ |η|2)û =

(
I − η ⊗ η

|η|2

)
f̂ − λ+ |η|2

|η|2
iηĝ.

This gives formally a representation formula for u reading

(8) u = F−1
G

(
1

λ+ |η|2

(
I − η ⊗ η

|η|2

)
f̂ +

iη

|η|2
ĝ

)
,

valid as an identity in S ′(G).
A word about notation in the Fourier spaces is in order. As already introduced,
the variable in the Fourier space Ĝ = Rn−1 × 2π

L Z will be called η and split into

η = (ξ, k). Note that k is not an integer, but k ∈ 2π
L Z. A variable in the Fourier

space R̂n = Rn = Rn−1 × 2π
L R will be called ζ and split into ζ := (ξ, κ).

5. Weighted Resolvent Estimates

We will have to investigate the structure of Muckenhoupt weights on the group
G in more detail.

Proposition 5.1. For all 1 < q < ∞, the Muckenhoupt weights in Aq(G) can be
identified with those Muckenhoupt weights in Aq(Rn) which are periodic of length
L with respect to the variable xn.

Proof. Let ω ∈ Aq(Rn) be periodic of length L with respect to xn and let U be a
G-cube of length 2kL. If k ≤ 0, U is an actual cube and thus the Muckenhoupt
condition for ω immediately yields(

1

µ(U)

∫
U

ω dµ

)(
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′

≤ Aq(ω).

If k > 0, we notice that U is a cuboid. Therefore, we define the cube Q :=⋃
1≤l≤2k U

l of edge length 2kL, where U l is U translated by (l−1)L in the direction
of the xn-axis. Strictly speaking, Q is not really a cube, as it is not connected at
the interfaces of the U l. However, it is a cube up to a set of measure zero. Using
the translation invariance of ω, we can now calculate(

1

µ(U)

∫
U

ω dµ

)(
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′

=

(
1

2kµ(U)

∫
⋃

0≤l≤2k−1
U l
ω dµ

)(
1

2kµ(U)

∫
⋃

1≤l≤2k
U l
ω−

q′
q dµ

) q
q′

=

(
1

µ(Q)

∫
Q

ω dµ

)(
1

µ(Q)

∫
Q

ω−
q′
q dµ

) q
q′

≤ Aq(ω).

The converse direction can be proven similarly. �

Next we show that taking the average over one period of a Muckenhoupt weight
ω ∈ Aq(G) yields a Muckenhoupt weight in Aq(Rn−1). This will be crucial in
identifying the correct function space for the divergence.

Proposition 5.2. Let 1 < q <∞, n ≥ 2 and ω ∈ Aq(G). Then

ω̄(x1, . . . , xn−1) :=

∫ L

0

ω(x1, . . . , xn) dxn ∈ Aq(Rn−1)
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and Aq(ω̄) ≤ Aq(ω).

Proof. We will show that(
1

λ(Q)

∫
Q

f dµ

)q
≤ c

λω̄(Q)

∫
Q

fqω̄ dµ.(9)

for any cube Q ⊂ Rn−1 of length 2kL, k ∈ Z. Note that this suffices, since
a condition of type (9) is equivalent to the Muckenhoupt condition by by [14,
Proposition 3.5]. Hence, let f : Rn−1 → R be a nonnegative function that is
measurable with respect to the (n− 1)-dimensional Lebesgue measure λ and define

f̃ : G → R via f̃(x′, xn) := f(x′) for all x = (x′, xn) ∈ G. Obviously, f̃ is
nonnegative and measurable with respect to the Haar measure µ. Moreover, for
any cube Q ⊂ Rn−1 of length 2kL, k ∈ Z, and any set U ∈ G of the form U := Q×In
with In being an arc of length min{2kL,L}

1

λ(Q)

∫
Q

f dλ =
1

µ(U)

∫
U

f̃ dµ.(10)

If k ≥ 0, U is a G-cube of length 2kL such that

λω̄(Q) =

∫
Q

ω̄ dλ =

∫
Q

∫ L

0

ω(x′, xn) dxn dx′ =

∫
U

ω dµ = µω(U).(11)

Thus, we obtain(
1

λ(Q)

∫
Q

f dλ

)q
=

(
1

µ(U)

∫
U

f̃ dµ

)q
≤ c

µω(U)

∫
U

f̃qω dµ

=
c

λω̄(Q)

∫
Q

fqω̄ dλ,

(12)

where c = Aq(ω) > 0 is the Muckenhoupt constant of ω. If k < 0, relation (11) does
not hold anymore, since the edge length of U is less the L. However, it does hold
with U being replaced by the cuboid R :=

⋃
1≤l≤2k U

l, where Ul is U translated by

(l− 1)L in the direction of the xn-axis. Clearly, also (10) holds with U replaced by
R. Unfortunately, R is no G-cube anymore. Nevertheless, we still can calculate for
every 1 ≤ l ≤ 2k (

1

µ(U l)

∫
U l
f̃ dµ

)q
≤ c

µω(U l)

∫
U l
f̃qω dµ,

which can be written in the more accessible way(∫
U l
f̃ dµ

)q
µω(U l) ≤ cµ(U l)q

∫
U l
f̃qω dµ.

Because µ(U l) = µ(U) and
∫
U l
f̃ dµ =

∫
U
f̃ dµ for all 1 ≤ l ≤ 2k, this implies(∫

R

f̃ dµ

)q
µω(R) = 2kq

(∫
U

f̃ dµ

)q 2k∑
l=1

µω(U l) = 2kq
2k∑
l=1

(∫
U l
f̃ dµ

)q
µω(U l)

≤ c2kq
2k∑
l=1

µ(U l)q
∫
U l
f̃qω dµ = c

(
2kµ(U)

)q 2k∑
l=1

∫
U l
f̃qω dµ

= cµ(R)q
∫
R

f̃qω dµ.
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Thus the same calculation as in (12) with U replaced by R yields the claim. �

Now we can turn our focus back to the transference principle. In the context of
Rn and the n-dimensional torus Tn, the following weighted restriction theorem has
been shown by Anderson and Mohanty [2, Theorem 1.1].

Proposition 5.3. Let 1 < q < ∞ and 0 ≤ ω ∈ Lqloc(Rn) be periodic of length 1.
Suppose furthermore that M ∈ L∞(Rn) is continuous and an Lqω(Rn)-multiplier,
i.e., there is a constant c > 0 with

(13)
∥∥∥F−1

[
M · f̂

]∥∥∥
Lqω(Rn)

≤ c‖f‖Lqω(Rn), f ∈ Lqω(Rn).

Then m := M |Zn ∈ L∞(Zn) is an Lqω(Tn)-multiplier with

(14)
∥∥∥F−1

[
m · f̂

]∥∥∥
Lqω(Tn)

≤ c‖f‖Lqω(Tn), f ∈ Lqω(Tn).

with the same constant c > 0.

Remark 5.4. The continuity condition on M may be weakened, see [15, Lemma
3.16, p.263]. Also, by revising the proof of [2, Theorem 1.1], Proposition 5.3 can be
generalized to arbitrary periods L > 0 and also to our setting of the group G.

We will tackle the two terms involving f and g on the right hand side of the
representation formula (8) seperately. If we denote the multiplier appearing in the
first term by

(15) mf : Ĝ→ C, mf (ξ, k) =
1

λ+ |η|2

(
I − η ⊗ η

|η|2

)
and define
(16)

Mf : Rn−1 × R→ C, Mf (ξ, κ) =
1

λ+ |ζ|2

(
I − ζ ⊗ ζ

|ζ|2

)
, ζ = (ξ,

2π

L
κ),

we see that mf = Mf |Ĝ. Furthermore, in the formula of Mf we recognize the
usual symbols of the resolvent problem on the whole space and the Helmholtz
projection. It is well-known that these symbols satisfy Mikhlin’s condition and
therefore extend to continuous Lqω(Rn)-multipliers for all ω ∈ Aq(Rn), in particular
for all ω ∈ Aq(Rn) that are periodic of length L in the direction of the xn-axis.
Therefore, we would like to use Propositions 5.1 and 5.3 to obtain that mf is an
Lqω(G)-multiplier for all ω ∈ Aq(G), and use a similar argument for ηαmf (η) with
any multi-index |α| ≤ 2. Unfortunately, the multiplier Mf is not continuous at the
origin, so Proposition 5.3 can not be applied directly. Also, it is not immediately
clear how to deal with the second term involving the divergence function g. If we
simply transferred the symbol iη

|η|2 to the Rn-setting, the singularity at the origin

would prevent us from concluding a corresponding a priori estimate.
To overcome these difficulties appearing at the origin of the Fourier space, we first
perform an averaging procedure and exploit that the respective functions will be
split into a familiar part on Rn−1 and a well-behaved part on G whose average
vanishes over one period.
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Definition 5.5. Let

P : C∞0 (G)→ C∞0 (G), Pf(x′) :=
1

L

∫ L

0

f(x′, xn) dxn,

P⊥ : C∞0 (G)→ C∞0 (G), P⊥ = id− P.
(17)

Then P induces a decomposition of Lqω(G) and, more generally, W k,q
ω (G) into

direct sums of average-free functions with respect to xn and functions that are
independent of the variable xn.

Lemma 5.6. Let 1 < q <∞, ω ∈ Aq(G) and k ∈ N. Then

Lqω(G) = Lqω̄(Rn−1)⊕ P⊥Lqω(G),

W k,q
ω (G) = W k,q

ω̄ (Rn−1)⊕ P⊥W k,q
ω (G).

(18)

where ω̄ = 1
L

∫ L
0
ω(x′, xn) dxn. Moreover, the decompositions are Aq(G)-consistent,

that is the bound of projection P on the respective spaces is Aq(G)-consistent.

Proof. First of all notice that P2 = P. Moreover, by Fubini we obtain for f ∈ S(G)

FG (P(f)) (ξ, k) =
1

L

∫ L

0

∫
Rn−1

(
1

L

∫ L

0

f(x′, s) ds

)
e−ix

′·ξ−ik 2π
L xn dx′ dxn

= mP(k)

∫
Rn−1

(
1

L

∫ L

0

f(x′, s) ds

)
e−ix

′·ξ dx′

= mP(k)FGf(ξ, 0) = mP(k)FGf(ξ, k),

(19)

where mP := χ{0} is the characteristic function concentrated in 0. Let us write

m̃P := 1Rn−1 ⊗ mP , where 1Rn−1 is the constant 1-function on Rn−1. Then m̃P
is the Fourier symbol of P and in virtue of Proposition 5.3 we see that mP is
an Lqω(G)-multiplier: Indeed, take a cut-off function ϕ ∈ C∞0 (R) with ϕ(0) = 1
and supp ϕ ⊂ (− 1

2 ,
1
2 ). Writing ϕ̃ := 1Rn−1 ⊗ ϕ, we have m̃P = ϕ̃|Ĝ. As ϕ has

compact support, it obviously satisfies Mikhlin’s condition and hence ϕ̃ extends
to an Lqω(Rn)-multiplier. Therefore Proposition 5.3 yields the claim. Thus, P :
Lqω(G)→ Lqω(G) is continuous and we obtain the decomposition

Lqω(G) = PLqω(G)⊕ P⊥Lqω(G).

But since elements in PLqω(G) do not depend on xn anymore, we have obviously the
norm equality ‖Pf‖Lqω̄(Rn−1) = ‖Pf‖Lqω(G) and thus Lqω̄(Rn−1) = PLqω(G). This
shows

Lqω(G) = Lqω̄(Rn−1)⊕ P⊥Lqω(G).

Concerning higher derivatives, let k ∈ N and let α ∈ Nn0 with |α| ≤ k. Then
for f ∈ W k,q

ω (G) it holds PDαf = DαPf , since by (19) both P and Dα can be
viewed as Fourier multiplier functions. Hence, a similar argument as above yields
the assertion for W k,q

ω (G). �

With this decomposition at hand, we can immediately prove Theorem 1.1.

Proof of Theorem 1.1. Applying the Fourier transform we can read of the solution
formula

λu = F−1
G

λ

λ+ |η|2
f̂ ,
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valid in S ′(G). If we denote the multiplier appearing in this expression by

(20) m : Ĝ→ C, m(η) =
λ

λ+ |η|2

and define

(21) M : Rn−1 × R→ C, M(ζ) =
λ

λ+ |ζ|2
,

we see that m = M |Ĝ and that M is a smooth function. It is well-known that
M is a multiplier satisfying the Mikhlin condition in Proposition 1.3. Hence, by
Proposition 5.3 we obtain that λu ∈ Lqω(G) and that ‖λu‖Lqω(G) ≤ c‖f‖Lqω(G). But
then also −∆u = f − λu ∈ Lqω(G) and we have an estimate

‖∆u‖Lqω(G) ≤ ‖f‖Lqω(G) + ‖λu‖Lqω(G) ≤ c‖f‖Lqω(G).

In order to obtain the full a priori estimate, we consider for 1 ≤ i, j ≤ n the symbol

mij : Ĝ→ C, mij(η) =
ηiηj
|η|2

,

and define

Mij : Rn−1 × R→ C, Mij(ζ) =
ζiζj
|ζ|2

.

Again we note that mij = Mij |Ĝ and that Mij is a Mikhlin multiplier, but this
time it is not smooth at the origin. Therefore, we recall the multiplier mP of the
projection P from (19). We have seen that mP = χ{k=0}. Thus, writing η = (ξ, k)
as usual, we split

−∆u = P∆u+ P⊥∆u = ∆′Pu+ ∆P⊥u,
and similarly ∂iju = ∂ijPu+ ∂ijP⊥u. Certainly,

‖∂ijPu‖Lqω̄(Rn−1) ≤ c‖∆′Pu‖Lqω̄(Rn−1).

In fact, if i = n or j = n, then ∂ijPu = 0 and there is nothing to prove. Otherwise,
this follows by the weighted Mikhlin theorem and the constant is Aq(G)-consistent
since Aq(ω̄) ≤ Aq(ω) as shown in Proposition 5.2. For the complement projection
we have

∂ijP⊥u = ∂ijP2
⊥u = P⊥∂ijP⊥u = F−1

G ((1−mP)
ηiηj
|η|2
FG∆P⊥u),

again valid as an identity in S ′(G). Now we introduce

mij,⊥ : Ĝ→ C, mij,⊥(η) = (1−mP(η))
ηiηj
|η|2

,

and define

Mij,⊥ : Rn−1 × R→ C, Mij,⊥(ζ) = Mij,⊥(ξ, κ) = (1− ϕ(κ))
ζiζj
|ζ|2

,

where ϕ ∈ C∞0 (R) with ϕ(0) = 1 and supp ϕ ⊂ (− 1
2 ,

1
2 ). Notice that we could not

use the transference principle of Proposition 5.3, because Mij was not continuous at
the origin. Here lies the key in introducing the symbol Mij,⊥: in a neighbourhood
of κ = 0, this smoothened symbol Mij,⊥ vanishes. Since the behaviour at infinity
does not change, Mij,⊥ is still a Mikhlin multiplier that is also continuous. Thus,
we can use 5.3 now to obtain

‖∂ijP⊥u‖Lqω(G) ≤ c‖∆P⊥u‖Lqω(G),
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where c = c(ω, n, q, L) > 0 is Aq(G)-consistent. Thus, in total we obtain

‖∂iju‖Lqω(G) ≤ ‖∂ijPu‖Lqω̄(Rn−1) + ‖∂ijP⊥u‖Lqω(G)

≤ c(‖∆′Pu‖Lqω̄(Rn−1) + ‖∆P⊥u‖Lqω(G)) ≤ c‖∆u‖Lqω(G),

and the constant is still Aq(G)-consistent, since the decomposition

Lqω(G) = Lqω̄(Rn−1)⊕ P⊥Lqω(G)

is Aq(G)-consistent. �

We can now consider the Stokes resolvent problem again and use the decompo-
sition to split the original problem into the two problems{

λuP −∆′uP +∇′pP = Pf in Rn−1,
div′ uP = Pg in Rn−1,

(22)

and {
λu⊥ −∆u⊥ +∇p⊥ = P⊥f in G,

div u⊥ = P⊥g in G.
(23)

The solution of the original problem will then be given as u = uP +u⊥, and due to
Lemma 5.6 this decomposition is unique. Observe that if u ∈W 2,q

ω (G) is a solution
to (2), then divu⊥ = divP⊥u = P⊥divu ∈ P⊥W 1,q

ω (G). Together with Lemmas
5.7 and 5.8 below, this justifies the notion

(24) W 1,q
ω,div(G) =

(
W 1,q
ω̄ (Rn−1) ∩ Ŵ−1,q

ω̄ (Rn−1)
)
⊕ P⊥W 1,q

ω (G).

Concerning system (22), we have the following statement.

Proposition 5.7. Let n ≥ 3, 1 < q < ∞, L > 0, ω ∈ Aq(G) and 0 < θ < π
2 .

Then to each f ∈ Lqω(G), g ∈ W 1,q
ω,div(G) and λ ∈ Σθ+π

2
there is a unique solution

(uP , pP) ∈W 2,q
ω̄ (Rn−1)× Ŵ 1,q

ω̄ (Rn−1) to (22) satisfying the a priori estimate

‖λuP ,∇2uP ,∇pP‖Lqω̄(Rn−1)

≤ c
(
‖Pf‖Lqω̄(Rn−1) + ‖∇Pg‖Lqω̄(Rn−1) + ‖λPg‖Ŵ−1,q

ω̄ (Rn−1)

)
,

(25)

where c = c(ω, n, q, θ) > 0 is an Aq(G)-consistent constant.
The same conclusion holds true for n = 2 if Pg = 0.

Proof. It suffices to observe that Pf ∈ Lqω̄(Rn−1) and Pg ∈W 1,q
ω̄ (Rn−1)∩Ŵ−1,q

ω̄ (Rn−1)
and that Proposition 5.2 yields ω̄ ∈ Aq(Rn−1). Then we may invoke Theorem 4.5 of
[7] to obtain the assertion. Note that Theorem 4.5 of [7] is stated only for dimension
at least 2. Hence, we need n ≥ 3 in order to employ this result, since the projected
spaces are of dimension n− 1. �

We are now in the position to prove a dual assertion dealing with problem (23)
using the properties of the projection P and Proposition 5.3.

Proposition 5.8. Let n ≥ 2, 1 < q < ∞, ω ∈ Aq(G), and 0 < θ < π
2 . Then

to each f ∈ Lqω(G), g ∈ W 1,q
ω,div(G) and λ ∈ Σθ+π

2
there is a unique solution

(u⊥, p⊥) ∈ P⊥W 2,q
ω (G)× P⊥Ŵ 1,q

ω (G) to (23) satisfying the a priori estimate

(26) ‖λu⊥,∇2u⊥,∇p⊥‖Lqω(G) ≤ c(‖P⊥f‖Lqω(G) + (1 + |λ|)‖∇P⊥g‖Lqω(G)),

where c = c(ω, n, q, θ, L) > 0 is an Aq(G)-consistent constant.
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Proof. Concerning the uniqueness, let u⊥, p⊥ ∈ S ′(G) with Pu⊥ = 0 and Pp⊥ = 0
satisfy (23) with homogeneous data. Then in the Fourier space we have by chapter
4 it holds (λ+ |η|2)û⊥ = 0 and −|η|2p̂⊥ = 0 for η 6= 0. On the other hand, if η = 0,
we observe û⊥ = (1 −mP)û⊥ due to Pu⊥ = 0, where mP = χk=0 is the Fourier
multiplier of the projection P. Hence û⊥(0) = (1− 1)û⊥ = 0. A similar argument

shows p̂⊥(0) = 0. Hence, we see that any pair (u⊥, p⊥) ∈ P⊥W 2,q
ω (G)×P⊥Ŵ 1,q

ω (G)
solving (23) with homogeneous data has to satisfy (u⊥, p⊥) = (0, 0).
As we have seen above, the transference principle of Fourier multipliers seems to
be a promising tool in order to furnish us with an a priori estimate in terms
of the force term f and the divergence g. To simplify things for the moment,
assume first that the solution we are looking for is assumed to be solenoidal. That
is, let us investigate the case f ∈ Lqω(G) and g = 0. Consider the (potential)
multipliers mf and Mf as defined in (15) and (16), respectively. Now observe that
for P⊥f := f⊥ ∈ P⊥Lqω(G) we have f⊥ = P⊥f⊥. In view of (19) we can rewrite this

as f⊥ = F−1
G (1−mP)FGf⊥. Therefore, we introduce M̃f (ξ, κ) := (1−ϕ(κ))Mf (ξ, κ)

with ϕ ∈ C∞0 (R) with ϕ(0) = 1 and supp ϕ ⊂ (− 1
2 ,

1
2 ). Just as in the proof of

the Laplace resolvent problem, we notice that we could not use the transference
principle of Proposition 5.3, because Mf was not continuous at the origin, but that

M̃f is the correct substitute for Mf . We can repeat this procedure for ζαMf (ζ) with

any multi-index |α| ≤ 2, that is we look at ζαM̃f (ζ) instead. Hence, we can now
apply the transference principle of Proposition 5.3 to obtain, that for the solution

u⊥ = F−1
G

(
1

λ+ |η|2

(
I − η ⊗ η

|η|2

)
FGf⊥

)
= F−1

G mfFGf⊥ = F−1
G (1−mP)mfFGf⊥

obtained in (8) we have u⊥ ∈W 2,q
ω (G) and the a priori estimate

‖λu⊥,∇2u⊥‖Lqω(G) ≤ c‖f⊥‖Lqω(G).

Therefore also ∇p⊥ := f⊥−λu⊥+∆u⊥ ∈ Lqω(G) enjoys this estimate and we finally
arrive at

‖λu⊥,∇2u⊥,∇p⊥‖Lqω(G) ≤ c‖f⊥‖Lqω(G).

Next we want to consider general g ∈ W 1,q
ω,div(G). Without loss of generality

we may also assume f = 0, as we have just proven the corresponding estimate for
general external forces f ∈ Lqω(G) and our problem at hand is linear.
Suppose first that P⊥g =: g⊥ ∈ P⊥C∞0 (G). Then g⊥ = P⊥g⊥ and in view of (8)
and (19) we put

u⊥ := F−1
G (m1FG(∇g⊥)) , m1(η) :=

1−mP(k)

|η|2
(27)

p⊥ := F−1
G (m2FG(g⊥)) , m2(η) :=

1−mP(k)

|η|2
(λ+ |η|2).(28)

One readily checks that (u⊥, p⊥) solve (23) in the sense of S ′(G) and that both
P⊥u⊥ = u⊥ and P⊥∇p⊥ = ∇p⊥. Using again the cut-off function ϕ ∈ C∞0 (R)
with ϕ(0) = 1 and supp ϕ ⊂ (− 1

2 ,
1
2 ), we define the Fourier multipliers M1,M2 :
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Rn−1 × R→ C via

M1(ξ, κ) :=
1− ϕ(κ)

|ζ|2
,(29)

M2(ξ, κ) :=
1− ϕ(κ)

|ζ|2
(λ+ |ζ|2),(30)

Observe that the denominators of these functions vanish if and only if both ξ and κ
vanish. But since the nominators vanish in a neighbourhood of κ = 0, M1 and M2

are smooth and thus bounded near the origin. It is standard to check that they fulfill
Mikhlin’s condition with a constant C1 and C2(1 + |λ|), respectively. Employing
Theorem 5.3, we see that both m1 and m2 are Lqω(G)-multiplier functions and that
we have the estimate

(31) ‖λu⊥,∇p⊥‖Lqω(G) ≤ C(1 + |λ|)‖∇g⊥‖Lqω(G).

But then also ∆u⊥ = λu⊥+∇p⊥ fulfills the estimate. Using again Proposition 5.3

and the fact that ζ 7→ (1− ϕ(κ))
ζiζj
|ζ|2 satisfies Mikhlin’s condition, we also get

(32) ‖∇2u⊥‖Lqω(G) ≤ c‖∆u⊥‖Lqω(G) ≤ C(1 + |λ|)‖∇g⊥‖Lqω(G).

Putting these results together, we constructed to each smooth g⊥ ∈ P⊥C∞0 (G) a

solution (u⊥, p⊥) ∈ P⊥W 2,q
ω (G)×P⊥Ŵ 1,q

ω (G) satisfying the estimate (26) whenever

f = 0. As P⊥C∞0 (G) is dense in P⊥W 1,q
ω (G), the result for general g ∈ W 1,q

ω,div(G)
then follows by a standard approximation procedure.

�

Theorem 1.2 follows now easily.

Proof of Theorem 1.2. The Aq(G)-consistent decomposition of Lq(G) proved in
Lemma 5.6 together with Propositions 5.7 and 5.8 yield the assertion. �
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