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Abstract. We prove a generalization of an extrapolation theorem in the fash-

ion of Garćıa-Cuerva and Rubio de Francia (1985) towards R-boundedness on
weighted Lq

ω(G)-spaces with G being a locally compact abelian group and

ω being a Muckenhoupt weight. As a main tool, we generalize the classical

Muckenhoupt theorem, which states that the maximal operator is bounded
in the weighted space Lq

ω(Rn) whenever 1 < q < ∞ and the weight ω is in

the Muckenhoupt class Aq , to locally compact abelian groups. This result is

achieved without making use of a Reversed Hölder Inequality.
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1. Introduction

In the setup of Rn the concept of Muckenhoupt weights has been studied ex-
tensively throughout the last four decades or so, with many remarkable results in
fields of harmonic analysis, weighted inequalities and partial differential equations
(cf. [2, 8, 9, 10, 11, 15, 20]). For 1 < q < ∞, a nonnegative weight function
ω ∈ L1

loc(Rn) is said to be in the Muckenhoupt class Aq(Rn) if

Aq(ω) := sup
r>0

sup
y∈Rn

(
1

|Br(y)|

∫
Br(y)

ω dx

)(
1

|Br(y)|

∫
Br(y)

ω−
q′
q dx

) q
q′

<∞,

where Br(x) denotes the open ball of radius r around the center x, and where q′ is
the Hölder conjugate of q. The weight ω is said to be in A1(Rn) if there is a constant
c > 0 such that MRnω(x) ≤ cω(x) for almost all x ∈ Rn. Here, MRn denotes the
usual (centered) maximal operator on Rn. These classes of weights have been
introduced by Benjamin Muckenhoupt, who considered such weights for bounded
intervals and products of intervals [16]. Muckenhoupt weights are known to possess
several interesting properties. In particular, the maximal operator is bounded on
weighted Lq-spaces for 1 < q < ∞, [20, Theorem 5.3.1]. This result was used
by Garćıa-Cuerva and Rubio de Francia to show their Extrapolation Theorem [10,
Section IV.5], which states that if a family of operators is uniformly bounded in
Lqω(Rn) for one 1 ≤ q < ∞ but all ω ∈ Aq(Rn), then it is already bounded in
Lpν(Rn) for all 1 ≤ p < ∞ and all ν ∈ Aq(Rn). Strengthening this result towards
R-boundedness of family of operators as defined in Section 5, Fröhlich [9] proved
maximal Lp-regularity of the Stokes operator on weighted spaces Lqω(Ω), where Ω is
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the whole space, the half space or a bounded domain of class C1,1. For details about
maximal Lp-regularity see e.g. [5], [14]. In this paper, we wish to generalize the
theory of Muckenhoupt weights and extrapolation towards locally compact abelian
groups G. In two forthcoming papers [18], [19] we apply the abstract methods
obtained here to obtain maximal regularity of the spatially periodic Stokes operator
and to treat a spatially periodic nonlinear model describing the dynamics of nematic
liquid crystal flows.
Note that on locally compact abelian groups one can define a nontrivial, translation-
invariant, regular measure µ, called Haar measure [1, 3, 12, 22], with µ(K) <∞ for
all compact K ⊂ G. Furthermore, such a measure is unique up to multiplication
with a constant. However, we often deal with the measure dµω := ω dµ, which is
not translation-invariant anymore. Therefore, if not stated otherwise, we shall drop
the translation-invariance condition on µ. For 1 ≤ q ≤ ∞ one can thus introduce
the space Lq(G) of q-integrable functions f : G → R, which turns into a Banach
space if equipped with the usual norm

‖f‖q :=

(∫
G

|f |q dµ

) 1
q

, 1 ≤ q <∞,

‖f‖∞ := µ - ess sup
G
|f |.

Further we introduce the notion Lq,∞(G) for the weak Lq(G)-space, as introduced
e.g. in [21]. Note that the space of continuous functions with compact support
C0(G) is dense in Lq(G) for all 1 ≤ q <∞, see [17, Appendix E.8] for details.
As we wish to carry over as much concepts known from classical harmonic analysis
as possible to the general setting, we will have to assume that the group G is
furnished with something that resembles the concept of balls and that the measure
µ enjoys a doubling property with respect to these balls. We therefore make the
following assumption, using the notation U − U ′ := {x ∈ G : x = y − z with y ∈
U, z ∈ U ′} for U,U ′ ⊂ G.

Assumption 1.1. Suppose that G is a locally compact abelian group equipped
with a nontrivial and regular measure µ, such that µ(K) < ∞ for all compact
K ⊂ G. Furthermore, assume that there is a local base of 0 ∈ G consisting of
relatively compact measurable neighbourhoods Uk, k ∈ Z, such that

(i)
⋃
k∈Z

Uk = G,

(ii) Uk ⊂ Um, if k ≤ m,
(iii) there exist a positive constant A and a mapping θ : Z → Z such that for

all k ∈ Z and all x ∈ G

k < θ(k),

Uk − Uk ⊂ Uθ(k),
µ(x+ Uθ(k)) ≤ Aµ(x+ Uk).

Observe that necessarily A ≥ 1 because Uk ⊂ Uθ(k).

Remark 1.2. From now on, we will always assume that the locally compact abelian
group G admits a family of sets (Uk)k∈Z satisfying Assumption 1.1. We will call
any set of the form x+Uk, x ∈ G, k ∈ Z a base set. It is instructive to think of such
base sets as an equivalent of balls in the Rn with center in x and radius 2k. Observe



EXTRAPOLATION THEOREM ON LOCALLY COMPACT ABELIAN GROUPS 3

that by the following considerations we can assume without loss of generality the
base sets to be symmetric and of the function θ to be increasing.

(i) Replacing θ by θ̃ defined via

θ̃(k) := min{l ∈ Z : l > k with Uk − Uk ⊂ Ul},

we may assume that θ is non-decreasing. Indeed, the thusly defined func-
tion satisfies θ̃(k) ≤ θ(k) for all k ∈ Z. Therefore, for all x ∈ G and
k ∈ Z,

µ(Uθ̃(k)) ≤ µ(Uθ(k)) ≤ Aµ(Uk).

(ii) We call a set U ⊂ G symmetric if U = −U . Since G is abelian, the set
V := U−U is symmetric for any U ⊂ G. Replacing the base sets Uk by the
symmetric sets Vk := Uk−Uk and replacing the doubling constant A by A2,
we may assume that all of our base sets are symmetric. Indeed, the Vk still
form a local base of 0 ∈ G consisting of relatively compact neighbourhoods,
as seen in Proposition 2.1 (iii) below. The inclusion Vk ⊂ Vm for k ≤ m is
obvious and the union of the Vk(⊃ Uk) covers the whole group.
Concerning condition (iii) of Assumption 1.1, we see

Vk − Vk ⊂ Uθ(k) − Uθ(k) = Vθ(k).

Moreover, the doubling property will be fulfilled with constant A2, since
for all x ∈ G and all k ∈ Z

µ(x+ Vθ(k)) ≤ µ(x+ Uθ2(k)) ≤ A2µ(x+ Uk) ≤ A2µ(x+ Vk).

Thus, from now on we will assume the base sets Uk to be symmetric and
we will write Uk − Uk = Uk + Uk =: 2Uk.

Remark 1.3. Among the most prominent groups satisfying Assumption 1.1 are
the groups R, Z, the torus T and finite products of these groups.

(i) In the case of the real numbers R equipped with the Lebesgue measure,
define Uk := (−2k−1, 2k−1), A = 2 and θ(k) = k + 1.

(ii) For integers, an analogous construction to (i) corresponding to the counting
measure satisfies Assumption 1.1. Namely, choose Uk := (−2k−1, 2k−1)∩Z,
A = 3 and θ(k) = k + 1.

(iii) If one chooses the arc length as a measure on the torus, possible choices
are Uk := {z ∈ C : | arg z| < 2k}, A = 2 and θ = k + 1.

Let us define the (centered) maximal operator on G. Suppose that f ∈ L1
loc(G)

and define the sublinear operator

MGf(x) := sup
k∈Z

1

µ(x+ Uk)

∫
x+Uk

|f |dµ.(1)

Note that MGf is lower semi-continuous by Lemma 2.3 below and therefore mea-
surable.
Our two main theorems can be viewed as direct generalizations of their equivalents
in the classical Rn-setup. For the definition of Aq(G)-consistency see Section 3.

Theorem 1.4. Let G be a locally compact abelian group satisfying Assumption 1.1
and assume 1 < q < ∞ and ω ∈ Aq(G). Then MG is bounded in Lqω(G) with an
Aq(G)-consistent bound.
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Theorem 1.5. Let G be a locally compact abelian group satisfying Assumption 1.1.
Suppose that 1 < r, q < ∞, υ ∈ Ar(G) and that T is a family of linear operators
such that for all ω ∈ Aq(G) there is an Aq(G)-consistent constant cq = cq(ω) > 0
with

‖Tf‖Lqω(G) ≤ cq‖f‖Lqω(G)

for all f ∈ Lqω(G) and all T ∈ T . Then every T ∈ T can be extended to Lrυ(G) and
T is R-bounded in L(Lrυ(G)) with an Ar(G)-consistent R-bound cr.

This paper is organized as follows. In Section 2 we provide further properties of
the group G subject to Assumption 1.1 and the maximal operatorMG. In the case
of a translation-invariant measure µ, most of the results in this section are known
and can be found in [7, Chapter 2]. Section 3 is devoted to establishing Theorem
1.4. In Section 4 we prove an equivalent to the classical extrapolation theorem
due to Garćıa-Cuerva and Rubio de Francia, both in the scalar-valued and in the
vector-valued case. Theorem 1.5 will be proven in Section 5.

2. Harmonic Analysis on Locally Compact Abelian Groups

We first state two propositions, providing some basic properties that follow di-
rectly from Assumption 1.1.

Proposition 2.1. Suppose Assumption 1.1 is satisfied.

(i) For every x ∈ G and k ∈ Z it holds µ(x+ Uk) > 0.
(ii) G enjoys the engulfing property, i.e., if x, y ∈ G are such that (x+ Um) ∩

(y + Uk) 6= ∅ for some m, k ∈ Z with k ≤ m, then y + Uk ⊂ x+ Uθ2(m).
(iii) The family of sets {Uk − Uk}k∈Z forms a local base of relatively compact

neighbourhoods of 0 ∈ G.
(iv) The interiors of the base sets Uk cover G, i.e.,

⋃
k∈Z Ůk = G. In particular,

for every compact K ⊂ G there is k ∈ Z such that K ⊂ Uk.

Proof. (i) Let x ∈ G and k ∈ Z. Since the sets {Uk}k∈Z cover G by Assump-
tion 1.1 (i), we can write every z ∈ Uk in the form z = x+(−x+z) ∈ x+Uk′

for some k′ ∈ Z such that −x+ z ∈ Uk′ . Therefore also⋃
k∈Z

x+ Uk = G,

and because the measure µ is regular, we have µ(x+Uk)→ µ(G) as k → G.
Since µ is nontrivial, we have µ(G) > 0 and hence there exists K ∈ Z with
µ(x+UK) > 0. Then for k ∈ Z, Assumption 1.1 (iii) gives k < θ(k), which
shows that for all k ∈ Z there exists N ∈ N with θN (k) ≥ K. Hence

0 < µ(x+ UK) ≤ µ(x+ UθN (k)) ≤ Anµ(x+ Uk),

proving the assertion.
(ii) By hypothesis, there are x′ ∈ Um and y′ ∈ Uk such that x+x′ = y+y′ and

hence y ∈ x+ (Um − Uk) ⊂ x+ (Um − Um) ⊂ x+ Uθ(m). By Assumption
1.1 (iii) we see −Uk ⊂ −Um ⊂ Uθ(m) and consequently y + Uk ⊂ x +
Uθ(m) − Uθ(m) ⊂ x+ Uθ2(m).

(iii) See [17, Appendix B.4].



EXTRAPOLATION THEOREM ON LOCALLY COMPACT ABELIAN GROUPS 5

(iv) It suffices to show that for every k ∈ Z we have Uk ⊂ Ůθ(k) and then
use property (i) of Assumption 1.1. So fix k ∈ Z and choose an open
neighbourhood O of 0 ∈ G such that O ⊂ Uk. Then we have

Uk ⊂ O′ :=
⋃
x∈Uk

(x−O) ⊂ Uk − Uk.

Observe that O′ is open, since it is the union of the open sets x − O. It
follows Uk ⊂ O′ ⊂ Uθ(k) and by definition of the interior even Uk ⊂ O′ ⊂
Ůθ(k), which is what we wanted to show.

For the assertion about the compact set K we simply note that {Ůk}k∈Z
is an open cover of K and we thus find a finite subcover by compactness.
But since the base sets Uk are nested, so are their interiors, and so the
finite subcover consists only of the largest element. Hence there is k ∈ Z
with K ⊂ Ůk ⊂ Uk.

�

Proposition 2.2. Given Assumption 1.1, the following statements are true for the
locally compact abelian group G.

(i) G is first countable, i.e., each point x ∈ G has a countable local base.
(ii) G is σ-compact, i.e., it is a countable union of compact subspaces.
(iii) G is a Lindelöf-space, i.e., every open cover of G has a countable subcover.
(iv) G is a seperable space, i.e., it contains a countable dense subset D.

Proof. (i) The base sets {Uk}k∈Z form a local base of relatively compact neigh-
bourhoods of 0 ∈ G. Hence, since addition is a continuous operation in G,
the sets {x + Uk}k∈Z form a local base of relatively compact neighbour-
hoods of x ∈ G.

(ii) Clearly, the closures of the (countably many) relatively compact sets {Uk}k∈Z
are compact and cover G.

(iii) On the compact subspaces Uk we can extract a finite subcover and the
σ-compactness of G then yields a countable subcover.

(iv) Consider for fixed k ∈ Z the open cover {x− Ůk}x∈G. Since G is Lindelöf,

we can extract a countable subcover {x(k)n − Ůk}n∈N. Define Dk to be the

countable set of the centers x
(k)
n at height k. Doing so for every k, the

countable union D :=
⋃
k∈ZDk is dense in G, because for every x ∈ G and

k ∈ Z, there is an x
(k)
n ∈ Dk such that x ∈ x(k)n −Uk, and hence we obtain

x
(k)
n ∈ x + Uk. Since the sets {x + Uk}k∈Z form a local base of x, we see

that for every open neighbourhood O of x, there is k ∈ Z and x
(k)
n ∈ Dk

with x
(k)
n ∈ x+ Uk ⊂ O.

�

Lemma 2.3. Let f ∈ L1
loc(G). Then MGf is lower semi-continuous.

Proof. For each k ∈ Z the map Ik : G→ R defined via Ik(x) = 1
µ(x+Uk)

∫
x+Uk

|f |dµ
is continuous by Lebesgue’s Theorem on Dominated Convergence. Therefore, for
every r ∈ R the set

{x ∈ G :MGf(x) > r} =
⋃
k∈Z
{x ∈ G : Ik(x) > r}(2)
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is a union of open sets and hence open itself. This is exactly the lower semi-
continuity of MGf . �

One can define the uncentered maximal operator MG in an analogous way, if
one takes the supremum in (1) not only over all k ∈ Z, but also over all y ∈ G
such that x ∈ y+Uk. By a similar reasoning as for the centered maximal operator,
MGf is measurable. In fact, the uncentered maximal operator is comparable to the
centered maximal operator.

Lemma 2.4. Let f ∈ L1
loc(G). Then

MGf ≤MGf ≤ A2MGf.(3)

Proof. The first inequality is obvious. For the second inequality, let x, y ∈ G and
k ∈ Z be such that x ∈ y + Uk. Hence, we obtain x + Uk ⊂ y + 2Uk ⊂ y + Uθ(k),
and the doubling property yields

µ(x+ Uθ(k)) ≤ Aµ(x+ Uk) ≤ Aµ(y + Uθ(k)) ≤ A2µ(y + Uk).(4)

On the other hand y + Uk ⊂ x+ 2Uk ⊂ x+ Uθ(k), and thus

1

µ(y + Uk)

∫
y+Uk

|f |dµ ≤ 1

µ(y + Uk)

∫
x+Uθ(k)

|f |dµ ≤ A2

µ(x+ Uθ(k))

∫
x+Uθ(k)

|f |dµ.

Taking now the supremum first on the right-hand side and then on the left-hand
side yields the assertion. �

As the measure µ possesses the doubling property, we expect the weak estimate

µ({x ∈ G :MGf(x) > t}) ≤ A

t
‖f‖1, t > 0,(5)

and even the stronger form

µ({x ∈ G :MGf(x) > t}) ≤ 2A

t

∫
{|f |>t/2}

|f |dµ, t > 0.(6)

In order to show this, we need the following covering lemma due to Edwards and
Gaudry [7] to apply the known technique from the Rn-setting.

Lemma 2.5. Let E be a subset of G and k : E → Z a mapping bounded from above
such that for every k0 ∈ Z the set {x ∈ E : k(x) ≥ k0} is relatively compact in G.
Then there is a sequence (xn) ⊂ E, finite or infinite, such that

(i) the sequence (kn) := (k(xn)) is decreasing,
(ii) the sets xn + Ukn are pairwise disjoint and
(iii) E ⊂

⋃
(xn + 2Ukn).

Proof. The lemma has been proven in [7, Lemma 2.2.1] in the case of an translation-
invariant measure µ. We include here the whole proof in the more general case.
If there is a finite sequence x1, . . . , xm of points of E such that the base sets xj +
Uk(xj) are pairwise disjoint and

E ⊂
m⋃
j=1

(
xj + 2Uk(xj)

)
,

we may always rename the xj in such a way that the k(xj) increase with j and there
is nothing further to prove. Hence, assume that there is no such finite sequence.
Begin by defining k1 := max{k(x) : x ∈ E}, which is a finite number since the



EXTRAPOLATION THEOREM ON LOCALLY COMPACT ABELIAN GROUPS 7

mapping k is bounded from above, and choose x1 ∈ E with k1 = k(x1).
Suppose m ∈ N and the points x1, . . . , xm ∈ E have been chosen in such a way that
the sets xj + Ukj , 1 ≤ j ≤ m, are pairwise disjoint and such that kj = max{k(x) :
x ∈ Aj−1}, where

Aj := E \

 ⋃
1≤l≤j

xn + 2Ukl


for each 1 ≤ j ≤ m. Note that this is satisfied, if m = 1.
Continue the process by defining xm+1 as follows: by hypothesis, Am is nonempty.
Therefore km+1 := max{k(x) : x ∈ Am} is well-defined. Choose xm+1 ∈ Am such
that km+1 = k(xm+1). Let us verify that(

xj + Ukj
)
∩
(
xm+1 + Ukm+1

)
= ∅, 1 ≤ j ≤ m.(7)

Assume that (7) does not hold, i.e., xm+1 ∈ xj+
(
Ukj + Ukm+1

)
for some 1 ≤ j ≤ m.

From the definition of the Aj it is clear that Am ⊂ Aj−1, and so km+1 ≤ kj . This
yields

xm+1 ∈ xj +
(
Ukj + Ukm+1

)
⊂ xj + 2Ukj ,

contradicting xm+1 ∈ Am.
Thus, proceeding in such a way for all n ∈ N, we find a sequence of points (xn)n∈N ⊂
E such that (i) is satisfied. Also, we have xn ∈ An−1 for n ∈ N, and since An ⊂
An−1, the sequence (kn)n∈N is decreasing by the definition of the kn = max{k(x) :
x ∈ An−1}.
It remains to proof (ii), i.e, that the intersection over all An is empty. Were this not
the case, there would exist a point x ∈ E belonging to every An, yielding kn ≥ k(x)
for all n ∈ N. Therefore, by assumption, the set M := {xn : n ∈ N} is relatively
compact in G. Since Ukn ⊂ Uk1 and Uk1 is relatively compact, it follows that

F :=
⋃
n∈N

(xn + Ukn) ⊂M + Uk1

is relatively compact and so µ(F ) ≤ µ(F ) < ∞. On the other hand, the compact
set M is contained in a base set UK , K ∈ Z, by Proposition 2.1 (v). Hence
xn ∈ UK for all n ∈ N. Furthermore, by the monotonicity of θ, we find N ∈ N with
θN (k(x)) ≥ K, and the consideration xn ∈ UK ⊂ UθN (k(x)) ⇒ 0 ∈ xn + UθN (k(x))

shows

UK = 0 + UK ⊂
(
xn + UθN (k(x))

)
+ UK ⊂ xn + 2UθN (k(x)) ⊂ xn + UθN+1(k(x)).

Since the xn + Ukn are disjoint, this finally yields

µ(F ) =
∑
n∈N

µ(xn + Ukn) ≥
∑
n∈N

µ(xn + Uk(x))

≥ A−(N+1)
∑
n∈N

µ(xn + UθN+1(k(x))) ≥ A−(N+1)
∑
n∈N

µ(UK) =∞,

since µ(UK) > 0 by Proposition 2.1 (i). This contradicts the finiteness of µ(F ).
Hence

⋂
n∈NAn is empty, finishing the proof. �

Theorem 2.6. Let 1 < q ≤ ∞. Then the maximal operator MG is bounded in
Lq(G). Furthermore, MG is weakly bounded in L1(G), i.e., estimate (5) (and even
(6)) holds true.
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Proof. Since MGf is lower semi-continuous for f ∈ L1
loc(G) and since obviously

MGf(x) ≤ ‖f‖∞ almost everywhere, the maximal operator extends to a bounded
operator in L∞(G).
Let us now establish (5). Assume that t > 0 is such that µ(G) > A

t ‖f‖1, since
otherwise the assertion is trivial. As we want to apply Lemma 2.5, consider the set
Et := {x ∈ G :MGf(x) > t}. If Et is empty, there is nothing to prove. Otherwise,
choose a compact subset E′t ⊂ Et and define a function k : E′t → Z via

k(x) := max

{
k ∈ Z :

1

µ(x+ Uk)

∫
x+Uk

|f |dµ > t

}
.

This mapping is certainly well-defined. Indeed, if there was no maximal k ∈ Z,
then we would find a sequence (kn) ⊂ Z with kn →∞ as n→∞ such that for all
n ∈ N it holds

A

t
‖f‖1 ≥

1

t
‖f‖1 ≥

1

t

∫
x+Ukn

|f |dµ ≥ µ(x+ Ukn)→ µ(G), as n→∞,(8)

contradicting our assumption.
We have to show that the mapping k is bounded from above. Assume again oth-
erwise. Then there exists a sequence (xn)n∈N ⊂ E′t such that kn := k(xn) → ∞
as n → ∞. Since E′t is compact, there is a K ∈ Z with

⋃
n∈N{xn} ⊂ E′t ⊂ UK by

Proposition 2.1 (v). Taking sufficiently large n ∈ N, we obtain kn ≥ K. Therefore
0 ∈ xn + Ukn and consequently Ukn ⊂ xn + 2Ukn ⊂ xn + Uθ(kn). Therefore, we see

µ(Ukn) ≤ µ(xn + Uθ(kn)) ≤ Aµ(xn + Ukn).

But then

A

t
‖f‖1 ≥

A

t

∫
xn+Ukn

|f |dµ ≥ Aµ(xn + Ukn) ≥ µ(Ukn)→ µ(G), as n→∞,

(9)

yielding again a contradiction.
Since for every k0 ∈ Z the set {x ∈ E′t : k(x) ≥ k0} is a subset of the compact
E′t and therefore relatively compact in G, we can invoke Lemma 2.5 to obtain a
finite or infinite sequence of points xn, such that E′t ⊂

⋃
(xn + 2Ukn), but the sets

xn + Ukn are pairwise disjoint and µ(xn + Ukn) < 1
t

∫
xn+Ukn

|f |dµ. Assume the

obtained sequence to be infinite, the finite case being even easier. This yields

µ(E′t) ≤
∞∑
n=1

µ(xn + 2Ukn) ≤ A
∞∑
n=1

µ(xn + Ukn)

≤ A

t

∞∑
n=1

∫
xn+Ukn

|f |dµ ≤ A

t
‖f‖1.

Observe that this estimate is independent of the particular compact subset E′t ⊂
Et. Since Et is open by (2) and the measure µ is inner regular, we may take
the supremum over all compact subsets of Et to obtain (5). Therefore MG is
continuous from L1(G) to L1,∞(G). Inequality (6) can be verified by considering
g := fχ{|f |>t/2}, where χ{|f |>t/2} is the characteristic function on the set {x ∈ G :
|f(x)| > t/2}. Since MG is sublinear and obviously MG(c) = c for all constant
functions, we obtain MGf ≤ MGg + t/2. Therefore, {x ∈ G : MGf(x) > t} ⊂
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{x ∈ G :MGg(x) > t/2}, and so

µ({x ∈ G :MGf(x) > t})

≤ µ({x ∈ G :MGg(x) > t/2}) ≤ 2A

t
‖g‖1 =

2A

t

∫
{|f |>t/2}

|f |dµ,

which is exactly (6).
Since MG is weakly bounded in L1(G) and bounded in L∞(G), it is also bounded
in Lp(G) for 1 < p <∞ by the Marcinkiewicz interpolation theorem [7, Appendix
A]. �

3. Muckenhoupt Weights

Assume that G is a locally compact abelian group with a measure µ satisfying
Assumption 1.1.

Definition 3.1. Let 1 < q < ∞. A function 0 ≤ ω ∈ L1
loc(G) is called an Aq(G)-

weight if

(10) Aq(ω) := sup
U⊂G

(
1

µ(U)

∫
U

ω dµ

)(
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′

<∞,

where the supremum runs over all base sets U ∈ G. In that case, Aq(ω) is called
the Aq(G)-constant of ω. We say that ω belongs to the Muckenhoupt class Aq(G)
or even ω ∈ Aq(G) if it is an Aq(G)-weight.

Furthermore, we call a locally integrable, nonnegative function ω an A1(G)-
weight if there exists a constant c ≥ 0 such that

MGω(x) ≤ cω(x), a.a. x ∈ G.(11)

The infimum over all these constants is called the A1(G)-constant of ω and is
denoted by A1(ω).
We call a constant c = c(ω) > 0 that depends on Aq(G)-weights Aq(G)-consistent,
if for each d > 0 we have

sup{c(ω) : ω is an Aq(G)-weight with Aq(ω) < d} <∞.
Let us note some important observations on basic properties of the Muckenhoupt
classes, in particular, that they are nested.

Proposition 3.2. Let ω ∈ Aq(G) for 1 < q <∞. Then the following hold true.

(i) ω ∈ Ap(G) for q < p < ∞ and Ap(ω) is Aq(G)-consistent. Here, even
1 ≤ q <∞ is allowed.

(ii) ω−
q′
q ∈ Aq′(G), where q′ is the Hölder conjugate of q. Moreover, Aq′(ω−

q′
q )

is Aq(G)-consistent.
(iii) For 0 < ε < 1 we have ωε ∈ Ar(G) with r := 1 + ε(q − 1) < q and Ar(ωε)

is Aq(G)-consistent.

Proof. Fix a base set U = x0 +Uk and let first q > 1. Then by Hölder’s inequality
we see that(

1

µ(U)

∫
U

ω−
p′
p dµ

) p
p′

≤
(

1

µ(U)
µ(U)

1− p
′q
pq′

) p
p′
(∫

U

ω−
q′
q dµ

) q
q′

=

(
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′

,
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and since U was chosen arbitrarily, (10) is fulfilled with exponent p and constant
Aq(ω) as well.
If q = 1 observe that (

1

µ(U)

∫
U

ω−
p′
p dµ

) p
p′

≤ ‖ω−1‖L∞(U),(12)

Moreover, we obtain by (11) for almost all x ∈ U that(
1

µ(U)

∫
U

ω dµ

)
≤MGω(x) ≤ A2MGω(x) ≤ A2A1ω(x),(13)

where we have used the relation (3) comparing the centered and uncentered maximal
operators. Passing to the essential infimum on the right-hand side of (13) shows
that (

1

µ(U)

∫
U

ω dµ

)
‖ω−1‖L∞(U) ≤ A2A1.(14)

Again, since U was chosen arbitrarily, putting inequalities (12) and (14) together
yields the first assertion.
For the second assertion we simply calculate(

1

µ(U)

∫
U

ω−
q′
q dµ

)(
1

µ(U)

∫
U

(
ω−

q′
q

) q
q′

dµ

) q′
q

=

((
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′
(

1

µ(U)

∫
U

ω dµ

)) q′
q

≤ Aq
′/q
q (ω).

The third assertion follows from Jensen’s inequality and the fact that εr′/r = q′/q,
which immediately follows from r − 1 = ε(q − 1) and the calculation

q − 1 =
q′

q′ − 1
− 1 =

1

q′ − 1
=

q

q′
.(15)

Then it follows(
1

µ(U)

∫
U

ωε dµ

)(
1

µ(U)

∫
U

(ωε)
− r′r dµ

) r
r′

≤
(

1

µ(U)

∫
U

ω dµ

)ε(
1

µ(U)

∫
U

ω−
q′
q dµ

) εq
q′

≤ Aεq(ω).

�

It is interesting to see that if we have two Muckenhoupt weights of class A1(G),
say ω0 and ω1, then we can construct weights in Ap(G). This will be of great use
later on proving the Extrapolation Theorem in Section 4.

Proposition 3.3. Let ω0, ω1 ∈ A1(G). Then for 1 < q <∞, ω0 · ω−q/q
′

1 ∈ Aq(G).

Proof. Fix a base set U ∈ G. Observe that for ω ∈ A1(G)

ω(x)−1 ≤ (cMGω(x))
−1 ≤

(
c

µ(U)

∫
U

ω dµ

)−1
,
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with c := A−11 (ω) for almost all x ∈ U . Hence(
1

µ(U)

∫
U

ω0ω
−q/q′
1 dµ

)(
1

µ(U)

∫
U

(
ω0ω

−q/q′
1

)− q′q
dµ

) q
q′

≤ c′
(

1

µ(U)

∫
U

ω1 dµ

)− q
q′
(

1

µ(U)

∫
U

ω0 dµ

)(
1

µ(U)

∫
U

ω0 dµ

)−1(
1

µ(U)

∫
U

ω1 dµ

) q
q′

= c′,

where c′ = A1(ω0)Aq/q
′

1 (ω1). �

The Muckenhoupt weights can be characterized as those weight functions such
that the maximal operator is weakly bounded in Lq(G). In fact, we will see later
on, that for 1 < q < ∞, the maximal operator is bounded in Lq(G) even in the
strong sense. However, we first focus on the weak boundedness, which is true also
for q = 1.
In order to state the theorem, let us fix the notation.

Definition 3.4. Given a weight function ω ∈ L1
loc(G), we denote by µω the measure

defined via µω(E) :=
∫
E
ω dµ and by Lqω(G) the space of all measurable functions

such that the q-norm with respect to the measure µω is finite. Furthermore we
denote byMG,ω the maximal operator defined as in (1) with respect to the measure
µω.

Then we have the following two propositions.

Proposition 3.5. Let 0 ≤ ω ∈ L1
loc(G) and let 1 ≤ q <∞. Then ω ∈ Aq(G) if and

only if there is an Aq(G)-consistent constant c > 0 such that for every nonnegative
measurable function f : G→ R and every base set U ⊂ G it holds(

1

µ(U)

∫
U

f dµ

)q
≤ c

µω(U)

∫
U

fqω dµ.(16)

Proof. We first show the assertion for 1 < q < ∞. Assume ω ∈ Aq(G). Then

writing f = fω1/qω−1/q and applying Hölder’s inequality with exponents q and q′

to the expression on the left-hand side of (16) yields(
1

µ(U)

∫
U

f dµ

)q
=

1

µ(U)q

(∫
U

fω1/qω−1/q dµ

)q
≤ 1

µ(U)q

(∫
U

fqω dµ

)(∫
U

ω−
q′
q dµ

) q
q′

=
1

µω(U)

(∫
U

fqω dµ

)
µω(U)

µ(U)

(
1

µ(U)

∫
U

ω−
q′
q dµ

) q
q′

≤ 1

µω(U)

(∫
U

fqω dµ

)
Aq(ω),

and choosing c := Aq(ω) we obtain the inequality (16).
Conversely, assume that (16) holds for all nonnegative measurable functions f :
G→ R. If the left-hand side of (16) is finite, we obtain equivalently

µω(U)

(
1

µ(U)

∫
U

f dµ

)q (∫
U

fqω dµ

)−1
≤ c.(17)
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Therefore, we define fn := (ω + 1/n)−q
′/q for n ∈ N. It follows(

1

µ(U)

∫
U

ω dµ

)(
1

µ(U)

∫
U

(ω +
1

n
)−q

′
ω dµ

) q
q′

=
µω(U)

µ(U)

(
1

µ(U)

∫
U

(ω +
1

n
)−q

′
ω dµ

)q−1
=
µω(U)

µ(U)

(
1

µ(U)

∫
U

fqn ω dµ

)q−1
.

= µω(U)

(
1

µ(U)

∫
U

fqn ω dµ

)q (∫
U

fqn ω dµ

)−1

Hence, we can estimate(
1

µ(U)

∫
U

ω dµ

)(
1

µ(U)

∫
U

(ω +
1

n
)−q

′
ω dµ

) q
q′

≤ µω(U)

(
1

µ(U)

∫
U

fqn(ω +
1

n
) dµ

)q (∫
U

fqn ω dµ

)−1
= µω(U)

(
1

µ(U)

∫
U

fn dµ

)q (∫
U

fqnω dµ

)−1
≤ c.

Observe that the right-hand side is independent of n ∈ N. If we denote the integrand
(ω + 1/n)−q

′
ω in the second term of the left-hand side by gn, we see that gn ≤ gm

if n ≤ m and gn → ω−q
′/q as n → ∞ in the pointwise sense. Hence, Lebesgue’s

Theorem on Monotone Convergence yields the result for 1 < q <∞.
For q = 1, the proof is similar to [10] and will be omitted here. �

Proposition 3.6. Let 1 ≤ q <∞ and ω ∈ Aq(G). Then

(i) the measure µω is regular and has the doubling property, i.e., µω(x +
Uθ(k)) ≤ cωµω(x + Uk) for all x ∈ G and k ∈ Z, where cω > 0 is an
Aq(G)-consistent constant,

(ii) slightly more general, for any base set U and any measurable subset S ⊂ U
we have (

µ(S)

µ(U)

)q
≤ c µω(S)

µω(U)
,(18)

where c > 0 is the bound appearing in (16),
(iii) it holds L∞(G) = L∞ω (G) with equal norms,
(iv) MG,ω is bounded in Lpω(G) for all 1 < p ≤ ∞ and weakly bounded in

L1
ω(G) with an Aq(G)-consistent bound and

(v) C0(G) is dense in Lqω(G).

Proof. Regularity follows by Lebesgue’s Theorem on Dominated Convergence. To
verify the doubling property, simply use (16) with U = x + Uθ(k) and f = χx+Uk .
Since µ has the doubling property with doubling constant A, we obtain

A−q ≤
(

µ(x+ Uk)

µ(x+ Uθ(k))

)q
≤ cµω(x+ Uk)

µω(x+ Uθ(k))
,
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which shows (i) with cω = cAq.
For (ii), we argue analogously, using (16) with f = χS .
To show (iii), recall that the norm on L∞ω (G) can be represented via

‖f‖L∞
ω (G) = sup{r ∈ R : µω({x ∈ G : f(x) > r}) > 0},(19)

and a similar expression for the norm on L∞(G), if we replace the measure µω by
the measure µ. Since µω is absolutely continuous with respect to µ, we clearly have
‖f‖L∞

ω (G) ≤ ‖f‖L∞(G). Moreover, ω > 0 almost everywhere, excepting the trivial
case ω = 0. Indeed, if ω = 0 on a set S such that µ(S) > 0, we get in virtue of
(18) that µω(U) = 0 for every base set U containing S. If S is not contained in any

base set, then consider the set S̃ := S ∩ U for some base set U large enough such
that µ(S̃) > 0, which certainly exists, since otherwise

µ(S) = µ(S ∩G) = µ(S ∩
⋃
k∈Z

Uk) = µ

(⋃
k∈Z

(S ∩ Uk)

)
≤
∑
k∈Z

µ(S ∩ Uk) = 0

Hence, ω = 0 almost everywhere on every base set containing S̃ and thus on the
whole group G. This shows that for every nontrivial Muckenhoupt weight ω we
have ω > 0 almost everywhere. Thus, µ is absolutely continuous with respect to
µω. Consequently ‖f‖L∞(G) = ‖f‖L∞

ω (G).
The boundedness of the maximal operators follows by Theorem 2.6. The Aq(G)-
consistency of the bound is clear, since we apply Marcinkiewicz’ interpolation the-
orem and the bound for the weak estimate from L1

ω(G) to L1
ω(G) is the doubling

constant of the measure µω, which is Aq(G)-consistent by part (i), and the bound
of the maximal operator in L∞ω (G) = L∞(G) is 1 and therefore trivially Aq(G)-
consistent.
Since µω is regular, (v) follows from [17, Appendix E.8]. �

Theorem 3.7. Let 0 ≤ ω ∈ L1
loc(G) and let 1 ≤ q < ∞. Then ω ∈ Aq(G) if and

only if MG is bounded from Lqω(G) to Lq,∞ω (G) with an Aq(G)-consistent bound.

Proof. Assume ω ∈ Aq(G). We can apply Proposition 3.6 to obtain that MG,ω is
weakly bounded in L1

ω(G) with an Aq(G)-consistent bound. Taking the supremum
first on the right-hand side and then on the left-hand side of (16), we see that

(MGf(x))
q ≤ cMG,ω(|f |q)(x),

for almost all x ∈ G. Then we may use the weak boundedness of MG,ω to obtain

µω{x ∈ G :MGf(x) > t} ≤ µω{x ∈ G :MG,ω(|f |q)(x) > tq/c} ≤ c′

tq

∫
G

|f |q dµω,

which is what we wanted to show.
Conversely, assume thatMG is bounded from Lqω to Lq,∞ω . Let f ≥ 0 be measurable
and let U ⊂ G be a base set. If

(fU ) :=
1

µ(U)

∫
U

f dµ = 0,

there is nothing left to prove. Hence, assume (fU ) > 0 and observe that (fU ) ≤
MGf(x) ≤ A2MGf(x) for every x ∈ U . Hence, fixing 0 < t < (fU ), we obtain

U = {x ∈ U :MGf(x) ≥ (fU )/A2}
⊂ {x ∈ U :MGf(x) > t/A2} ⊂ {x ∈ G :MGf(x) > t/A2},
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and by the weak boundedness of the maximal operator we obtain

µω(U) ≤ cA2q

tq

∫
U

|f |q dµω.

Using once again t < (fU ), we finally see

(fU )qµω(U) ≤ (fU )q
cA2q

tq

∫
U

|f |q dµω ≤ cA2q

∫
U

|f |q dµω,

and in virtue of Proposition 3.5 we obtain ω ∈ Aq(G).
�

Using the Marcinkiewicz interpolation theorem, we deduce the following corol-
lary.

Corollary 3.8. Let ω ∈ Aq, 1 ≤ q < ∞. Then for q < p < ∞ there exists an
Aq(G)-consistent constant c > 0 such that the strong estimate∫

G

|MGf |pω dµ ≤ c
∫
G

|f |pω dµ, f ∈ L1
loc(G),(20)

holds. In other words, MG extends to a bounded operator from Lpω(G) to Lpω(G).

Proof. By Proposition 3.6 (iii) we have L∞ω (G) = L∞(G) and thus we obtain the
estimate

‖MGf‖L∞
ω (G) = ‖MGf‖L∞(G) ≤ ‖f‖L∞(G) = ‖f‖L∞

ω (G).(21)

Hence, the Marcinkiewicz interpolation theorem yields the boundedness of MG in
L∞ω (G). The Aq(G) consistency follows, since the by the Marcinkiewicz interpola-
tion theorem the bound depends directly on the Aq(G)-consistent weak bound of
MG : Lqω(G)→ Lq,∞ω (G) and the bound ofMG : L∞ω (G)→ L∞ω (G), which is 1 and
hence trivially Aq(G)-consistent. �

Observe that Corollary 3.8 is only stated for q < p. Indeed, if we want to
strengthen this result towards q = p, we will necessarily have to exclude the case
q = 1: There are counterexamples in this case even for the group G := Rn. Take for
example ω = 1. It is easy to see that applying the maximal operator to a nontrivial
integrable function never yields an integrable function.
However, if 1 < q = p, then we do obtain such a strong estimate. In the classical
setting G = Rn, this is called the Muckenhoupt theorem. It is usually proven via
the so-called Reversed Hölder Inequality (cf. [11, 20]), which in turn shows for
1 < q < ∞ that ω ∈ Aq(G) implies ω ∈ Ap(G) for some smaller p < q. Then
Corollary 3.8 may be applied to this new, smaller exponent to show the assertion.
Unfortunately, the proof of the Reversed Hölder Inequality heavily relies on the
existence of dyadic cubes. In our situation, we lack of such a concept. Therefore
we use a different approach, which is mainly due to Jawerth [13].

Proof of Theorem 1.4. Let f ∈ Lqω(G). For every m ∈ Z define the set

Sm :=
{
x ∈ G : 2m <MGf(x) ≤ 2m+1

}
,

which implies Sm ⊂
⋃
j∈N U

m,j , where the right-hand side consists of a countable

union of sets of the form Um,j = xm,j + Um,jk satisfying

1

µ(Um,j)

∫
Um,j

|f |dµ > 2m

A2
.(22)
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Let us explain, why we have include the extra factor A2 here, which makes sure
that the union can be assumed to be countable. Suppose x ∈ Sm. Then by
the comparability of the centered and the uncentered maximal operator in (3) we
have MGf(x) ≥ MGf(x) > 2m, and by the definition of the uncentered maximal
operator we find a base set U(x) such that x ∈ U(x) and such that

1

µ(U(x))

∫
U(x)

|f |dµ > 2m.(23)

Clearly, Sm would be contained in the union over all these U(x), but this union
might not be countable. Therefore, we take an element xm,n of the dense subset
D ⊂ G obtained in Proposition 2.2 (iv) such that xm,n ∈ U(x). Assume that
U(x) = y + Uk for some y ∈ G and k ∈ Z. Then xm,n + Uk ⊂ y + 2Uk ⊂ y + Uθ(k)
and so

µ(xm,n + Uθ(k)) ≤ Aµ(xm,n + Uk) ≤ Aµ(y + Uθ(k)) ≤ A2µ(y + Uk) = A2µ(U(x)).

Furthermore y ∈ xm,n +Uk by symmetry of Uk, and so x ∈ y+Uk ⊂ xm,n + 2Uk ⊂
xm,n + Uθ(k). Hence, using (23), we obtain

1

µ(xm,n + Uθk)

∫
xm,n+Uθk

ω dµ ≥ 1

µ(xm,n + Uθk)

∫
U(x)

ω dµ

≥ 1

A2µ(U(x))

∫
U(x)

ω dµ >
2m

A2
.

To summarize, for every x ∈ Sm we have found a base set Um,(n,k) = xm,n + Uθ(k)
with center xm,n in the countable dense set D ⊂ G such that x ∈ Um,(n,k) and
such that the inequality (22) holds. Since there are only countably many base sets
Um,(n,k), n ∈ N, k ∈ Z, we can relabel them as Um,j . This shows that we can
assume the collection of base sets covering the set Sm to be countable.
We therefore can define the sets

Em,j :=

Um,j \ ⋃
s<j

Um,s

 ∩ Sm, j ∈ N,m ∈ Z.(24)

Since the Sm are clearly a disjoint decomposition of G and each Sm itself decom-
poses into the disjoint subsets Em,j , we may write in virtue of (22)∫

G

|MGf |qω dµ =
∑
m,j

∫
Em,j

|MGf |qω dµ ≤
∑
m,j

2(m+1)qµω(Em,j)

≤ 2qA2q
∑
k,j

µω(Em,j)

(
1

µ(Um,j)

∫
Um,j

|f |dµ
)q

= c
∑
m,j

µm,jgm,j ,

(25)

with the Aq(G)-consistent constant c := 2qA2q and

µm,j := µω(Em,j)

(
µυ(Um,j)

µ(Um,j)

)q
,

gm,j :=

(
1

µυ(Um,j)

∫
Um,j

(
|f |υ−1

)
υ dµ

)q
.
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Here we used the notation υ := ω−q
′/q, so that υ ∈ Aq′(G) by Proposition 3.2 (ii).

Consider now the set X := {(m, j) : m ∈ Z, j ∈ N}. Obviously, X turns into a
measure space (X,P(X), µX) if we define the measure µX via

µX(E) :=
∑

(m,j)∈E

µm,j , E ∈ P(X).(26)

With this measure space at hand and defining g : X → R+ via g(m, j) := gm,j , we
can now write the last sum appearing in (25) as an integral via

∑
m,j

µm,jgm,j =

∫
X

g dµX =

∫ ∞
0

dg dλ(27)

where λ is the Lebesgue measure and the function dg is the distribution function
of g defined via dg(r) := µX{(m, j) ∈ X : g(m, j) > r}. Since ω ∈ Aq(G), we have

(
µυ(Um,j)

µ(Um,j)

)q
≤
(
Aq(ω)

µ(Um,j)

µω(Um,j)

)q′
,

which is just the Muckenhoupt condition (10) rewritten, and thus

(
µυ(Um,j)

µ(Um,j)

)q
≤
(
Aq(ω)

µ(Um,j)

µω(Um,j)

)q′

=

(
Aq(ω)

1

µω(Um,j)

∫
Um,j

χUm,jω
−1ω dµ

)q′
≤
(
Aq(ω) inf

x∈Um,j
MG,ω(χUm,jω

−1)(x)

)q′
≤
(
cAq(ω) inf

x∈Um,j
MG,ω(χUm,jω

−1)(x)

)q′
,

(28)

where the last inequality follows from the fact that the centered and uncentered
maximal operators are comparable with a doubling constant c = cω > 0 by (3),
and cω is Aq(G)-consistent by Proposition 3.6 (i). Hence

µm,j := µω(Em,j)

(
µυ(Um,j)

µ(Um,j)

)q
≤ cµω(Em,j)

(
inf

x∈Um,j
MG,ω(χUm,jω

−1)(x)

)q′
≤ c

∫
Em,j

|MG,ω(χUm,jω
−1)|q

′
ω dµ,

with an Aq(G)-consistent constant c > 0. We may now estimate the integrand in
(27). With the notation G(r) :=

⋃
{(m,j)∈X:g(m,j)>r} U

m,j we obtain

G(r) ⊂ {x ∈ G :
1

µυ(U)

∫
U

(|f |υ−1)υ dµ > r for some base set U ⊂ G with x ∈ U}

⊂ {x ∈ G : (MG,υ(|f |υ−1)(x))q > r} ⊂ {x ∈ G : (A2MG,υ(|f |υ−1)(x))q > r}.
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Hence, by the boundedness of MG,ω in Lq
′

ω (G)

dg(r) =
∑

{(m,j)∈X:g>r}

µm,j ≤ c
∑

{(m,j)∈X:g>r}

∫
Em,j

|MG,ω(χUm,jω
−1)|q

′
ω dµ

≤ c
∫
G

|MG,ω(χG(r)ω
−1)|q

′
ω dµ

≤ c
∫
G(r)

ω1−q′ dµ = cµυ(G(r))

≤ cµυ({x ∈ G : (A2MG,υ(|f |υ−1)(x))q > r}),

(29)

where c > 0 is still Aq(G)-consistent, since the bound of MG,ω : Lq
′

ω (G)→ Lq
′

ω (G)
is Aq(G)-consistent by Proposition 3.6 (iv). Now we are almost finished. Recall
that also µυ is a doubling measure (since υ is a Muckenhoupt weight as well)
and therefore the maximal operator MG,υ is bounded in Lqυ(G) with an Aq(G)-
consistent bound by Proposition 3.6 (iv) and Proposition 3.2 (ii).
Therefore we can calculate with (25) and (29)∫

G

|MGf |qω dµ ≤ c
∑
m,j

µm,jgm,j = c

∫ ∞
0

dg dλ

≤ c
∫ ∞
0

µυ({x ∈ G : (cMG,υ(|f |υ−1)(x))q > r}) dλ(r)

= c

∫
G

(cMG,υ(|f |υ−1))q dµυ

≤ c
∫
G

(|f |υ−1)qυ dµ = c

∫
G

|f |qω dµ,

with an Aq(G)-consistent constant c > 0. This finishes the proof. �

4. Extrapolation Theorem for Locally Compact Abelian Groups

This section is devoted to establishing an extrapolation theorem generalizing
the classical Extrapolation Theorem due to Garćıa-Cuerva and Rubio de Francia.
We will not follow the arguments given in their book [10], but rather use a more
modern and direct way due to Cruz-Uribe, Martell and Pérez [4], which enables us
to deal with the vector-valued case corresponding to Theorem 6.4 in chapter V of
[10], simultaneously.
A cornerstone of the arguments used here are the following three operators. Let 1 <
q <∞. Then the conjugate maximal operator M′G defined viaM′Gf :=MG(fω)/ω

extends to a bounded operator on Lq
′

ω (G) with Aq(G)-consistent bound. Indeed,

ν := ω1−q′ ∈ Aq′(G) by Proposition 3.2 and 1 − q′ = −q′/q, which has been

calculated in (15). Therefore, MG is bounded in Lq
′

ν (G), which implies that

‖M′Gf‖
q′

Lq
′
ω

=

∫
G

(
MG(fω)

ω

)q′
ω dµ =

∫
G

(MG(fω))
q′
ω1−q′ dµ

≤ c
∫
G

|fω|q
′
ω1−q′ dµ = c

∫
G

|f |q
′
ω dµ = c‖f‖q

′

Lq
′
ω

.
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Moreover, we will consider the two corresponding operators

Rf :=

∞∑
k=0

Mk
Gf

2k‖MG‖kL(Lqω(G))

and R′f :=

∞∑
k=0

(MG)kf

2k‖M′G‖k
Lq

′
ω (G)

.

These operators enjoy the following properties.

Proposition 4.1. Let 1 < q <∞, f ∈ Lqω(G) and h ∈ Lq′ω (G). Then

(i) (a) 0 ≤ |f | ≤ Rf ,
(b) ‖Rf‖Lqω(G) ≤ 2‖f‖Lqω(G),
(c) Rf ∈ A1(G) with A1(Rf) ≤ 2‖MG‖L(Lqω(G)),

(ii) (a) 0 ≤ |h| ≤ R′h,
(b) ‖R′h‖

Lq
′
ω (G)

≤ 2‖h‖
Lq

′
ω (G)

and

(c) R′h · ω ∈ A1(G) with A1(Rh · ω) ≤ 2‖M′G‖L(Lqω(G)).

Proof. We start with the operator R. For the first assertion, we observe that every
summand in the definition of R is nonnegative. Therefore every partial sum is
greater or equal M0f = |f |. The second assertion follows simply by observing

‖Rf‖Lqω(G) =

∥∥∥∥∥
∞∑
k=0

Mk
Gf

2k‖MG‖kL(Lqω(G))

∥∥∥∥∥
Lqω(G)

≤
∞∑
k=0

‖MG‖kL(Lqω(G))
‖f‖Lqω(G)

2k‖MG‖kL(Lqω(G))

= 2‖f‖Lqω(G).

The last assertion can be seen by considering

MG(Rf) =MG

( ∞∑
k=0

Mk
Gf

2k‖MG‖kL(Lqω(G))

)
=

∞∑
k=0

Mk+1
G f

2k‖MG‖kL(Lqω(G))

= 2‖MG‖L(Lqω(G))

∞∑
k=0

Mk+1
G f

2k+1‖MG‖k+1
L(Lqω(G))

≤ 2‖MG‖L(Lqω(G))

∞∑
k=0

Mk
Gf

2k‖MG‖kL(Lqω(G))

= 2‖MG‖L(Lqω(G))Rf.

The proof of the first two assertions concerning operator R′ follow as in the case of
the operator R. The last assertion follows by

MG(R′h · ω) =MG

( ∞∑
k=0

(M′G)kh · ω
2k‖M′G‖kL(Lqω(G))

)
=

∞∑
k=0

MG((M′G)kh · ω)ω/ω

2k‖M′G‖kL(Lqω(G))

=

∞∑
k=0

(M′G)k+1h · ω
2k‖M′G‖kL(Lqω(G))

= 2‖M′G‖L(Lqω(G))

∞∑
k=0

(M′G)k+1h · ω
2k+1‖M′G‖

k+1
L(Lqω(G))

≤ 2‖M′G‖L(Lqω(G))

∞∑
k=0

(M′G)kh · ω
2k‖M′G‖kL(Lqω(G))

= 2‖M′G‖L(Lqω(G))R
′h · ω.

�

Now we can prove an abstract version of the Extrapolation Theorem for locally
compact abelian groups.
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Theorem 4.2. Let G be a locally compact abelian group satisfying Assumption 1.1.
Moreover, let 1 < r <∞ and assume that there is

F ⊂ {(f, g) : f, g : G→ R are nonnegative, measurable functions},

such that for every υ ∈ Ar(G),

‖g‖Lrυ(G) ≤ c‖f‖Lrυ(G), (f, g) ∈ F ,(30)

with an Ar(G)-consistent constant c > 0. Then for every 1 < q < ∞ and every
ω ∈ Aq(G),

‖g‖Lqω(G) ≤ c‖f‖Lqω(G), (f, g) ∈ F ,(31)

with an Aq(G)-consistent constant c = c(q) > 0.

Proof. Fix (f, g) ∈ F , 1 < q < ∞ and ω ∈ Aq(G). Let us also assume that
f ∈ Lqω(G), since otherwise there is nothing to prove. By the Theorem of Hahn-
Banach we may write

‖g‖Lqω(G) =

∫
G

ghdµω,

where h ∈ Lq′ω (G) with norm ‖h‖
Lq

′
ω (G)

= 1. Since µω is a positive measure and

g ≥ 0, also h ≥ 0. Therefore, by Proposition 4.1 we obtain the pointwise estimate
h ≤ R′h, and Hölder’s inequality with exponents r and r′ and with respect to the
measure R′hdµ yields

‖g‖Lqω(G) =

∫
G

ghdµω =

∫
G

g (Rf)
−1/r′

(Rf)
1/r′

hdµω

≤
∫
G

g (Rf)
−1/r′

(Rf)
1/r′

R′hdµω

≤
(∫

G

gr (Rf)
−r/r′

R′hdµω

)1/r (∫
G

RfR′hdµω

)1/r′

= ‖g‖Lrυ(G)‖R̃1/r′‖Lr′ω (G),

(32)

with υ := (Rf)
−r/r′

R′h · ω and R̃ := RfR′h. Since f ∈ Lqω(G) and h ∈ Lq
′

ω ,
Proposition 4.1 yields both Rf ∈ A1(G) and R′h · ω ∈ A1(G) with Muckenhoupt
norms independent of f and h. Therefore υ ∈ Ar(G) by Proposition 3.3 with Ar(υ)
depending only on Aq(ω). Hence, by assumption,

‖g‖Lrυ(G) ≤ c‖f‖Lrυ(G),

with an Aq(G)-consistent constant c = c(ω) > 0. Plugging this into (32), we obtain
with the pointwise estimate |f | ≤ Rf

‖g‖q,ω ≤ c‖f‖Lrυ(G)‖R̃1/r′‖Lr′ω (G) ≤ c‖Rf‖Lrυ(G)‖R̃1/r′‖Lr′ω (G).

Taking a closer look at the first norm of the right-hand side, we realize that by the

definition of υ = (Rf)
−r/r′

R′h · ω and the calculation r − r/r′ = 1,

‖Rf‖Lrυ(G) =

(∫
G

(Rf)
r

dµυ

)1/r

=

(∫
G

(Rf)
r

(Rf)
−r/r′

R′hdµω

)1/r

=

(∫
G

RfR′hdµω

)1/r

= ‖R̃1/r‖Lrω(G).
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It follows

‖g‖q,ω ≤ c‖R̃
1/r‖Lrω(G)‖R̃1/r′‖Lr′ω (G) = c‖R̃‖L1

ω(G) = c‖RfR′h‖L1
ω(G)

≤ c‖Rf‖Lqω(G)‖R′h‖Lq′ω (G)
≤ c · 2‖f‖Lqω(G) · 2‖h‖Lq′ω (G)

= 4c‖f‖Lqω(G).

�

Remark 4.3. An extrapolation theorem on locally compact abelian groups in
the style of Garćıa-Cuerva and Rubio de Francia is contained in the assertion of
Theorem 4.2.

(i) Choose

Fcl := {(|f |, |Tf |) : f : G→ R measurable }.

If T : Lrυ(G) → Lrυ(G) is bounded with an Ar(G)-consistent bound, then
we always have

‖g‖Lrυ(G) = ‖Tf‖Lrυ(G) ≤ c‖f‖Lrυ(G), (f, g) ∈ Fcl,

and thus Theorem 4.2 gives us

‖Tf‖Lqω(G) = ‖g‖Lrυ(G) ≤ c‖f‖Lqω(G), (f, g) ∈ Fcl,

with an Aq(G)-consistent constant c = c(q) > 0.
(ii) We also get a vector-valued version of Theorem 4.2, i.e., under the assump-

tion of the theorem we have for all 1 < p, q <∞ and for all ω ∈ Aq(G)∥∥∥∥( n∑
j=1

gpj

)1/p∥∥∥∥
Lqω(G)

≤ c
∥∥∥∥( n∑

j=1

fpj

)1/p∥∥∥∥
Lqω(G)

,

for all finite sequences {(fj , gj)}nj=1 ⊂ F , where c = c(q, p) > 0 is Aq(G)-
consistent. To see this, consider

Fp :=

{
(F,G) =

(( n∑
j=1

fpj

)1/p

,

( n∑
j=1

gpj

)1/p)
: {(fj , gj)}nj=1 ⊂ F

}
,

and observe that Theorem 4.2 applied with q replaced by p gives for all
ν ∈ Ap(G) and (F,G) ∈ Fp

‖G‖p
Lpν(G)

=

n∑
j=1

∫
G

gpj dµν ≤ c
n∑
j=1

∫
G

fpj dµν ≤ c‖F‖pLpν(G)
,

with an Ap(G)-consistent constant c = c(p) > 0. Thus, taking the pth-
root, we obtain ‖G‖Lpν(G) ≤ c‖F‖Lpν(G) for all (F,G) ∈ Fp. If we apply
now Theorem 4.2 again, but this time with exponents r = p, q = q and
F = Fp, we obtain∥∥∥∥( n∑
j=1

gpj

)1/p∥∥∥∥
Lqω(G)

= ‖G‖Lqω(G) ≤ c‖F‖Lqω(G) = c

∥∥∥∥( n∑
j=1

fpj

)1/p∥∥∥∥
Lqω(G)

,

with an Aq(G) consistent constant c = c(q, p) > 0.
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5. R-boundedness and Muckenhoupt weights

Definition 5.1. We call the sequence of functions (rj)j∈N defined via

rj : [0, 1]→ {−1, 1},
rj(t) := sgn [sin(2j−1πt)],

the sequence of Rademacher functions.

Remark 5.2. Observe that the Rademacher functions are symmetric, independent,
{−1, 1}-valued random variables on the probability space ([0, 1],B, λ). In fact, all
arguments used in this section can be be transferred from Rademacher functions
to symmetric, independent, {−1, 1}-valued random variables on [0, 1] without any
changes.

Definition 5.3. Let X be a Banach space. A subset T ⊂ L(X ) is called R-
bounded, if there exists a constant c > 0 such that∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)Tjxj

∥∥∥∥
X

dt ≤ c
∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥
X

dt(33)

for all T1, . . . , TN ∈ T , x1, . . . , xn ∈ X and n ∈ N. Here, (rj)j∈N is the sequence of
Rademacher functions.
The smallest constant c > 0 such that (33) holds is called R-bound of T and is
denoted by R1(T ).

For 1 ≤ p <∞, we can replace the condition (33) in Definition 5.3 by∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)Tjxj

∥∥∥∥p
X

dt ≤ Rp(T )

∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥p
X

dt,(34)

due to the following lemma, which is known as Kahane’s inequality.

Lemma 5.4. Let (rj)j∈N be the sequence of Rademacher functions. Then there is
a constant kp > 0 such that for every Banach space X and for all x1, . . . xn ∈ X∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥
X

dt ≤
(∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥p
X

dt

) 1
p

≤ kp
∫ 1

0

∥∥∥∥ n∑
j=1

rj(t)xj

∥∥∥∥
X

dt.

Hence, (33) holds with a bound R1(T ) := kpRp(T )
1
p if (34) holds with a bound

Rp(T ), and (34) holds with a bound Rp(T ) := (kpR1(T ))p if (33) holds with a
bound R1(T ).

Proof. See [6, Theorem 11.1]. �

In the particular case that X is an Lq(X,µX)-space, where (X,µX) is a measure
space, we can give a characterization of R-boundedness that is much easier to
handle. It relies on the following Khinchin’s inequality.

Lemma 5.5. Let 0 < q <∞ and (rj)j∈N be the sequence of Rademacher functions.
Then there is a constant cq > 0 such that

c−1q

( n∑
j=1

|aj |2
) 1

2

≤
(∫ 1

0

∣∣∣∣ n∑
j=1

rj(t)aj

∣∣∣∣q dt

) 1
q

≤ cq
( n∑
j=1

|aj |2
) 1

2

,(35)

for all a1, . . . , an ∈ C and all n ∈ N.
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Proof. See [6, Theorem 1.10]. �

Proposition 5.6. Let (X,A, µX) be a measure space, 1 < q <∞ and write X :=
Lq(X,µX). Then T ⊂ L(X ) is R-bounded if and only if there is a constant c > 0
such that ∥∥∥∥( n∑

j=1

|Tjfj |2
) 1

2
∥∥∥∥
X
≤ c ·

∥∥∥∥( n∑
j=1

|fj |2
) 1

2
∥∥∥∥
X
,(36)

for all T1, . . . , Tn ∈ T , f1, . . . , fn ∈ X and n ∈ N.

Proof. See e.g. [9, Lemma 4.2]. �

Remark 5.7. If in the situation of Proposition 5.6 the constant c appearing in (36)
is Aq(G)-consistent, then also the R-bound of T is Aq(G)-consistent. Indeed, from
the proof of Lemma 4.2 in [9] it is apparent that Rq(T ) = c2qc is Aq(G)-consistent;
here, cq is the constant from Khinchin’s inequality (35) which is independent of ω.

But since R1(T ) = kqRq(T )1/q by Lemma 5.4, and since kq is independent of the
underlying Banach space and therefore in particular Aq(G)-consistent, we see that
R1(T ) is Aq(G)-consistent.

We can finally give the proof of our main theorem.

Proof of Theorem 1.5. We will choose

F := {(|f |, |Tf |) : f : G→ R measurable , T ∈ T } .

Then using the vector-valued extrapolation estimate in Remark 4.3 (ii) with p = 2,
we obtain ∥∥∥∥( n∑

j=1

|Tjfj |2
) 1

2
∥∥∥∥
Lqω(G)

≤ c
∥∥∥∥( n∑

j=1

|fj |2
) 1

2
∥∥∥∥
Lqω(G)

,

for all T1, . . . Tn ∈ T , f1, . . . , fn and all n ∈ N. Hence, Proposition 5.6 yields the R-
boundedness of T and Remark 5.7 shows that theR-bound is Ar(G)-consistent. �
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[4] D. Cruz-Uribe, J. M. Martell, and C. Pérez. Extensions of Rubio de Francia’s extrapolation
theorem. Collect. Math., (Vol. Extra):195–231, 2006.
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