Solution Techniques for Quantified Linear
Programs and the links to Gaming*

Ulf Lorenz, Thomas Opfer, and Jan Wolf

Institute of Mathematics, Technische Universitdt Darmstadt, Germany

Abstract. Quantified linear programs (QLPs) are linear programs (LPs)
with variables being either existentially or universally quantified. QLPs
are two-person zero-sum games between an existential and a universal
player on the one side, and convex multistage decision problems on the
other side. Solutions of feasible QLPs are so called winning strategies
for the existential player that specify how to react on moves — certain
fixations of universally quantified variables — of the universal player to
certainly win the game. To find a certain best one among different win-
ning strategies, we propose the extension of the QLP decision problem by
an objective function. To solve the resulting QLP optimization problem,
we exploit the problem’s hybrid nature and combine linear programming
techniques with solution techniques from game-tree search. As a result,
we present an extension of the Nested Benders Decomposition algorithm
by the afB-heuristic and move-ordering, two techniques that are used in
game-tree search to solve minimax trees. The principle applicability of
our method to both QLPs and QIP models of PSPACE-complete games
like Connect6 is examined in an experimental evaluation.

1 Introduction

In the last 40 years, algorithmic achievements like the introduction of the Alpha-
Beta-Algorithm strengthened game-tree search remarkably [3, 6, 13]. Nowadays
it is almost impossible for human chess masters to beat high-level chess com-
puters. Proof Number Search has shown to be an effective algorithm for solving
games [10, 14, 16]. Interestingly, there is a strong relation between these Artifi-
cial Intelligence techniques and effective treatment of uncertainty in Operations
Research applications.

For many decades, a large amount of practical problems have been modeled
as linear or mixed-integer linear programs (MIPs), which are well understood and
can be solved quite effectively. However, there is a need for planning and deciding
under uncertainty, as companies observe an increasing danger of disruptions,
which prevent them from acting as planned. One reason is that input data for
a given problem is often assumed to be deterministic and exactly known when
decisions have to be made, but in reality they are often afflicted with some
kinds of uncertainties. Examples are flight and travel times, throughput-time, or
arrival times of externally produced goods.

* Research partially supported by German Research Foundation (DFG) funded SFB
805 and by the DFG project LO 1396/2-1.

Uncertainty, often pushes the complexity of problems that are in P or NP, to
the complexity class PSPACE. Also many optimization problems under uncer-
tainty are PSPACE-complete [8] and therefore, NP-complete integer programs
are not suitable to model these problems anymore. Relatively unexplored are
the abilities of linear programming extensions for PSPACE-complete problems.
In this context, Subramani introduced the notion of quantified linear programs
(QLPs) [11, 12]. While it is known that quantified linear integer programs (QIPs)
are PSPACE-complete, the exact complexity class of their QLP-Relaxations is
unknown in general. It turned out that quantified mixed-integer programming
is a suitable modeling language for both optimization under uncertainty and
games [4, 5]. The idea of our research is to explore the abilities of linear pro-
gramming techniques when being applied to PSPACE-complete problems and
their combination with techniques from other fields.

In this paper we show how the problem’s hybrid nature of being both a two-
person zero-sum game on the one hand, and being a convex multistage decision
problem on the other hand, can be utilized to combine linear programming tech-
niques with techniques from game-tree search. To the best of our knowledge, a
combination of techniques from these two fields has not been done before. Solu-
tions of feasible QLPs are so called winning strategies for the existential player
that specify how to react on moves - certain fixations of universally quantified
variables - of the universal player to certainly win the game. However, if there
are several winning strategies, one might wish to find a certain (the best) one
with respect to some kind of measure. We therefore propose an extension of the
QLP decision problem by the addition of a linear objective function, which tries
to minimize the objective function with respect to the maximum possible loss
that can result from the universal player’s possible decisions. To solve the result-
ing QLP optimization problem, we propose an extension of the Nested Benders
Decomposition algorithm as presented in [4]. Solving a QLP with this algorithm
can be interpreted as solving a tree of linear programs by passing information
among nodes of the tree, and for the special case of QLPs with an objective
function, the way this information are passed is similar to the minimax principle
as it is known from game-tree search. This allows the integration of af-cuts in
combination with move-ordering, as used in the a-Algorithm. The applicability
of this approach is examined in an experimental evaluation, where we solve a set
of QLPs that were generated from the well-known Netlib test set. Revealing that
quantified programming is not only itself a game but can also be used to model
and solve conventional games, we also model the Connect6 game as quantified
program.

The rest of this paper is organized as follows. In Section 2, we formally
describe the QLP optimization problem, followed by an explanation of the Nested
Benders Decomposition approach in Section 3. Section 4 introduces the concepts
of game-tree search and afterwards, in Section 5, we show how these techniques
can be embedded into our existing algorithmic framework. We proceed with an
experimental evaluation in Section 6, give an outlook how to apply our method to
PSPACE complete games in section 7 and end up with a conclusion in Section 8.

2 The Problem Statement: Quantified Linear Programs
(QLPs)

Within this paper, we intend to concentrate on quantified linear programs (QLPs),
as they were introduced in [11, 12], and in-depth analyzed in [4, 7]. In contrast to

traditional linear programs where all variables are implicitly existentially quan-

tified, QLPs are linear programs with the variables being either existentially or

universally quantified.

Definition 1 (Quantified Linear Program) Let there be a vector of n vari-
ables x = (x1,...,2,)T € Q", lower and upper bounds | € Z™ and u € Z"
with I; < x; < u; , a coefficient matriz A € Q™*™, a right-hand side vector
b€ Q™ and a vector of quantifiers @ = (Q1,...,Q,)T € {V,3}". Let the term
Qo € [l,u] with the component wise binding operator o denote the quantifica-

tion vector (Q1z1 € [l1,u1], ..., QnTn € [ln,un])T such that every quantifier Q;
binds the variable x; ranging over the interval [l;, u;]. We call (Q,1,u, A,b) with
Qozxel[lu]: Ax <b (QLP)

a quantified linear program (QLP).

We denote the quantification vector Q oz € [I, u] as quantification sequence
Q121 € [l1,u1] .. Qnxy € [ln, up]. In a similar manner, we denote Q as a quan-
tifier sequence Q1 ... Q,, and x as a variable sequence x7 ... x,. Each maximal
consecutive subsequence of Q consisting of identical quantifiers is called a quan-
tifier block — the corresponding subsequence of z is called a wvariable block. The
total number of blocks less one is the number of quantifier changes. In contrast
to traditional linear programs, the order or the variables in the quantification
vector is of particular importance.

Each QLP instance is a two-person zero-sum game between an existential
player setting the 3-variables and a universal player setting the V-variables. Each
fixed vector z € [I,u], that is, when the existential player has fixed the existential
variables and the universal player has fixed the universal variables, is called a
game. If x satisfies the linear program Ax < b, we say the existential player wins,
otherwise the universal player wins. The variables are set in consecutive order
according to the quantification sequence. Consequently, we say that a player
makes the move xj = z, if he fixes the variable x; to the value z. At each such
move, the corresponding player knows the settings of x1, ..., xx_1 before taking
his decision zj. In the context of answering the question whether the existential
player can certainly win the game, we use the term policy.

Definition 2 (Policy) Given a QLP (Q,l,u, A,b) with Qox € [l,u] : Ax <
b. An algorithm that fizes all existential variables x; with the knowledge, how
x1,...,T;_1 have been set before, is called a policy.

A policy can be represented as a set of computable functions of the form x; =
fi(x1,...,x;-1) for all existentially quantified variables x;. A policy is called a
winning policy if these functions ensure that the existential player wins all games
that can result from this policy, independently of the universal player’s moves.

Definition 3 (QLP Decision Problems) Given a QLP, the decision problem
“Is there a winning policy for the existential player?” is called the QLP Decision
Problem.

It has been shown that the QLP problem with only one quantifier change is
either in P (when the quantification begins with existential quantifiers and ends
with universal ones) or coNP-complete (when the quantification begins with
universal quantifiers and ends with existential ones) [12]. In [7] it was shown
that the solution space of a QLP with n variables forms a polytope in R™, which
is included in the polytope induced by the constraint set Az < b as shown in
Figure 1. It was furthermore shown that it suffices to inspect the bounds of the
universal quantified variables in order to check whether a winning policy does
exist (cf. [12] and with a completely different proof in [7]).

Example 1 The QLP
dz, € [1,6] Vg € [1,2] 1+ <6 A 190 —a1 <0

has the following graphical representation of bounding box (dashed lines) and
constraints (solid lines).

T2

Fig. 1. Polyhedral QLP solution space

We say a solution to this problem is a mowve for the existential player such that
he wins the game regardless of the universal player’s reaction, or rather, the set
of games (x1,72)T which can result from the existential player’s decision (black
line segment in the figure above), e.g. the output of a winning policy. The set of
all solutions, i.e. the set of ‘existential sticks’ fitting in the specified trapezoid, is
called the solution space (filled rectangle). In this example, we see that it indeed
suffices to analyze discrete points (filled dots) to find a solution. Note that the
order in the quantification sequence is crucial.

The fact that it suffices to check the bounding values of the universally quan-
tified variables in order to answer the question whether the existential player can
certainly win the game, can be exploited in terms of asking whether a winning
strategy for the existential player does exist.

Definition 4 (Strategy) A strategy S = (V, E,c) is an edge-labeled finite ar-
borescence with a set of nodes V.= V5 U Vi, a set of edges E and a vector of

edge labels ¢ € QIE!. Each level of the tree consists either of only nodes from V3
or only of nodes from Vi, with the root node at level 0 being from V3. The i-th
variable of the QLP is represented by the inner nodes at depth i — 1. Fach edge
connects a node in some level i to a node in level i+ 1. Outgoing edges represent
moves of the player at the current node, the corresponding edge labels encode the
variable allocations of the move. Fach node vy € V3 has exactly one child, and
each node vy € Vi has two children, with the edge labels being the corresponding
upper lower and upper bounds.

A path from the root to a leaf represents a game of the QLP and the sequence
of edge labels encodes its moves. A strategy is called a winning strategy if all
paths from the root node to a leaf represent a vector x such that Az < b. This
terminology is also very similarly used in game-tree search [9].

Example 2 The QLP
Jx; €[0,1]Vag €]0,1] Fz3 € [0,1] :

0 —-1-1 1 -1
—-11 1 X9 S 1
2 20 T3 3

has two quantifier changes. Figure 2 shows a visualization of the constraint poly-
hedron restricted to the unit cube. Since this example is rather small, we can guess
a winning strategy for the existential player from the picture: ‘Choose 1 € [0, %],
then choose x3 appropriate to xo, e.g. x3 = 1—x9.” The highlighted solution space
visualizes the set of all games with a definite winning outcome for the existential
player. Figure 8 shows a winning-strategy for the existential player.

Fig. 2. Solution space of Example 2 Fig. 3. Winning Strategy for Example 2

If there is more than one winning strategy for the existential player, it can be
reasonable to search for a certain (the ’best’) one. We can therefore modify the
problem to include a linear objective function as shown in the following (where
we note that transposes are suppressed when they are clear from the context to
avoid excessive notation).

Definition 5 (QLPs with Objective Function) Let Qox € [l,u] : Az <b
be given as in Definition 1 with the variable blocks being denoted by B;. Let there
also be a vector of objective coefficients ¢ € Q™. We call

z =min(c'z! + max(c*z? + min(c®z® + max(... minc"z™)))))
u K oA B (QLP¥)
Qozxellul: Axr <b

a QLP with objective function (for a minimizing existential player).

Note that the variable vectors 2, ..., 2% are fixed when a player minimizes or

maximizes over variable block B;i;. Consequently, it is a dynamic multistage
decision process, similar as it is also known from multistage stochastic program-
ming [2]. However, whereas in the latter an expected value is minimized, in
our case we try to minimize the possible worst case (maximum loss) scenario
that can result from the universal player’s decisions. In the following we use the
abbreviation min ¢’ x for the objective function and denote by

min{c’z|Qox € [l,u] : Az < b}
a quantified linear program with objective function.

Definition 6 (QLP Optimization Problems) Given a QLP with objective
function, the problem “Is it feasible? If yes, what is the best objective value of the
existential player’s winning policies?” is called QLP Optimization Problem.

Note, that to find the existential player’s optimal objective value, it is not enough
to fix the universal players variables to their worst-case values regarding the
objective function. For clarification, consider the following program:

min{—xz; — 2z |Vz1 € [0,1] 22 € [0,1] : 21 + 22 < 1}

Judging from the objective function the universal player should fix z; = 0,
but this results in a better objective value for the existential player than forcing
the existential player to fix x5 = 0 in the constraint system.

3 Nested Benders Decomposition (NBD)

The algorithm we extend in this paper was first proposed in [4] and uses decom-
position techniques to solve an implicit reformulation of a QLP, which we call a
deterministic equivalent problem (DEP). The concept is similar to the notion of
deterministic equivalence as it is known from stochastic programming (cf. [2])
in the context of multistage stochastic linear programs (MSSLPs). Using the as-
sumption of a finite time horizon and a discrete probability space, the resulting
scenario tree is encoded into a DEP by replicating the LP for each possible sce-
nario (possible path of events). Additionally, it is required that decisions must
not depend on future events (nonanticipativity). The DEP of a QLP instance
can be constructed in a similar way, however, instead of encoding the scenario

tree of randomly arising scenarios, we encode the decision tree of the univer-
sal player, which results from the series of all possible upper and lower bound
combinations of the universal variables as determined by the quantification se-
quence. Nodes at stage t are decision points where the existential player has to
fix variables, e.g. by solving a linear program, with respect to all previous moves
(xt,...,2'71). Arcs of the tree represent moves of the universal player when
he fixes his variables to the corresponding lower and upper bounds. Figure 4 a)
shows the universal player’s decision tree for a QLP with quantification sequence
Jxq € [l1,u1] Vg € [lo,us] a3 € [l3,us] Vay € [lg, uq] Fx5 € [I5, us]. The tree
is similar to the strategy of a QLP where the moves of the existential player have
not been fixed.

Game4
Al A/ Ai
Game3 & & As
Game2 A] AZ A3
Game1 A A, A,
3 v 3 v 3 L
a) Universal Player Decision Tree b) DEP Matrix Structure

Fig. 4. Deterministic Equivalent Linear Program

Figure 4 b) shows the resulting DEP matrix structure using compact variable
formulation, which implicitly satisfies the nonanticipativity property because all
nodes in the tree that share a common history also have the same set of decision
variables up to that point. The resulting DEP grows exponentially with the
number of universally quantified variables of the corresponding QLP, but the
special block structure of the matrix can be exploited by the Nested Benders
Decomposition (NBD) algorithm. The NBD algorithm is a recursive application
of the well-known Benders Decomposition principle [1] and is widely used in the
Stochastic Programming community to solve MSSLPs [2].

To illustrate how the Benders Decomposition algorithm works to solve QLPs,
we consider w.l.o.g. the DEP that results from a QLP with quantification se-
quence 3z € [0,u1]Vaq € [1,1]3z3 € [0, u3] and an objective function min ¢f 1+
c}'z3. Let the constraint system Az + Asxe+Azzz < b contain the upper bound
uy of 1 and ug of x3. Since the V-variable x5 € [1,1] is a fixed variable, the DEP
consists of a single game where the corresponding right hand side 4’ results from
b/ =b- AQEQ with EQ =1.

The resulting DEP looks as follows:

Z = min c{xl + cgwg
s.t. A11‘1 + A3$3 S b/
21> 0,23 >0

Applying Benders Decomposition, the decision variables of the DEP are
stage-wise partitioned and then decomposed into a restricted master problem

(RMP) that contains the first-stage variable x1, and one subproblem (SP) that
contains the second-stage variable x3. The corresponding dual SP (DSP) has the
property that the solution space no longer depends on the value of x1, regardless
whether it is feasible or infeasible for the SP. The SP and its DSP can be written
as follows:

SP(z1) = min ¢l z3 DSP(z;) = max 77 (Y — Ayz1)
s.t. Ag.’[g < b — All'l s.t. Agﬂ S C3

For a non-optimal Z; obtained by solving the RMP, which can be empty at the
beginning, the following two cases can happen. If the SP is feasible, the solution
of the DSP is bounded and located at an extreme point of its solution space. If
the SP is infeasible, the solution of the DSP is unbounded, which corresponds to
an extreme ray of its solution space. Using this dual information, two different
types of cutting planes - called Benders cuts - can be added to the RMP to
cutoff the last 71 in the next solution of the RMP.

1. feasibility cut: (7))(b' — Ayx1) < 0, if the DSP(Z;) is unbounded, where 77
is the vector that corresponds to the extreme ray j.
2. optimality cut: (7)) (Y — Ay21) < g, if the DSP(Z;) is bounded, where 7} is
the vector that corresponds to the extreme point i.
Since the DSP can only have finitely many extreme points and extreme rays, the
RMP can be written as follows, where ¢ is an auxiliary variable used to represent
the objective function value of the SP:

RMP = min clTacl +q

s.t. (m)(d — A1) <OV e J
(mp)(d — A1) < gViel
Tl Z 0

This reformulation is equivalent to the initial DEP. However, there can be
exponentially many extreme rays and extreme points and not all of them are
needed to find the optimal solution. Therefore, the algorithm starts with I and
J being empty, and computes cuts in an iterative process until an optimal so-
lution is found or infeasibility is detected. In the latter case also the DEP and
the corresponding QLP are infeasible. The optimal solution is found, if for a
given candidate optimal solution (z7,q*), called proposal, also the SP(z}) has
an optimal solution with value ¢(z7) and the optimality condition ¢(z}) = ¢*
is satisfied. If this is the case, the algorithm stops. Otherwise a feasibility or
optimality cut is added to the RMP, which is then re-solved again to obtain
a new proposal. In each iteration where the SP is feasible, ¢zt + ¢* yields a
lower bound for the initial problem, while ¢’ 27 + g(z7%) yields an upper bound.
The difference between these bounds gets smaller, and if it becomes less than a
predefined €, the algorithm terminates.

If there are k universally quantified variables, then there are 2¥ games and
therefore 2% subproblems are solved in each iteration, each yielding a cut that is

added to the RMP. The min-mazx property of the objective function is achieved,
because all optimality cuts that result from the subproblems restrict the same
auxiliary variable ¢. For the computation of the upper bound, the maximum over
all subproblems from the last iteration is used. For multistage QLPs resulting
from a quantifier string 3V3V...Vd, Benders Decomposition can be recursively
applied, which is known as Nested Benders Decomposition. Solving the DEP of
a multistage QLP can be illustrated as solving a tree of linear programs that
are attached to the nodes of the decision tree of the universal player. The tree is
traversed forwards and backwards multiple times, with information being passed
between adjoined nodes of the tree. A node at stage ¢ passes proposals for the
variables from the root up to stage t to its immediate descendants at stage ¢ + 1
and cuts to its immediate ancestor at stage ¢t — 1.

The algorithm has been implemented and tested in a detailed computational
study with instances that were generated from existing LP and IP test sets [4].

4 Game-Tree-Search and the ag-Algorithm

The term minimax tree describes one of the most important data structures that
allows computers to play two-person zero-sum games such as checkers, chess,
and go. Nodes of the tree are decision points for the players and are therefore
subdivided in min and max nodes. Nodes from different stages are connected
with branches, leaf nodes are end positions of the game and can be evaluated as
a win, lose, or draw using the rules of the game. Often, a specific score from the
max player’s point of view is computed with the help of a weighting function
and assigned to a leaf to represent how good or bad the sequence of moves from
the root to the leaf is. With a complete game-tree, it is possible to solve the
game with the MiniMax-Algorithm, which fills the inner node values of the tree
bottom-up starting with the evaluated values at the leafs. Nodes that belong to
the max player get the maximum values of their successors, while nodes for the
min player get the minimum. Figure 5a) illustrates this behavior.

While the MiniMax-Algorithm must evaluate the entire game-tree to com-
pute the root value, the af-Algorithm [9] prunes away branches that cannot
influence the final result. Therefore, it maintains two values, o and S, which
represent the minimum score that the max player is sure to gain at least until
that point in the tree, and the maximum score of the min player respectively. If
the evaluation of a position where the min player has to move becomes less than
«, the move need not to be further explored, since a better move has already
been found. The same holds, if at a position where the max player has to choose
his move, the evaluation provides a value that is greater than 3. Figure 5b)
illustrates this behavior, the dashed subtrees were not visited. The left one due
to a B-cutoff, the subtree on the right hand due to an a-cutoff.

While the order in which the nodes of the tree are evaluated does not mat-
ter for the MiniMax-Algorithm, it is essential for the performance of the «af-
Algorithm.

a) MiniMax Game-Tree b) af-Algorithm

Fig. 5. MiniMax Game-Tree and af-Algorithm

The best moves need to be evaluated first in order to find strong « and
B values as soon as possible. Figure 5b) illustrates this, without swapping the
subtrees under the first successor of the root on the left side, the S-cutoff would
not have occurred. If the best moves are searched first, the runtime of the a3-
Algorithm is only O(vd?) where d is the depth of the tree and b is the number of
possible moves at each node. The MiniMax-Algorithm has a runtime of O(b%).

5 The aB-Nested Benders Decomposition (a3-NBD)

In this Section we describe how the af-heuristic in combination with move-
ordering can be integrated into the Nested Benders Decomposition (NBD) algo-
rithm. Let us recall that solving a multistage QLP with the NBD algorithm can
be illustrated as solving a tree of linear programs that are attached to the nodes
of the universal player’s decision tree. The tree is therefore traversed multiple
times and information in the form of proposals and cuts are passed between
nodes of the tree. If a node v; at stage ¢ € {0,...,T} receives a new proposal
Z!~1 from its direct successor at stage t — 1, the subtree rooted at node v; is
solved to optimality, or until the nodal linear program attached to v; becomes
infeasible. After feasibility of the subtree is established, the upper and lower
bounds of v; converge and for the node’s optimal objective function value z;
holds L; < z; < U; until the values coincide at the end. Then node v; passes Z;
and the corresponding optimality cut to its direct ancestor at stage ¢ — 1. After
an iteration where node v; passed its current proposal Z! to its direct succes-
sors v; € J at stage t + 1, and all of them were feasible with Z; denoting the
corresponding optimal objective function values, v;’s upper bound computes as
U; = 7" + max;e; ;. This is equal to the minimax principle as mentioned in
Section 4. The existential player tries to minimize the value of a nodal linear
program, with respect to the worst-case move of the universal player, which is
the corresponding subproblem with the mazimal objective function value. When
using a depth first-search to traverse the tree as it is done in the aS-Algorithm,
the knowledge of the current maximal value o; = maxye g Zj of some successors

vk € K C J of node v; can be used in a similar manner as « in the a-Algorithm.
In the current iteration, it denotes the minimum value, the maximizing player
(the universal one) will at least obtain at node v;. When «; is passed to the
remaining nodes from the set of successors J\K each node v; from this set can
stop computing its exact optimal objective function value after it determines
feasibility with respect to the current proposal Z', and detects that its current
upper bound Uj is less than or equal to a;. We can also integrate a value analo-
gously to [that depicts the maximum value the minimizing player will gain for
sure at a specific node v; at stage t. In terms of the NBD algorithm this is the
upper bound U; from the previous iteration. In the next iteration, this value can
be passed to all successors v; € J at stage ¢t + 1 together with the new proposal
7' If a successor v; determines feasibility with respect to the current proposal T*
and detects that its lower bound L; = ¢zt +g'*! is greater than this value, it
can stop computing its exact optimal objective function value because a better
solution has already been found in the previous iteration. In the following, we
will therefore also use the abbreviations o and (3 for these values.

As in the case of the af-Algorithm, the order in which the nodes of the tree
are solved is an important issue in the aS-NBD algorithm. Whereas the af-
Algorithm uses heuristics, our algorithm organizes the order in which nodes are
visited based on information from previous iterations. To obtain strong bounds
as soon as possible, the successor of a node v; that provided the worst-case sub
solution in the previous iteration, is visited first in the next iteration, speculat-
ing that it will again provide a strong a-bound. Also the other successors are
arranged in descending order by their solution values from the last iteration.
However, many other sorting criterions are possible.

The algorithmic framework has been implemented in C++ using the LP Solver
CPLEX 12.4 to solve nodal linear programs.

6 Computational Results

In the following we present the results of our experimental evaluation. All tests
were run on a quad-core processor AMD Phenom IT X4 945 with 8GB RAM.
For our tests we took LP instances with a maximum number of 500 variables
and constraints and generated QLPs with 10, 15, and 18 universally quantified
variables. For each new universally quantified variable z; € [0, 1], we randomly
added matrix coefficients from the interval [—1, 1] with a density of 25%. We fur-
thermore varied the number of V-quantifier blocks to 1, 2, and 5 and distributed
them equally in the QLP. This results in twostage and multistage QLP instances
and nine different test sets. A similar test set was used in [4].

Table 1 shows the summed up results solving each of the test sets with the
standard NBD algorithm, the a8-Nbd algorithm, and when solving the cor-
responding DEPs with CPLEX. Column 1 contains the number of universally
quantified variables followed by the number of blocks of universally quantified
variables in column 2. Column 3 contains the solution times when the corre-
sponding DEPs are solved with CPLEX running with standard settings and its

preprocessor enabled. Columns 4 and 5 show the solution times and the number
of LPs that were solved using the standard NBD algorithm. Column 6 and 7
show the same numbers when af8-cuts and the move sort heuristic are used.

[[CPLEX NBD [NBD (aB + move-ordering) |
[V-Vars[V-Blocks| Time (s) Time (s)[Subproblems| Time (s)[Subproblems|
10 1 572.84 36.79 123844 21.72 82832
10 2 225.22 69.48 300410 32.51 137550
10 5 109.65 101.20 567935 53.96 334402
15 1 >172800.00 1375.60 5923805 1010.70 4117858
15 2| >172800.00 1755.77 7592959 1101.67 4578949
15 5 130934.78 2281.55 13021052 1113.95 6724840
18 1 >172800.00 10044.65 38954373 7047.60 24542092
18 2| >172800.00 15174.01 75414983 10059.71 48808515
18 5| >172800.00 27007.41 123214174 14313.93 66535654

Table 1. Computational Results

The results show that the even the standard NBD algorithm implementation
is clearly faster than solving the DEP in most cases, especially with an increasing
number of universally quantified variables. This is due to the exponential growth
of the DEP with an increasing number of universally quantified variables in the
corresponding QLP. When we additionally use the a8-heuristic and move sort,
we observe notable time savings up to about 50% compared to the standard
implementation as we can e.g. see in the last row of Table 1. The extended algo-
rithm was able to halve the number of subproblems that had to be solved from
123214174 to 66535654, resulting in a reduction of the solution time from 450
minutes to 238 minutes, a difference of 47%. The effect becomes stronger with
an increasing number of stages but even in the twostage case, move-ordering
alone leads to a performance gain of 25% —40%. These results show the high po-
tential of combining techniques from game-tree search with the Nested Benders
Decomposition approach and motivate a further research in this direction.

7 Outlook: Application to other Games

Apart from the fact that QLPs taken by themselves can be interpreted as two-
person zero-sum games, they provide a adequate modeling tool for many pur-
poses. In [5] a QIP model of the two-person game Gomoku was proposed. We
adopted this model to a very similar PSPACE-complete game: Connect6. Here
two players playing on a Go board try to achieve a connected row of six stones.
At the beginning, black places one stone, then white and black take turns placing
two stones. The player, who has the first connected row of six stones, wins.
While the former model was never practically solved, we use only a logarith-
mic number of universally quantified variables in our current model to reduce
the computational burden. This is necessary because the effort to solve a QIP
with both DEP and af8-NBD grows exponentially with the number of univer-
sally quantified variables. To model a set of n binary variables x; where exactly
one equals 1 while all others are 0 (similar to a so called SOS1-constraint in

mathematical optimization) with a logarithmic amount of binary variables y;,
one can use the following transformation between binary and unary encoding?:

10%2(”) n
2y = i — 1
1 i=1

i=

i=1

Still the DEP gets too large to solve directly. Thus we used a variant of the
proposed a-NBD algorithm to decide whether black can win in n moves starting
from an arbitrary situation. However, as the model contains binary variables, an
additional type of cut, called Combinatorical Benders Cut [15], had to be added
to the algorithm. Given a node v; at depth ¢ a proposal Z'~! that turns out to
be invalid, at least the corresponding part of the solution space of the master
problem is cut off by the following cut:

ooty Y a-zh=a

jeAm T =0 jeAm =1
Here A depicts the set of existentially quantified variables from stage 0 to stage
t — 1. Our plan is to improve this cut by methods of conflict analysis in MIPs.
In our preliminary tests, we could solve instances of this problem for n < 10
on a board of size 8 x 8.

8 Summary

In the course of this paper we considered QLPs with objective functions and
showed how their hybrid nature of being a two-person zero-sum game on the
one side, and being a convex multistage decision problem on the other side,
can be used to combine linear programming techniques with solution techniques
from game-tree search. We therefore extended the Nested Benders Decompo-
sition algorithm by the «af-heuristic in combination with move-ordering, two
techniques that are used in the af-Algorithm to evaluate minimax trees. We
showed the applicability in an experimental evaluation, where we solved QLPs
that were generated from the well-known Netlib test set. The results showed a
speedup of up to 50% compared to the standard Nested Benders Decomposition
implementation without techniques from game-tree search.

! Heed that this transformation is only valid if n is a power of 2. It can be easily
adopted to the general case.

Bibliography

[1] J. F. Benders. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik, 4(1):238-252, Dec. 1962.

[2] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer Series in Operations Research and Financial Engineering. Springer,
July 1997.

[3] C. Donninger and U. Lorenz. The hydra project. Xcell Journal, (53), 2005.

4] T. Ederer, U. Lorenz, A. Martin, and J. Wolf. Quantified linear programs: A
computational study. In Proceedings of the 18th annual European conference
on Algorithms: Part I, ESA’11, pages 203214, Berlin, Heidelberg, 2011.
Springer-Verlag.

[5] T. Ederer, U. Lorenz, T. Opfer, and J. Wolf. Modelling games with the
help of quantifieded integer linear programs. In ACG 13. Springer, 2011.

[6] F.-H. Hsu. Ibm’s deep blue chess grandmaster chips. IEEE Micro, 18(2):70-
80, 1999.

[7] U. Lorenz, A. Martin, and J. Wolf. Polyhedral and algorithmic properties of
quantified linear programs. In Proceedings of the 18th annual European con-
ference on Algorithms: Part I, ESA’10, pages 512-523, Berlin, Heidelberg,
2010. Springer-Verlag.

[8] C. Papadimitriou. Games against nature. J. of Comp. and Sys. Sc., pages
288-301, 1985.

[9] W. Pijls and A. de Bruin. Game tree algorithms and solution trees. Theor.
Comput. Sci., 252(1-2):197-215, 2001.

[10] A. Plaat, J. Schaeffer, W. Pijls, and A. De Bruin. Best-first fixed-depth
game-tree search in practice. In Proceedings of the 14th international joint
conference on Artificial intelligence - Volume 1, pages 273-279, San Fran-
cisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[11] K. Subramani. Analyzing selected quantified integer programs. Springer,
LNAT 3097, pages 342-356, 2004.

[12] K. Subramani. On a decision procedure for quantified linear programs.
Annals of Mathematics and Artificial Intelligence, 51(1):55-77, 2007.

[13] H. van den Herik, J. Nunn, and D. Levy. Adams outclassed by hydra. ICGA
Journal, 28(2):107-110, 2005.

[14] H. van den Herik, J. Uiterwijk, and J. van Rijswijk. Games solved: Now
and in the future. Artificial Intelligence, 134:277-312, 2002.

[15] F. Vanderbeck and L. Wolsey. Reformulation and decomposition of inte-
ger programs. CORE Discussion Papers 2009016, Université catholique de
Louvain, Center for Operations Research and Econometrics (CORE), 2009.

[16] M. H. Winands, J. W. Uiterwijk, and J. van den Herik. Pds-pn: A new
proof-number search algorithm. In Computers and Games (CG), pages 61—
74, 2002.

