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We consider very weak instationary solutions u of the Navier-Stokes system in
general unbounded domains Ω ⊂ Rn, n ≥ 3, with smooth boundary, i.e., u solves
the Navier-Stokes system in the sense of distributions and u ∈ Lr(0, T ; L̃q(Ω))
where 2

r
+ n

q
= 1, 2 < r <∞. Solutions of this class have no differentiability prop-

erties and in general are not weak solutions in the sense of Leray-Hopf. However,
they lie in the so-called Serrin class Lr(0, T ; L̃q(Ω)) yielding uniqueness. To deal
with the unboundedness of the domain we work in the spaces L̃q(Ω) (instead of
Lq(Ω)) defined as Lq ∩L2 when q ≥ 2 but as Lq +L2 when 1 < q < 2. The proofs
are strongly based on duality arguments and the properties of the spaces L̃q(Ω).
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1 Introduction
We consider the instationary Navier-Stokes system

ut −∆u+ div (u⊗ u) +∇p = f in (0, T )× Ω,
div u = k in (0, T )× Ω,

u = g on (0, T )× ∂Ω,
u(0) = u0 in Ω,

(1.1)

in a general unbounded domain Ω ⊂ Rn, n ≥ 3, with uniform C2-boundary
and a finite time interval (0, T ). Here u = (u1, . . . , un) denotes the unknown
velocity field, p an associated pressure, f a given external force, and u0 denotes
the initial value of u at time t = 0. In the most general problem the velocity
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u is not assumed to be solenoidal; rather we prescribe a function k = div u
and also non-zero boundary values g on ∂Ω. For a precise definition of uniform
Ck-boundaries we refer to Definition 2.1 below. The viscosity is set to ν = 1,
for simplicity. In contrast to the theory of weak solutions in the Leray-Hopf
class u ∈ L∞(0, T ;L2

σ(Ω))∩L2(0, T ;W 1,2
0 (Ω)) and to strong (or regular) solutions

satisfying ut,∆u ∈ Lr(0, T ;Lq(Ω)), say for r = q = 2, our focus is put on the
concept of very weak solutions u lying in Serrin’s class Lr(0, T ;Lq(Ω)), 2 < r <∞,
n < q <∞, 2/r + n/q = 1 without any differentiability properties. In general, a
very weak solution does neither have a bounded kinetic energy in L∞(0, T ;L2(Ω))
nor a finite dissipation energy in L2(0, T ;H1(Ω)). In particular, a very weak
solution is not necessarily a weak solution and vice versa. However, very weak
solutions lying in Serrin’s uniqueness class Lr(0, T ;Lq(Ω)) can be shown to be
unique.

This concept was mainly introduced in a series of papers by H. Amann [3, 4, 5]
in the setting of Besov spaces when k = 0, but also used already earlier in a paper
of Ch. Amrouche and V. Girault ([6]). More recently, this concept was modified
by G.P. Galdi, H. Kozono, C. Simader, H. Sohr and the first author of this
paper to a setting in classical Lq-spaces including the inhomogeneous data k, see
[9, 10, 12] and [21]. Moreover, very weak solutions can be considered in weighted
Lebesgue and Bessel potential spaces using arbitrary Muckenhoupt weights, see
the work of K. Schumacher ([25, 26, 27, 28]).

It is advantageous to generalize the concept so that neither the external force
nor boundary values nor initial values of a very weak solution are specified or can
be defined separately from each other. This data is composed into a functional
F , the divergence k and the normal component of the trace g is composed to a
functional K,

〈F , φ〉 = (u0, φ(0))Ω + (f1, φ)T,Ω + (f2,∇φ)T,Ω − (g,N · ∇φ)T,∂Ω, (1.2)
〈K, ψ〉 = (g, ψN)T,∂Ω − (k, ψ)T,Ω, (1.3)

for adequate test functions φ and ψ. By this setting the theory of very weak
solutions is strongly related via duality arguments to the theory of strong (or
regular) solutions.

A second crucial issue in our setting is the unboundedness of the underlying
domain Ω. Due to counter-examples by M.E. Bogovskij and V.N. Maslennikova
[7, 8] the Helmholtz decomposition of vector fields in Lq(Ω), 1 < q(6= 2) <∞, on
an unbounded smooth domain may fail. Hence a bounded Helmholtz projection
Pq with the properties required to define the Stokes operator Aq = −Pq∆ when
q 6= 2 may fail to exist. Therefore, in [11, 13, 14, 15] H. Kozono, H. Sohr and the
first author of this article introduced the spaces

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), if 1 ≤ q < 2,

Lq(Ω) ∩ L2(Ω), if 2 ≤ q ≤ ∞.
(1.4)
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For bounded domains Ω we have that L̃q(Ω) = Lq(Ω) with equivalent norms by
Hölder’s inequality. Note that functions in L̃q(Ω) locally behave like Lq-functions,
but globally like L2-functions. Obviously, L̃q(Ω)∗ ∼= L̃q

′
(Ω). By analogy, function

spaces like L̃qσ(Ω) of solenoidal vector fields and W̃ k,q(Ω) of weakly differentiable
functions will be defined.

As shown in [13] a Helmholtz projection P̃q : L̃q(Ω)n → L̃qσ(Ω) is well defined,
allowing to define a closed Stokes operator Ãq = −P̃q∆ with domain D̃1

q =

W̃ 2,q(Ω)∩W̃ 1,q
0 (Ω)∩L̃qσ(Ω) dense in L̃qσ(Ω). The operator Ãq has similar properties

as the usual Stokes operator Aq, generates an analytic semigroup e−tÃq , t ≥ 0,
enjoys the property of bounded imaginary powers and maximal regularity; for
details and further properties of these function spaces and operators we refer to
[11, 13, 14, 15] and [24] as well as to Sect. 2.

Now we are in the position to give a precise definition of very weak solutions.

Definition 1.1. Let Ω ⊆ Rn be a uniform C2-domain, 0 < T < ∞, and let
2 < r <∞, n < q <∞ and 2/r + n/q = 1. As usual, let q′ denote the conjugate
exponent to q.

(i) Let the test function space for the functional F be defined by

T 1,r′,q′(T,Ω) := {φ ∈ Lr′(0, T ; D̃1
q′) ∩W 1,r′(0, T ; L̃q

′
(Ω)) : φ(T ) = 0}

and equipped with the norm

‖φ‖T 1,r′,q′ (T,Ω) := ‖φt‖Lr′ (0,T ;L̃q′ (Ω)) + ‖φ‖Lr′ (0,T ;D̃1
q′ )
.

Then the set of bounded functionals on T 1,r′,q′(T,Ω) is denoted by T −1,r,q(T,Ω).
Moreover, we need the set of functionals

Lr(0, T ; G̃−1
q (Ω)) = Lr

′
(0, T ; G̃q′(Ω))∗

where G̃−1
q (Ω) is the dual space to G̃q′(Ω) =

{
∇p : p ∈ Lq

′

loc(Ω),∇p ∈ L̃q′(Ω)
}
. For

a functional K ∈ Lr(0, T ; G̃−1
q (Ω) we simply write 〈K, ψ〉, ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)),

instead of 〈K,∇ψ〉 or 〈K, [ψ]〉 where two representatives in an equivalence class
[ψ] differ by an additive constant.

(ii) For given data F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1
q (Ω)) we call u ∈

Lr(0, T ; L̃q(Ω)) a very weak solution to the Navier-Stokes system with data F , K
if the conditions

−(u, φt)T,Ω − (u,∆φ)T,Ω − (u⊗ u,∇φ)T,Ω = 〈F , φ〉,
(u,∇ψ)T,Ω = 〈K, ψ〉

hold for all test functions φ ∈ T 1,r′,q′(T ; Ω) and ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)).
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The large generality of the data space is of course an advantage. In fact, it
is optimal in the following sense: Every vector field u ∈ Lr(0, T ; L̃q(Ω)) is a very
weak solution to some data F , K, namely to

〈F , φ〉 = −(u, φt)T,Ω − (u,∆φ)T,Ω − (u⊗ u,∇φ)T,Ω,

〈K, ψ〉 = (u,∇ψ)T,Ω.

For details we refer to Sect. 2.
Our first main results deals with the linearized problem, i.e., the nonstationary

Stokes problem, when omitting the term div (u⊗ u) in (1.1) or (u⊗ u,∇φ)T,Ω in
Definition 1.1 (ii). Note that in the linear case the condition 2/r+n/q = 1 is not
needed. The term τ(Ω) will be explained in Sect. 2.

Theorem 1.2 (Existence and Uniqueness for the Stokes Problem). Let Ω ⊆ Rn

be a uniform C2-domain and 0 < T < ∞. Let furthermore 1 < r, q < ∞. Then
for every F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1

q (Ω)) there exists a unique very
weak solution u ∈ Lr(0, T ; L̃q(Ω)) to the Stokes system with data F and K. This
solution satisfies the a priori estimate

‖u‖Lr(0,T ;L̃q(Ω)) ≤ C
(
‖F‖T −1,r,q(T,Ω) + ‖K‖Lr(0,T ;G̃−1

q (Ω))

)
with a constant C = C(τ(Ω), r, q, T ).

The second main result states the existence of a very weak solution for the
Navier-Stokes system (1.1).

Theorem 1.3 (Existence for the Navier-Stokes Problem). Let Ω ⊆ Rn be a
uniform C2-domain and let 0 < T < ∞. Assume that F ∈ T −1,r,q(T,Ω) and
K ∈ Lr(0, T ; G̃−1

q (Ω)) where 2 < r < ∞, n < q < ∞, and Serrin’s condition
2
r

+ n
q

= 1 is satisfied.
(i) There exists an η = η(τ(Ω), r, q, T ) > 0 with the following property: if

‖F‖T −1,r,q(T,Ω) + ‖K‖Lr(0,T ;G̃−1
q (Ω)) ≤ η, (1.5)

then there exists a very weak solution u ∈ Lr(0, T ; L̃q(Ω)) to the Navier-Stokes
system with data F , K in the sense of Definition 1.1. The a priori estimate

‖u‖Lr(0,T ;L̃q(Ω)) ≤ C
(
‖F‖T −1,r,q(T,Ω) + ‖K‖Lr(0,T ;G̃−1

q (Ω))

)
(1.6)

holds with a constant C = C(τ(Ω), r, q, T ).
(ii) There exists a T ′ ∈ (0, T ) such that there is a very weak solution u ∈

Lr(0, T ′; L̃q(Ω)) to the Navier-Stokes system with data F|[0,T ′] ∈ T −1,r,q(T ′,Ω),
K|[0,T ′] ∈ Lr(0, T ′; G̃−1

q (Ω)).
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Further results in Sect. 3 and 4 deal with questions of regularity of very weak
solutions to the Stokes and Navier-Stokes system; see Theorems 3.2 and 3.3,
Proposition 4.2, Theorem 4.7 and, concerning L4(L4)-integrability, Theorem 4.4.
Uniqueness of very weak solutions is discussed in Theorem 4.1 and Corollary 4.3.
Particular emphasis is also put on conditions on data u0, f1, f2 etc. to guarantee
that the functionals F ,K lie in T −1,r,q(T,Ω) and Lr(0, T ; G̃−1

q (Ω)), respectively;
see Propositions 2.4, 3.4 and 4.5, Corollary 4.6 and Proposition 4.8. The results
of this paper will be applied in a forthcoming article to prove regularity results
for weak solutions of the Navier-Stokes system [16].

2 Preliminaries
Definition 2.1. For k ∈ N0 and λ ∈ (0, 1] a domain Ω ⊂ Rn is called uniform
Ck,λ-domain if there are positive constants α, β,K such that for all x0 ∈ ∂Ω
there exist - after an orthogonal and an affine coordinate transform - a real-valued
function h of class Ck,λ and a neighborhood Uα,β,h(x0) of x0 with the following
properties: h is defined on the closed ball B′α(0) ⊆ Rn−1 with ‖h‖Ck,λ ≤ K and
h(0) = 0 and, if k ≥ 1, h′(0) = 0; moreover,

Uα,β,h(x0) : = {(y′, yn) ∈ Rn−1 × R : |y′| < α, |h(y′)− yn| < β},
U−α,β,h(x0) : = {(y′, yn) ∈ Rn−1 × R : |y′| < α, h(y′)− β < yn < h(y′)}

= Ω ∩ Uα,β,h(x0),

∂Ω ∩ Uα,β,h(x0) = {(y′, yn) ∈ Rn−1 × R : |y′| < α, h(y′) = yn}.

The triple (α, β,K) is called the type of Ω, for short τ(Ω) = (α, β,K). For a
constant C in some estimate we will write C = C(τ(Ω)) if it does depend only
on α, β and K, but in no other way on Ω. A uniform Ck-domain is defined in
an obviously analogous way. We note that bounded and exterior domains are
included, as long as the boundary is smooth enough.

In addition to the spaces L̃q(Ω), see (1.4), we define for 1 < q <∞, 1 ≤ ρ ≤ ∞
the Lorentz spaces

L̃q,ρ(Ω) :=

{
Lq,ρ(Ω) + L2(Ω), q < 2,

Lq,ρ(Ω) ∩ L2(Ω), q > 2,
(2.1)

letting the case q = 2 undefined; here Lq,ρ(Ω) denotes a usual Lorentz space.
For spaces of Sobolev-type we proceed analogously: For k ∈ N and 1 ≤ q ≤ ∞

we let

W̃ k,q(Ω) :=

{
W k,2(Ω) +W k,q(Ω), 1 ≤ q < 2,

W k,2(Ω) ∩W k,q(Ω), 2 ≤ q ≤ ∞.
(2.2)

Similarly, we define the spaces W̃ 1,q
0 (Ω), 1 < q < 2 and 2 ≤ q <∞, based on the

classical Sobolev spaces W 1,q
0 (Ω) and W 1,2

0 (Ω).
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The L̃q- and W̃ k,q(Ω)-spaces have the following properties; for a proof see [24]:

• Let 1 ≤ q ≤ r < ∞. Then (L̃q(Ω))∗ = L̃q
′
(Ω) and ‖u‖L̃q ≤ ‖u‖L̃r . If

1 ≤ r, p, q ≤ ∞, 1
r

= 1
p

+ 1
q
and u ∈ L̃p, v ∈ L̃q, then uv ∈ L̃r and

‖uv‖L̃r ≤ ‖u‖L̃p‖v‖L̃q .

• Let 1 < q, r <∞, 0 < θ < 1 and s be defined by 1
s

= 1−θ
q

+ θ
r
. Then in the

sense of complex interpolation spaces[
L̃q(Ω), L̃r(Ω)

]
θ

= L̃s(Ω).

• Let 1 ≤ r 6= q ≤ ∞, 0 < θ < 1, 1 ≤ ρ ≤ ∞, and define 1 < s 6= 2 < ∞ by
1
s

= 1−θ
q

+ θ
r
. Then (

L̃q(Ω), L̃r(Ω)
)
θ,ρ

= L̃s,ρ(Ω).

For s = 2 and ρ = 2 we get
(
L̃q(Ω), L̃r(Ω)

)
θ,2

= L2(Ω).

• Let m ∈ N, 1 ≤ q <∞ and Ω ⊆ Rn be a uniform C2-domain. Then

W̃m,q(Ω) ↪→ L̃r(Ω)

if either q ≤ r ≤ ∞ and mq > n, or q ≤ r < ∞ and mq = n, or
q ≤ r ≤ nq

n−mq and mq < n.

Concerning the Helmholtz projection on L̃q(Ω) for a domain Ω ⊆ Rn of uni-
form type C1 we have the following result, see [13]. We define

L̃qσ(Ω) :=

{
Lqσ(Ω) + L2

σ(Ω), 1 < q < 2

Lqσ(Ω) ∩ L2
σ(Ω), 2 ≤ q <∞

, (2.3)

equipped with the norm of L̃q(Ω), and gradient spaces by

G̃q(Ω) :=

{
Gq(Ω) +G2(Ω), 1 < q < 2,

Gq(Ω) ∩G2(Ω), 2 ≤ q <∞,
(2.4)

based on the usual gradient space Gq(Ω) = {∇p : p ∈ Lqloc(Ω),∇p ∈ Lq(Ω)}. The
norm in G̃q(Ω) is denoted by ‖ · ‖G̃q(Ω) := ‖ · ‖L̃q(Ω). Then the space L̃q(Ω) admits
the direct algebraic and topological decomposition

L̃q(Ω) = L̃qσ(Ω)⊕ G̃q(Ω).

The corresponding projection P̃q from L̃q(Ω) onto its range L̃qσ(Ω) and with kernel
G̃q(Ω) has a norm bounded by a constant c = c(q, τ(Ω)). We have the duality
relations

(
P̃q
)∗

= P̃q′ , L̃qσ(Ω)∗ ∼= L̃q
′
σ (Ω) and G̃−1

q (Ω) := G̃q(Ω)∗ ∼= G̃q′(Ω).
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Using the Helmholtz projection P̃q we define the Stokes operator Ãq, 1 < q <
∞, for a uniform C2-domain Ω ⊆ Rn. Let

D(Ãq) :=

{
Dq +D2, 1 < q < 2,

Dq ∩ D2, 2 ≤ q <∞,
(2.5)

where Dq := Lqσ(Ω)∩W 1,q
0 (Ω)∩W 2,q(Ω). Then the Stokes operator Ãq : D(Ãq) ⊆

L̃qσ(Ω) → L̃qσ(Ω) is defined by Ãqu := −P̃q∆u and has the following properties,
see [15]:

• Ãq is a densely defined closed operator in L̃qσ(Ω) satisfying
(
Ãq
)∗

= Ãq′ .

• Ãq satisfies the resolvent estimate

‖λu;∇2u; Ãqu‖L̃q(Ω) ≤ C‖(λ+ Ãq)u‖L̃q(Ω)

for λ ∈ C \ {0} with |λ| ≥ δ > 0 and | arg(λ)| < θ, π
2
< θ < π, and with a

constant C = C(q, δ, θ, τ(Ω)) > 0.

• Ãq generates an analytic semigroup e−tÃq , t ≥ 0, having the bound

‖e−tÃqf‖L̃q(Ω) ≤ Ceδt‖f‖L̃q(Ω)

for all f ∈ L̃qσ(Ω) and t ≥ 0 with a constant C = C(q, δ, τ(Ω)), δ > 0.

It is unknown whether the resolvent estimate holds uniformly in λ as |λ| → 0.
Therefore, the semigroup may increase exponentially fast and the maximal regu-
larity estimate in Theorem 2.2 below is stated only for finite time intervals. For
this reason, the operator Ãq has often to be replaced by I + Ãq in the following.
Note that from time to time we omit the symbols Ω and T for domain and length
of the time interval, respectively, when this data is known from the context.

Theorem 2.2. ([14, Theorem 1.4]) Let Ω ⊆ Rn be a uniform C2-domain and
1 < r, q <∞, 0 < T <∞.

(i) Let an external force f ∈ Lr(0, T ; L̃qσ(Ω)) and an initial value u0 ∈ D(Ãq)
(for simplicity) be given. Then there exists a unique solution u ∈ Lr(0, T ;D(Ãq))∩
W 1,r(0, T ; L̃qσ(Ω)) of the abstract Cauchy problem

ut + Ãqu = f, u(0) = u0.

It satisfies the estimate

‖u‖Lr(0,T ;D(Ãq))
+ ‖ut‖Lr(0,T ;L̃q) ≤ C

(
‖u0‖D(Ãq)

+ ‖f‖Lr(0,T ;L̃q)

)
with a constant C = C(q, r, T, τ(Ω)) > 0. It can be represented by the variation
of constants formula

u(t) = e−tÃqu0 +

∫ t

0

e−(t−τ)Ãqf(τ) dτ for a.a. 0 ≤ t ≤ T.
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(ii) If f ∈ Lr(0, T ; L̃q(Ω)) and u0 ∈ D(Ãq), then there is a unique u ∈
Lr(0, T ;D(Ãq)) ∩ W 1,r(0, T ; L̃qσ(Ω)) and a unique ∇p ∈ Lr(0, T ; G̃1,q(Ω)) solv-
ing the initial value problem

ut −∆u+∇p = f, u(0) = u0.

It satisfies the estimate

‖u‖Lr(0,T ;W̃ 2,q(Ω)) + ‖ut; ∇p‖Lr(0,T ;L̃q(Ω)) ≤ C
(
‖u0‖D(Ãq)

+ ‖f‖Lr(0,T ;L̃q(Ω))

)
with a constant C = C(q, r, T, τ(Ω)).

A further crucial property of the Stokes operator 1 + Ãq is the fact that it
admits bounded imaginary powers, see [22, 23]. Hence complex interpolation
methods can be used to describe domains of fractional powers (1 + Ãq)

α, −1 ≤
α ≤ 1. To be more precise, for 0 ≤ α ≤ 1 let the domain of the fractional power
(1 + Ãq)

α be denoted by

D̃α
q = D̃α

q (Ω) = D((1 + Ãq)
α), (2.6)

equipped with the norm ‖(1 + Ãq)
α · ‖L̃q . If −1 ≤ α < 0 define D̃α

q as the
completion of L̃qσ(Ω) in the norm ‖(1 + Ãq)

α · ‖L̃q . These spaces are reflexive
and satisfy the duality relation (D̃α

q )∗ = D̃−αq′ . As special cases we get that
D̃0
q = L̃qσ(Ω), D̃1

q = D(Ãq), and

D̃1/2
q = W̃ 1,q

0 ∩ L̃qσ(Ω) with norm ‖(1 + Ãq)
1/2 · ‖L̃q ∼ ‖ · ‖W̃ 1,q(Ω).

Moreover, for −1 ≤ α ≤ β ≤ 1 the operator (1 + Ãq)
β−α is an isomorphism

between D̃β
q and D̃α

q . Finally, we obtain the interpolation result[
D̃α
q , D̃

β
q

]
θ

= D̃γ
q , (2.7)

when −1 ≤ α ≤ β ≤ 1 and (1− θ)α+ θβ = γ, θ ∈ (0, 1). This result is the basis
to prove the following embedding estimate and Lr–Lq-estimates of the Stokes
semigroup, cf. [24, Proposition 3, Theorem 1]:

• Let n ≥ 3, 0 ≤ α ≤ 1, 1 < q ≤ r <∞, and 1
r

= 1
q
− 2α

n
. Then

‖u‖L̃r(Ω) ≤ C‖(1 + Ãq)
αu‖L̃q(Ω) (2.8)

for all u ∈ D̃α
q with a constant C = C(τ(Ω), q, α).

• Let n ≥ 3, 1 < q ≤ r < ∞, and α := n
2

(
1
q
− 1

r

)
≥ 0. Then for every

f ∈ L̃qσ(Ω) and t > 0

‖e−tÃrf‖L̃r(Ω) ≤ Ceδt(1 + t)αt−α‖f‖L̃q(Ω), (2.9)

‖∇e−tÃrf‖L̃r(Ω) ≤ Ceδt(1 + t)α+ 1
2 t−α−

1
2‖f‖L̃q(Ω) (2.10)

with a constant C = C(τ(Ω), r, q, δ) > 0 and with any δ > 0.
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Let us have a close look at the test function space T 1,r′,q′ = T 1,r′,q′(T,Ω) in
Definition 1.1 and the functionals F , K, see (1.2), (1.3), respectively.

Lemma 2.3. Let 1 < r, q <∞, 0 < T <∞ and Ω ⊆ Rn be a C2-domain.
(i) For every v ∈ Lr′(0, T ; L̃q

′
σ (Ω)) there exists a unique solution φ = φ(v) ∈

T 1,r′,q′ to the backward Stokes equation

−φt + Ãqφ = v on (0, T ), φ(T ) = 0.

It is represented by the formula

φ(v)(T − t) =

∫ t

0

e−(t−τ)Ãq′v(T − τ) dτ.

The map v 7→ φ(v) is linear and satisfies with a constant C = C(q, r, T, τ(Ω)) > 0
the bound

‖φ(v)‖T 1,r′,q′ (T,Ω) ≤ C‖v‖Lr′ (0,T ;L̃q′ (Ω)).

Moreover, for every v ∈ Lr′(0, T ; L̃q
′
(Ω)) there exists a unique solution φ(v)

and an associated pressure ψ = ψ(v) with ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)) such that

−φt −∆φ+∇ψ = v on (0, T ), φ(T ) = 0,

satisfying with a constant C = C(q, r, T, τ(Ω)) > 0 the estimate

‖φ(v)t; ∇2φ(v); ∇ψ(v)‖Lr′ (0,T ;L̃q′ (Ω)) ≤ C‖v‖Lr′ (0,T ;L̃q′ (Ω)).

(ii) Assume that 1 < ρ1, γ1 < ∞ satisfy 2
ρ1

+ n
γ1

= 2 +
(

2
r

+ n
q

)
, and that

1
q
< 1

γ1
≤ 1

q
+ 2

n
. Then T 1,r′,q′ ↪→ Lρ

′
1(0, T ; L̃γ

′
1), and for each v ∈ Lr′(0, T ; L̃q

′
)

‖φ(v)‖
Lρ
′
1 (0,T ;L̃γ

′
1 (Ω))

≤ C‖v‖Lr′ (0,T ;L̃q′ (Ω)). (2.11)

(iii) Assume that 1 < ρ2, γ2 < ∞ satisfy 2
ρ2

+ n
γ2

= 1 +
(

2
r

+ n
q

)
, and that

1
q
≤ 1

γ2
≤ 1

q
+ 1

n
. Then ∇T 1,r′,q′ ↪→ Lρ

′
2(0, T ; L̃γ

′
2), and for each v ∈ Lr′(0, T ; L̃q

′
)

‖∇φ(v)‖
Lρ
′
2 (0,T ;L̃γ

′
2 (Ω))

≤ C‖v‖Lr′ (0,T ;L̃q′ (Ω)). (2.12)

Proof. (i) follows directly from the maximal regularity of the Stokes equation, cf.
Theorem 2.2, and a variable transformation t̃ := T − t.

(ii) First let 1
γ1

= 1
q

+ 2
n
. Then the embedding D̃1

q′ ↪→ L̃γ
′
1 , see (2.8), implies

that T 1,r′,q′ ↪→ Lr
′
(0, T ; D̃1

q′) ↪→ Lr
′
(0, T ; L̃γ

′
1) and that (2.11) holds.
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Next we assume that 1
q
≤ 1

γ1
< 1

q
+ 2

n
. With the embedding estimate (2.9),

α1 := n
2

(
1
γ1
− 1

q

)
∈ [0, 1), and the Hardy-Littlewod-Sobolev inequality we get that

‖φ(v)‖
Lρ
′
1 (L̃γ

′
1 )
≤

(∫ T

0

(∫ t

0

∥∥e−(t−τ)Ãγ′1v(T − τ)
∥∥
L̃γ
′
1
dτ

)ρ′1
dt

)1/ρ′1

≤ C

(∫ T

0

(∫ T

0

|t− τ |−α1‖v(T − τ)‖L̃q′ dτ
)ρ′1

dt

)1/ρ′1

≤ C‖v‖Lr′ (L̃q′ ).

(iii) Assume first that 1
γ2

= 1
q

+ 1
n
. Since D̃1/2

q ↪→ W̃ 1,q(Ω), due to (2.8) with
α = 1

2
and u replaced by (1 + Ãq)

1/2φ(v) where v ∈ Lr′(L̃q′) we get the estimate

‖∇φ(v)‖
Lr′ (L̃γ

′
2 )
≤ C‖(1 + Ãγ′2)

1/2φ(v)‖
Lr′ (L̃γ

′
2 )

≤ C‖(1 + Ãq′)φ(v)‖Lr′ (L̃q′ ) ≤ C‖v‖Lr′ (L̃q′ ).

Finally, we assume 1
q
≤ 1

γ2
< 1

q
+ 1

n
. It suffices to show that ∇φ(v) ∈ Lρ′2(L̃γ′2).

Indeed, with α2 := n
2

(
1
γ2
− 1

q

)
∈
[
0, 1

2

)
we obtain that

‖∇φ(v)‖
Lρ
′
2 (L̃γ

′
2 )
≤

(∫ T

0

(∫ t

0

‖∇e−(t−τ)Ãγ′2v(T − τ)‖
L̃γ
′
2
dτ

)ρ′2
dt

)1/ρ′2

≤

(∫ T

0

(∫ T

0

|t− τ |−α2−1/2‖v(T − τ)‖L̃q′dτ
)ρ′2

dt

)1/ρ′2

.

Then the Hardy-Littlewood-Sobolev inequality implies that ‖∇φ(v)‖
Lρ
′
2 (L̃γ

′
2 )
≤

C‖v‖L̃r′ (L̃q′ ).

The functionals F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1
q (Ω)) will have the

following canonical forms (cf. (1.2), (1.3)):

〈F , φ〉 = (u0, φ(0))Ω + (f1, φ)T,Ω + (f2,∇φ)T,Ω − (g,N · ∇φ)T,∂Ω (2.13)
〈K, ψ〉 = (g, ψN)T,∂Ω − (k, ψ)T,Ω (2.14)

for every φ ∈ T 1,r′,q′(T,Ω) and ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)), respectively. Related to
the Navier-Stokes system a typical force term to be considered is f2 = u ⊗ u.
Sufficient conditions on the functions u0, f1, f2 and g and k will be specified in
the sequel.

Proposition 2.4. Let Ω ⊂ Rn be a uniform C2-domain, 0 < T < ∞, and let
Serrin exponents 2 < r < ∞, n < q < ∞, 2

r
+ n

q
= 1, n ≥ 3, be given. Then
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the following conditions on u0, f1, f2 and g, k are sufficient for F and K to be
contained in the data spaces T −1,r,q(T,Ω) and Lr(0, T ; G̃−1

q (Ω)), respectively.
(i) The ”optimal” condition on u0 in terms of real interpolation theory is

u0 ∈
(
D̃−1
q , L̃qσ(Ω)

)
1/r′,r

,

i.e. u0 ∈ D̃−1
q and

∫ T
0
‖e−tÃqu0‖rL̃q dt <∞.

In particular, the conditions u0 ∈ L̃ρσ(Ω) and
∫ T

0
‖e−tÃρu0‖rL̃q dt <∞ for some

1 < ρ <∞ imply that u0 ∈
(
D̃−1
q , L̃qσ(Ω)

)
1/r′,r

.
Moreover, u0 ∈ L̃n,rσ (Ω) and, if even r ≥ n ≥ 3, u0 ∈ L̃nσ(Ω) are sufficient

conditions.
For n = 3 the L2-conditions u0 ∈ L2

σ(Ω) together with∫ T

0

∥∥(1 + Ã2)
1
4

+ 1
r e−tÃ2u0

∥∥r
2
dt <∞

are sufficient. This holds e.g. when u0 ∈ D̃1/4
2 .

(ii) For f1 the condition f1 ∈ L1(0, T ; L̃q(Ω)) as well as f1 ∈ Lρ1(0, T ; L̃γ1(Ω)),
where 1 < ρ1, γ1 <∞, 2

ρ1
+ n

γ1
= 3 and 1

q
< 1

γ1
≤ 1

q
+ 2

n
, is sufficient.

In particular, when n = 3, this includes the condition f1 ∈ L4/3(0, T ;L2(Ω)).
(iii) For f2 it suffices to require the condition f2 ∈ Lρ2(0, T ; L̃γ2(Ω)), where

1 < ρ2, γ2 <∞, 2
ρ2

+ n
γ2

= 2, and 1
q
≤ 1

γ2
≤ 1

q
+ 1

n
.

In the L2-context over R3, we require f2 ∈ L4(0, T ;L2(Ω)) if q ≤ 6 (or r ≥ 4).
(iv) In view of F and the boundary value g it is sufficient to require that

g ∈ Lr(0, T ;Lρ(∂Ω) ∩ Lγ(∂Ω)) where q
n′
≤ ρ ≤ q and 2

n′
≤ γ ≤ 2.

Concerning the functional K the assumptions that g ·N has compact support in
∂Ω, g ·N ∈ Lr(0, T ;Lq/n

′
(∂Ω)) and

∫
∂Ω
g ·N dS = 0 are sufficient. No assumption

on the tangential part of g is needed.
(v) Let k ∈ Lr(0, T ;Lq(Ω)) have compact support in Ω and satisfy

∫
Ω
k dx = 0.

Then the functional ψ 7→ (k, ψ)T,Ω is contained in Lr′(0, T ; G̃−1
q′ (Ω)).

Proof. (i) We must show that the functional (u0, φ(0))Ω is bounded in φ ∈
T 1,r′,q′(T,Ω). The ”optimal” condition is determined by the optimal space for
the trace φ(0), i.e., by the real interpolation space (L̃q

′
σ , D̃

1
q′)1/r,r′ , cf. [2, Theorem

III.4.10.2]. Hence the optimal space for u0 is the dual space of (L̃q
′
σ , D̃

1
q′)1/r,r′ . By

the duality theorem for the real interpolation method, cf. [30, Theorem 1.11.2],
(L̃qσ, (D̃

1
q′)
∗)1/r,r = (D̃−1

q , L̃qσ)1/r′,r using the duality relation (D̃1
q′)
∗ = D̃−1

q . Since
D̃1
q = D(I + Ãq), (I + Ãq)

−1D̃−1
q
∼= L̃qσ and I + Ãq generates the exponen-

tially decreasing analytic semigroup e−te−tÃq , the condition u0 ∈ (D̃−1
q , L̃qσ)1/r′,r

or equivalently (I + Ãq)
−1u0 ∈ (L̃qσ, D̃

1
q)1/r′,r is characterized by the finiteness of

the norm

‖(I + Ãq)
−1u0‖L̃q +

(∫ ∞
0

∥∥(I + Ãq)e
−t(I+Ãq)(I + Ãq)

−1u0

∥∥r
L̃q
dt

)1/r

.
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By [30, Theorem 1.14.5] this norm is equivalent to the norm
(∫ T

0

∥∥e−tÃqu0

∥∥r
L̃q
dt
)1/r

.

If
∫ T

0

∥∥e−tÃρu0

∥∥r
L̃q
dt <∞, then obviously u0 ∈ (D̃−1

q , L̃qσ)1/r′,r.
The next two conditions are immediate consequences of [24, Theorem 2]. If

u0 ∈ L̃n,rσ (Ω) or u0 ∈ L̃nσ(Ω) and r ≥ n ≥ 3, then
∫ T

0

∥∥e−tÃnu0

∥∥r
L̃q(Ω)

dt is finite.
Now let n = 3. For the L2-condition we use the embedding estimate (2.8) to

get that ‖e−tÃ2u0‖L̃q ≤ C‖(1 + Ã2)
1
4

+ 1
r e−tÃ2u0‖2 and continue as above.

Finally, if u0 ∈ D̃
1/4
2 , we follow the proof of [29, Lemma IV.1.5.3]. With

v0 := (1 + Ã2)1/4u0, we note that r > 2 and get from the moment inequality
‖(I + Ãq)

αv‖L̃q ≤ C‖v‖1−α
L̃q
‖(I + Ãq)v‖αL̃q , that∫ T

0

∥∥(1 + Ã2)
1
r

+ 1
4 e−tÃ2u0

∥∥r
2
dt =

∫ T

0

∥∥((1 + Ã2)1/2)2/re−tÃ2v0

∥∥r
2
dt

≤ C

∫ T

0

∥∥(1 + Ã2)1/2e−tÃ2v0

∥∥2

2

∥∥e−tÃ2v0

∥∥r−2

2
dt

≤ C‖v0‖r−2
2

∫ T

0

∥∥(1 + Ã2)1/2e−tÃ2v0

∥∥2

2
dt.

The integral on the right-hand side is estimated as follows:∫ T

0

∥∥(1 + Ã2)1/2e−tÃ2v0

∥∥2

2
dt =

∫ T

0

((
e−2tÃ2v0, v0

)
Ω

+
(
Ã2e

−2tÃ2v0, v0

)
Ω

)
dt

=

∫ T

0

‖e−tÃ2v0‖2
2 dt−

1

2

∫ T

0

d

dt

(
e−2tÃ2v0, v0

)
Ω
dt

≤ ‖v0‖2
2 +

1

2

(
(v0, v0)Ω − (e−2TÃ2v0, v0)Ω

)
≤ C‖v0‖2

2.

Combining these estimates we get that
∫ T

0

∥∥(1+Ã2)
1
r

+ 1
4 e−tÃ2u0

∥∥r
2
dt ≤ C‖u0‖r

D̃
1/4
2

.

(ii) Note that T 1,r′,q′ ↪→ L∞(0, T ; L̃q
′
) since φ(T ) = 0 and φt ∈ Lr

′
(0, T ; L̃q

′
)

for φ ∈ T 1,r′,q′ . Hence f1 ∈ L1(0, T ; L̃q) defines a bounded functional on T 1,r′,q′ .
The other assertions follow immediately from Lemma 2.3 (ii).
(iii) These assertions evidently follow from Lemma 2.3 (iii).
(iv) For φ ∈ T 1,r′,q′(T,Ω) note, since q′ < 2, that ∇φ ∈ Lr′(0, T ;W 1,q′(Ω) +

W 1,2(Ω)). Therefore, for each ε > 0, we find ϑ1 ∈ Lr
′
(0, T ;W 1,q′(Ω)) and ϑ2 ∈

Lr
′
(0, T ;W 1,2(Ω)) such that ∇φ = ϑ1 + ϑ2 and

‖ϑ1‖Lr′ (W 1,q′ ) + ‖ϑ2‖Lr′ (W 1,2) ≤ ‖∇φ‖Lr′W̃ 1,q′ ) + ε.

We can now estimate:

|(g,N · ∇φ)T,∂Ω| ≤ ‖g‖Lr(Lρ(∂Ω))‖ϑ1‖Lr′ (Lρ′ (∂Ω)) + ‖g‖Lr(Lγ(∂Ω))‖ϑ2‖Lr′ (Lγ′ (∂Ω)).
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Note that q′ ≤ ρ′ ≤ (n−1)q′

n−q′ and 2 ≤ γ′ ≤ (n−1)2
n−2

. Therefore, using trace estimates
(cf. [1, Theorem 5.36]) we get that

‖ϑ1‖Lr′ (0,T ;Lρ′ (∂Ω)) ≤ C‖ϑ1‖Lr′ (0,T ;W 1,q′ (Ω))

‖ϑ2‖Lr′ (0,T ;Lγ′ (∂Ω)) ≤ C‖ϑ2‖Lr′ (0,T ;W 1,2(Ω)),

implying that

|(g,N · ∇φ)∂Ω| ≤ C
(
‖g‖Lr(Lρ(∂Ω)) + ‖g‖Lr(Lγ(∂Ω))

)(
‖∇φ‖Lr′ (W̃ 1,q′ ) + ε

)
for all ε > 0, and thus also for ε = 0. This finishes the proof.

Concerning the functional K and corresponding assumptions on g let S ⊂
∂Ω denote the compact support of g · N in ∂Ω. Choose a bounded Lipschitz
domain Ω0 ⊂ Ω with the property that S ⊂ ∂Ω0. Then for a.a. t ∈ [0, T ) there
exists a constant m(t) ∈ R (measurable in t) such that ‖ψ(t) − m(t)‖Lq′ (Ω0) ≤
C‖∇ψ(t)‖Lq′ (Ω0) with some constant C depending on Ω0 and q only. Hence, for
any ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)) and for a.a. t ∈ [0, T ),

|(g(t), ψ(t)N)∂Ω| ≤ |(g(t) ·N,ψ(t))S| = |(g(t) ·N,ψ(t)−m(t))S|
≤ ‖g(t)‖Lq/n′ (S)‖ψ(t)−m(t)‖L(q/n′)′ (S)

≤ ‖g(t)‖Lq/n′ (∂Ω)‖ψ(t)−m(t)‖L(q/n′)′ (∂Ω0).

By the trace estimate we can continue by

‖ψ(t)−m(t)‖L(q/n′)′ (∂Ω0) ≤ C‖ψ(t)−m(t)‖W 1,q′ (Ω0) ≤ C‖∇ψ(t)‖Lq′ (Ω0).

Finally, since Ω0 is a bounded subset of Ω, the norm ‖∇ψ(t)‖Lq′ (Ω0) can be esti-
mated by C‖∇ψ(t)‖L̃q′ (Ω0) ≤ C‖∇ψ(t)‖L̃q′ (Ω). Summarizing these estimates we
conclude that

|(g, ψN)T,∂Ω| ≤ C‖g‖Lr(0,T ;Lq/n
′
(∂Ω))‖ψ‖Lr′ (0,T ;G̃q′ (Ω)),

and get the assertion.
(v) Let K denote the support of k, which is compact in Ω. Then for a.a.

t ∈ [0, T ) there exists m(t) ∈ R such that ‖ψ(t)−m(t)‖Lq′ (K) ≤ C‖∇ψ(t)‖L̃q′ (Ω).
We thus get that

|(k(t), ψ(t))Ω| = |(k(t), ψ(t)−m(t))K | ≤ C‖k(t)‖Lq‖∇ψ(t)‖L̃q′

which leads to the estimate |(k, ψ)T,Ω| ≤ C‖k‖Lr(0,T ;Lq)‖∇ψ‖Lr′ (0,T ;L̃q′ ).

Remark 2.5. Assume that F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1
q (Ω)) are

given. Then we can restrict F and K to smaller time intervals. For K it is clear
how this is to be understood. For F we note that for the test function spaces it
holds that T 1,r′,q′(T ′,Ω) ↪→ T 1,r′,q′(T,Ω) for 0 < T ′ ≤ T in the sense that we can
just extend any φ ∈ T 1,r,q(T ′,Ω) by 0 to the larger time interval [0, T ], hereby
preserving the norm. Hence we can restrict the functional F to those functions
φ which vanish on [T ′, T ]. We will write F|[0,T ′] for this restriction.
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For later use we need two further technical lemmata.

Proposition 2.6. Let Ω ⊆ Rn be a uniform C2-domain, 0 < T < ∞, and
1 < r, q < ∞. Let F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1

q (Ω)) be given. Then
for any ε > 0 there is a 0 < T ′ < T such that

‖F|[0,T ′]‖T −1,r,q(T ′,Ω) + ‖K‖Lr(0,T ′;G̃−1
q (Ω)) < ε.

Proof. First we need to find a better representation for ‖F‖T −1,r,q(T,Ω). Recall
that the test function space T 1,r′,q′(T,Ω) is a closed subspace of Lr′(0, T ; D̃1

q′) ∩
W 1,r′(0, T ; L̃q

′
σ (Ω)). By the Hahn-Banach theorem there is a norm preserving

extension F̂ of F onto that space, i.e.

F̂ ∈
(
Lr
′
(0, T ; D̃1

q′) ∩W 1,r′(0, T ; L̃q
′

σ (Ω))
)∗

=
(
Lr
′
(0, T ; D̃1

q′)
)∗

+
(
W 1,r′(0, T ; L̃q

′

σ (Ω))
)∗
.

Hence we find a representation

〈F , φ〉 =

∫ T

0

(
〈f(t), φ(t)〉D̃−1

q ,D̃1
q′

+ 〈f1(t), φ(t)〉
L̃qσ ,L̃

q′
σ 〉

+ 〈f2(t), φt(t)〉L̃qσ ,L̃q′σ
)
dt

for all φ ∈ T 1,r′,q′(T,Ω) with functions f ∈ Lr(0, T ; D̃−1
q ), f1, f2 ∈ Lr(0, T ; L̃qσ(Ω)).

Consequently, on (0, T ′), 0 < T ′ < T , we obtain the estimate

‖F|[0,T ′]‖T 1,r,q(T ′,Ω) ≤ ‖f‖Lr(0,T ′;D̃−1
q ) + ‖f1‖Lr(0,T ′;L̃q) + ‖f2‖Lr(0,T ′;L̃q).

The right hand side tends to 0 as T ′ → 0 by Lebesgue’s theorem on dominated
convergence. It is also clear that ‖K‖Lr(0,T ′;G̃−1

q (Ω)) → 0.

Lemma 2.7. Let 1 < r1, r2, q1, q2 <∞ and α ≥ 0.
(i) The space Lr1(0, T ; L̃q1σ (Ω)) ∩ Lr2(0, T ; D̃−αq2 ) is dense in Lr2(0, T ; D̃−αq2 ).
(ii) The space T 1,r1,q1(T,Ω) ∩ T 1,r2,q2(T,Ω) is dense in T 1,r1,q1(T,Ω).

Proof. (i) The set of simple functions v =
∑N

j=1 χMj
vj, N ∈ N, with pairwise

disjoint measurable subsets Mj of [0, T ) and vj ∈ D̃−αq2 is dense in Lr2(0, T ; D̃−αq2 )

by the definition of Bochner spaces. Also, the space C∞0,σ(Ω) is dense in D̃−αq2 , since
it is dense in L̃q2σ (Ω), which again is continuously and densely embedded into D̃−αq2 .
Combining, we find that the simple functions

∑
j χMj

φj with φj ∈ C∞0,σ(Ω) are
dense in Lr2(0, T ; D̃−αq2 ). In particular the intersection space above is dense.

(ii) Let φ ∈ T 1,r1,q1(T,Ω) and define v := −φt + Ãq1φ ∈ Lr1(0, T ; L̃q1σ (Ω)).
For ε > 0 we find by part (i) of this lemma a function vε ∈ Lr1(0, T ; L̃q1σ (Ω)) ∩
Lr2(0, T ; L̃q2σ (Ω)) such that ‖v−vε‖Lr1 (0,T ;L̃q1 ) < ε. For this vε we get that φ(vε) ∈
T 1,r1,q1∩T 1,r2,q2 . Hence ‖φ−φ(vε)‖T 1,r1,q1 ≤ C‖v−vε‖Lr1 (L̃q1 ) ≤ Cε. This implies
the claimed density.
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3 Very Weak Solutions to the Stokes System
Definition 3.1. Let Ω ⊆ Rn be a uniform C2-domain. Let 1 < r, q < ∞ and
0 < T < ∞. For data F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1

q (Ω)) we call
u ∈ Lr(0, T ; L̃q(Ω)) a very weak solution of the Stokes system with data F , K if

−(u, φt)T,Ω − (u,∆φ)T,Ω = 〈F , φ〉,
(u,∇ψ)T,Ω = 〈K, ψ〉

hold for all φ ∈ T 1,r′,q′(T,Ω) and ∇ψ ∈ Lr′(0, T ; G̃q′(Ω)).

Proof of Theorem 1.2 For every v ∈ Lr′(0, T ; L̃q
′
) there exists by Lemma 2.3 (ii)

a unique function φ(v) ∈ T 1,r′,q′ and a unique gradient ∇ψ(v) ∈ Lr
′
(0, T ; G̃q′)

such that
v = −φ(v)t −∆φ(v) +∇ψ(v).

These functions depend linearly on v and satisfy the maximal regularity estimate

‖φ(v)‖T 1,r′,q′ + ‖∇ψ(v)‖Lr′ (L̃q′ ) ≤ C‖v‖Lr′ (L̃q′ )

with a constant C = C(τ(Ω), r, q, T ). Now we define u ∈ Lr(0, T ; L̃q) via duality
as the linear functional on Lr′(0, T ; L̃q

′
) acting for every v as

(u, v)T,Ω = 〈F , φ(v)〉+ 〈K, ψ(v)〉.

This vector field u is indeed a very weak solution, since for every φ ∈ T 1,r′,q′ and
∇ψ ∈ Lr′(0, T ; G̃q′) we have with w = −φt −∆φ+∇ψ that

−(u, φt)T,Ω − (u,∆φ)T,Ω + (u,∇ψ)T,Ω = (u,w)T,Ω = 〈F , φ〉+ 〈K, ψ〉.

The a priori estimate follows from the observation that for every v ∈ Lr′(0, T ; L̃q
′
)

|(u, v)T,Ω| ≤ ‖F‖T −1,r,q‖φ(v)‖T 1,r′,q′ + ‖K‖Lr(0,T ;G̃−1
q )‖∇ψ(v)‖Lr′ (0,T ;L̃q′ )

≤ C
(
‖F‖T −1,r,q + ‖K‖Lr(G̃−1

q )

)
‖v‖Lr′ (L̃q′ ).

It remains to prove uniqueness of very weak solutions. To this end assume
that F = 0 and K = 0. Then we have for every v ∈ Lr′(0, T ; L̃q

′
) that

(u, v)T,Ω = 〈F , φ(v)〉+ 〈K, ψ(v)〉 = 0,

proving that u = 0 a.e. This finishes the proof.

We now focus on the case K = 0, i.e., the very weak solution u is contained
in the solenoidal space Lr(0, T ; L̃qσ(Ω)).

First of all, we give optimal conditions for the data F such that a very weak
solution u ∈ Lr(0, T ; L̃qσ(Ω)) is contained in a space of the same type, but with
different exponents.
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Theorem 3.2. Let Ω ⊆ Rn be a uniform C2-domain and 0 < T < ∞. Assume
that exponents 1 < r, q < ∞ and a data functional F ∈ T −1,r,q(T,Ω) are given
and that u ∈ Lr(0, T ; L̃qσ(Ω)) is the uniquely determined very weak solution to the
Stokes system with data F (and K = 0). Also let 1 < r0, q0 <∞.

Then u ∈ Lr0(0, T ; L̃q0(Ω)) if and only if F is also contained in T −1,r0,q0(T,Ω).

Proof. First assume that F ∈ T −1,r0,q0 . We want to prove by duality arguments
that u ∈ Lr0(0, T ; L̃q0). For any v ∈ Lr

′
0(0, T ; L̃

q′0
σ ) ∩ Lr′(0, T ; L̃q

′
σ ) we get by

Lemma 2.3 a corresponding φ = φ(v) ∈ T 1,r′,q′ . Then it holds that

(u, v)T,Ω = −(u, φt)T,Ω + (u, Ãq′φ)T,Ω = 〈F , φ〉

for all such v, since u is a very weak solution. We get that

|(u, v)T,Ω| = |〈F , φ〉| ≤ ‖F‖T −1,r0,q0‖φ‖T 1,r′0,q
′
0

where by maximal regularity ‖φ‖T 1,r′0,q
′
0
≤ C‖v‖

Lr
′
0 (L̃q

′
0 )
. Hence, for any v, we get

the estimate
|(u, v)T,Ω| ≤ C‖F‖T −1,r0,q0‖v‖Lr′0 (0,T ;L̃q

′
0 )
.

Since by Lemma 2.7 (ii) (with α = 0) the space Lr′0(0, T ; L̃
q′0
σ ) ∩ Lr′(0, T ; L̃q

′
σ ) is

dense in Lr′0(0, T ; L̃
q′0
σ ), we conclude that u ∈ Lr0(0, T ; L̃q0σ ).

Now assume that u ∈ Lr0(0, T ; L̃q0). We want to prove that F must have
been an element of T −1,r0,q0 . For any φ ∈ T 1,r0,q0 ∩ T 1,r,q we can estimate

|〈F , φ〉| ≤ | − (u, φt)T,Ω|+ |(u, Ãq′0φ)T,Ω|
≤ ‖u‖Lr0 (L̃q0 )

(
‖φt‖Lr′0 (L̃q

′
0 )

+ ‖Ãq′0φ‖Lr′0 L̃q′0 )

)
≤ ‖u‖Lr0 (L̃q0 )‖φ‖T 1,r′0,q

′
0
.

By density of T 1,r,q ∩ T 1,r0,q0 in T 1,r0,q0 , cf. Lemma 2.7 (ii), we get F ∈ T −1,r0,q0 ,
finishing the proof.

Now we discuss higher order differentiability in space. The following theorem
is an extension of the preceding one, but the proof is essentially the same.

Theorem 3.3. Let Ω ⊆ Rn be a uniform C2-domain, 0 < T < ∞ and 1 <
r, q <∞. Further, for F ∈ T −1,r,q(T,Ω), let u ∈ Lr(0, T ; L̃qσ(Ω)) be the uniquely
determined very weak solution to the Stokes system with data F (and K = 0).

If F satisfies for some 0 ≤ α ≤ 1 and 1 < r∗, q∗ <∞ a bound of the form

|〈F , φ(v)〉| ≤ C‖(1 + Ãq′)
−αv‖

Lr
′∗ (0,T ;L̃

q′∗
σ (Ω))

(3.1)

for all v ∈ Lr′(0, T ; L̃q
′
σ (Ω))∩Lr′∗(0, T ; D̃−αq′∗ ) and corresponding φ(v) ∈ T 1,r′,q′(T,Ω),

then u ∈ Lr∗(0, T ; D̃α
q∗).
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Proof. For any function v ∈ Lr′(0, T ; L̃q
′
σ (Ω))∩Lr′∗(0, T ; D̃−αq′∗ ) and corresponding

φ = φ(v) we get by the assumptions on F that

|(u, v)T,Ω| = | − (u, φt)T,Ω + (u, Ãq′φ)T,Ω| = |〈F , φ〉| ≤ C‖v‖
Lr
′∗ (0,T ;D̃−α

q′∗
)
.

Then Lemma 2.7 and the duality D̃−αq′∗ = (D̃α
q∗)
∗ prove that u ∈ Lr∗(0, T ; D̃α

q∗).

The condition in the above theorem is very abstract. To be more precise, let
us consider the three-dimensional case only.

Proposition 3.4. Let Ω, T and r, q, r∗, q∗, α be as in the preceding Theorem 3.3.
Assume that a data functional F ∈ T −1,r,q(T,Ω) is given in the special form

〈F , φ〉 = (u0, φ(0))Ω + (f1, φ)T,Ω + (f2,∇φ)T,Ω

for all φ ∈ T 1,r′,q′(T,Ω). Then the following conditions on u0, f1, f2 are sufficient
to guarantee the estimate (3.1) in Theorem 3.3:

(i) Let u0 ∈ L̃ρσ(Ω) for some ρ ∈ (1,∞) and
∫ T

0
‖(1+Ãρ)

αe−τÃρu0‖r∗L̃q∗ dτ <∞.
Even the condition u0 ∈ L̃γσ(Ω) with 0 < γ <∞, 0 < 3

γ
< 2

r∗
+ 3
q∗
−2α is sufficient.

(ii) Let q∗ ≥ 2, 2α < 3
q∗

+ 1
2
, and let γ ∈ (1,∞) defined by 1

γ
:= 1

4
+ 1

2

(
2
r∗

+
3
q∗
− 2α

)
. Then the condition f1 ∈ Lγ(0, T ;L2(Ω)) is sufficient.

(iii) The condition f2 ∈ Lγ(0, T ;L2(Ω)) is sufficient, if q∗ ≥ 2, 2α < 3
q∗
− 1

2

and if 1
γ

= −1
4

+ 1
2

(
2
r∗

+ 3
q∗
− 2α

)
∈ (0, 1).

Proof. (i) For given v ∈ Lr
′
(0, T ; L̃q

′
σ (Ω)) ∩ Lr′∗(0, T ; D̃−αq′∗ ) and corresponding

φ = φ(v) ∈ T 1,r′,q′ Lemma 2.3 yields

(u0, φ(0))Ω =

∫ T

0

(
u0, e

−(T−τ)Ãq′v(T − τ)
)

Ω
dτ

=

∫ T

0

(
(1 + Ãρ)

αe−τÃρu0, (1 + Ãq′∗)
−αv(τ)

)
Ω
dτ.

Then we estimate

|(u0, φ(0))Ω| ≤
(∫ T

0

∥∥(1 + Ãρ)
αe−τÃρu0

∥∥r∗
L̃q∗

dτ

)1/r∗

‖v‖
Lr
′∗ (0,T ;D̃−α

q′∗
)
.

This proves the first condition for u0.
Now assume that u0 ∈ L̃γσ(Ω), 0 < 3

γ
< 2

r∗
+ 3

q∗
−2α. We estimate, using (2.9),∥∥(1 + Ãρ)

αe−τÃρu0

∥∥
L̃q∗
≤ Cτ−α−β‖u0‖L̃γ

with β = 3
2

(
1
γ
− 1

q∗

)
if q∗ > γ (or with β = 0 if γ ≥ q∗ using the Hölder inequality

‖ · ‖L̃q∗ ≤ ‖ · ‖L̃γ ) and continue with∫ T

0

∥∥(1 + Ãρ)
αe−τÃρu0

∥∥r∗
L̃q∗

dτ ≤ C

∫ T

0

τ−(α+β)r∗ dτ ‖u0‖r∗L̃γ .
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The right hand side is finite if and only if 3
γ
< 2

r∗
+ 3

q∗
− 2α.

(ii) Since |(f1, φ)T ,Ω| ≤ ‖f1‖Lγ(L2)‖φ‖Lγ′ (L2), we only estimate

‖φ‖γ
′

Lγ′ (L2)
=

∫ T

0

‖φ(T − t)‖γ
′

2 dt

≤
∫ T

0

(∫ t

0

∥∥e−(t−τ)Ãq′v(T − τ)
∥∥

2
dτ

)γ′
dt

=

∫ T

0

(∫ t

0

∥∥(1 + Ãq′)
αe−(t−τ)Ãq′ (1 + Ãq′)

−αv(T − τ)
∥∥

2
dτ

)γ′
dt

≤ C

∫ T

0

(∫ t

0

∥∥(1 + Ãq′)
α+βe−(t−τ)Ãq′ (1 + Ãq′)

−αv(T − τ)
∥∥
L̃q
′∗ dτ

)γ′
dt

with β = 3
2

(
1
q′∗
− 1

2

)
. Then, by the analyticity of the Stokes semigroup and the

Hardy-Littlewood-Sobolev inequality,

‖φ‖γ
′

Lγ′ (L2)
≤ C

∫ T

0

(∫ T

0

|t− τ |−α−β‖v(T − τ)‖D̃−α
q′∗
dτ

)γ′
dt

≤ C‖v‖γ
′

Lr
′∗ (0,T ;D̃−α

q′∗
)
.

The condition 2α < 3
q∗

+ 1
2
is needed for α + β < 1. This shows the assertion.

(iii) The proof is almost the same as for f1. In this case we use that

‖∇φ‖γ
′

Lγ′ (L2)
≤ C

∫ T

0

(∫ T

0

|t− τ |−α−β−1/2‖v(T − τ)‖D̃−α
q′∗
dτ

)γ′
dt

≤ C‖v‖γ
′

Lr
′∗ (0,T ;D̃−α

q′∗
)
.

The condition 2α < 3
q∗
− 1

2
is needed for α + β + 1

2
< 1.

4 The Navier-Stokes System
Proof of Theorem 1.3 (i) We consider the modified data functional φ 7→ 〈F , φ〉+
(f̂2(u, u),∇φ)T,Ω, where f̂2(u1, u2) = u1 ⊗ u2, and show that f̂2 ∈ T −1,r,q(T,Ω).
Indeed, f̂2 has the form of the function f2 discussed in Proposition 2.4 (iii) with
ρ2 = r

2
and γ2 = q

2
. Hence by (2.12)

|(f̂2(u1, u2),∇φ)T,Ω| ≤ C‖u1‖Lr(0,T ;L̃q)‖u2‖Lr(0,T ;L̃q)‖∇φ‖L(r/2)′ (L̃(q/2)′ )

≤ C‖u1‖Lr(0,T ;L̃q)‖u2‖Lr(0,T ;L̃q)‖v‖Lr′ (L̃q′ ) (4.1)

and ‖v‖Lr′ (L̃q′ ) ≤ C‖φ‖T 1,r′,q′ where C = C(τ(Ω), r, q, δ)eδT .
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We define a map S : Lr(0, T ; L̃q(Ω)) → Lr(0, T ; L̃q(Ω)) as follows: for u ∈
Lr(0, T ; L̃q(Ω)) let S(u) be the unique solution to

−(S(u), φt)T,Ω − (S(u),∆φ)T,Ω = 〈F , φ〉+ (f̂2(u, u),∇φ)T,Ω,

(S(u),∇ψ)T,Ω = 〈K, ψ〉

for all φ ∈ T 1,r′,q′ and ∇ψ ∈ Lr′(0, T ; G̃q′). Then we get the estimate

‖S(u)‖Lr(L̃q) ≤ C1

(
‖F‖T −1,r,q + ‖K‖Lr(G̃−1

q )

)
+ C1C2‖u‖2

Lr(L̃q)
(4.2)

for all u ∈ Lr(0, T ; L̃q) where C1 = C ′1e
δT is the constant coming from the linear

system and C2 = C ′2e
δT is the constant from the control of the nonlinearity.

Since very weak solutions of the Navier-Stokes system are fixed points of the
mapping S and vice versa, all we need to show is the existence of a fixed point
using Banach’s theorem. We put

η :=
3

16C2
1C2

, ρ :=
1

4C1C2

.

Assume ‖u‖Lr(L̃q) ≤ ρ. Then from (1.5) and (4.2) we see that

‖S(u)‖Lr(L̃q) ≤ C1η + C1C2ρ
2

≤ 3

16C1C2

+
1

16C1C2

=
1

4C1C2

= ρ,

which implies that S is a selfmap of the closed ball Bρ(0) ⊂ Lr(0, T ; L̃q).
Now consider u1, u2 ∈ Bρ(0). Then

−(S(u1)− S(u2), φt)T,Ω − (S(u1)− S(u2),∆φ)T,Ω = (u1 ⊗ u1 − u2 ⊗ u2,∇φ)T,Ω,

(S(u1)− S(u2),∇ψ)T,Ω = 0

for all φ ∈ T 1,r′,q′ and ∇ψ ∈ Lr′(G̃q′). Hence, from linear theory, we get

‖S(u1)− S(u2)‖Lr(L̃q) ≤ C1C2

(
‖u1‖Lr(L̃q) + ‖u2‖Lr(L̃q)

)
‖u1 − u2‖Lr(L̃q)

≤ 2ρC1C2‖u1 − u2‖Lr(L̃q) =
1

2
‖u1 − u2‖Lr(L̃q),

implying that S is strictly contractive on Bρ(0). By Banach’s fixed point theorem,
there exists a unique fixed point u ∈ Bρ(0), i.e. a very weak solution in this ball.
Note that this does not yet imply uniqueness of very weak solutions globally. The
very weak solution u satisfies S(u) = u and hence

‖u‖Lr(L̃q) = ‖S(u)‖Lr(L̃q) ≤ C1

(
‖F‖T −1,r,q + ‖K‖Lr(G̃−1

q )

)
+ C1C2‖u‖2

Lr(L̃q)

≤ C1

(
‖F‖T −1,r,q + ‖K‖Lr(G̃−1

q )

)
+

1

4
‖u‖Lr(L̃q),
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yielding the a priori estimate (1.6) by absorption.
(ii) By Proposition 2.6 there exists a T ′ ∈ (0, T ) such that

‖F|[0,T ′]‖T −1,r,q(T ′,Ω) + ‖K‖Lr(0,T ′;G̃−1
q (Ω)) ≤ η,

with η > 0 as in (i). Thus there is a very weak solution u ∈ Lr(0, T ′; L̃q(Ω)) on
the possibly smaller time interval [0, T ′) to the restricted data F|[0,T ′], K|[0,T ′].

Theorem 4.1 (Uniqueness). Let Ω ⊆ Rn be a uniform C2-domain, 0 < T <∞,
and let Serrin exponents 2 < r <∞, n < q <∞, 2

r
+ n

q
= 1 be given. Assume

that F ∈ T −1,r,q(T,Ω) and K ∈ Lr(0, T ; G̃−1
q (Ω)). Then there is at most one very

weak solution u ∈ Lr(0, T ; L̃q(Ω)) to the Navier-Stokes system with data F , K.

Proof. Let u and v be very weak solutions to the Navier-Stokes system with data
F , K. Put

Tmax := sup{T0 : u = v a.e. on [0, T0)}
including Tmax = 0 if u 6= v on every interval [0, T0), 0 < T0 ≤ T . We need to
show that Tmax = T . To this end we assume Tmax < T and derive a contradiction.

Fixing an arbitrary T ′ ∈ (Tmax, T ], the difference u − v of the two solutions
solves the system

−(u− v, φt)T ′,Ω − (u− v,∆φ)T ′,Ω = (u⊗ u− v ⊗ v,∇φ)T ′,Ω,

(u− v,∇ψ)T ′,Ω = 0

for every φ ∈ T 1,r′,q′(T ′,Ω) and ∇ψ ∈ Lr′(0, T ′; G̃q′(Ω)). Consequently, by linear
theory, we can estimate

‖u− v‖Lr(0,T ′;L̃q) ≤ C1C2

(
‖u⊗ (u− v)‖Lr/2(0,T ′;L̃q/2) + ‖(u− v)⊗ v‖Lr/2(0,T ′;L̃q/2)

)
≤ C1C2

(
‖u‖Lr(Tmax,T ′;L̃q) + ‖v‖Lr(Tmax,T ′;L̃q)

)
‖u− v‖Lr(0,T ′;L̃q)

where C1 = C ′1e
δT and C2 = C ′2e

δT are constants as in the proof of Theorem 1.2.
Choosing T ′ > Tmax such that

C1C2

(
‖u‖Lr(Tmax,T ′;L̃q) + ‖v‖Lr(Tmax,T ′;L̃q)

)
< 1,

we obtain that ‖u − v‖Lr(0,T ′;L̃q) = 0, which contradicts the maximality of Tmax.
Hence, u = v a.e. on [0, T ).

In the following analysis of regularity we will assume for simplicity that K = 0,
i.e., any very weak solution belongs to the solenoidal space Lr(0, T ; L̃qσ(Ω)).

Proposition 4.2. Let a uniform C2-domain Ω ⊆ Rn and a finite time interval
[0, T ) be given. Assume that 2 < r1, r2 <∞ and n < q1, q2 <∞ are two pairs of
Serrin exponents, i.e. 2

r1
+ n

q1
= 1 = 2

r2
+ n

q2
. Assume that F ∈ T −1,r1,q1(T,Ω) ∩

T −1,r2,q2(T,Ω) (and K = 0) and that u ∈ Lr1(0, T ; L̃q1σ (Ω)) is a very weak solution
to the Navier-Stokes system.

Then u is also contained in the Serrin class Lr2(0, T ; L̃q2σ (Ω)).
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Proof. Let v ∈ Lr′1(0, T ; L̃
q′1
σ ) ∩ Lr′2(0, T ; L̃

q′2
σ ). With φ(v) ∈ T 1,r′1,q

′
1 ∩ T 1,r′2,q

′
2 we

then see that

|(u, v)T,Ω = | − (u, φt)T,Ω + (u, Ãq1φ)T,Ω| = |〈F, φ〉+ (u⊗ u,∇φ)T,Ω|
≤ C‖F‖T −1,r2,q2‖v‖Lr′2 (L̃q

′
2 )

+ ‖u‖2
Lr1 (L̃q1 )

‖∇φ‖L(r1/2)
′
(L̃(q1/2)

′
).

In a first step assume that q2 satisfies the relation

1

q2

<
2

q1

<
1

q2

+
1

n
, (4.3)

cf. Lemma 2.3 (iii) with γ2 = q1/2, q = q2 and ρ2 = r1/2, r = r2. From (2.12)
we conclude that ‖∇φ‖L(r1/2)

′
(L̃(q1/2)

′
) ≤ C‖v‖

Lr
′
2 (L̃q

′
2 )
. Combining the estimates we

see that
|(u, v)T,Ω| ≤ C(‖F‖T −1,r2,q2 + ‖u‖2

Lr1 (L̃q2 )
)‖v‖

Lr
′
2 (Lq

′
2 )
,

giving by a duality and density argument that u ∈ Lr2(0, T ; L̃q2σ (Ω)).
Now we have to get rid of the restriction on q2, see (4.3). To this end, first

observe that, by interpolation, the data F are contained in any T −1,r̃,q̃(T,Ω), as
long as q̃ ∈ [min(q1, q2),max(q1, q2)], where of course r̃ and q̃ are Serrin exponents,
i.e. 2/r̃ + n/q̃ = 1. This enables us to iterate the procedure.

Note that the iteratively defined sequences

a0 := b0 :=
1

q1

∈
(

0,
1

n

)
, ak+1 := 2ak −

1

n
, bk+1 := 2bk

satisfy ak < ak−1 < 1/n and 0 < bk−1 < bk for all k ≥ 1 such that even
ak → −∞ and bk → ∞ as k → ∞. Therefore, for some finite k0, depending
only on a0 = 1

q1
, we have the inclusion 1

q2
∈
(
0, 1

n

)
⊆ (ak, bk) for all k ≥ k0. This

ensures that the above procedure can be used repeatedly, leading to the property
u ∈ Lr2(0, T ; L̃q2(Ω)) after a finite number of steps.

Corollary 4.3. If F ∈ T −1,r1,q1(T,Ω)∩T −1,r2,q2(T,Ω), and if very weak solutions
u1 ∈ Lr1(0, T ; L̃q1(Ω)) and u2 ∈ Lr2(0, T ; L̃q2(Ω)) are given, then u1 = u2 almost
everywhere on [0, T ).

Proof. This follows directly from the above theorem, the uniqueness theorem,
cf. Theorem 4.1, and the fact that T 1,r′1,q

′
1 ∩ T 1,r′2,q

′
2 is dense in both T 1,r′1,q

′
1 and

T 1,r′2,q
′
2 , see Lemma 2.7.

In the theory of the Navier-Stokes system it is a very important question
whether a given solution u satisfies the condition u⊗u ∈ L2(0, T ;L2(Ω)). In this
case a solution may satisfy the energy equality rather than the energy inequality
and very weak solutions may be identified with a weak solution to prove regularity
results for weak solutions, cf. [16]. One sufficient condition in this step is clearly
u ∈ L4(0, T ; L̃4(Ω)), at least for finite times T . We give here a sufficient condition
for a very weak solution to be contained in that space.
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Theorem 4.4. Let Ω ⊆ R3 be a uniform C2-domain, 0 < T < ∞, and let
Serrin exponents 16

5
≤ r ≤ 16, 24

7
≤ q ≤ 8, 2

r
+ 3

q
= 1 be given. Assume that

u ∈ Lr(0, T ; L̃qσ(Ω)) is a very weak solution to the Navier-Stokes system with data
F ∈ T −1,r,q(T,Ω) (and K = 0).

If F is also contained in T −1,4,4(T,Ω), then u ∈ L4(0, T ; L̃4(Ω)). In particular,
u⊗ u ∈ L2(0, T ;L2(Ω)).

Proof. Again, the idea of the proof is similar to the one of Proposition 4.2. For
any v ∈ L4/3(0, T ; L̃

4/3
σ ) ∩ Lr′(0, T ; L̃q

′
σ ) and corresponding φ = φ(v) ∈ T 1,r′,q′ ∩

T 1,4/3,4/3 we find that

|(u, v)T,Ω| = | − (u, φt)T,Ω + (u, Ãq′φ)T,Ω| ≤ |〈F , φ〉|+ |(u⊗ u,∇φ)T,Ω|

where

|〈F , φ〉| ≤ ‖F‖T −1,4,4‖φ‖T 1,4/3,4/3 ≤ C‖F‖T −1,4,4‖v‖L4/3(0,T ;L̃4/3).

The other term is treated as follows. First we consider the case r = 16,
q = 24/7 and obtain the estimate

|(u⊗ u,∇φ)T,Ω| ≤ ‖u‖2
L16(0,T ;L̃24/7)

‖∇φ‖L8/7(0,T ;L̃12/5).

Now we apply (2.8) to ∇φ(t) and see that for a.a. t

‖∇φ(t)‖L̃12/5 ≤ C‖(1 + Ã12/5)1/2φ(t)‖L̃12/5 ≤ C‖(1 + Ã4/3)φ(t)‖L̃4/3 .

Since ‖(1 + Ã4/3)φ‖L8/7(L̃4/3) ≤ C‖v‖L8/7(L̃4/3) by Lemma 2.3, we get that

|(u⊗ u,∇φ)T,Ω| ≤ C‖u‖2
Lr(0,T ;L̃q)

‖v‖L8/7(0,T ;L̃4/3).

Let us now consider the case r < 16, q > 24/7. Again we first estimate

|(u⊗ u,∇φ)T,Ω| ≤ ‖u‖2
Lr(0,T ;L̃q(Ω))

‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ (Ω)).

Form (2.12) (with γ2 = q/2, ρ2 = r/2) we get

‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ ) ≤ C‖v‖L8/7(0,T ;L̃4/3).

From here on we can again treat the cases r = 16 and r < 16 together. By
Hölder’s inequality we find that ‖v‖L8/7(L̃4/3) ≤ T 1/8‖v‖L4/3(L̃4/3). Hence

|(u, v)T,Ω| ≤ C
(
‖F‖T −1,4,4 + ‖u‖2

Lr(L̃q)

)
‖v‖L4/3(L̃4/3).

Since L4/3(0, T ; L̃
4/3
σ ) ∩ Lr′(0, T ; L̃q

′
σ ) is dense in L4/3(0, T ; L̃

4/3
σ ) we find that u ∈

L4(0, T ; L̃4
σ). This finishes the proof.
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Similarly to Proposition 2.4 we now discuss more concrete conditions on u0,
f1, f2 for a functional F to be contained in T −1,4,4(T,Ω).

Proposition 4.5. Let Ω ⊆ Rn be a uniform C2-domain, n ≥ 3, 0 < T <∞, and
let 1 < r, q <∞ be Serrin exponents. Assume that F ∈ T −1,r,q(T,Ω) is given by

〈F , φ〉 := (u0, φ(0))Ω + (f1, φ)T,Ω + (f2,∇φ)T,Ω. (4.4)

Then the condition F ∈ T −1,4,4(T,Ω) can be ensured if
(i) concerning u0

u0 ∈ L2
σ(Ω),

∫ T

0

‖e−τÃ2u0‖4
L̃4(Ω)

dτ <∞

or u0 ∈ L̃γσ(Ω), 1
4
≤ 1

γ
< 1

4
+ 1

2n
, and

(ii) concerning f1, f2

f1 ∈ Lρ1(0, T ; L̃γ1(Ω)), f2 ∈ Lρ2(0, T ; L̃γ2(Ω)),

where 1 < ρ1, γ1, ρ2, γ2 <∞,

2

ρ1

+
n

γ1

= 2 +
n+ 2

4
,

2

ρ2

+
n

γ2

= 1 +
n+ 2

4

and 1
4
< 1

γ1
≤ 1

4
+ 2

n
and 1

4
≤ 1

γ2
≤ 1

4
+ 1

n
. This includes the case ρ1 = 4, 1

γ1
= 1

4
+ 2

n

and ρ2 = 4, 1
γ2

= 1
4

+ 1
n
, and, when n = 3, the case f1 ∈ L8/7(0, T ;L2(Ω)),

f2 ∈ L8/3(0, T ;L2(Ω)).

Proof. (i) For φ ∈ T 1,4/3,4/3(T,Ω) we let v := −φt + Ãq′φ. Using Lemma 2.3 we
estimate

|(u0, φ(0))T,Ω| =
∣∣∣∣∫ T

0

(u0, e
−τÃq′v(τ))Ω dτ

∣∣∣∣ =

∣∣∣∣∫ T

0

(e−τÃ2u0, v(τ))Ω dτ

∣∣∣∣
≤
(∫ T

0

‖e−τÃ2u0‖4
L̃4 dτ

)1/4

‖v‖L4/3(0,T ;L̃4/3)

≤
(∫ T

0

‖e−τÃ2u0‖4
L̃4 dτ

)1/4

‖φ‖T 1,4/3,4/3 .

Hence the functional φ 7→ (u0, φ(0))Ω is contained in the space T −1,4,4(T,Ω).
For the second condition on u0 we use L̃r-L̃q-estimates, see (2.9). Since

‖e−τÃ2u0‖L̃4 ≤ Cτ−α‖u0‖L̃γ for 0 < τ ≤ T , with α = n
2

(
1
γ
− 1

4

)
< 1

4
, we get

that ∫ T

0

‖e−τÃ2u0‖4
L̃4 dτ ≤ C‖u0‖4

L̃γ

∫ T

0

τ−4α dτ <∞.
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(ii) For the condition on f1 we use (2.11) to prove that

|(f1, φ)T,Ω| ≤ ‖f1‖Lρ1 (L̃γ1 )‖φ‖Lρ′1 (L̃γ
′
1 )

≤C‖f1‖L̃ρ1 (L̃γ1 )‖v‖L4/3(L̃4/3) ≤ C‖f1‖L̃ρ1 (L̃γ1 )‖φ‖T 1,4/3,4/3 .

Concerning the estimates for f2 we use Hölder’s inequality for |(f2,∇φ)T,Ω|,
then (2.12) to see that ‖∇φ‖

Lρ
′
2 (L̃γ

′
2 )
≤ C‖v‖L4/3(0,T ;L̃4/3), and complete the proof

as above.

Combining the sufficient conditions of Proposition 2.4 and Proposition 4.5 as
well as the existence theorems Theorem 1.3 and Theorem 4.4 we get the following
result in the three-dimensional case.

Corollary 4.6. Let Ω ⊂ R3 be a uniform C2-domain, 0 < T <∞, 16
5
≤ r ≤ 16,

24
7
≤ q ≤ 8, 2

r
+ 3

q
= 1. Assume functions u0 ∈ L2

σ(Ω) with

e−τÃ2u0 ∈ L4(0, T ; L̃4(Ω)),

and f1 ∈ Lr(0, T ; L̃γ1(Ω)) where 1
γ1

= 1
q

+ 2
3
together with one of the conditions

f1 ∈ L4(0, T ; L̃12/11(Ω)) or L8/7(0, T ;L2(Ω)),

and f2 ∈ Lr(0, T ; L̃γ2(Ω)) where 1
γ2

= 1
q

+ 1
3
together with one of the conditions

f2 ∈ L4(0, T ; L̃12/7(Ω)) or L8/3(0, T ;L2(Ω))

are given. Consider the data functionals K = 0 and F as in (4.4). Then there
exists a constant η = η(τ(Ω), q, T ) > 0 with the following property: if∫ T

0

‖e−τÃ2u0‖rL̃q(Ω)
dτ ≤ η

and
‖f1‖Lr(0,T ;L̃γ1 (Ω)) ≤ η or ‖f1‖L4/3(0,T ;L2(Ω)) ≤ η,

and
‖f2‖Lr(0,T ;L̃γ2 (Ω)) ≤ η or ‖f2‖L4(0,T ;L2(Ω)) ≤ η if q ≤ 6,

then there is a very weak solution u ∈ Lr(0, T ; L̃qσ(Ω)) to the data F with the
additional property u⊗ u ∈ L2(0, T ;L2(Ω)).

Proof. By Proposition 2.4 the functional F is contained in T −1,r,q(T,Ω); more-
over, ‖F‖T −1,r,q ≤ η′ if η > 0 is chosen small enough. Here η′ is the constant
from Theorem 1.3. Then, by Theorem 1.3, there exists a very weak solution
u ∈ Lr(0, T ; L̃qσ(Ω)). By Proposition 4.5 it also holds that F ∈ T −1,4,4(T,Ω).
Now we use Theorem 4.4 and get that u⊗ u ∈ L2(0, T ;L2(Ω)).
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In the final results we will improve space regularity, cf. Theorem 3.3 for the
linear case. After an abstract result in Theorem 4.7 we discuss more concrete
conditions on the data functional in Proposition 4.8 below.

Theorem 4.7. Let Ω ⊆ Rn be a uniform C2-domain, 0 < T < ∞, and let
Serrin exponents 2 < r < ∞, n < q < ∞, 2

r
+ n

q
= 1 be given. Assume that

a very weak solution u ∈ Lr(0, T ; L̃qσ(Ω)) to the Navier-Stokes equations is given
for data F ∈ T −1,r,q(T,Ω) and K = 0.

Furthermore, consider exponents 1 < r∗, q∗ <∞ and 0 ≤ α < 1
2
such that

2

q
+

2α− 1

n
<

1

q∗
≤ 2

q
,

2

r∗
+
n

q∗
= 1 + 2α.

Alternatively, we consider the limit case where α = 1
2
and r∗ = r

2
, q∗ = q

2
. If for

F the additional inequality

|〈F , φ(v)〉| ≤ CF‖(1 + Ãq′∗)
−αv‖

Lr
′∗ (0,T ;L̃q

′∗ (Ω))
(4.5)

holds for all v ∈ Lr′(0, T ; L̃q
′
σ (Ω)) ∩ Lr′∗(0, T ; D̃−αq′∗ ), then u also satisfies

u ∈ Lr∗(0, T ; D̃α
q∗).

Proof. Consider any v ∈ Lr
′
(0, T ; L̃q

′
σ ) ∩ Lr′∗(0, T ; D̃−αq′∗ ) and the corresponding

φ = φ(v) ∈ T 1,r′,q′ ∩T 1,r′∗,q
′
∗ . Then (u, v)T,Ω = 〈F , φ〉+ (u⊗ u,∇φ)T,Ω admits the

estimate

|(u, v)T,Ω| ≤ CF‖(1 + Ãq′∗)
−αv‖

Lr∗ (L̃q
′∗ )

+ ‖u‖2
Lr(L̃q)

‖∇φ‖L(r/2)′ (L̃(q/2)′ ).

Let us estimate the term ‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ ) by v in Lr′∗(0, T ; D̃−αq′∗ ).
In the limit case α = 1

2
, r∗ = r

2
, q∗ = q

2
we exploit (2.10) and the maximal

regularity estimate for (1 + Ãq∗)
−1/2φ and (1 + Ãq∗)

−1/2v to obtain that

‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ ) ≤ C‖(1 + Ãq∗)
αφ‖

Lr
′∗ (0,T ;L̃q

′∗ )

≤ C‖(1 + Ãq∗)
−αv‖

Lr
′∗ (0,T ;L̃q

′∗ )
.

Now consider 0 ≤ α < 1
2
. We define 0 ≤ β ≤ 1

2
by β = n

2

(
2
q
− 1

q∗

)
and see that

the assumptions on q∗ imply that 1
2

+ α+ β < 1. This and Lemma 2.3 allows to
continue as follows:

‖∇φ(T − t)‖L̃(q/2)′ ≤ C‖(1 + Ãq′)
1
2φ(T − t)‖L̃(q/2)′

≤ C‖(1 + Ãq′∗)
1
2

+βφ(T − t)‖
L̃q
′∗

≤ C

∫ t

0

‖(1 + Ãq′∗)
1
2

+βe−(t−τ)Ãq′∗v(T − τ)‖
L̃q
′∗ dτ.
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Then we insert 1 = (1 + Ãq∗)
α(1 + Ãq∗)

−α and use the fact that the semigroup
commutes with the fractional powers. Hence we find by the Hardy-Littlewood-
Sobolev inequality that ‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ ) is bounded by

C

(∫ T

0

(∫ t

0

‖(1 + Ãq′∗)
1
2

+α+βe−(t−τ)Ãq′∗ (1 + Ãq′∗)
−αv(T − τ)‖

L̃q
′∗dτ

)(r/2)′

dt

)1/(r/2)′

≤ C

(∫ T

0

(∫ T

0

|t− τ |−
1
2
−α−β‖(1 + Ãq′∗)

−αv(T − τ)‖
L̃q
′∗

)(r/2)′

dt

)1/(r/2)′

≤ C‖(1 + Ãq′∗)
−αv‖

Lr
′∗ (0,T ;L̃q

′∗ )
.

Putting together all the pieces we find that

|(u, v)T,Ω| ≤
(
CF + C‖u‖2

Lr(0,T ;L̃q)

)
‖v‖

Lr
′∗ (0,T ;D̃−α

q′∗
)

for all v ∈ Lr′(0, T ; L̃q
′
)∩Lr′∗(0, T ; D̃−αq′∗ ). By a density argument, see Lemma 2.7,

this implies by duality that u ∈ Lr∗(0, T ; D̃α
q∗). This finishes the proof.

Proposition 4.8. Let n = 3, Ω, T , r, q, r∗ = r
2
, q∗ = q

2
, α = 1

2
be as in Theorem

4.7. Let the functional F ∈ T −1,r,q(T,Ω) be given as in (4.4) for some functions
u0 ∈ L̃γσ(Ω), 3 < γ < ∞, and f1 ∈ Lr/2(0, T ; L̃γ1(Ω)), 1

γ1
= 1

3
+ 2

q
, as well as

f2 ∈ Lr/2(0, T ; L̃q/2(Ω)).
Then a very weak solution u ∈ Lr(0, T ; L̃q(Ω)) to the Navier-Stokes equations

with data F (and K = 0) even satisfies u ∈ Lr/2(0, T ; W̃
1,q/2
0 (Ω)).

Proof. Let us prove the estimate

|〈F , φ(v)〉| ≤ CF‖(1 + Ã(q/2)′)
−1/2v‖L(r/2)′ (0,T ;L̃(q/2)′ (Ω))

for all v ∈ Lr′(0, T ; L̃q
′
σ (Ω))∩L(r/2)′(0, T ; D̃

−1/2
(q/2)′). The condition on u0 is justified

by Proposition 3.4. Concerning f1 it suffices to estimate φ as follows:

‖φ‖L(r/2)′ (0,T ;L̃(γ1)
′
) ≤ C‖(1 + Ã(q/2)′)

1/2φ‖L(r/2)′ (0,T ;L̃(q/2)′ )

≤ C‖(1 + Ã(q/2)′)
−1/2v‖L(r/2)′ (0,T ;L̃(q/2)′ ).

For f2 we simply note that

‖∇φ‖L(r/2)′ (0,T ;L̃(q/2)′ ) ≤ C‖(1 + Ã(q/2)′)
1/2φ‖L(r/2)′ (0,T ;L̃(q/2)′ )

and continue as for f1. Now we use Theorem 4.7 to see that u ∈ Lr/2
(
0, T ; D̃

1/2
q/2

)
.

Identifying the space D̃1/2
q/2 with W̃ 1,q/2

0 (Ω) ∩ L̃q/2σ (Ω) we get the assertion.
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