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Abstract. Consider the instationary Boussinesq equations in a com-
pletely general domain Ω ⊆ R3 and a time interval [0, T [. We deal with
existence of strong solutions of the Boussinesq equations. These results
will be used to prove uniqueness criteria for the Boussinesq equations
which are based on the local or global identification of a weak solution
with a strong solution.

1. Introduction and main results

Let Ω ⊆ R3 be a general domain, i.e. a nonempty, open and connected subset
and let [0, T [ , 0 < T ≤ ∞, be a time interval. We consider the Boussinesq
equations

ut −∆u+ u · ∇u+∇p = θg + f1 in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

θt −∆θ + u · ∇θ = f2 in ]0, T [×Ω ,

u = 0 , θ = 0 on ]0, T [×∂Ω ,

u = u0 , θ = θ0 at t = 0 ,

(1.1)

where u denotes the velocity of the fluid, θ the difference of the tempera-
ture to a fixed reference temperature and p denotes the pressure. Further,
u0 , θ0 are the initial values, f1 the external force per unit mass and f2 the
external thermal radiation per heat capacity. For mathematical complete-
ness we allow a time dependent gravitational force g = g(t, x). However,
in most applications the gravitational force is a constant vector field in
time. The Boussinesq equations are a widely used model of motion of a
viscous, incompressible buoyancy-driven fluid flow coupled with heat con-
vection, see [19, 24]. The Boussinesq equations have been investigated in
many paper, see e.g. [1, 2, 3, 13, 14, 15, 18, 20, 23] and papers cited there.

We need the following space of test functions:

C∞0 ([0, T [;C∞0,σ(Ω)) := {w |[0,T [×Ω ;w ∈ C∞0 (]− 1, T [×Ω) ; divw = 0 }.

Motivated by the definition of a weak solution of the instationary Navier-
Stokes equations in the sense of Leray-Hopf we give the following
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Definition 1.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞ , g ∈
L

8/5
loc ([0, T [;L4(Ω)). Assume f1 , f2 ∈ L1

loc([0, T [;L2(Ω)) and u0 ∈ L2
σ(Ω),

θ0 ∈ L2(Ω). A pair

u ∈ L∞loc([0, T [;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) ,

θ ∈ L∞loc([0, T [;L2(Ω)) ∩ L2
loc([0, T [;H1

0 (Ω)) ,
(1.2)

is called a weak solution of the Boussinesq system (1.1) if the following
properties are fulfilled:

(i) The functions u : [0, T [→ L2
σ(Ω) and θ : [0, T [→ L2(Ω) are weakly

continuous.
(ii) We have

− 〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T + 〈u · ∇u,w〉Ω,T
= 〈f1, w〉Ω,T + 〈θg, w〉Ω,T + 〈u0, w〉Ω

for all w ∈ C∞0 ([0, T [;C∞0,σ(Ω)).
(iii) There holds

− 〈θ, φt〉Ω,T + 〈∇θ,∇φ〉Ω,T + 〈u · ∇θ, φ〉Ω,T
= 〈f2, φ〉Ω,T + 〈θ0, φ(0)〉Ω

for all φ ∈ C∞0 ([0, T [;C∞0 (Ω)).
In the identities above 〈·, ·〉Ω , 〈·, 〉Ω,T denotes the usual L2-scalar product in
Ω and in ]0, T [×Ω, respectively.

Due to the weak continuity of (u, θ) in the definition above we have that
u(t) ∈ L2

σ(Ω) and θ(t) ∈ L2(Ω) are well defined for all t ∈ [0, T [. Especially
u(0) = u0 and θ(0) = θ0. If g ∈ L∞(]0, T [×Ω) we can show with the Faedo-
Galerkin method analogously as in [18, Theorem 1] that there exists a weak
solution of (1.1) in [0, T [×Ω. Moreover, there exists a distribution p, called
an associated pressure, such that

ut −∆u+ u · ∇u+∇p = θg + f1

holds in the sense of distributions in ]0, T [×Ω, see [21, Section V.1.7].
Up to now it is not known if weak solutions (u, θ) of the three-dimensional

Boussines equations are uniquely determined and regular. In [17] it is proved
that uniqueness and regularity holds if additionally Serrin’s condition u ∈
Ls(0, T ;Lq(Ω)) holds where 1 < s, q < ∞ with 2

s + 3
q = 1. In general

domains, which may have several exits to infinity or may have edges and
corners, only the L2-approach to the Stokes operator is available. We arrive
at the following definition.

Definition 1.2. Consider data as in Definition 1.1. We call (u, θ) a strong
solution of (1.1) if (u, θ) is a weak solution of (1.1) and u ∈ L8(0, T ;L4(Ω)).

The crucial point in the definition above is the fact that we have required
no additional integrability condition for θ. Our first main result deals with
existence of strong solutions of the Boussinesq equations in general domains.
For the construction of strong solutions of the instationary Navier-Stokes
system (see (1.10) below) in general domains we refer to [7, 9] and to [21,
Section V.4.2]. We denote by ∆ = ∆2 , A = A2 the Laplace and Stokes
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operator, respectively. For further information about these operators we
refer to the preliminaries.

Theorem 1.3. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let
g ∈ L8/3(0, T ;L4(Ω)). Assume f1 ∈ L4/3(0, T ;L2(Ω)) , f2 ∈ L1(0, T ;L2(Ω))
and u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω).
(i) There exists an absolute constant ε∗ > 0 (independent of Ω, T, g, f1, f2,

u0, θ0) with the following property: If the conditions(∫ T

0
‖e−tAu0‖84 dt

)1/8
≤ ε∗ , (1.3)

‖g‖4, 8
3

;T

(∫ T

0
‖et∆θ0‖8/34 dt

)3/8
≤ ε∗ , (1.4)

‖f1‖2, 4
3

;T + ‖g‖4, 8
3

;T ‖f2‖2,1;T ≤ ε∗ , (1.5)

are satisfied, then there exists a uniquely determined strong solution
(u, θ) of the Boussinesq equations (1.1) in [0, T [×Ω.

(ii) The condition ∫ ∞
0
‖e−tAu0‖84 dt <∞ (1.6)

is necessary and sufficient for the existence of 0 < T ′ ≤ T and a
strong solution (u, θ) of (1.1) in [0, T ′[×Ω.

Remark. Combining (1.4) and (3.9) below it follows that ε∗ can be replaced
by a smaller constant (if necessary), to be denoted again by ε∗, such that
if (1.3), (1.5) and

‖g‖4, 8
3

;T ‖θ0‖2 ≤ ε∗ (1.7)

are satisfied, then there exists a strong solution (u, θ) of (1.1) in [0, T [×Ω.

For existence of strong solutions of the Boussinesq equations if Ω ⊆ R3

is a smooth bounded domain we refer to [17, Theorems 1.3, 1.4]. From
Theorem 1.3 (i) with f1 := f , f2 := 0 , g := 0 and initial values u0 and
θ0 := 0 we obtain the following result, c.f. [9, Theorem 4.1] with a different
condition on f .

Theorem 1.4. Let Ω ⊆ R3 be a general domain, let u0 ∈ L2
σ(Ω), let 0 <

T ≤ ∞ , f ∈ L4/3(0, T ;L2(Ω)). Then there exists an absolute constant
ε∗ > 0 (independent of Ω, T, f, u0) with the following property: Assume that
the conditions (∫ T

0
‖e−tAu0‖84 dt

)1/8

≤ ε∗ , (1.8)

‖f‖2, 4
3

;T ≤ ε∗ (1.9)

are satisfied. Then there exists a strong solution u ∈ L8(0, T ;L4(Ω)) of the
instationary Navier-Stokes equations

ut −∆u+ u · ∇u+∇p = f in ]0, T [×Ω ,

divu = 0 in ]0, T [×Ω ,

u = 0 on ]0, T [×∂Ω ,

u = u0 at t = 0 ,

(1.10)
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with initial value u0 and external force f .

Before we start to present uniqueness criteria for the Boussinesq equations
we need the following definition.

Definition 1.5. Consider data as in Definition 1.1, assume additionally
g ∈ L

8/3
loc ([0, T [;L4(Ω)) and let (u, θ) be a weak solution of (1.1). We say

that (u, θ) satisfies the strong energy inequality if there is a null set N ⊆]0, T [
such that

1

2
‖u(t)‖22+

∫ t

s
‖∇u‖22 dτ ≤

1

2
‖u(s)‖22+

∫ t

s
〈θg, u〉Ω dτ+

∫ t

s
〈f1, u〉Ω dτ (1.11)

for all s ∈ ( ]0, T [\N ) ∪ {0} and all t ∈ [s, T [.

The additional integrability assumption on g is needed to guarantee that∫ t
s 〈θg, u〉Ω dτ exists. We proceed with a general uniqueness theorem which
will be the basis for Corollary 1.7 and Theorem 1.8 below. The central idea
is the local construction of a strong solution and the identification of this
solution with (u, θ) and (v,Θ). For uniqueness and regularity results for the
Navier-Stokes equations which are based on the method of the identification
of a strong solution with a weak solution we refer to [4, 5, 6, 8, 10].

Theorem 1.6. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let
g ∈ L8/3(0, T ;L4(Ω)). Assume f1 ∈ L4/3(0, T ;L2(Ω)) , f2 ∈ L1(0, T ;L2(Ω))
and u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω). Consider weak solutions (u, θ) and (v,Θ) of
the Boussinesq equations (1.1). We assume that the following properties are
fulfilled:

(i) There holds that∫ ∞
0
‖e−τAu(t0)‖84 dτ <∞ for all t0 ∈ [0, T [. (1.12)

(ii) (u, θ) and (v,Θ) satisfy the strong energy inequality (1.11).
(iii) At least one of the functions u : [0, T [→ L2

σ(Ω) or v : [0, T [→ L2
σ(Ω)

is strongly continuous.
Then u(t) = v(t) and θ(t) = Θ(t) for all t ∈ [0, T [.

From [17, Theorem 1.5] it follows that weak solutions (u, θ) and (v,Θ) of the
Boussinesq equations (1.1) coincide if additionally u , v ∈ L8(0, T ;L4(Ω)). In
the following corollary we will show that the assumption v ∈ L8(0, T ;L4(Ω))
can be replaced by the weaker assumption that (v,Θ) satisfies the strong
energy inequality (1.11).

Corollary 1.7. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let g ∈
L8/3(0, T ;L4(Ω)). Further let f1 ∈ L4/3(0, T ;L2(Ω)) , f2 ∈ L1(0, T ;L2(Ω))
and u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω). Assume that (u, θ) , (v,Θ) are weak solutions
of (1.1) and that the following conditions are fulfilled:

(i) u ∈ L8(0, T ;L4(Ω)) or u ∈ L∞(0, T ;D(A1/4)).
(ii) (v,Θ) satisfies the strong energy inequality (1.11).

Then u(t) = v(t) and θ(t) = Θ(t) for all t ∈ [0, T [. Especially it follows that
every strong solution of (1.1) and every weak solution of (1.1) which satisfies
the strong energy inequality (1.11) coincide.
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We can apply the results of Theorem 1.3 and Corollary 1.7 to obtain an
uniqueness and regularity result for (1.1) which is based on the smallness of
‖u‖Ls(0,T ;L4(Ω)) where 2

s + 3
4 > 1 is allowed. For this theorem we need that

Ω ⊆ R3 is a domain such that

‖e−tAv‖4 ≤ c‖v‖4 (1.13)

holds for all v ∈ L4(Ω) ∩ L2
σ(Ω) with c = c(Ω) > 0. Especially the estimate

above is fulfilled if−A4 generates an uniformly bounded semigroup on L4
σ(Ω).

Therefore (see [11]) we have that (1.13) is satisfied in the following cases:
(i) Ω = Rn ,
(ii) Ω is a bounded domain with ∂Ω ∈ C2,1,
(iii) Ω is a half space,
(iv) Ω is an exterior domain with ∂Ω ∈ C2,1.

In the following theorem we need no smallness conditions on f1, f2, g, c.f.
Theorem 1.3.
Theorem 1.8. Let Ω ⊆ R3 be a domain such that (1.13) holds. Let f1 ∈
Ls(0, T ;L2(Ω)) , g ∈ Lµ(0, T ;L4(Ω)) where s > 4/3 , µ > 8/3. Assume 0 <
T ≤ ∞, let f2 ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2

σ(Ω) ∩ L4(Ω) , θ0 ∈ L2(Ω).
Further consider 1 ≤ s < 8. Then there exists a constant c∗ = c∗(Ω, s) > 0
such that if (u, θ) is a weak solution of (1.1) satisfying

‖u0‖
8
s
−1

4

(∫ T

0
‖u(τ)‖s4 dτ

)1/s
≤ c∗ , (1.14)

then (u, θ) is in fact a strong solution of (1.1). Furthermore, every weak
solution (v,Θ) of (1.1) satisfying the strong energy inequality (1.11) coincides
with (u, θ).
The present paper is organized as follows. After some preliminaries in Sec-
tion 2 we deal with the proof of Theorem 1.3. The proofs of Theorem 1.6,
Corollary 1.7 and Theorem 1.8 can be found in Sections 4-6.

2. Preliminaries

Given a domain Ω ⊆ Rn , n ∈ N, and 1 ≤ q ≤ ∞ , k ∈ N, we need the usual
Lebesgue and Sobolev spaces, Lq(Ω) andW k,q(Ω) with norm ‖·‖Lq(Ω) = ‖·‖q
and ‖ · ‖Wk,q(Ω) = ‖ · ‖k,q, respectively. For two measurable functions f , g
with the property f · g ∈ L1(Ω), where f · g means the usual scalar product
of vector or matrix fields, we set 〈f, g〉Ω :=

∫
Ω f(x) · g(x) dx. Note that the

same symbol Lq(Ω) etc. will be used for spaces of scalar-, vector- or matrix-
valued functions. By v ⊗ v = (vivj)

n
i,j=1 we denote the usual tensor product

of v ∈ Rn. Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote the space of functions for
which all partial derivatives of order |α| ≤ m (|α| <∞ if m =∞) exist and
are continuous. Further Cm0 (Ω) is the set of all functions from Cm(Ω) with
compact support in Ω and C∞0,σ(Ω) := { v ∈ C∞0 (Ω); div v = 0 }. Introduce

Lqσ(Ω) := C∞0,σ(Ω)
‖·‖q

, 1 < q <∞, and W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2 .
Given a Banach space X, 1 ≤ p ≤ ∞, and an interval ]0, T [ we denote by

Lp(0, T ;X) the space of (equivalence classes of) strongly measurable func-

tions f :]0, T [→ X such that ‖f‖p :=
(∫ T

0 ‖f(t)‖pX dt
) 1
p
< ∞ if 1 ≤ p < ∞
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and ‖f‖∞ := ess supt∈]0,T [ ‖f(t)‖X if p =∞. Moreover, we define the set of
locally integrable functions

Lploc([0, T [;X) := {u : [0, T [→ X strongly measurable,

u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.

If X = Lq(Ω), 1 ≤ q ≤ ∞ we denote the norm of Lp(0, T ;Lq(Ω)) by ‖f‖q,p;T .
In the following fix a general domain Ω ⊆ R3. Let P : L2(Ω) → L2

σ(Ω)
be the Helmholtz projection. We need the Stokes operator A : D(A) ⊆
L2
σ(Ω) → L2

σ(Ω) and the Laplace operator ∆ : D(∆) ⊆ L2(Ω) → L2(Ω).
For a definition and further properties of these well known operators we
refer to [21, Sections II.3.3 and III.2.1]. Fix α ∈ [−1, 1]. Introduce the
fractional powers Aα , (−∆)α as in [21, Section II.3.2]. There holds that
Aα : D(Aα) → L2

σ(Ω) with dense domain D(Aα) ⊆ L2
σ(Ω) and dense range

R(Aα) ⊆ L2
σ(Ω) is a well defined, injective, closed operator such that

(Aα)−1 = A−α , R(Aα) = D(A−α).

The same properties hold for (−∆)α , α ∈ [−1, 1].
In general D(Aα) will be equipped with the graph norm ‖u‖2 + ‖Aαφ‖2

which makes D(Aα) to a Banach space since Aα is closed. Analogously
D((−∆)α) becomes a Banach space when equipped with ‖φ‖2 +‖(−∆)αφ‖2.

It is well known that −A generates a uniformly bounded, analytic semi-
group {e−tA; t ≥ 0} on L2

σ(Ω) and that ∆ generates a uniformly bounded,
analytic semigroup {et∆; t ≥ 0} on L2(Ω). The decay estimates

‖Aαe−tAu‖2 ≤ t−α‖u‖2 , t > 0 , u ∈ L2
σ(Ω) , (2.1)

‖(−∆)αet∆φ‖2 ≤ t−α‖φ‖2 , t > 0 , φ ∈ L2(Ω) , (2.2)

are satisfied for all α ∈ [0, 1]. For a proof of (2.1) we refer to [21, IV.(1.5.15)].
Analogously (2.2) holds. We need that

‖u‖4 ≤ K‖A3/8u‖2 ∀u ∈ D(A3/8) , (2.3)

‖φ‖4 ≤ K‖(−∆)3/8φ‖2 ∀φ ∈ D((−∆)3/8) , (2.4)

are satisfied with an absolute constant K > 0 (independent of Ω, u, φ). For
a proof of (2.3) we refer to [21, Lemma III.2.4.2]. The proof of (2.4) is
analogous.

Let us introduce the generalized operators A−1/2Pdiv and (−∆)−1/2div.
Fix F ∈ L2(Ω). By [21, Lemma III.2.6.1] there exists a unique element in
L2
σ(Ω) to be denoted by A−1/2PdivF such that

〈A−1/2PdivF,A1/2w〉Ω = −〈F,∇w〉Ω ∀w ∈W 1,2
0,σ (Ω).

Further
‖A−1/2PdivF‖2 ≤ ‖F‖2. (2.5)

Analogously (−∆)−1/2divF is well defined by

〈(−∆)−1/2divF, (−∆)1/2φ〉Ω = −〈F,∇φ〉Ω ∀φ ∈ H1
0 (Ω).

In the lemma below we formulate integral equations which characterize weak
solutions of the Boussinesq system (1.1).
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Lemma 2.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞ , g ∈
L

8/5
loc ([0, T [;L4(Ω)). Assume f1 , f2 ∈ L1

loc([0, T [;L2(Ω)) and u0 ∈ L2
σ(Ω),

θ0 ∈ L2(Ω). Then (u, θ) satisfying (1.2) is a weak solution of (1.1) if and
only if the integral equations

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)APf1(τ) dτ +

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ

−A1/2

∫ t

0
e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ u(τ)

)
dτ ,

(2.6)

θ(t) = et∆θ0 +

∫ t

0
e(t−τ)∆f2(τ) dτ

− (−∆)1/2

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ

(2.7)

are satisfied for almost all t ∈ [0, T [.

Proof. For a proof of (2.6) we refer to [21, Section IV.2.4]. To prove (2.7)
we replace −A by ∆ and use an analogous argumentation as in the proof
of (2.6). �

3. Proof of Theorem 1.3

The idea of the proof of Theorem 1.3 is to construct u ∈ L8(0, T ;L4
σ(Ω)),

θ ∈ L8/3(0, T ;L4(Ω)) fulfilling (3.12) below and to show that (u, θ) is indeed a
strong solution of (1.1). To solve this system with a fixed point result we need
the estimates of Lemmas 3.1, 3.2. Since we allow a general domain instead
of a smooth bounded domain we have to define the bilinear forms F1 ,F2 in
a slightly different way than in [17, Lemma 3.2 with q = 4, q1 = 4, α = 7

8 ].

Lemma 3.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞ , g ∈
L8/3(0, T ;L4(Ω)).

(i) Define the bilinear form

F1 : L8(0, T ;L4
σ(Ω))× L8(0, T ;L4

σ(Ω))→ L8(0, T ;L4
σ(Ω)) ,(

F1(u, v)
)
(t) := −A1/2

∫ t

0
e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ v(τ)

)
dτ

for a.a. t ∈ [0, T [.

Then

‖F1(u, v)‖4,8;T ≤ K‖u⊗ v‖2,4;T ≤ K‖u‖4,8;T ‖v‖4,8;T (3.1)

for all u, v ∈ L8(0, T ;L4
σ(Ω)) where K > 0 is an absolute constant

(independent of Ω, T, g).
(ii) Define the bilinear form

F2 : L8(0, T ;L4
σ(Ω))× L8/3(0, T ;L4(Ω))→ L8/3(0, T ;L4(Ω)) ,(

F2(u, θ)
)
(t) := −(−∆1/2)

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ

for a.a. t ∈ [0, T [.
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Then

‖F2(u, θ)‖4, 8
3

;T ≤ K‖θu‖2,2;T ≤ K‖u‖4,8;T ‖θ‖4, 8
3

;T (3.2)

for all u ∈ L8(0, T ;L4
σ(Ω)) , θ ∈ L8/3(0, T ;L4(Ω)) with an absolute

constant K > 0.
(iii) Define the linear map

L : L8/3(0, T ;L4(Ω))→ L8(0, T ;L4
σ(Ω)) ,(

Lθ
)
(t) :=

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ for a.a. t ∈ [0, T [.

Then

‖Lθ‖4,8;T ≤ K‖θg‖2, 4
3

;T ≤ K‖g‖4, 8
3

;T ‖θ‖4, 8
3

;T (3.3)

for all θ ∈ L8/3(0, T ;L4(Ω)) with an absolute constant K > 0.

Proof. Fix u , v ∈ L8(0, T ;L4
σ(Ω)) and θ ∈ L8/3(0, T ;L4(Ω)).

Proof of (i). Estimates (2.1), (2.3), (2.5) in combination with the
closedness of A7/8 and [12, Theorem 3.7.12] imply

‖(F1(u, v))(t)‖4 ≤ K
∥∥∥A7/8

∫ t

0
e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ v(τ)

)
dτ
∥∥∥

2

= K
∥∥∥∫ t

0
A7/8e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ v(τ)

)
dτ
∥∥∥

2

≤ K
∫ T

0
|t− τ |−7/8‖u(τ)⊗ v(τ)‖2 dτ

(3.4)

for a.a. t ∈ [0, T [ with an absolute constant K > 0. Since (1 − 7
8) + 1

8 = 1
4

we can apply the Hardy-Littlewood inequality (see [22, Theorem V.1]) and
Hölder’s inequality to (3.4) and obtain

‖F1(u, v)‖4,8;T ≤ K‖u⊗ v‖2,4;T ≤ K‖u‖4,8;T ‖v‖4,8;T

with an absolute constant K > 0.
Proof of (ii). As a consequence of (2.2), (2.4), an analogous estimate

of (2.5) for (−∆)−1/2div and [12, Theorem 3.7.12] we get

‖(F2(u, θ))(t)‖4 ≤ K
∥∥∥(−∆)7/8

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ
∥∥∥

2

≤ K
∫ T

0
|t− τ |−7/8‖θ(τ)u(τ)‖2 dτ

for a.a. t ∈ [0, T [ with an absolute constant K > 0. Using the Hardy-
Littlewood inequality in the form (1− 7

8) + 1(
8
3

) = 1
2 and Hölder’s inequality

yields
‖F2(u, θ)‖4, 8

3
;T ≤ K‖θu‖2,2;T ≤ K‖u‖4,8;T ‖θ‖4, 8

3
;T (3.5)

with an absolute constant K > 0.
Proof of (iii). From (2.3) it follows

‖(Lθ)(t)‖4 ≤ K
∫ T

0
|t− τ |−3/8‖θ(τ)g(τ)‖2 dτ (3.6)
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for a.a. t ∈ [0, T [ with an absolute constant K > 0. Applying the Hardy-
Littlewood inequality to (3.6) shows that (3.3) holds. �

Our next lemma reads as follows:

Lemma 3.2. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞. The following
statements are fulfilled:

(i) For f1 ∈ L4/3(0, T ;L2(Ω)) define

(Gf1)(t) :=

∫ t

0
e−(t−τ)APf1(τ) dτ for a.a. t ∈ [0, T [.

Then
‖Gf1‖4,8;T ≤ K‖f1‖2, 4

3
;T . (3.7)

with an absolute constant K > 0 (independent of Ω, T, f1).
(ii) For f2 ∈ L1(0, T ;L2(Ω)) define

(Hf2)(t) :=

∫ t

0
e(t−τ)∆f2(τ) dτ for a.a. t ∈ [0, T [.

Then
‖Hf2‖4, 8

3
;T ≤ K‖f2‖2,1;T (3.8)

with an absolute constant K > 0.
(iii) We have (∫ T

0
‖et∆θ0‖8/34 dt

)3/8

≤ K‖θ0‖2 (3.9)

for all θ0 ∈ L2(Ω) with an absolute constant K > 0.

Proof. In this proof we will make frequent use of the following interpolation
inequality: For E ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) there holds

‖E‖4, 8
3

;T ≤ ‖E‖
1/4
2,∞;T ‖E‖

3/4
6,2;T

≤ K‖E‖1/42,∞;T ‖(−∆)1/2E‖3/42,2;T

≤ K
(
‖E‖2,∞;T + ‖(−∆)1/2E‖2,2;T

) (3.10)

with an absolute constant K > 0.
(i) Replace θg by f1 in the proof of (3.3).
(ii) An analogous energy estimate as in ([21, IV.(2.3.4)]) yields

‖Hf2‖22,∞;T + ‖(−∆)1/2Hf2‖22,2;T ≤ K‖f‖22,1;T

with an absolute constant K > 0. Therefore

‖Hf2‖2,∞;T + ‖(−∆)1/2Hf2‖2,2;T ≤ K‖f‖2,1;T .

Consequently, by (3.10) it follows that (3.8) is satisfied.
(iii) Putting ‖et∆θ0‖2,∞;T ≤ ‖θ0‖2 and ‖(−∆)1/2et∆θ0‖2,2;T ≤ ‖θ0‖2

(analogous to [21, Lemma IV.1.5.3]) in (3.10) we get (3.9). �

Now we have all ingredients at hand to show that the statements formulated
in Theorem 1.3 are fulfilled.
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Proof of Theorem 1.3. Step 1. Define X := L8(0, T ;L4
σ(Ω)) , Y :=

L8/3(0, T ;L4(Ω)) and let F1,F2 ,L be defined as in Lemma 3.1. Choose
an absolute constant K > 0 (independent on Ω, T, g) such that (3.1), (3.2),
(3.3) are fulfilled. Furthermore introduce

E1(t) := e−tAu0 +

∫ t

0
e−(t−τ)APf1(τ) dτ ,

E2(t) := et∆θ0 +

∫ t

0
e(t−τ)∆f2(τ) dτ

for a.a. t ∈ [0, T [. From [1, Lemma 5.1] with η = 1
2 and α1 := K ,α2 := K

and α3 := K‖g‖4, 8
3

;T we obtain the existence of a constant c∗ = c∗(K) > 0

such that if

‖E1‖4,8;T + ‖g‖4, 8
3

;T ‖E2‖4, 8
3

;T ≤ c∗ (3.11)

then there exist u ∈ L8(0, T ;L4
σ(Ω)) , θ ∈ L8/3(0, T ;L4(Ω)) fulfilling

u = E1 + F1(u, u) + Lθ ,
θ = E2 + F2(u, θ).

(3.12)

By construction c∗ is an absolute constant. Looking at (3.7), (3.8) we get
the estimate
‖E1‖4,8;T + ‖g‖4, 8

3
;T ‖E2‖4, 8

3
;T

≤ K∗
[(∫ T

0
‖e−tAu0‖84 dt

)1/8
+ ‖f1‖2, 4

3
;T + ‖g‖4, 8

3
;T

(∫ T

0
‖et∆θ0‖8/34 dt

)3/8

+ ‖g‖4, 8
3

;T ‖f2‖2,1;T

]
with an absolute constant K∗ > 0. Define ε∗ := c∗

3K∗
. Thus, if (1.3), (1.4),

(1.5) are satisfied, then (3.11) is fulfilled and consequently there is a solution
u ∈ L8(0, T ;L4

σ(Ω)) , θ ∈ L8/3(0, T ;L4(Ω)) of (3.12).
Step 2. Let (u, θ) with u ∈ L8(0, T ;L4

σ(Ω)) and θ ∈ L8/3(0, T ;L4(Ω))
be a solution of (3.12). Consider any 0 < T ′ ≤ T with T ′ < ∞. It follows
u ⊗ u ∈ L2(0, T ′;L2(Ω)). Consequently, from [21, Lemma IV.2.4.2] (with
F = u⊗ u) we get

F1(u, u) ∈ LHT ′ := L∞(0, T ′;L2
σ(Ω)) ∩ L2(0, T ′;W 1,2

0,σ (Ω)). (3.13)

From P (θg) ∈ L4/3(0, T ;L2(Ω)) and [21, Lemma IV.2.4.2] (with f = θg) it
follows Lθ ∈ LHT ′ . Thus u ∈ LHT ′ . Using θu ∈ L2(0, T ;L2(Ω)) and an
analogous version of [21, Lemma IV.2.4.2] with A replaced by −∆ we get

θ ∈ L∞(0, T ′;L2(Ω)) ∩ L2(0, T ′;H1
0 (Ω)).

Looking at Lemma 2.1 we get that (u, θ) is also a weak solution of (1.1) in
[0, T [×Ω. Since u ∈ L8(0, T ;L4(Ω)) we have that (u, θ) is indeed a strong
solution of (1.1). The uniqueness of a strong solution of the Boussinesq
equations (1.1) in [0, T [×Ω follows from Theorem 4.1 below.
Step 3. From (3.9) we get

∫ T
0 ‖e

t∆θ0‖8/34 dt <∞. The sufficiency of (1.6)
for the existence of 0 < T ′ ≤ T and a strong solution of (1.1) in [0, T ′[×Ω
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follows from Theorem 1.3 (i). Assume that (u, θ) is a strong solution of (1.1)
in [0, T ′[×Ω where 0 < T ′ ≤ T . From (2.6) we get

e−tA = u(t)−F1(u, u)(t)− Lθ(t)−
∫ t

0
e−(t−τ)APf1(τ) dτ , a.a. t ∈ [0, T [.

By Lemma 3.1 (i), (iii) and Lemma 3.2 (i) it follows e−tAu0 ∈ L8(0, T ′;L4(Ω)).
From (2.1), (2.3) we get

∫∞
T ′ ‖e

−tAu0‖84 dt ≤ c
∫∞
T ′ t
−3‖u0‖82 dt < ∞. Alto-

gether (1.6) holds. �

4. Proof of Theorem 1.6

For the proof of Theorem 1.6 we need the following result.

Theorem 4.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞ , g ∈
L

8/3
loc ([0, T [;L4(Ω)), let f1 ∈ L4/3

loc ([0, T [;L2(Ω)) , f2 ∈ L1
loc([0, T [;L2(Ω)). As-

sume that (u, θ) and (v,Θ) are weak solutions of (1.1) such that additionally
u , v ∈ L8

loc([0, T [;L4(Ω)). Then u(t) = v(t) and θ(t) = Θ(t) for almost all
t ∈ [0, T [.

Proof. The proof is analogous to the proof of [17, Theorem 1.5] with ex-
ponents s = 8 , q = 4 and s1 = 8

3 , q1 = 4. Indeed, since [17, Lemma 3.2]
can be replaced by Lemma 3.1 there are no problems occurring in this proof
although we consider a general domain instead of a smooth bounded domain
in [17, Theorem 1.5]. �

We proceed with the following lemma.

Lemma 4.2. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let g ∈
L8/3(0, T ;L4(Ω)). Consider f1 ∈ L4/3(0, T ;L2(Ω)) , f2 ∈ L1(0, T ;L2(Ω))
and u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω). Let (u, θ) , (v,Θ) be weak solutions of (1.1) in
[0, T [×Ω, let t0 ∈ [0, T [ such that u(t0) = v(t0) , θ(t0) = Θ(t0). Assume that
(u, θ) and (v,Θ) satisfy (1.11) with s = t0 and all t ≥ t0. Further assume∫ ∞

0
‖e−tAu(t0)‖84 dt <∞. (4.1)

Then there exists δ > 0 such that u(t) = v(t) and θ(t) = Θ(t) for all t ∈
[t0, t0 + δ[.

Proof. Define

ũ(t) := u(t+ t0) , θ̃(t) := θ(t+ t0) , (4.2)

ṽ(t) := v(t+ t0) , Θ̃(t) := Θ(t+ t0) (4.3)

for all t ∈ [0, T − t0[. A standard argumentation, which uses the weak con-
tinuity of (u, θ) , (v,Θ), shows that (ũ, θ̃) , (ṽ, Θ̃) are weak solutions of (1.1)
in [0, T − t0[×Ω with initial values u0 := u(t0) , θ0 := θ(t0) and f1(· + t0),
f2(·+ t0) , g(·+ t0).

Define f(t) := f1(t + t0) + θ(t + t0)g(t + t0), a.a. t ∈ [0, T − t0[. By
Theorem 1.4 with f ∈ L8/3(0, T − t0;L4(Ω)) and initial value u0 there exists
0 < δ ≤ T − t0 and a strong solution w ∈ L8(0, δ;L4(Ω)) of the Navier-
Stokes equations (1.10). By construction, ũ is a weak solution of (1.10) in
[0, T − t0[×Ω satisfying the energy inequality, i.e. (1.11) holds with s = 0
and all t ∈ [0, T − t0[. Altogether, all requirements of Serrin’s uniqueness
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theorem (see [21, Theorem V.1.5.1]) are fulfilled. We obtain ũ(t) = w(t) for
a.a. t ∈ [0, δ[ and consequently ũ ∈ L8(0, δ;L4(Ω)). In the same way as
above we can prove (after a possible reduction of δ) that ṽ ∈ L8(0, δ;L4(Ω)).

Now the requirements of Theorem 4.1 are fulfilled and therefore ũ(t) = ṽ(t)

and θ̃(t) = Θ̃(t) for a.a. t ∈ [0, δ[. This means u(t) = v(t) , θ(t) = Θ(t) for
a.a. t ∈ [t0, t0 + δ[. By weak continuity these identities are even fulfilled for
all t ∈ [0, δ[. �

Proof of Theorem 1.6. From Lemma 4.2 we get the existence of δ > 0
such that u(t) = v(t) and θ(t) = Θ(t) for all t ∈ [0, δ[. Define

t∗ := sup{ t ∈]0, T [;u(τ) = v(τ) and θ(τ) = Θ(τ) for all τ ∈ [0, t[ }.

To finish the proof we have to show t∗ = T . Assume by contradiction
that t∗ < T . By weak continuity u(t∗) = v(t∗). Consequently, looking at
assumption (iii) of Theorem 1.6 we see that u , v : [0, t∗] → L2

σ(Ω) are both
strongly continuous functions.

From (1.11) we obtain 0 < tj < t∗ , j ∈ N, with tj → t∗ as j → ∞ such
that

1

2
‖u(t)‖22 +

∫ t

tj

‖∇u‖22 dτ ≤
1

2
‖u(tj)‖22 +

∫ t

tj

〈θg, u〉Ω dτ+

∫ t

tj

〈f1, u〉Ω dτ (4.4)

for all t ∈ [tj , T [ and j ∈ N. Due to the strong continuity of u we can pass
to the limit in (4.4) and obtain

1

2
‖u(t)‖22 +

∫ t

t∗

‖∇u‖22 dτ ≤
1

2
‖u(t∗)‖22 +

∫ t

t∗

〈θg, u〉Ω dτ +

∫ t

t∗

〈f1, u〉Ω dτ

for all t ∈ [t∗, T [. Analogously we can prove that (v,Θ) satisfies (1.11) with
s = t∗ and all t ∈ [t∗, T [. From Lemma 4.2 we obtain ε > 0 such that
u(t) = v(t) and θ(t) = Θ(t) for all t ∈ [t∗, t∗ + ε[. This is a contradiction to
the definition of t∗. Thus t∗ = T . �

5. Proof of Corollary 1.7

Step 1. Assume u ∈ L8(0, T ;L4(Ω)). Then u ⊗ u ∈ L2
loc([0, T [;L2(Ω)).

By [21, Theorem IV.2.3.1] with f = θg + f1 we get that u : [0, T [→ L2
σ(Ω)

is strongly continuous and that (u, θ) satisfy (1.11) (even as an equality).
Considering (u, θ) as a weak solution of the Boussinesq equations (1.1) in
[t0, T − t0[ we obtain from Theorem 1.3 (ii) that (1.12) holds. Theorem 1.6
yields u(t) = v(t) , θ(t) = Θ(t) for all t ∈ [0, T [.
Step 2. Assume u ∈ L∞(0, T ;D(A1/4)). Using the trivial imbedding

D(A1/4) ↪→ L2
σ(Ω) we can prove that u : [0, T [→ D(A1/4) is weakly contin-

uous. Especially u(t) ∈ D(A1/4) for all t ∈ [0, T [. Further, the continuous
imbedding D(A1/4) ↪→ L3(Ω) implies u ∈ L∞(0, T ;L3(Ω)). By interpolation
and Sobolev’s imbedding theorem

‖u⊗ u‖2,2;T ≤ c‖u‖L2(0,T ;H1(Ω))‖u‖3,∞;T .

Therefore, see [21, Theorem IV.2.3.1], it follows that u : [0, T [→ L2
σ(Ω)

is strongly continuous and that (u, θ) fulfils (1.11). From (2.3) and [21,
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IV.(1.5.24)] we get∫ T

0
‖e−tAu0‖84 dt ≤ K

∫ T

0
‖A1/8e−tAA1/4u0‖82 dt ≤ K‖A1/4u0‖2 (5.1)

with an absolute constant K > 0. The claim follows from Theorem 1.6. �

6. Proof of Theorem 1.8

Let us introduce for 0 < T ′ ≤ T ≤ ∞ and f ∈ Ls(0, T ;Lq(Ω)) the nota-

tion ‖f‖q,s;T ′,T :=
(∫ T

T ′ ‖f(t)‖sq dt
) 1
s .

Step 1. (Preparation) Let ε∗ be the constant constructed in Theo-
rems 1.3, 1.4. From (1.13) we get(∫ δ

0
‖e−τAu0‖84 dτ

) 1
8 ≤ c1δ

1/8‖u0‖4 (6.1)

for all δ > 0 with a fixed constant c1 = c1(Ω, q) > 0. Define

c∗ := min
{ ε

8/s
∗

c
8/s
1 21/s

, ε∗

}
.

Let us introduce exponents 1 < µ̃ , s̃ <∞ by
1

8/3
=

1

µ
+

1

µ̃
,

1

4/3
=

1

s
+

1

s̃
.

Now we define

δ := min
{( ε∗

c1‖u0‖4

)8
,
( ε∗
‖g‖4,µ;T ‖θ‖2,∞;T

)µ̃
,( ε∗

2‖g‖4,µ;T ‖f2‖2,1;T

)µ̃
,
( ε∗

2‖f1‖2,s;T ‖

)s̃
, T
}
.

Consider any t0, t1 ∈ [0, T [ with |t1 − t0| ≤ δ. Then

‖g‖4, 8
3

;t0,t1
‖θ(t0)‖2 ≤ (t1 − t0)1/µ̃‖g‖4,µ;t0,t1‖θ‖2,∞;T

≤ δ1/µ̃‖g‖4,µ;T ‖θ‖2,∞;T

≤ ε∗.

(6.2)

Analogously

‖f1‖2, 4
3

;t0,t1
+ ‖g‖4, 8

3
;t0,t1
‖f2‖2,1;t0,t1 ≤ δ1/s̃‖f1‖2,s;T + δ1/µ̃‖g‖4,µ;T ‖f2‖2,1;T

≤ ε∗.
(6.3)

Step 2. (Regularity on [0, δ[) By construction
(∫ δ

0 ‖e
−τAu0‖84 dτ

)1/8
≤ ε∗.

Inserting t0 := 0 , t1 := δ in (6.2), (6.3) we see that (1.3), (1.5), (1.7) are
satisfied on [0, δ[. By Theorem 1.3 (i) there exists a strong solution (v,Θ) of
the Boussinesq equations (1.1) in [0, δ[×Ω which coincides by Corollary 1.7
with (u, θ). Thus u ∈ L8(0, δ;L4(Ω)).
Step 3. (Global regularity) Fix an arbitrary t ∈ [δ, T − δ

2 [.
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Assertion. There exists t0 ∈]t− δ
2 , t[\N such that

(t1 − t0)
s
8 ‖u(t0)‖s4 ≤

2

δ

∫ t

t− δ
2

(t1 − τ)
s
8 ‖u(τ)‖s4 dτ (6.4)

where t1 := t+ δ
2 and N ⊆]0, T [ denotes the null set in Definition 1.5.

Proof of (6.4). If such a t0 would not exist we could integrate the
estimate

(t1 − t0)
s
8 ‖u(t0)‖s4 >

2

δ

∫ t

t− δ
2

(t1 − τ)
s
8 ‖u(τ)‖s4 dτ , a.a. t0 ∈]t− δ

2
, t[

over ]t− δ
2 , t[ and get a contradiction to (6.4). �

Using the definition of c∗ , δ and (6.1), (6.4) we obtain(∫ t1−t0

0
‖e−τAu(t0)‖84 dτ

) 1
8 ≤ c1

(
(t1 − t0)

s
8 ‖u(t0)‖s4

) 1
s

≤ c1

(2

δ

∫ t

t− δ
2

(t1 − τ)
s
8 ‖u(τ)‖s4 dτ

) 1
s

≤ c12
1
s δ

1
8
− 1
s

(∫ T

0
‖u(τ)‖s4 dτ

)1/s

≤ c12
1
s

( ε∗
c1‖u0‖4

)1− 8
s c∗

‖u0‖
8
s
−1

4

≤ ε∗.

(6.5)

From (6.2), (6.3), (6.5) in combination with Theorem 1.3 (i) we get the
existence of a strong solution (v,Θ) of the Boussinesq equations (1.1) in
[0, t1 − t0[×Ω with initial values v(0) = u(t0) ,Θ(0) = θ(t0) and f1(· +

t0), f2(·+t0), g(·+t0). As in (4.2) introduce ũ(t) := u(t+t0) , θ̃(t) := θ(t+t0)

for t ∈ [0, t1 − t0[. From Corollary 1.7 we get ũ = v and θ̃ = Θ in [0, t1 − t0[
and consequently u ∈ L8(t0, t1;L4(Ω)). Altogether u ∈ L8(t, t+ δ

2 ;L4(Ω)) for
all t ∈ [δ, T − δ

2 [. Since δ is independent of t we obtain u ∈ L8(δ, T ;L4(Ω)).
It follows u ∈ L8(0, T ;L4(Ω)) which means that (u, θ) is a strong solution
of (1.1) in [0, T [×Ω. The uniqueness statement at the end of Theorem 1.8
follows from Corollary 1.7. �

Acknowledgement. The author thanks Reinhard Farwig for his kind sup-
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